It is well established that changes in bone blood and interstitial fluid flows are associated with changes in the bone remodeling process. These flows in bone are a result not only of trans-cortical pressure gradients produced by vascular and hydro-static pressure, but also of mechanical loadings. Mechanical load-induced intraosseous pressure gradients may result in some fluid stimuli effects which, in turn, may enable bone cells to detect external mechanical signals. In this paper, the exploitation of a 2D continuum model based on classical poroelasticity is presented within a variational framework. The investigation is aimed at describing how mechanical actions can affect the remodeling process of a bone tissue. The focus is on the introduction of a physically motivated strain energy contribution aimed to take into account the presence of saturating fluid in the interconnected pores of bone tissue. The interaction with a bio-resorbable organic ceramic material like those used in bone graft implants is also considered in presented model. Numerical results are provided in a relevant exemplary case.
The effect of mechanical load-induced intraosseous pressure gradients on bone remodeling / Barchiesi, E.; Giorgio, I.; Alzahrani, F.; Hayat, T.. - 108:(2019), pp. 29-49. [10.1007/978-3-030-13307-8_3]
The effect of mechanical load-induced intraosseous pressure gradients on bone remodeling
Barchiesi E.;
2019-01-01
Abstract
It is well established that changes in bone blood and interstitial fluid flows are associated with changes in the bone remodeling process. These flows in bone are a result not only of trans-cortical pressure gradients produced by vascular and hydro-static pressure, but also of mechanical loadings. Mechanical load-induced intraosseous pressure gradients may result in some fluid stimuli effects which, in turn, may enable bone cells to detect external mechanical signals. In this paper, the exploitation of a 2D continuum model based on classical poroelasticity is presented within a variational framework. The investigation is aimed at describing how mechanical actions can affect the remodeling process of a bone tissue. The focus is on the introduction of a physically motivated strain energy contribution aimed to take into account the presence of saturating fluid in the interconnected pores of bone tissue. The interaction with a bio-resorbable organic ceramic material like those used in bone graft implants is also considered in presented model. Numerical results are provided in a relevant exemplary case.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.