In this paper, a novel learning algorithm for Hidden Markov Models (HMMs) has been devised. The key issue is the achievement of a sparse model, i.e., a model in which all irrelevant parameters are set exactly to zero. Alternatively to standard Maximum Likelihood Estimation (Baum Welch training), in the proposed approach the parameters estimation problem is cast into a Bayesian framework, with the introduction of a negative Dirichlet prior, which strongly encourages sparseness of the model. A modified Expectation Maximization algorithm has been devised, able to determine a MAP (Maximum A Posteriori probability) estimate of HMM parameters in this Bayesian formulation. Theoretical considerations and experimental comparative evaluations on a 2D shape classification task contribute to validate the proposed technique.

Sparseness achievement in Hidden Markov Models / Bicego, Manuele; Cristani, Marco; Murino, Vittorio. - (2007), pp. 67-72. (Intervento presentato al convegno Proceedings 14th International Conference on Image Analysis and Processing) [10.1109/ICIAP.2007.4362759].

Sparseness achievement in Hidden Markov Models

Bicego, Manuele;
2007-01-01

Abstract

In this paper, a novel learning algorithm for Hidden Markov Models (HMMs) has been devised. The key issue is the achievement of a sparse model, i.e., a model in which all irrelevant parameters are set exactly to zero. Alternatively to standard Maximum Likelihood Estimation (Baum Welch training), in the proposed approach the parameters estimation problem is cast into a Bayesian framework, with the introduction of a negative Dirichlet prior, which strongly encourages sparseness of the model. A modified Expectation Maximization algorithm has been devised, able to determine a MAP (Maximum A Posteriori probability) estimate of HMM parameters in this Bayesian formulation. Theoretical considerations and experimental comparative evaluations on a 2D shape classification task contribute to validate the proposed technique.
2007
978-0-7695-2877-9
Sparseness achievement in Hidden Markov Models / Bicego, Manuele; Cristani, Marco; Murino, Vittorio. - (2007), pp. 67-72. (Intervento presentato al convegno Proceedings 14th International Conference on Image Analysis and Processing) [10.1109/ICIAP.2007.4362759].
File in questo prodotto:
File Dimensione Formato  
Bicego_M_ContrCongresso_2007_Sparseness.pdf

accesso aperto

Tipologia: Versione editoriale (versione finale pubblicata)
Licenza: Non specificato
Dimensione 281.75 kB
Formato Adobe PDF
281.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/264977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact