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Abstract 

Microbes in the human body co-evolved with the host during the aging process, 

adapting to the aging-related niche alternation, however, the full view of the human 

microbiota variation related to aging is still unknown. Besides, the gut microbiota has 

been proposed as a promising determinant for human health. Using centenarians as a 

model for extreme aging may help to understand the correlation of gut microbiota 

with healthy-aging and longevity. By recruiting the young, elderly and centenarians in 

Sardinia, Italy, we obtained an integrated view of the spatial distribution of microbiota 

in the human body across a wide age range and determined the compositional and 

functional differences in gut microbiota associated with populations of different age in 

Sardinia. We found that the distribution and correlation of bacteria and fungi 

community in Sardinians were driven by body sites. In each different age groups, both 

the bacterial and fungal communities in the skin were significantly different in 

structure, but not in the oral. The gut bacterial communities in the centenarians 

clustered separately from the young and elderly which had overlapped clustering, 

while the fungal communities in gut can‟t be separated by the age groups. Moreover, 

our data revealed that gut microbiota of the healthy elderly and young Sardinians also 

shared similar metabolic functional profiles, while a distinct cluster is found in 

centenarians. Within the centenarian group, the gut microbiota is correlated with 

health status of the host. The centenarians have higher diversity of core microbiota 
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species and microbes genes compared with that in young and elderly. The enrichment 

of Methanobrevibacter and Bifidobacterium were detected in Sardinian centenarians, 

which were also verified in a bigger centenarian cohort in Bologna, Italy. Moreover, 

potential metabolic functional analysis revealed that the gut microbiota in the 

centenarian group had significantly lower capability to digest complex carbohydrates 

but had enhanced fermentation capability via glycolysis. Gene pathways involved in 

amino acid biosynthesis are lower abundance, while menaquinol biosynthesis is 

higher abundance in the centenarians compared with that of the young and elderly. 

Our study indicates that the critical role aging plays in shaping human microbiota is 

habitat dependent, further suggesting the diverse degree of niche alternation caused by 

aging in different body habitats, emphasizing the importance of integrating the 

potential confounding factors into the microbiota studies. Sardinian centenarians‟ 

specific gut microbiota may hold promising clues for the future research to identify 

the possible causative relationship between gut microbiota and longevity in human. 
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ChapterⅠ. Introduction 

1. Longevity in Sardinia 

Sardinia, a large island located in the Mediterranean sea, 120 Km from the Italian 

coast, is famous for the high prevalence and low female/male ratio of centenarians in 

Europe. Based on the data in 2001, the prevalence of centenarians in Sardinia was 

16.6 per 100,000 inhabitants, greater than the observed 10 per 100,000 inhabitants in 

other European countries. Furthermore, the female/male ratio was 2:1, substantially 

lower than the ratio in other population (generally more than 5:1) [1]. Besides, from 

1999 to 2011, the prevalence of centenarians in Sardinia increased from 13.6 to 20.5 

per 100,000 inhabitants. The high prevalence of centenarians, consistent lifestyle, 

high endogamy and low immigration rates, make Sardinia an ideal geographic area 

for studying longevity and healthy aging. The AKEA (AKEA is an acronym extracted 

from the Sardinian traditional wisk A KENT ANNOS that means approximatively 

“Health and life up to 100”) project began studying Sardinian centenarians in the 

1990s, providing an enormous amount of information about longevity and healthy 

aging in this population [1-6]. The AKEA project demonstrated that longevity is a 

complex biological phenotype determined not only by genetic, epigenetic but is also 

influence by environmental factors such as diet, lifestyle, and even geographic 

location. Many of these same factors also affect the microbiota in humans. It has been 

suggested that the human microbiota, especially the gut microbiota, are tightly linked 
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to human health and disease. So the microbiota in centenarians is worth fully 

investigated to integrate our understanding of longevity and healthy aging. 

2. Human microbiota and next generation sequencing (NGS) 

In the past decades, the development of nucleic acid sequencing technologies 

especially the high-throughput NGS provided a novel culture-independent and high 

resolution strategy for microbial community investigation [7]. With the powerful NGS, 

human microbiota research has become one of the fastest growing scientific fields. 

2.1 NGS 

NGS, referred to as Next Generation Sequencing, as opposed to the first generation 

technology Sanger sequencing, was first commerciallay released in 2005 with the 

release of the 454 Roche and then followed by Solexa/Illumina, SOLiD and Ion 

Torrent. NGS shares two main advantages for microbiota studies: First, they are 

culture independent, which is critical for environment samples which including 

around 98% un-cultureable microbes. The library preparation relies on extracting 

DNA directly from the environment. Second, they are high throughput, with millions 

of sequencing reactions and detection running in parallel. There are several 

NGS-based strategies for microbiome sequencing, such as Amplicon sequencing, 

Shotgun Metagenomic Sequencing, Metatranscriptomics (RNA sequencing). 

Sometimes, multi-omics studies such as Metaproteomics and Metabolomics also are 

integrated to facilitate the and strengthen the analysis. Among the different NGS 
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approaches, Amplicon sequencing and Shotgun Metagenomic Sequencing are the 

most extensively applied NGS methods for human microbiota study. 

2.1.1 Amplicon Sequencing 

Amplicon Sequencing relies on PCR amplification and sequencing of a single 

informative marker such as 16S rRNA gene and ITS (Internal Transcribed Spacer) 

gene to analyze the genetic variation in this targeted genomic region. It‟s widely used 

for phylogenic and taxonomic studies in diverse environmental samples. 

As a highly targeted approach, Amplicon Sequencing can efficiently identify the 

genetic variation with high coverage and low cost. Besides, the multiplexing of 

amplicons per reaction is high throughput and time saving with relatively easy 

laboratory handing. Amplicon Sequencing has an inherent bias due to PCR 

amplification and intragenomic heterogeneity. More importantly, potential function 

information is cannot be obtained using this methodology. 

2.1.1.1 16S rRNA sequencing for bacterial community 

The 16S rRNA gene, which is approximately 1,500 bp long and contains nine variable 

regions interspersed between conserved regions, is used as the standard for 

classification and identification of bacteria. Variable regions of 16S rRNA are 

frequently used in phylogenetic classifications such as genus in diverse microbial 

populations. Several primer pairs binding at the conserved regions are commonly used 

to amplify different fragments, for example, the 27F-1492R for the full length of 16S, 



4  

Wu Lu, “A cross-sectional study of diverse bacterial and fungal communities in different body habitats in Sardinian 

centenarians”, Ph.D. thesis in the PhD Course in Life Sciences and Biotechnologies, University of Sassari 

27F-534R for V1 to V3, 319F-806R for V3 to V4. The target 16S rRNA region to 

sequence is an area of debate, which might vary depending on experimental design. 

Evidence has shown that the V1-V3 regions have good resolution for the skin 

microbiota, while for the gut microbiota, the V3V4 region is a good choice [8]. There 

are several public databases for 16S rRNA such as GreenGenes and SILVA which are 

comprehensively used in microbiota studies [9, 10]. 

2.1.1.2 ITS sequencing for fungi community 

ITS refers to the spacer DNA situated between the small-subunit rRNA and 

large-subunit rRNA genes in the chromosome. It is widely sequenced for phylogenic 

analysis of fungi [11]. There are two ITS regions in fungi, ITS1 and ITS2. 18SF and 

5.8S-1R primers for ITS1 are frequently used to classify the fungi in the human body. 

UNITE is a database for ITS-based molecular identification of fungi [12]. Besides 

ITS, 18S rRNA gene is also used for the detection of fungi. While evidence showed 

that ITS gene had greater genus-level taxonomic resolution compared with 18S rRNA 

gene [13]. 

2.1.2 Shotgun metagenomic sequencing 

Shotgun metagenomic sequencing is the massively parallel sequencing of random 

DNA fragments from all the genes in a microbial community. It is widely used for full 

characterization of the microbiota in a diverse community with functional annotation. 

With full coverage of all the genes from a community, the Shotgun metagenomic 
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sequencing can obtain an accurate taxonomic and functional profile in a single 

experiment covering multi-kingdoms. The resolution is high and can reach the strain 

level even the SNP level. Meanwhile, Shotgun metagenomic sequencing also has 

limitations: the cost is high; the input DNA is larger; laboratory work is complex; a 

large amount of data generated also need more extensive analysis. 

2.2 Human microbiota 

The term “microbiome” was coined in 2001 by Nobel Prize-winning microbiologist 

Joshua Lederberg, “to signify the ecological community of commensal, symbiotic, 

and pathogenic microorganisms that literally share our body space and have been all 

but ignored as determinants of health and disease.”[14] Till now, nearly all the body 

space that contact with the environment were detected with microbes: the oral, the 

skin, the digestive system, the urinary system, the mammary gland and the genital 

system even the uterus with a baby in [15-17]. The human body and microbes 

organize into a super meta-organism. In this complex, the microbes and host can live 

in symbiosis. The resident microbes include not only bacteria but also other 

micro-organisms such as fungi and archaea, which maintain the balance of the 

ecosystem of the human body through cooperation and completion [18, 19]. 

Dysfunction of any members of this community may affect the health of the human 

body and may cause disease [20, 21]. The distribution of microbes in the human body 

is largely and primarily determined by the body habitats with different ecological 

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);


6  

Wu Lu, “A cross-sectional study of diverse bacterial and fungal communities in different body habitats in Sardinian 

centenarians”, Ph.D. thesis in the PhD Course in Life Sciences and Biotechnologies, University of Sassari 

niches [15]. However, our microbial habitats are not isolated from one another but 

interconnected as a unit. So it‟s critical that we utilize an integrated “whole-body” 

view of the multi-kingdoms microbial communities. 

2.2.1 Skin microbiota 

Skin, as the largest organ of the human body, also is the first line of defense against 

pathogens, composed of several distinct habitats with different moisture contents, pH 

and nutrients for microbes. Skin commensal microbes including bacteria, fungi and 

viruses, live in symbiosis with the host, the disruption of microbiota balance in the 

skin is associated with cutaneous disorders like atopic dermatitis, psoriasis, rosacea, 

acne etc [22-24]. Generally, Propionibacterium, Staphylococcus and Corynebacteria 

are the dominant bacterial species and Malassezia is the dominant fungi in the skin 

[13]. Skin microbiota is affected by the topography of the skin, gender, age, 

environment and immune status [13, 25-31]. Previous studies have found that skin 

microbial communities are stable over time in the healthy adults at the kingdom, 

phylum, species, and even, strain level, despite constant exposure to the external 

environment and other individuals [25]. However, it is poorly known how the skin 

microbiota changes over human lifespans. Understanding the variation in the skin 

microbiota during human ageing is critical to investigate if aging contributes to a 

healthy skin microbial community and if alterations influence host health. 
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2.2.2 Oral microbiota 

The oral cavity itself harbors a complex microbial community and is a major gateway 

for microbe entry to the human body via digestive tracts. The oral cavity is also a 

heterogeneous ecological system containing distinct niches with significantly different 

microbial communities [32]. The core microbes in the oral cavity include 

Proteobacteria, Firmicutes and Bacteroidetes, with Prevotella, Veillonella, Neisseria 

and Streptococcus as the predominant genera [33]. Candida and Cladosporium are the 

most frequently obtained fungi genera in the oral cavity [34]. Previous studies have 

found several factors associated with oral changes in microbiota: age, population, diet 

and health condition of the oral cavity [33, 35-37]. Diseases like periodontitis, teeth 

reduction, caries and even systemic disorders such as stroke, diabetes and cancer are 

known to be associated with alternations in the oral microbiota [33, 37-40]. 

2.2.3 Gut microbiota 

The gut microbiota is the most comprehensively studied microbial community in the 

human body and has the strongest association with human disease and health. Gut 

microbiota integrates diet, life-style and other environmental factors with the genetic 

and immune factor to modulate the host metabolism and immune responses [41, 42]. 

The gut microbiota dominanted by Firmicutes and Bacteroidetes, followed by 

Proteobacteria and Actinobacteria, and is a very complex, dynamic and highly 

personalized ecosystem [43]. The gut microbiota is stable, however, it can be rapidly 
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altered by diet intervention [44-47]. The alternation of composition and function of 

gut microbiota is related to a wide range of diseases, from gastroenterological 

disorders to metabolic diseases. Tracing the changes of the gut microbiota during the 

life time of an individual is essential for the understanding of the development of 

disease and the process of aging. With the development of gut microbiota related 

therapies, such as the successful use of faecal microbiota transplantation (FMT) in 

treating Clostridium difficile infection, the gut microbiota shows great potential for 

the intervention of disease. 

2.3 The Human microbiome project 

After the completion of the first complete draft of the human genome in 2003, it was 

realized that the human genome is only part of understanding human health and 

disease. Importantly, with the development of NGS, the cost of the sequencing has 

decreased rapidly allowing for the simultaneous sequencing of multiple communities. 

In 2008 the National Institutes of Health (NIH) funded the first phase of the Human 

Microbiome Project. The study characterized the human microbiome across several 

different sites on the human body including nasal passages, oral cavity, skin, 

gastrointestinal tract, and urogenital tract in 300 healthy subjects aged from 18 to 40. 

Furthermore, longitude samples were collected to look at changes in individual 

microbiomes over time. The HMP established a population-scale framework to 

develop metagenomic protocols, resulting in a broad range of quality-controlled 
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resources and data including standardized methods for creating, processing and 

interpreting distinct types of high-throughput metagenomic data available to the 

scientific community [48]. The work on HMP has yielded fundamental insights into 

the human microbiome, opening a new era of the human microbiome research. In the 

next ten years, enormous research about human microbiota was launched, including 

research on other population such as MetaHIT in European, enriched our 

understanding of microbiome, but still, it‟s the beginning. 

3. Gut microbiota in human health and disease 

Given the diverse functions of gut microbiota, the relevance of gut microbiota to 

human health and disease has been found in recent years. Chronic diseases such as 

obesity and inflammatory bowel disease (IBD) to infectious diseases such as 

Clostridium difficile infection (CDI) are examples of microbiota linked human 

disease [49-51]. Gut microbiota is also involved in the development and progression 

of other human diseases such as cancers, metabolic diseases, respiratory diseases, 

mental or psychological diseases, and autoimmune diseases [52-56]. 

3.1 Development of gut microbiota in human 

Over a lifetime, each individual undergoes a dynamic process of gut microbiota 

development. Especially in the early-in-life and later-in-life stages, the 

host-microbiota relationship is complex and dynamic [57]. The colonization of 

microbes in the infants starts when the fetus is in the uterus [58]. After delivery, with 
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comprehensive contact with the environment, infants establish gut microbiota rapidly. 

Several factors were found to contribute to the establishment of the gut microbiota in 

infants, such as host genetics, gestational age, delivery mode, feeding, environment 

exposure and medication [59, 60]. The initial gut microbiota was dominated by 

Bifidobacterium, Lactobacillus and Veillonella heavily influenced by the milk 

consumption [59]. With solid food introduction at about one half year of age, the gut 

microbiota starts to transit toward an adult-like microbiota dominated by Bacteroides 

and Firmicutes [59]. The alternation continues to three years old, and then the gut 

microbiota enters into a relatively stable community stage [44, 57]. In adults, the 

alternation of the gut microbiota is associated with several clinical conditions, such as 

diabetes, obesity and IBD [49, 51, 56, 61]. During the aging process, the 

physiological change of the host impacts diet preference and immunological status 

leading directly or indirectly to the alternations of the gut microbiota. Age related 

signatures of gut microbiota have been demonstrated in several studies, for example, 

the decrease of Faecalibacterium and Ruminococcus associated with aging [57, 

62-64]. Furthermore, age-related compositional change of gut microbiota is correlated 

with clinical variables including dietary and health factors [41]. The loss of diversity 

in core microbiota groups was found to be associated with increased frailty and 

decreased cognitive performance, but not significantly associated with chronological 

aging [65]. It is unknown if gut dysbiosis associated with ageing is a cause or 

consequence of aging and senescence-associated inflammatory disorders. 
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3.2 Factors contributing to gut microbiota 

3.2.1 Genetics 

Genetic differences between host species are reflected in the similarity of the gut 

microbiota among phylogenetically related animals [66]. In humans, the gut 

microbiota of monozygotic twins is significantly more similar than that of dizygotic 

twins [67]. In the microbiome genome-wide association studies (mGWAS), the 

association between the lactase gene (LCT) and the abundance of Bifidobacterium 

was validated in several cohorts [68]. Future studies are likely to reveal more host 

genetic variants and their influence on the gut microbiota. Additionally, different 

populations with genetic variations also have diverse life-style and dietary preferences, 

emphasizing the importance of studying gut microbiota at the population level. 

3.2.2 Host immunity 

The gut microbiota and the host immune system have complex interaction [69]. Gut 

microbiota plays a fundamental role in the induction, training, and function of the host 

immune system [70, 71]. In return, the immune system protects of the host against 

potential harmful infections from the gut microbes, meanwhile, the host must be 

tolerant toward the harmless commensal microbes. Reduced microbial exposure and 

alteration of microbial communities in certain body sites are found associated with 

autoimmune and allergic disease [72]. Several important effects of the microbiota on 

the host immune system have been determined by studies of germ-free mice, for 
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instance, the extensive deficits in the development of the gut-associated lymphoid 

tissues [73], the greatly reduced numbers of IgA-producing plasma cells and lamina 

propria CD4
+
 T cells [74, 75]. Consequently, the altered immune status is also found 

associated with increased epithelial permeability and systemic microbial translocation 

which was found in HIV patients [76]. The dysbiosis of gut microbiota, leading to 

decreased resistance to pathogen colonization and increased pathological immune 

responses which cause inflammation reaction. However, the causative relationship 

between inflammation and dysbiosis, and the mechanism by which they interact to, 

remain areas of active investigation. 

3.2.3 Diet and nutritional status 

Diet and nutrition are the major modulators in the gut ecosystem. Long-term diet 

influences the structure and function of the gut microbiota and was linked with gut 

microbial enterotypes [45, 77]. Acute changes in diet can also lead to rapid alterations 

in the gut microbiota [47]. Intervention target at diet which is easy to modify is highly 

practicable. The western diet with high fat and sugar causes alterations in the genetic 

composition and the metabolic activity of gut microbiota, compared with the gut 

microbiota in the hunter-gatherer populations with a diet rich in protein and low in 

sugar [78, 79]. Such diet-induced changes to gut microbiota are now suspected of 

contributing to growing epidemics of chronic illness in the developed world, 

including obesity and IBD. Interestingly, high-level adherence to a Mediterranean diet 
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which is rich in olive oil, fresh vegetables, fruits, and fermented food beneficially 

impacts the gut microbiota and the associated metabolome [80, 81]. Diet as a 

non-negligible factor contributed to the population level gut microbiota variation [46, 

82], further research should make more effect to find its association with gut 

microbiota and health. 

3.2.4 Other environmental factors 

Other environmental factors, such as geographic location, ethnicity and life-style are 

usually associated with variations in host genetics and diet and can influence the gut 

microbiota [78, 79, 83]. A recent study examined the genotype and microbiome data 

from 1,046 healthy individuals, and demonstrated that the gut microbiome is not 

significantly associated with genetic ancestry but is associated with the genetically 

unrelated individuals who share a household [84]. Over 20% of the inter-person 

microbiome variability is associated with factors related to diet, drugs and 

anthropometric measurements. This study indicates that the environment dominates 

over host genetics in shaping human gut microbiota. Although there are heritable 

bacteria taxa, the gut microbiota in human determined by the environment is a 

positive signal for gut microbiota intervention. 

3.3 “Beneficial” versus “harmful” Microbes 

With the rapid advances in the understanding of the human microbiota, parallel efforts 

have been made to start microbe-based intervention prevent disease and improve 
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health. The fecal microbiota transplantation (FMT) has already proven to be a highly 

effective therapy for Clostridium difficile infection [85], while this therapy is based on 

a microbial-population level, there is still possibility that undetected and potentially 

pathogenic viruses, bacteria, or parasites and other biological materials from donors to 

recipients. As a complex microbial ecosystem, the gut microbiota consists of a large 

number of microbes with high genetic diversity. Therefore, strain-level dissection of 

the contribution of the gut microbiome to heath and diseases is critical for at this stage. 

Take Akkermansia muciniphila for examples, it has been shown to have a protective 

effect against obesity in both humans and mice [86, 87], regarding as a promising 

probiotics for against metabolic disorders. Meanwhile, recent research also found the 

increasing of Akkermansia abundance in Parkinson‟s disease, Alzheimer‟s disease and 

multiple sclerosis patients [88-91]. Caution should be made in the design and use of 

microbial interventions for human therapeutic use. 

However, it is an over simplification to classify microbes as “beneficial” and “harmful” 

microbes. Their function it highly dependent on multiple host and microbial factors, 

including the abundance, strain, site of colonization, as well as the age, genetic 

background, environmental factors and immune status of the host. 

3.3.1 „„Beneficial‟‟ microbes 

“Beneficial” microbes, also refers as “Probiotics” can be defined as “live 

microorganisms that, when administered in adequate amounts, confer a health benefit 
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on the host” (Food and Agriculture Organization of United Nations; World Health 

Organization e FAO/WHO, 2001). Certain strains of Bifidobacterium, Lactobacillus, 

and Akkermansia, such as Bifidobacterium bifidum, Lactobacillus rhamnosus and 

Akkermansia muciniphila are widely regarded as probiotics. Former studies have 

found that these microbes have immune-modulatory properties and potential to 

synthesis health-promoting metabolites in vitro and in vivo, in humans and animal 

models [92-94]. Noticeably, the aging-dependent and disease-associated decline of 

these microbes have also been found both in animal models and human [57, 63, 

95-97]. With the accumulating of knowledge of the “beneficial” microbes, we can use 

them as the novel source of probiotics for future therapies. 

3.3.2  “Harmful” microbes 

Meanwhile, there exists a contrasting assortment of “harmful” microbes, which 

generally considered „„harmful‟‟ for the host or associated with dysbiosis. For example, 

pathobionts are typically kept at low levels within the healthy gut and do not cause 

problems in immune-competent hosts; however, the outgrowth of these organisms can 

contribute to dysbiosis and cause disease [98, 99]. However, Pathobionts also have 

beneficial functions. Certain strains of Escherichia coli are highly virulent pathogens 

that cause acute hemorrhagic diarrhea and haemolytic uremic syndrome but are also a 

normal inhabitant in the gut microbiota, with the function of stimulating the innate 

immune system to tolerate and survive the pathogens [100, 101]. 
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3.4 Gut microbiota and host immunity 

The microbiota plays a fundamental role in the induction, training, and function of the 

host immune system. In return, the immune system has largely evolved to maintain 

the symbiotic relationship of the host with these highly diverse and dynamic microbes. 

During early life, with a relatively immature immune system and provided with 

maternal milk containing live microbes, metabolites, IgA, and immune cells as well as 

cytokines, neonates become colonized by microbes, initiating the induction and 

training of the immunity system [102]. 

Gut-associated lymphoid tissues: Studies performed in germ-free mice revealed the 

critical role microbiota plays in immune maturation [103, 104]. The immunological 

abnormalities in germ-free animals including hypoplastic PEYER‟S PATCHES that 

contain few germinal centers, as well as greatly reduced numbers of IgA-producing 

plasma cells and lamina propria CD4+ T cells [75]; the spleen and lymph nodes are 

relatively structure-less, with poorly formed B- and T-cell zones [73]; 

IgA-producing B cells: In the intestine, microbe-associated molecular patterns 

(MAMPs), including lipopolysaccharide, lipid A, peptidoglycan, flagella and 

microbial RNA/DNA, can be mediated through antigen uptake by M cells and goblet 

cells to dendritic cells (DCs), along with a direct trans-epithelial luminal sampling 

from DCs. DCs induce the differentiation of CD
4
-expressing T cells into the T 

follicular helper (TFH) cell subset. CD40 ligand (CD40L) and IL-21 from TFH cells 

induce the expression of activation-induced cytidine deaminase (AID) in B cells and 
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promote IgA class-switch recombination which mostly taken place in Peyer‟s patches 

[105]. While T-cell-independent IgA class-switch recombination occurs 

predominantly in the lamina propria and isolated lymphoid follicles (ILFs), where 

B-cell activating factor (BAFF) and its homologue APRIL, which are derived from 

dendritic cells, promote the induction of AID expression in B cells [106]. Meanwhile, 

Paneth cells which are enriched in the crypts, secreting AMPs, which can cross-link 

with the mucus layer [70]. 

TH17 cell, TReg cells and Innate lymphoid cells (ILC): Segmented filamentous 

bacteria (SFB) and other commensal microorganisms activate DCs and macrophages 

to initiate the differentiation of naive CD4+ T cells into RORγt-expressing T cells 

(belonged to ILC3s), it accumulates and further differentiate into IL-17-expressing 

homeostatic TH17 cells in the lamina propria of the small intestine. This process can 

be stimulated by IL-1β, IL-6 and IL-23 [107]. These homeostatic TH17 cells then 

stimulate epithelial cells to enhance the integrity of the intestinal mucosal barrier by 

producing pro-inflammatory cytokines: IL17A, IL17F and IL22 [108]. TH17 produced 

IL-22 to aid in IEC barrier function by induction of regenerating islet-derived protein 

3γ (REGIIIγ) in intestinal epithelial cells. Alternatively, stimulated by IL12, DCs can 

induce TH1 cells. Clostridium spp. clusters IV and XIVa, polysaccharide A (PSA)
+
 

Bacteroides fragilis and other microbiota stimulate intestinal epithelial cells, T cells, 

and lamina propria DCs and macrophages to promote the development and/or the 

activation of forkhead box P3 (FOXP3)
+
regulatory T cells [69]. 
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With the establishment of the commensal relationship between the microbiota and 

host immunity, the intestinal immune system can tolerate the microbes, while 

simultaneously remaining vigilant against the potential threats posed by these 

microbes. Gut microbiota compositional changes can be induced by antibiotic 

treatment, dietary changes and gastrointestinal pathogens and even aging [47, 50, 109, 

110]. Ingestion of gastrointestinal pathogens represents a threat to intestinal 

homeostasis. Side effects of the immune response to pathogens can lead to tissue 

damage and alteration of the composition of the microbiota. In some cases, this can 

lead to dysbiosis. The robust proinflammatory immune response caused by 

pathogenic invasion, can lead to disruption of the intestinal barrier and an altered 

microbiota, favoring the efficient colonization and survival of the pathogen [98, 111]. 

The immune system is not only closely related to the symbiotic microbiota but is also 

exquisitely sensitive to the nutritional status of the host. Evidence has shown that the 

interaction between diet, immunity and gut microbiota in both human and animal 

models [80, 112-114]. In addition to profoundly regulating the composition and 

function of gut microbiota, food-derived metabolites also can directly regulate the 

immune cell, for example, the SCFA, folate, Vitamin and AHR [115-117]. Conversely, 

immunodeficiency can alter the gut microbiota composition and thereby the metabolic 

capacity of both the flora and the host [118]. Therefore, an understanding of the role 

of gut microbiota in immune responses requires the integration of the diet as well. 
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3.5 Gut microbiota and host metabolism 

As a moderator between diet and host metabolism, the gut microbiota participates in 

host metabolism. In the symbiotic gut system, gut microbiota depends on the host to 

obtain food for energy, while at the same time, the microbiota return metabolites to 

the host that the human body utilizes. Carbohydrates are the most important source of 

energy for both human and gut microbes; its fermentation is a core activity for the 

human gut microbiota [119]. While human enzymes cannot digest most of the 

complex carbohydrates, such as cellulose and resistant starches, those fibers are 

fermented by gut microbes in the colon, to be digested into simple oligosaccharides or 

monosaccharides which can be used as resources for glycolysis to yield energy for the 

growth of microbes and to produce end products, including short chain fatty acids 

(SCFAs). Colonocytes in the gut are the first host cells that take up SCFAs, which 

depend largely on butyrate for their energy supply [120]. SCFAs provide ∼10% of the 

daily caloric requirements in humans [121]. SCFAs also function as 

anti-inflammatory agents by signal transformation [116]. Moreover, SCFAs are 

involved in most of the functions for gut microbiota since they also epigenetically 

modify the host epithelial cells and stimulate the epithelial cells to release molecules 

to facilitate the brain-gut cross-talk [122]. However, because energy resources mainly 

depend on carbohydrates, the human and gut microbes also form a competitive 

relationship. The combined exchange of and competition for energy between humans 

and their gut microbiota is the basis that maintains the homeostasis of the gut. In 
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addition to the carbohydrate metabolic pathway, gut microbiota are also involved in 

the metabolism of proteins and the production of several related metabolites: 

branched SCFAs, ammonia, sulfur-containing metabolites such as hydrogen sulfide 

and methanethiol, and neuroactive compounds such as tryptamine, serotonin, 

phenethylamine, and histamine [123]. Gut bacteria can regulate the amino acid 

metabolism by utilization of several amino acids originating from both food and 

endogenous proteins. In turn, gut bacteria also provide amino acids to the host. Other 

metabolites such as bile acid, vitamins, polyphenols, polyamines and methylamines 

are also critical for human health [124]. As we known, obesity and other associated 

metabolic diseases are intimately linked with diet. Besides, alternation in the gut 

microbiota was also observed in those diseases [56, 125]. Gut microbiota can 

modulate the dietary impact on the host metabolism. Gut microbiota transplantation 

from obese human into germ-free mice has shown that the obese phenotype can be 

transferred to recipient mice [126]. In humans, the insulin sensitive feature can be 

transferred by fecal microbiota transplantation to insulin in-sensitive participants [127, 

128]. Further studies are needed to determine the causative linkage between gut 

microbiota alteration and metabolic disease. 

3.6 Diet-Gut microbiota interaction and intervention 

Diet is an important factor in modulating the composition and function of gut 

microbiota in humans and other mammals [45-47, 129]. As the major components in 
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diets of human, the type and amount of carbohydrate, protein, and fat present in the 

diet have been widely found to influence the composition of the gut microbiota in the 

host [95, 130, 131]. Dietary fiber as a carbohydrate that can‟t be digested by humans, 

its fermentation is one of the main functions of the microbiota, providing the principle 

energy source for gut bacteria. Previous studies have associated the dietary fibers with 

the gut microbiota composition and host metabolism [132]. Dietary fiber intervention 

resulted in a higher abundance of Bifidobacterium and Lactobacillus as well as fecal 

butyrate concentration compared with placebo/low-fiber comparators [133]. The 

perturbation of amino acid metabolism was also found related to the alternation of gut 

microbiota in Type 2 Diabetes and insulin-resistance [134, 135]. Moreover, high 

dietary fat can induce increased of inflammatory responses [136, 137]. Considering 

the critical function diet plays in shaping the gut microbiota, it‟s essential to explore 

the mechanism of how diet modulates the microbiota and host metabolism. 

However, even though acute changes in diet can have an impact on microbiota, long 

term dietary habits are the dominant force in determining the major compositional 

feature of the individual‟s gut microbiota [45, 47]. Therefore it is possible to 

reprogram the gut microbiota by dietary change. Considering the complexity and 

individual specific features of gut microbiota, diet intervention should be 

personalized. 

Dietary interventions, as a comparatively easier approach than manipulation, have 

enormous therapeutic application potential for human health and diseases. Dietary 
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restriction (DR), a form of dietary intervention, has proven health promoting and may 

impact longevity in different model organisms and humans [138, 139]. Alterations in 

the gut microbiota were also found in the DR subject, although the contribution of 

these changes to the health of the host remains to be elucidated [140]. 

3.7 Gut microbiota is a reservoir for antibiotic resistance gene 

Antibiotic resistance for pathogenic bacteria is a global threat to human health both 

individually and as a population. Bacteria can acquire antibiotic resistance genes by 

the mobilization and transfer of resistance genes from a donor strain. Gut microbiota, 

including billions of bacteria, is a reservoir for antibiotic resistance gene (ARG), 

which offers ample opportunities for the horizontal transfer of genetic material, 

including antibiotic resistance genes. Therefore, more concern should be taken to the 

ARGs in the human gut microbiota. Development of antibiotic resistance in microbes 

is largely contributed by the usage of antibiotics in medicine and agriculture. 

Furthermore, different populations display diverse pattern of ARG profile [141]. With 

the facilitate of gut microbiota metagenomic sequencing, we can get the gut 

microbiome information which can further be extracted to get the ARG profile for a 

defined population. Monitoring the population level of ARG in gut microbiota is 

essential for the controlling of the ARG spread. 

4. Aging and microbiota 

Aging is a highly complex process affecting a wide array of physiological, genomic, 
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metabolic, and immunological functions [142]. Aging associated changes in the 

physical and cognitive status of the host lead to life style alternations. Consequently, 

they impact the niche that microbes inhabit. Aging accompanied by the alternation of 

the immune response state directly interfaces with the microbiota and enhances 

susceptibility to infection [143, 144]. For instance, the elderly are marked 

susceptibility to dermatologic disorders caused by infection [145]. With aging, the 

microbiota in humans co-evolves with the host to adapt to the niche alternation. 

Interestingly, many clinical issues accompanied with aging, such as Bowel disorder, 

cardiovascular disease, constipation and Parkinson‟s disease, are also closely 

correlated with perturbations in gut microbiome composition and functions [49, 88, 

89, 96, 146, 147]. Given that the gut microbiome is closely associated with several 

features of gut barrier integrity, intestinal inflammatory balance, immune and 

metabolic health, and gut-brain axis [69, 148, 149], these old-age-related clinical 

issues could clearly contribute to the increased the susceptibility to various infectious 

and gut-associated diseases by causing alterations in the microbiota of elderly people . 

Investigation into the baseline of aging-related microbiota alternation in different 

body habitats enhances our understanding of the biological insights of aging and 

microbiota, ultimately making it possible to promote healthy aging through the 

intervention of the microbiota in human. 
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4.1 Aging related changes in gut microbiota 

Since the aging population is a global issue, prolonging a healthy lifespan has become 

a vital challenge for modern medical research. Gut microbiota, widely regarded as 

associated with health and aging, has become a new focus for research on aging. With 

the aging process, the natural decline in physical function which, along with dietary 

change and immune response changes, may cause gradual alterations of gut 

microbiota. Aging related alternation in gut microbiota was observed in different 

cohorts [57, 150, 151]. Early data from the ELDERMET cohorts showed the core 

microbiota of the elderly was distinct from the young adults, and later, demonstrated 

the association of the gut microbiota in the elderly with diet and health [65, 152]. 

Their research indicated that the chronological aging is not the cause of gut 

microbiota alternation, but the loss of diversity in core microbiota groups is associated 

with increased frailty in the elderly [62]. Recently, a survey of gut microbiota in a 

large healthy cohort in China showed that the gut microbiota of healthy elderly 

Chinese is similar to that of the healthy young [150], further emphasizing the 

important role health plays in shaping the gut microbiota. While there are also certain 

signatures of aging related to the alternation of gut microbiota that is shared between 

populations, such as the reduction in Faecalibacterium and Bifidobacterium 

abundance and the increase in Enterobacteria abundance. Gut microbiota composition 

alternations cause functional shifts which lead to the change in energy utilization and 

the abundance of bacterial metabolites production. Functional annotation of the gut 
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microbiota in the aging process is critical for the utilizing future therapeutic 

modulation of gut microbiota to promote healthy aging. Although alternations in the 

composition and function were observed, till now we still do not have a clear 

understanding of the causative relationship between the altered gut microbiota and 

decreased heath during the aging. It has been hinted that gut microbiota homeostasis 

is crucial for healthy aging and hence restoration of this homeostasis might be 

supportive for human longevity [153]. Further longitudinal research following the 

aging process is eagerly needed to help our understanding of aging and gut 

microbiota. 

4.2 Gut microbiota character of longevity 

Evidence shows that gut microbiome impacts host longevity in animal models such as 

Caenorhabditis elegans and Turquoise Killifish which have short and easily 

monitored lifespan [154, 155]. Moreover, longitudinal study in a large human cohort 

has also found the association between the distinct metabolomics signatures and 

longevity of humans [156]. Thus human gut microbiota may act as the modulator 

between longevity and the genetic and environmental factors by affecting the host 

metabolism. During a life time, gut microbiota undergoes a co-evolution with the 

human host, adapting to the progressive changes of the host gut environment, the 

longevity is a successful outcome of human host and gut microbiota symbiosis. 

Centenarians represent a population with an extremely long lifespan, and have been 
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used by several groups as a model to study aging and gut microbiota [57, 63, 64, 151, 

157, 158]. These studies have focused on the compositional feature of gut microbiota 

in centenarians with younger groups as controls. As a dynamic ecological system, gut 

microbiota composition is various for individuals. The variation may cause by 

different populations with diverse genetic, dietary, environmental factors even with 

different methodologies of processing the samples and data. Certain compositional 

features of centenarians‟ gut microbiota have been found, including accumulation of 

some subdominant species. Among the variations, some seem universal, such as the 

decrease in abundance of Faecalibacterium, it shows an aging dependent decrease in 

trajectory. Other changes are unique to the defined population; for example, the 

enrichment of Roseburia in Chinese centenarians but a decrease in Italian and 

Japanese centenarians [57, 63, 151]. The variation of the changes may be caused by 

the different populations with different genic backgrounds, diets, and lifestyle. 

Noticeably, metabolic function of gut microbiota in centenarians has not yet been 

explained yet. 

5. Hypothesis and objectives 

Sardinia is famous for the high prevalence and low female/male ratio of centenarians 

in Europe. While the reason for the specific longevity in Sardinia is not clear, the gut 

microbiota may hold a clue. Centenarians as a model to study the aging and gut 

microbiota are highly accessible in Sardinia. Besides, the consistent lifestyle, high 
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endogamy and low immigration rate in Sardinia make the population there being an 

idea cohort to study the population specific variations in human microbiota. What‟s 

more, more evidence showed that the Mediterranean diet has a beneficial impact on 

the health. The typical Mediterranean diet in Sardinia may also contribute to the 

longevity for Sardinians, so investigate the correlation among diet, gut microbiota and 

longevity is Sardinia is meaningful. 

The human body and microbes that inhabitants in organize into a super 

meta-organism. In this complex, the microbes and host live in symbiosis. The resident 

microbes include not only bacteria but also other micro-organisms such as fungi and 

archaea, which maintain the balance of the ecosystem of the human body through 

cooperation and completion. Dysfunction of any members of this community may 

affect the health of the human body even cause some disease. The distribution of 

microbes in the human body is largely and primarily determined by the body habitats 

with different ecological niches. However, our microbial habitats are not isolated from 

one another but interconnected as a unit. So it‟s critical that we integrated 

“whole-body” view of the multi-kingdoms microbial communities. 

Former research has found that aging is associated with alternation of the microbiota 

in the body habitats [31, 57]. With aging, microbiota in human co-evolved with the 

host to adapt to the niche alternation. Investigation into the baseline of aging-related 

microbiota alternation in different body habitats enhances our understanding of the 

biological insights of aging and microbiota, ultimately making it possible to promote 
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healthy aging through the intervention of the microbiota in human. 

Based on this information about Sardinian and human microbiota, the hypothesises of 

this study are: 

1. Host aging is associated with the changes in the microbiota distributed in the 

human body. 

2. Sardinia centenarians share defined unique features of gut microbiota, both in 

composition and function, which may facilitate the longevity. 

3. Centenarians with different health status have diverse gut microbiota. 

The Objectives of this thesis are: 

1. Determine the compositional and functional profiles of the Sardinian population. 

2. Compare the variation of the gut microbiota between Sardinian centenarians and 

the healthy elderly and young age groups. 

3. Identify specific gut microbiota features in centenarians. 

4. Find the correlation of the gut microbiota with healthy status parameters in the 

centenarians. 
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ChapterⅡ. Material and methods 

1. Cases enrolment and clinic information collection 

We recruit 65 subjects in Sardinia, Italy, as a part of the AKEA Study. The ethical 

approval was provided by the Institutional Local Ethics Committee, Azienda Sanitaria 

Locale n.1 of Sassari, Italy. 

Subjects are divided into three age groups: 

1. Healthy young group 

2. Healthy elderly group 

3. Centenarian group 

Exclusion criteria including (for the Young and Elderly group): 

a. with a history of chronic medical conditions (diabetes, hypertension) 

b. with chronic dermatologic diseases (psoriasis, atopic dermatitis, vitiligo 

urticarial) 

c. use antimicrobial medication (antibiotic or antifungal treatments) half year 

before sampling. All subjects provided informed consent. Clinical history, 

status, medical history and anthropometric measurements were collected. The 

clinical and nutritional data were collected. All subjects provided informed 

consent. Clinical history, status, medical history and anthropometric 

measurements were collected. Briefly, the MNA to assess the malnutrition, 

the MMSE to evaluate the cognitive status, FIM to assess the disability, 
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healthy parameter and medication records are also carried 

2. Samples collection and Meta-DNA extraction 

2.1 Skin samples 

To maximize microbial load, no prior cleaning of the skin is needed before sample 

collection. The skin samples will be collected by the professional staff with sterilized 

swabs (Catch-All™ Sample Collection Swabs) at four different sites, including 

forehand, two palms and umbilical area. 5 cm
2
 area of skin is gently rubbed using 

swab (soaked in sterilized enzyme lysis buffer) for 10 times. Then suspend the swab 

samples in 200ul enzyme lysis buffer. Keep the samples on ice when shipping to the 

lab. Negative control specimens are collected by exposing swabs to the room air and 

then processing with the samples. Extract the skin meta-genomic DNA according to 

the DNeasy blood and tissue extraction kit‟s manual instructions with some 

modification. In brief, the samples in lysis buffer were incubated in 37℃ for 2h. 0.4 g 

of 5 mm zirconia beads (Sigma) were added, and the samples subjected to a bead 

beating step using Biosan for max 3,000rpm, 30min. 25μl of proteinase K was added, 

incubated in 56℃ for 30min. Then samples were heated at 95℃ for 5 min followed 

by ice for 1min, and performed following the DNeasy blood and tissue extraction kit 

protocol. Elute the DNA by 200μl TE buffer. Final DNA concentration was 

determined by using NanoDrop ND-1000 (NanoDrop Technologies) 
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2.2 Oral sample 

Participants were asked to avoid eating or drinking for one hour prior to oral sampling. 

Subject was asked to let saliva collected in the mouth for at least 1 minute. The 

subject then asked to drool into the labeled 50 mL collection tube. This process may 

be repeated multiple times in order to collect larger volumes of saliva (2-5 mL). For 

the centenarians, it‟s difficult to collect the saliva so the oral washing samples were 

collected instead. After low temperate shipping the samples to the lab, centrifuge at 

7,500rpm for 10min, and then discard the supernatant, extract the DNA from the 

sediment following the same protocol with skin samples. 

2.3 Stool sample 

Fecal samples were collected by the participants at home. Participants were provided 

with a stool specimen collection tube. After passing stools, the spoon was used to 

collect about 1g stool of sample by scraping off the outer layer of solid feces and 

collecting the central part into the tube. Samples were immediately frozen at home at 

-20℃ and collected by laboratory personal within 6 weeks. Long term storage of 

samples was in a -80℃ freezer located at University of Sassari. Stool meta-genomic 

DNA was extracted according to the manual instructions for the QIAamp DNA Stool 

Mini Kit (QIAGEN) with some modifications. In brief, 200mg of stool was suspended 

in 1.4mL of buffer ASL and 0.4 g of 5 mm zirconia beads (Sigma) were added. Then 

each sample was subjected to a bead-beating step using Biosan for a maximum of 
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3,000 rpm for 30min. Samples were heated at 95℃ for 5 min, and then centrifuged for 

5min at 13,000 rpm to pellet stool particles. Next, 1.2mL of the supernatant was 

collected and the InhibitEX tablet was added, followed by incubation at RT for 1 min 

and centrifugation at 13,000 rpm for 3 min, then 15ul of proteinase K and 200μl of 

buffer AL was added to 200μl supernatant and incubated at 70℃ for 10 min. 200μl of 

absolute ethanol was then added to the mixture, vortexed, and loaded on 

QIAamp Mini spin columns. The columns were washed with buffer AW1 and buffer 

AW2, as per the QIAamp DNA Stool Mini Kit instructions. The DNA was eluted with 

200μl TE buffer. Finally, the DNA concentration was determined by using NanoDrop 

ND-1000 (NanoDrop Technologies). 

3. Library construction and sequencing 

3.1 16S rRNA and ITS1 library 

Procedures for 16S rRNA and ITS1 library generation were performed as previously 

described [159]. Briefly, the V3V4 region of the 16S rRNA gene and ITS1 gene were 

amplified using an improved dual-indexing approach. Primers for 16S rRNA 

amplification were  5‟-ACTCCTACGGGAGGCAGCAG-3‟, 

5‟-GGACTACHVGGGTWTCTAAT-3‟, for ITS1 amplification the primers were 5‟- 

GTAAAAGTCGTAACAAGGTTTC-3‟ , 5‟-GTTCAAAGAYTCGATGATTCAC-3‟. 

16S and ITS1 libraries were respectively normalized and pooled with SequalPrep™ 

Normalization Plate Kit (Invitrogen) prior to sequencing on Illumina MiSeq platform. 
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3.2 Shotgun metagenomic library 

Illumina libraries were prepared with 100ng of input DNA, using KAPA 

Hyper Prep Kit (Kapa Biosystems) following the manufacturer‟s instructions. 

Libraries were quality checked by KAPA Library Quantification Kit 

(Kapa Biosystems) and 2100 Bioanalyzer (Agilent). Qualified libraries were 

transported on dry ice to BGI-Shenzhen for paired-end metagenomic sequencing 

which was performed on an Illumina HiSeq X10 PE150 platform (with average insert 

size 350 bp). Sequence read quality was first filtered by the in-house pipeline at 

BGI-Shenzhen. 6.2x10
9 

clean reads (Q20 percentage 95%) were generated for 59 

samples. 

4. Bioinformatics and statistical analysis 

4.1 Bioinformatics for 16S and ITS1 sequencing 

Raw sequence reads were first trimmed by removal of the barcodes and linker 

sequence. Then VSEARCH was used for truncation of the reads not having an 

average quality of 15 based on the phred algorithm. Reads with less than 75% of their 

original length were removed [160]. Further read processing was performed using 

QIIME (version 1.9.1) [161]. Reads were clustered into operational taxonomic units 

(OTUs) at 97% of similarity using the open-reference strategy by uclust based on the 

Greengenes database (2013_8 version) for 16S and UNITE fungal ITS database 

(version 7.2)[9, 12]. The first cluster seed was chosen as the representative sequences 
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for the OTUs. Uclust for 16S rRNA and BLAST for ITS1 were used for taxonomic 

assignment of representative sequences. Alignment of representative sequences was 

performed using PyNAST for 16S rRNA and MUSCLE for ITS1. Aligned sequences 

were filtered and phylogenetic trees constructed using FastTree. Rarefaction OTU 

Table 3.were generated. OTU counts were binned into genus-level taxonomic groups 

according to the taxonomic assignments described earlier. MEGAN6 Community 

Edition was used to visualize the microbiota taxonomy profile by bubble charts and 

PCoA plots [162]. 

4.2 Bioinformatics for shotgun metagenomic sequencing 

Raw reads were trimmed then filtered and mapped to the human genome (hg19) with 

BWA under default settings [163]. The filtered, clean reads were used as input for 

further analysis. The profiles of microbiota composition were predicted using 

MetaPhlan2, and gene family profiles and pathway profiles were predicted using 

HUMANN2 [164, 165]. The gene family profile was normalization by reads per 

kilobase, annotated to UniProt Reference Cluster (UniRef90). Further pathway 

mapping was performed using the MetaCyc metabolic pathway database. The gene 

family profile was regrouped to the orthologous groups using the KEGG and 

EggNOG database. We also used the Integrated catalog of reference genes in the 

human gut microbiome (IGC) as a reference for mapping our clean reads, which is a 

published, high-quality reference catalog generated from 1267 fecal samples and 1070 
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people around the world, including Danish, Spanish, Chinese and Americans. We used 

Samtools to determine the matching results [166]. The annotation results were 

compared with HUMANN and IGC methods to validate the data analysis. 

Antibiotic resistance genes were predicted following the DeepARG pipeline [167]. 

Briefly, the low quality reads were removed using TRIMMOMATIC, then, reads were 

merged into one large file by VSEARCH and are submitted for classification to the 

deepARG algorithm. The alignment algorithm identity was set as 50% with E-value 

of 1e
-10

. The percent coverage was set to 50% and the probability used was 0.8. The 

abundance of the ARGs was normalized to the 16s rRNA abundance in each of the 

sample. 

4.3 Statistical analysis 

All statistical analysis were performed using R software (version 3.4.2). Multivariate 

analyses of community diversity including PCoAs and NMDS were performed using 

ade4, ape and vegan and visualized using ggplot2. Bray-Curtis distance matrix was 

used as a similarity index. ANOVA and Kruskal-Wallis tests were used to determine 

whether significant differences existed between multiple groups in STAMP [168]. 

Welch‟s two-sided t test was used for the analysis of two groups. Discrimination 

among groups was detected by MRPP，Adonis and Anosim methods using 999 

permutations to test the significance. The association between the health status and 

species within the compositional profiles of the microbiota was determined by the 



36  

Wu Lu, “A cross-sectional study of diverse bacterial and fungal communities in different body habitats in Sardinian 

centenarians”, Ph.D. thesis in the PhD Course in Life Sciences and Biotechnologies, University of Sassari 

envfit function in vegan package. Significance was tested by 999 permutations. The 

Mantel test was used to test the correlation between two distant matrices. The 

correlation network was constructed by Cytoscape with App MetScape 3 [169]. The 

correlation matrix was visualized by Hmisc package in R. 
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Chapter Ⅲ. Results: Diverse bacterial and fungal communities in 

different body habitats in Sardinians across age 

1. 16S rRNA gene and ITS1 gene amplicon sequencing for different body 

habitats in the Sardinian population 

To quantify and compare community structure and relationship between bacteria and 

fungi among all body habitats in different age groups, a total of 65 Sardinians were 

recruited. Clinical parameters of the subjects were collected (Table 3.1). 

Table 3.1 Statistics of the clinical characteristics in the three age groups. 

Parameters Centenarians(n=22) Elderly(n=24) Young(n=19) 

 Mean±SD (Range) 

Age(yrs) 102.0±1.5(99-107) 77.2±5.9(68-88) 24.9±3.5(21-33) 

Female (%) 72.7% 56.60% 41.2 

Values are presented as Mean±SD with the range in parentheses. 

 

For each subject, the skin (including four different sites: Left palm, Right palm, 

Forehead and Umbilicus), oral and fecal samples were collected. The workflow is 

shown in Figure 3.1 
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Figure 3.1 Design and workflow of the study 

 

A total of 379 16S rRNA and 377 ITS1 amplicon libraries were constructed and 

successfully sequenced on an Illuminal Miseq platform. More than 9.6 million reads 

were generated for 16S rRNA sequencing, 11.2 million reads for ITS1 sequencing. On 

average, 25,341 clean reads for 16S rRNA sequencing and 29,813 clean reads for 

ITS1 were sequenced for each sample. 

Considering the inter-individual variation of the sequencing depth, 16S rRNA and 

ITS1 reads were randomly resampled to keep the depth of reads for each sample 
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constant. Specifically, 5,000 reads for 16S rRNA data sets and 10,000 reads for ITS1 

data sets were used. Across all body habitats, we detected members of 30 bacterial 

phyla assigned to 562 bacterial genera and 6 fungi phyla assigned to 691 fungi genera. 

Rarefaction analysis at the genus level of the taxonomy in MEGAN showed the 

taxonomic richness detected in the samples (Figure 3.2). The curves were levelling off 

from a straight line at the depth of 5,000 reads for 16s and 10,000 for ITS1, indicating 

repeated sampling of the same taxon. The taxonomy rarefaction curve indicated that 

most of the taxonomic richness was accounted for with the sequencing reads. 

 

 

Figure 3.2 The taxonomy rarefaction curve created in Megan. The taxonomy 
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rarefaction curve was performed by repeatedly sampling subsets from normalized 

reads and computing the number of leaves to which taxa have been assigned. 16s 

rRNA sequencing (A); ITS1 sequencing (B). 

 

2. Full view of Sardinians microbiota community compositional profile across 

different habitats 

In order to visualize the global microbiota community signatures for both bacteria and 

fungi in a babble chat, we used the bubbles that represent different dominant genera to 

show the compositional profile of each subject (Figure 3.3). The profiles showed that 

the bacteria had compositional patterns determined by body habitats. As seen in our 

data set the dominant bacteria in the skin were Propionibacterium, Staphylococcus 

and Corynebacterium, while the dominant fungi was Malassezia. The dominant 

bacteria in the oral cavity were Streptococcus, Veillonella, Prevotella, Rothia and 

Actinomyces. The dominant fungi in the oral cavity were Malassezia, Candida and 

Saccharomyces. The dominate gut bacteria were Bacteroides, Feacalibacterium, 

Blautia, Coprococcus and Bifidobacterium. Penicillium and Saccharomyces were the 

dominant fungi in the gut. 
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Figure 3.3 Global Sardinian microbiota composition profile surveyed by 16S 

rRNA and ITS1 sequencing. Bubble charts for bacterial and fungal genus for 3 

different body habitats. The bubble charts show the top 20 bacterial and fungal genera 

assigned to 338 samples for 16S and 354 samples for ITS1 sequencing (excluded the 

samples didn‟t have enough reads number). The size of the bubbles is 

square-root-scaled (scale in grey) and refers to the normalized number of reads 

assigned to each genus (listed in the Y axis) in each of the sample (listed in the X 

axis). The label line under the X axis marks the sample type. 
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3. α diversity of the microbiota communities for each body habitat in three age 

groups 

αdiversity representing the mean species diversity in a habitat at a local scale is an 

important character of the community. Shannon diversity index and species richness 

are frequently used to evaluateαdiversity in gut microbiota research. 

3.1 Bacteria and fungi have various α diversity in different age groups across body 

habitats 

Shannon diversity index was used to predict theαdiversity of genera in each sample. 

We found that the Shannon diversity for bacterial and fungal communities from 

different body habitats in three age groups varied dramatically (Figure 3.4). Overall, 

the bacterial had higher Shannon diversity compared with fungal at the same body 

habitat for all age groups. The skin samples had a higher diversity of fungal 

community compared with oral and gut samples which had a higher diversity of the 

bacterial community. For each age group, the forhead had lower microbiota 

community diversity than palms and umbilicus. Meanwhile, we observed that the 

elderly had higher bacterial and fungi community diversity in the skin than the young. 

The centenarians had the skin community diversity between the elderly and young. 

The variation of skin microbiota community diversity between individuals in the 

young group was larger than that for the elderly. The fungal communities in oral 

cavity and gut had similar low diversity in three age groups, except for the oral cavity 



43  

Wu Lu, “A cross-sectional study of diverse bacterial and fungal communities in different body habitats in Sardinian 

centenarians”, Ph.D. thesis in the PhD Course in Life Sciences and Biotechnologies, University of Sassari 

of the young. The elderly group had a more complex bacterial community in gut 

compared with the young and centenarian group. The centenarians had the lowest gut 

bacterial community diversity. 

 

Figure 3.4 Microbiota diversity surveyed by 16S rRNA and ITS1 sequcencing in 

Sardinians across body habitats. Median Shannon diversity of fungal and bacterial 

OTUs for 6 different body habitats in three age groups. Error bars represent the 

median absolute deviation with color representing each age group. 

 

3.2 Correlation between bacterial and fungal α diversity is body habitat dependent 

To explore the relationship between bacteria and fungi in the same body habitats for 

each individual, the Shannon diversity index for 16S and ITS1 for each individual in 

each body habitats was performed and is displayed in Figure 3.5. We used linear 
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regression to investigate the potential relationship between bacterial and fungal 

community diversity. The Shannon diversity for the bacterial and fungal community 

in the gut and oral cavity was not linearly correlated, but a significant association was 

observed in the skin. This indicated that for the skin, the individual had a higher 

diversity of in the bacterial community and was associated with a higher diversity of 

the fungal community. While for the gut and oral, the diversity of bacterial and fungal 

community was independent. 

 

Figure 3.5 Correlation between bacterial and fungi α diversity in different body 

habitats. The association between 16S and ITS1 Shannon diversity for all the 

samples. The samples are differently shaped for each body habitat and colored by age 

groups. The p value of the linear regression analysis is shown. 
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4. β diversity of microbiota communities for each body habitat in three age 

groups 

β diversity is another characters of the community referred to as the species 

differentiation among habitats. The variation can be tested by several approaches, 

such as using the ordination method (including PCoA, PCA and MMND) and using 

ANOVA (including Adonis, Anosim and MRPP). In our study, we detected that the 

microbiota communities display not only habitat specific variation but also age related 

features. 

4.1 Body habitats variation of microbiota communities 

4.1.1 Different grouping of the bacterial and fungi communities in each body habitat 

Principal coordinates analysis (PCoA) based on the Bray-Curtis distance of the 

microbiota compositional profile revealed that the primary clustering of the bacteria 

in the body was driven by body habitats Figure 3.6. Compared with skin which was 

rather discretely clustered, the gut and oral were densely clustered. The Adonis test 

showed that the grouping of bacterial communities by each body habitat was 

statistically significant (R
2
 =21%, p=0.001), also each subject showed a significant 

grouping of bacterial communities (R
2
 =25%, p=0.001). Fungal communities in PCoA 

were less distinctively separated by different body habitats than bacterial communities, 

however, the Adonis test showed that the grouping of fungal communities was 

statistically significant both in each body habitat (R2 =15%, p=0.001) and in each 



46  

Wu Lu, “A cross-sectional study of diverse bacterial and fungal communities in different body habitats in Sardinian 

centenarians”, Ph.D. thesis in the PhD Course in Life Sciences and Biotechnologies, University of Sassari 

individual (R2 =30%, p=0.001). 

 

 

Figure 3.6 Variability of the bacterial and fungal community dissimilarities 

based on Bray-Curtis distance for each individual among the body habitats 

shown on the PCoA. Each sample was marked as plots in symbols and colors 

indicated for different habitats and age groups. A: bacterial communities, B: fungal 

communities 
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The compositional differences of bacterial and fungal communities among each 

individual for the same body habitat was assessed in Figure 3.7. The distance within 

the defined body habitat reveals different degrees of community composition 

variation. Consistent with the variation of the Shannon diversity for each body habitat, 

the variation of bacterial community composition within the oral and gut were also 

smaller compared with that of skin, while the fungal community composition 

variation within oral and gut were larger compared with skin. 

