Although fully autonomous mapping methods are becoming more and more common and reliable, still the human operator is regularly employed in many 3D surveying missions. In a number of underwater applications, divers or pilots of remotely operated vehicles (ROVs) are still considered irreplaceable, and tools for real-time visualization of the mapped scene are essential to support and maximize the navigation and surveying efforts. For underwater exploration, image mosaicing has proved to be a valid and effective approach to visualize large mapped areas, often employed in conjunction with autonomous underwater vehicles (AUVs) and ROVs. In this work, we propose the use of a modified image mosaicing algorithm that coupled with image-based real-time navigation and mapping algorithms provides two visual navigation aids. The first is a classic image mosaic, where the recorded and processed images are incrementally added, named 2D sequential image mosaicing (2DSIM). The second one geometrically transform the images so that they are projected as planar point clouds in the 3D space providing an incremental point cloud mosaicing, named 3D sequential image plane projection (3DSIP). In the paper, the implemented procedure is detailed, and experiments in different underwater scenarios presented and discussed. Technical considerations about computational efforts, frame rate capabilities and scalability to different and more compact architectures (i.e. embedded systems) is also provided.

3D SEQUENTIAL IMAGE MOSAICING for UNDERWATER NAVIGATION and MAPPING / Nocerino, E.; Menna, F.; Chemisky, B.; Drap, P.. - In: INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES. - ISSN 1682-1750. - 43:2(2020), pp. 991-998. (Intervento presentato al convegno 2020 24th ISPRS Congress - Technical Commission II tenutosi a fra nel 2020) [10.5194/isprs-archives-XLIII-B2-2020-991-2020].

3D SEQUENTIAL IMAGE MOSAICING for UNDERWATER NAVIGATION and MAPPING

Nocerino E.
;
2020-01-01

Abstract

Although fully autonomous mapping methods are becoming more and more common and reliable, still the human operator is regularly employed in many 3D surveying missions. In a number of underwater applications, divers or pilots of remotely operated vehicles (ROVs) are still considered irreplaceable, and tools for real-time visualization of the mapped scene are essential to support and maximize the navigation and surveying efforts. For underwater exploration, image mosaicing has proved to be a valid and effective approach to visualize large mapped areas, often employed in conjunction with autonomous underwater vehicles (AUVs) and ROVs. In this work, we propose the use of a modified image mosaicing algorithm that coupled with image-based real-time navigation and mapping algorithms provides two visual navigation aids. The first is a classic image mosaic, where the recorded and processed images are incrementally added, named 2D sequential image mosaicing (2DSIM). The second one geometrically transform the images so that they are projected as planar point clouds in the 3D space providing an incremental point cloud mosaicing, named 3D sequential image plane projection (3DSIP). In the paper, the implemented procedure is detailed, and experiments in different underwater scenarios presented and discussed. Technical considerations about computational efforts, frame rate capabilities and scalability to different and more compact architectures (i.e. embedded systems) is also provided.
2020
3D SEQUENTIAL IMAGE MOSAICING for UNDERWATER NAVIGATION and MAPPING / Nocerino, E.; Menna, F.; Chemisky, B.; Drap, P.. - In: INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES. - ISSN 1682-1750. - 43:2(2020), pp. 991-998. (Intervento presentato al convegno 2020 24th ISPRS Congress - Technical Commission II tenutosi a fra nel 2020) [10.5194/isprs-archives-XLIII-B2-2020-991-2020].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/277310
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact