Discovered in the early 2000s, that of carbon-dots is a family of carbon-based nanomaterials that has received a great interest from the scientific community because of their excellent properties. Initially studied for their optical properties (especially fluorescence), the fields of application have become many over the years, finding greater use in the biomedical field, such as in bioimaging, photodynamic therapy, and control on inhibition and proliferation of microorganisms, among many others. The goal of this doctoral work was to use these nanoparticles, the carbon-dots, to functionalize surfaces to confer them antimicrobial properties. The synthesized carbon-dots, starting from an amino acid, glycine, and two co-precursors, 1,5-diaminonaphthalene and glycyrrhizic acid, showed interesting antimicrobial properties. Specifically, dots synthesized with glycine and 1,5-diaminonaphthalene showed excellent antiviral activity against two variants of SARS-CoV-2, the original strain and the delta strain. Whereas dots synthesized from glycine and glycyrrhizic acid showed interesting antibacterial susceptibility against gram-positive bacteria, S. aureus and E. faecium. Characterizations carried out, such as TEM, FTIR, XPS, and NMR, allowed to understand the main structural features of these dots, while with EPR, it was possible to understand the mechanism of antimicrobial action of these dots, identifying the promotion of ROS by these nanomaterials. Finally, the dots that showed antiviral activity were used to functionalize the silicon-based surfaces through a covalent chemical approach, keeping their antiviral property unaltered, even after functionalization. The dots that showed antibacterial activity, on the other hand, were used to functionalize a self-standing PVA-based surface by embedding the materials within a polymer matrix. This system showed interesting application in preserving the integrity of fresh foods, such as fruits, by increasing their shelf-life.

Scoperta all'inizio degli anni 2000, quella dei carbon-dots è una famiglia di nanomateriali a base di carbonio che ha riscosso un grande interesse da parte della comunità scientifica per le loro eccellenti proprietà. Inizialmente studiati per le loro proprietà ottiche (in particolare la fluorescenza), i campi di applicazione sono diventati molti nel corso degli anni, trovando maggiore impiego nel campo biomedico, come ad esempio nel bioimaging, nella terapia fotodinamica e nel controllo dell'inibizione e della proliferazione dei microrganismi, tra i tanti. L'obiettivo di questo lavoro di dottorato è stato quello di utilizzare queste nanoparticelle, i carbon-dots, per funzionalizzare delle superfici e conferire loro proprietà antimicrobiche. I carbon-dots sintetizzati a partire da un aminoacido, la glicina, e da due co-precursori, l'1,5-diaminaftalene e l'acido glicirrizico, hanno mostrato interessanti proprietà antimicrobiche. In particolare, i dots sintetizzati con glicina e 1,5-diaminaftalene hanno mostrato un'eccellente attività antivirale contro due varianti del SARS-CoV-2, il ceppo originale e il ceppo delta. Mentre i dots sintetizzati da glicina e acido glicirrizico hanno mostrato un'interessante suscettibilità antibatterica contro i batteri gram-positivi, S. aureus ed E. faecium. Le caratterizzazioni effettuate, come TEM, FTIR, XPS e NMR, hanno permesso di comprendere le principali caratteristiche strutturali di questi dots, mentre con l'EPR è stato possibile capire il meccanismo dell'azione antimicrobica di questi nanomateriali, identificando la promozione dei ROS da parte di quest'ultimi. Infine, i dots che hanno mostrato attività antivirale sono stati utilizzati per funzionalizzare le superfici a base di silicio attraverso un approccio chimico covalente, mantenendo inalterate le loro proprietà antivirali anche dopo la funzionalizzazione. I dots che hanno mostrato attività antibatterica, invece, sono stati utilizzati per funzionalizzare una superficie self-standing a base di PVA, incorporando i materiali all'interno di una matrice polimerica. Questo sistema ha mostrato un'interessante applicazione per preservare l'integrità di alimenti freschi, come la frutta, aumentandone la durata di conservazione.

Functional nanostructured surfaces with biocidal and antiviral properties / Poddighe, Matteo. - (2024 Mar 18).

Functional nanostructured surfaces with biocidal and antiviral properties

PODDIGHE, MATTEO
2024-03-18

Abstract

Discovered in the early 2000s, that of carbon-dots is a family of carbon-based nanomaterials that has received a great interest from the scientific community because of their excellent properties. Initially studied for their optical properties (especially fluorescence), the fields of application have become many over the years, finding greater use in the biomedical field, such as in bioimaging, photodynamic therapy, and control on inhibition and proliferation of microorganisms, among many others. The goal of this doctoral work was to use these nanoparticles, the carbon-dots, to functionalize surfaces to confer them antimicrobial properties. The synthesized carbon-dots, starting from an amino acid, glycine, and two co-precursors, 1,5-diaminonaphthalene and glycyrrhizic acid, showed interesting antimicrobial properties. Specifically, dots synthesized with glycine and 1,5-diaminonaphthalene showed excellent antiviral activity against two variants of SARS-CoV-2, the original strain and the delta strain. Whereas dots synthesized from glycine and glycyrrhizic acid showed interesting antibacterial susceptibility against gram-positive bacteria, S. aureus and E. faecium. Characterizations carried out, such as TEM, FTIR, XPS, and NMR, allowed to understand the main structural features of these dots, while with EPR, it was possible to understand the mechanism of antimicrobial action of these dots, identifying the promotion of ROS by these nanomaterials. Finally, the dots that showed antiviral activity were used to functionalize the silicon-based surfaces through a covalent chemical approach, keeping their antiviral property unaltered, even after functionalization. The dots that showed antibacterial activity, on the other hand, were used to functionalize a self-standing PVA-based surface by embedding the materials within a polymer matrix. This system showed interesting application in preserving the integrity of fresh foods, such as fruits, by increasing their shelf-life.
18-mar-2024
Scoperta all'inizio degli anni 2000, quella dei carbon-dots è una famiglia di nanomateriali a base di carbonio che ha riscosso un grande interesse da parte della comunità scientifica per le loro eccellenti proprietà. Inizialmente studiati per le loro proprietà ottiche (in particolare la fluorescenza), i campi di applicazione sono diventati molti nel corso degli anni, trovando maggiore impiego nel campo biomedico, come ad esempio nel bioimaging, nella terapia fotodinamica e nel controllo dell'inibizione e della proliferazione dei microrganismi, tra i tanti. L'obiettivo di questo lavoro di dottorato è stato quello di utilizzare queste nanoparticelle, i carbon-dots, per funzionalizzare delle superfici e conferire loro proprietà antimicrobiche. I carbon-dots sintetizzati a partire da un aminoacido, la glicina, e da due co-precursori, l'1,5-diaminaftalene e l'acido glicirrizico, hanno mostrato interessanti proprietà antimicrobiche. In particolare, i dots sintetizzati con glicina e 1,5-diaminaftalene hanno mostrato un'eccellente attività antivirale contro due varianti del SARS-CoV-2, il ceppo originale e il ceppo delta. Mentre i dots sintetizzati da glicina e acido glicirrizico hanno mostrato un'interessante suscettibilità antibatterica contro i batteri gram-positivi, S. aureus ed E. faecium. Le caratterizzazioni effettuate, come TEM, FTIR, XPS e NMR, hanno permesso di comprendere le principali caratteristiche strutturali di questi dots, mentre con l'EPR è stato possibile capire il meccanismo dell'azione antimicrobica di questi nanomateriali, identificando la promozione dei ROS da parte di quest'ultimi. Infine, i dots che hanno mostrato attività antivirale sono stati utilizzati per funzionalizzare le superfici a base di silicio attraverso un approccio chimico covalente, mantenendo inalterate le loro proprietà antivirali anche dopo la funzionalizzazione. I dots che hanno mostrato attività antibatterica, invece, sono stati utilizzati per funzionalizzare una superficie self-standing a base di PVA, incorporando i materiali all'interno di una matrice polimerica. Questo sistema ha mostrato un'interessante applicazione per preservare l'integrità di alimenti freschi, come la frutta, aumentandone la durata di conservazione.
Surfaces; Nanoparticles; Carbon-dots; Susceptibility; Microwave Synthesis
Functional nanostructured surfaces with biocidal and antiviral properties / Poddighe, Matteo. - (2024 Mar 18).
File in questo prodotto:
File Dimensione Formato  
Tesi Dottorato_Matteo Poddighe.pdf

embargo fino al 09/09/2025

Descrizione: Functional nanostructured surfaces with biocidal and antiviral properties
Tipologia: Tesi di dottorato
Dimensione 6.81 MB
Formato Adobe PDF
6.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/325810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact