We present numerical simulations of rectangular woven fabrics made of two, initially orthogonal, families of inextensible fibres. We consider an energy functional which includes both first and second gradients of the displacement. The energy density is expressed in terms of the angles between the fibres directions, using trigonometric functions and their gradients. In particular, we focus on an energy density depending on the squared tangent of the shear angle, which automatically satisfies some natural properties of the energy. The numerical results show that final configurations obtained by the second gradient energies are smoother than the first gradient ones. Moreover, we show that if a second gradient energy is considered, the shear energy is better uniformly distributed.

A second gradient formulation for a 2D fabric sheet with inextensible fibres / Placidi, Luca; Greco, Leopoldo; Bucci, Sara; Turco, Emilio; Rizzi, Nicola Luigi. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK. - ISSN 0044-2275. - 67:5(2016). [10.1007/s00033-016-0701-8]

A second gradient formulation for a 2D fabric sheet with inextensible fibres

TURCO, Emilio;
2016

Abstract

We present numerical simulations of rectangular woven fabrics made of two, initially orthogonal, families of inextensible fibres. We consider an energy functional which includes both first and second gradients of the displacement. The energy density is expressed in terms of the angles between the fibres directions, using trigonometric functions and their gradients. In particular, we focus on an energy density depending on the squared tangent of the shear angle, which automatically satisfies some natural properties of the energy. The numerical results show that final configurations obtained by the second gradient energies are smoother than the first gradient ones. Moreover, we show that if a second gradient energy is considered, the shear energy is better uniformly distributed.
A second gradient formulation for a 2D fabric sheet with inextensible fibres / Placidi, Luca; Greco, Leopoldo; Bucci, Sara; Turco, Emilio; Rizzi, Nicola Luigi. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK. - ISSN 0044-2275. - 67:5(2016). [10.1007/s00033-016-0701-8]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/165864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 83
social impact