In this paper we investigate a swarm intelligence classification approach for both biometrics verification and identification problems. We model the problem by representing biometric templates as ants, grouped in colonies representing the clients of a biometrics authentication system. The biometric template classification process is modeled as the aggregation of ants to colonies. When test input data is captured -- a new ant in our representation -- it will be influenced by the deposited phermonones related to the population of the colonies. We experiment with the Aggregation Pheromone density based Classifier (APC), and our results show that APC outperforms ``traditional'' techniques -- like 1-nearest-neighbour and Support Vector Machines -- and we also show that performance of APC are comparable to several state of the art face verification algorithms. The results here presented let us conclude that swarm intelligence approaches represent a very promising direction for further investigations for biometrics verification and identification.

A Swarm intelligence approach for biometrics verification and identification / Pulina, Luca. - CVL 2012/002(2012).

A Swarm intelligence approach for biometrics verification and identification

Pulina, Luca
2012-01-01

Abstract

In this paper we investigate a swarm intelligence classification approach for both biometrics verification and identification problems. We model the problem by representing biometric templates as ants, grouped in colonies representing the clients of a biometrics authentication system. The biometric template classification process is modeled as the aggregation of ants to colonies. When test input data is captured -- a new ant in our representation -- it will be influenced by the deposited phermonones related to the population of the colonies. We experiment with the Aggregation Pheromone density based Classifier (APC), and our results show that APC outperforms ``traditional'' techniques -- like 1-nearest-neighbour and Support Vector Machines -- and we also show that performance of APC are comparable to several state of the art face verification algorithms. The results here presented let us conclude that swarm intelligence approaches represent a very promising direction for further investigations for biometrics verification and identification.
2012
A Swarm intelligence approach for biometrics verification and identification / Pulina, Luca. - CVL 2012/002(2012).
File in questo prodotto:
File Dimensione Formato  
Pulina_L_Swarm_intelligence_approach_for.pdf

accesso aperto

Tipologia: Versione editoriale (versione finale pubblicata)
Licenza: Non specificato
Dimensione 473.81 kB
Formato Adobe PDF
473.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11388/264737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact