This first part of two companion papers deals with the numerical modeling of timber–concrete composite beams (TCCs) under long-term loading. All phenomena affecting the long-term behavior of timber, concrete, and the connection system, such as creep, mechanosorptive creep, shrinkage/swelling, and temperature variations, are fully considered. The structural problem is solved through a uniaxial finite element model with flexible connection and a step-by-step numerical procedure over time. The important role played by the environmental thermohygrometric variations on TCCs is highlighted through some analyses. The proposed numerical procedure is validated on two long-term experimental tests in outdoor conditions. Despite some uncertainties in environmental conditions and material properties, a good fit between experimental and numerical results is obtained. A parametric analysis is performed in the second part, showing the contribution of different rheological phenomena and thermohygrometric variations on beam deflection and connection slip. Based on results carried out, a simplified approach for long-term evaluation of TCCs is then proposed.
Long-term behavior of timber-concrete composite beams. I: Finite element modeling and validation / Fragiacomo, Massimo; Ceccotti, A.. - In: JOURNAL OF STRUCTURAL ENGINEERING. - ISSN 0733-9445. - 132:1(2006), pp. 13-22. [10.1061/(ASCE)0733-9445(2006)132:1(13)]
Long-term behavior of timber-concrete composite beams. I: Finite element modeling and validation
FRAGIACOMO, Massimo;
2006-01-01
Abstract
This first part of two companion papers deals with the numerical modeling of timber–concrete composite beams (TCCs) under long-term loading. All phenomena affecting the long-term behavior of timber, concrete, and the connection system, such as creep, mechanosorptive creep, shrinkage/swelling, and temperature variations, are fully considered. The structural problem is solved through a uniaxial finite element model with flexible connection and a step-by-step numerical procedure over time. The important role played by the environmental thermohygrometric variations on TCCs is highlighted through some analyses. The proposed numerical procedure is validated on two long-term experimental tests in outdoor conditions. Despite some uncertainties in environmental conditions and material properties, a good fit between experimental and numerical results is obtained. A parametric analysis is performed in the second part, showing the contribution of different rheological phenomena and thermohygrometric variations on beam deflection and connection slip. Based on results carried out, a simplified approach for long-term evaluation of TCCs is then proposed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.