 

Figure 3.7 Similarities of the bacterial and fungal community structure in 

different body habitats. A: Boxplot of Bray-distance of bacterial communities 

within the same body habitat survey by 16S rRNA sequencing. B: Boxplot of 

Bray-distance of fungal communities within the same body habitat survey by ITS1 

sequencing. 
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4.1.2 Body habitats specific enrichment of bacterial and fungal taxa 

To further identify the species that were significantly distributed in the different body 

habitats (skin, oral and gut), we used the linear discriminant analysis (LDA) effect 

size (LEfSe) to determine the differentially distributed species with abundance over 

0.1% in all subjects. We identified 43 bacterial species and 17 fungi species with abs 

LDA score >2.0 among habitats. We visualized the results in a cladogram in Figure 

3.8. The results revealed that the most abundant bacterial phylum in the skin body 

habitats were Proteobacteria, Actinobacteria and Cyanobacteria. Bacteroidetes and 

Firmicutes were the dominant phyla in the gut, and Fusobacteria and TM7 enriched in 

the oral cavity. 

 

Figure 3.8 The cladogram of the taxa detected by LEfSe. Bacterial community (A); 

Fungal community (B). The LEfSe use Kruskal-Wallis test (p<0.05) among each body 

habitat; Threshold on the logarithmic LDA score for discriminative features is 2.0; 

Strategy for multi-class ananlysis for bacterial is All-against-all (more strict), for fungi 

is one-against-all (less strict). Three classes: G indicates gut, O indicates oral and S 
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indicates skin. 

 

For the fungi communities, the phylum Ascomycota and Basidiomycota were 

significantly distributed in different body habitats, respectively enriched in gut and 

skin. The plot of the two phyla is shown in Figure 3.9. At the genus level, the 

Saccharomyces was abundantly enriched in the gut and oral cavity but not in the skin, 

while, Malassezia and Mycosphaerella were enriched in the skin but had lower 

abundance in the gut and oral cavity. 

 

Figure 3.9 The plot of the phylum with statically significant difference among 

body habitats. Ascomycota (A); Basidiomycota (B).Class G indicates the gut, O 

indicates the oral and S indicated the skin. Subclass C indicates the centenarian, E 

indicates the elderly and Y indicates the young. 

4.1.3 Correlation of the microbiota communities among different body habitats 

The Mantel test was used to explore the correlation of the microbiota communities 
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among different body habitats in Table 3.2. Skin habitats showed significant positive 

association among fungi community distance. No correlation was detected between 

the skin and the gut nor the gut and oral fungal community distance. This indicated 

that individuals that shared similar fungal communities in the skin habitat also shared 

similar fungal communities in other skin habitats. Associations could only be detected 

for bacterial communities between palms and forehead but not with umbilicus. The 

gut, oral cavity and skin showed no correlation between each other for the bacterial 

communities. 

 

Table 3.2 Correlations between the bacterial communities’ distances and fungal 

communities’ distances evaluated by Mantel test based on Bray-Curtis distance. 

Habitat 1 Habitat 2 16S Bray-Curtis distance ITS1 Bray-Curtis distance 

DM1 DM2 Mantel r statistic p-value Mantel r statistic p-value 

L R 0.649 0.001 0.661 0.001 

G O 0.083 0.288 -0.006 0.903 

F U -0.011 0.878 0.483 0.001 

F L 0.283 0.001 0.447 0.001 

G U 0.085 0.366 -0.057 0.394 

U R 0.081 0.348 0.275 0.001 

F O 0.065 0.358 0.020 0.729 

R O 0.012 0.866 0.020 0.661 
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4.2 Age related variation of microbiota community in each body habitat 

4.2.1 Diverse bacterial and fungal community compositional signatures for different 

age groups in each habitat 

To seek the bacterial and fungal community compositional signatures, we investigated 

the mean relative abundance of the most dominant bacterial and fungi genera in 

different age groups in each body habitat Figure 3.10. Except for the oral bacterial 

communities in which the dominant genera profile was similar among three age 

groups, the other communities in each habitat had different dominant genera profile 

for three age groups. The dominant bacterial and fungal genera in palms had 

decreased in the elderly compared with the young. Interestingly, centenarians had 

increased abundance compared with the elderly. In the gut, the abundance of the 

dominant bacterial genera decreased constantly with aging, indicating that the 

proportion of the sub-dominant genera in centenarians was increased. The dominant 

fungal genus in the skin habitats was Malassezia which was highly enriched in the 

young but decreased in the elderly, while in the centenarians Malassezia had 

increased compared with the elderly. The dominant fungal genera profile in the 

forehead was similar for elderly and centenarian but different from the young. In the 

oral, the relative abundance ratio of the dominant fungal genera for elderly was only 

35% while the young was 56% and centenarians was 62%, indicating that the elderly 

had a high prevalence of sub-dominant genera in the oral cavity. 
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Figure 3.10 The compositional features of microbiota among three age groups. 

Boxplot shows the relative abundance of the top 10 dominant genera in each age 

group for bacteria and fungi respectively. Group Y indicates young group, E indicates 

elderly group and C indicates the centenarian group. 
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4.2.2 Clustering of bacterial and fungal communities for different age groups in each 

body habitat 

Anosim and MRPP tests were applied to test statistically whether the microbiota 

communities were significantly different between three age groups (Table 3.3&3.4). 

The test revealed that three age groups showed different degrees of sub-clustering in 

certain habitats. For example, skin and gut bacterial communities were clearly 

clustered by age group but for the oral communities the age group separation was not 

clear. No significant difference among the three age groups was detected for fungal 

communities in the oral and gut habitats (Anosim test, R<0.05 and P>0.05). Beta 

diversity of bacterial communities on the skin and in the gut for each individual was 

significantly different among the three age groups, while the oral bacterial 

communities did not show age dependent clustering. For the fungi communities on 

the skin habitats, the beta diversity showed significant differences among age groups, 

even so, the group dissimilarities were not sharp (0<R<0.1). 

Table 3.3 Evaluate the difference between three age groups for bacterial and 

fungal communities in each habitat by Anosim test based on the Bray-Curtis 

distance. The number of permutations is 999. 

ANOSIM 16S_L 16S_R 16S_F 16S_U 16S_O 16S_G ITS1_L ITS1_R ITS1_F ITS1_U ITS1_O ITS1_G 

Sample size 55 53 60 54 59 58 64 63 63 56 61 58 

Test statistic 0.225 0.208 0.128 0.127 0.019 0.176 0.091 0.083 0.088 0.080 0.029 0.040 

P-value 0.001 0.001 0.001 0.003 0.185 0.001 0.002 0.009 0.003 0.015 0.125 0.087 
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Table 3.4 Evaluate the difference between three age groups for bacterial and 

fungal communities in each habitat by MRPP test based on the Bray-Curtis 

distance. The number of permutations is 999. Observe-delta represents the difference 

within the group. Expect-delta represents the difference between groups. Group_Delta 

represents the within groups distance for each age group. 

MRPP 16S_L 16S_R 16S_F 16S_U 16S_O 16S_G ITS1_L ITS1_R ITS1_F ITS1_U ITS1_O ITS1_G 

Observed delta 0.75 0.76 0.65 0.76 0.54 0.76 0.66 0.67 0.54 0.65 0.84 0.85 

Expected delta 0.79 0.79 0.67 0.78 0.55 0.79 0.68 0.7 0.57 0.67 0.84 0.85 

C_delta 0.7486 0.7579 0.7292 0.7828 0.5976 0.8187 0.6347 0.6121 0.563 0.6478 0.8288 0.8495 

E_delta 0.8059 0.7978 0.6179 0.7378 0.5275 0.7641 0.7617 0.7728 0.6085 0.7067 0.848 0.8599 

Y_delta 0.6814 0.7212 0.5766 0.7663 0.5022 0.6782 0.5457 0.6161 0.428 0.5716 0.8011 0.7895 

p-value 0.001 0.001 0.001 0.001 0.008 0.001 0.001 0.001 0.001 0.001 0.071 0.054 

 

PCoA was used to visualize bacterial and fungal community structure for different age 

groups in Figure 3.11. We found that the age group clustering was matched with the 

Anosim test. More specifically, we observed that for the bacterial communities, the 

symmetric palms showed similar patterns: young and centenarians had clearly 

separated clusters, while the elderly cluster overlapped with both the young and 

centenarian groups, indicating that the palm bacterial community structure shifted 

with aging. In the face and umbilical sites, the clustering of bacterial communities for 

age groups was slightly different: elderly and centenarians clustered closely but more 
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distinct from the young. For the fungi communities in all skin habitats, young and 

centenarians showed close clustering, whereas the elderly clustered separately. The 

bacterial and fungal communities for oral habitats did not display any age group 

clustering. In the gut, we found that the young and healthy elderly had similar clusters 

for bacterial communities which were distinct from that of the centenarians. The fungi 

communities in the gut were not be separated by the age groups. 
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Figure 3.11 PCoA visualized the dissimilarities of the bacterial and fungal 

community compositional profile for each individual in three age groups for each 

habitat based on Bray-Curtis distances of the relative abundance of each genus. 

Individuals were identified as spot filled with black (centenarian), red (elderly) and 

green (young) in scatter plot. Each age group was clustered by ellipses and labeled by 

C (centenarian), E (elderly) and Y (young). 
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4.2.3 Dominant genus correlated with the similarities of microbiota community in oral 

and gut 

Except for gut bacterial community, the microbiota structure of oral cavity and gut 

didn‟t display significant clustering by age groups, we further explored the 

contribution of the dominant genera to the ordination of the subject in PCoA (Figure 

3.12) to determine the driven force for similarities of the microbiota structure for each 

individual. We observed that for gut bacterial communities, young and elderly 

individuals clustered tightly, and the clustering was positively correlated with 

Bacteroides and Faecalibacterium. Interestingly, a group of centenarians clustered 

separately, influenced by the contributed of Bifidobacterium. For the fungal 

community in the gut, the individuals showed three sub-clusters: one was positively 

driven by Candida, one was positively driven by Penicillium and the other was 

negatively driven by both Candida and Penicillium. In the oral habitat, bacterial 

community similarities were driven by all the dominant genera, among them, 

Streptococcus, Veillonella, Neisseria and Prevotella showed the highest fitness. The 

fungal communities in the oral habitat also formed three sub-clusters: one was driven 

by Malassezia, one was strong positively driven by Candida and the other was 

negatively driven by the two. 
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Figure 3.12 Driving forces of the bacterial and fungal community structure in 

oral and gut. Identify the bacterial and fungal genera with a significant contribution 

(Permutational correlation test, 999; p < 0.005) to the individual ordination in PCoA 

based on the Bray-Curtis distances of the relative abundance of each genus. Samples 

are indicated as dots in plot, the color and size were identified by the relative 

abundance of the top two dominant genera. The ten dominant genera that significantly 

contributed to variation and their relative lengths which present the fitness are shown. 

4.2.4 Variation of the relative abundance of taxa among age groups in different 

habitats 

In comparing the genera with significant differences in abundance between the three 

age groups in Figure 3.13, we found that more bacteria were significantly distributed 

between age groups compared with fungi. Besides, fungi showed accumulation in the 
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elderly compared with the young and centenarian in the skin. Bacteria displayed 

diverse features for the enrichment of genera. For instance in the gut, Blautia, 

Roseburia and Feacalibacterium exhibit an age dependent decrease pattern. 

Prevotella and Clostridium were enriched in the elderly but were lower in the young 

and centenarian groups. Bilophila, Butyricimonas and Parabacteroides had similar 

abundance in the young and elderly but were enriched in centenarians. Moreover, in 

the skin, the Propionibacterium decreased with aging. In the palm habitats, 

Streptococcus, Selenomonas, Ruminococcus and Veillonella were enriched with aging, 

Staphylococcus had the the lowest abundance in the elderly but were especially high 

in the centenarian group. In the face habitat, Corynebacterium had similar abundance 

in the elderly and centenarians but was significantly lower in abundance in the young. 

Veillonella, Actinomyces, Leptotrichia and Fusobacterium were only enriched in 

centenarian. The relative abundance of Malassezia was statistically different among 

the age groups, the elderly had the lowest relative abundance of Malassezia. 

Saccharomyces and Debaryomyces were decreased with aging in the gut. Rhodotorula 

was significantly enriched in the young and had similar abundance in the elderly and 

centenarians oral habitats. In the umbilical site of elderly, high abundance of 

Penicillium and Naganishia were observed. 
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Figure 3.13 Boxplot compared the relative abundance of bacterial and fungal 

genera that were significant differently distributed in three age groups. Only 

genera that detected have abundance >0.1% and with significant variation between 

age groups (detected by ANOVA analysis followed by Tukey-kramer test, p<0.05) 

were plot. Color coded by different body habitat sites. 

 

5. Correlations between bacteria and fungi in each habitat 

The correlation between bacterial and fungal community dissimilarities for each 

individual within habitats was investigated using the Mantel-test Table 3.5. A 

significantly positive correlation between bacterial and fungal community 
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dissimilarities was detected in palms, showing that two individuals with similar 

bacterial communities were associated with similar fungal communities in palms. 

While for other habitats, the correlation was not significant. 

 

Table 3.5 The correlation between bacterial and fungal community dissimilarities 

for each individual within habitats was investigated by Mantel-test based on 

Bray distance matrix derivate from the bacterial and fungal compositional 

profile. 

Habitats Mantel r statistic p-value 

L 0.3331 0.001 

R 0.33803 0.001 

F 0.12436 0.122 

U 0.03653 0.696 

O 0.05528 0.356 

G 0.12172 0.051 

 

Pearson‟s correlation revealed that for different niches, the correlation of the bacterial 

and fungal taxa was diverse (Figure 3.14). In the skin bacteria and fungi exhibit more 

significant inner and inter correlation. While in the oral cavity, only the bacterial 

genera had a significant inner correlation. For the gut, inner and inter bacteria and 

fungi correlation was not abundant but the correlation between fungi and bacteria was 
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stronger than that in the oral. We also observed that the correlation between the same 

taxa in different niches can be distinct. For instance, Candida and Malassezia had a 

significant negative correlation in the skin and oral but they didn‟t show a significant 

correlation in the gut. The strongest positive correlation occurred between the 

Meyerozyma and Rhodotorula in the gut. Ruminococcus and Wallemia, Dialister and 

Trichosporon also exhibit significant positive correlation. In the oral sites, 

Rhodotorula showed significant positive correlation with Cryptococcus, but without a 

significant correlation with Meyerozyma which was observed in the gut. A strong 

negative correlation was found between Prevotella and Streptococcus in oral but only 

a week positive correlation was observed in the skin. 
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Figure 3.14 Correlation between fungal and bacterial genera in different body 

habitats. The colors of the squares represent correlation strength between the relative 

abundance of genera in each individual. Only significant correlation was plotted 

(p<0.05). Only shown the most dominant 15 bacterial and fungi genera. “f_” indicated 

the fungi and “b_” indicated the bacteria. 

 

6. Correlations between gut microbiota and clinic parameter 

Since gut microbiota is closely related with human health and disease, we further 

investigated the correlation of the clinical parameters and gut microbiota. The clinical 

parameters including MMSE (Mini-Mental State Examination), MNA (Mini 

Nutritional Assessment), FIM (Functional Independence Measure), Age, weight , and 

the number of drugs taken. We found that the clinical parameters were significantly 

correlated with the separation of the individuals in the PCoA for the gut bacterial 

community but not significantly correlated with the fungal community. The clinical 

parameters significantly correlated with the bacterial community in PCoA are shown 

in Figure 3.15. Compared with the young and the elderly who shared similar clusters 

in PCoA, Centenarians‟ clusters shifted toward a direction correlated with increased 

age and medication and lower scores of FIM, MMSE and MNA. The centenarians 

with higher levels of FIM, MMSE and MNA score tend to have more similar gut 

microbiota composition with the young and the elderly. We also observed that MNA 
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was positively associated with FIM and MMSE, emphasizing the important role diet 

may play in maintaining the healthy aging. 

 

Figure 3.15 Correlation between the clinical parameters and gut microbiota 

composition in PCoA. Clinical parameters with significant correlations with the 

ordination of the diagram were visualized as arrows. (p<0.05, permutations test, 

N=999). The length and direction of each arrow indicates the parameter‟s strength 

with the ordination configuration. 

Chapter Ⅳ. Results: Compositional and functional profiles of gut 

microbiota in Sardinian centenarians 

1. Cohort characteristics 

We recruited a cohort including three age groups in Sardinia: young (N=18, age from 

21 to 33), healthy elderly (N=25, age from 68 to 88) and centenarians (N=21, age 

from 99 to 107). The clinical characteristics are shown in Table 4.1. 
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Table 4.1 Statistics of the clinical characteristics and health measurements in 

three age groups. 

Parameters Centenarians(n=19) Elderly(n=23) Young(n=17) 

 Mean±SD (Range) 

Age(yrs) 101.8±1.4(99-107) 76.7±5.9(68-88) 25.5±3.5(21-33) 

Female (%) 76.5% 56.6% 41.2% 

Weight (kg) 57.1±5.7（43-73） 68.7±14.3(42-103) 63.2±3.5(44-95) 

BMI (kg/m
2
) 23.5±2.1(17.9-28.1) 25.9±4.1 (19.5-36.9) 22.8±3.7(16.1-40.1) 

MMSE (0,30) 15.8±6.7(5-26) 26.6±3.0(22-30) 30(30-30) 

MNA (0,30) 18.9±3.7(8-26) 24.1±2.0(18-28) 24.3±1.3(20.5-28) 

FIM (0,126) 77.5±21.1(31-123) 123.7±1.9(119-126) 126(126-126) 

* Total number of subjects is 59 excluding individuals with unqualified stool samples 

(N=6). 

Values are presented as Mean±SD with the range in parentheses. 

BMI: Body Mass index; MMSE: Mini-Mental State Examination; MNA: Mini 

Nutritional Assessment; FIM: Functional Independence Measure 

 

2. Survey of Sardinian gut microbiota by shotgun metagenomic sequencing 

A total of 59 qualified stool samples were used to extract microbial DNA for DNA 

library construction and shotgun metagenomic sequencing on Hiseq X10. On average 
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5.8 Gb data (approximately 41.3 million high-quality clean reads) were generated per 

sample. Human contamination was removed (on average, up to 14% of the total reads) 

before further processing. The taxonomic compositional profile was generated by 

MetaPhlAn2 that relied on unique clade-specific marker genes identified from 3,000 

reference genomes. We verified our results using the IGC database. The workflow is 

shown in Figure 4.1. 

 

 

Figure 4.1 Workflow to analyze gut microbiota in the Sardinian population. 
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3. Gut microbiota compositional profile in Sardinian across age 

3.1 Comparison of gut bacterial communities by shotgun metagenomic sequencing 

and 16S rRNA sequencing 

 

Figure 4.2 Comparison of the dominant phyla between shotgun metagenomics 

sequencing and 16S rRNA sequencing datasets. 

 

Examination of the gut microbiota compositional profiles at the phylum level for three 

age groups revealed that the gut microbiota for Sardinians are dominated by 

Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, which corresponds 

with previous research [15]. Comparing the dominant phyla between shotgun 

metagenomic sequencing (with two different databases) and 16S rRNA sequencing 

datasets (Figure 4.2) reveals that the proportion of dominant phyla display variation 

between the three datasets. For example, the dominant phyla, Firmicutes are less 

frequently detected in shotgun metagenomics sequencing compared with 16sRNA 

gene sequencing, when using either the Humann2 or IGC databases. On the other 
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hand, Bacteroidetes, Euryarchaeota and Verrucomicrobia are more frequently 

detected. Similar results were also found by others [170]. Since sample preparation 

for DNA extraction is the same, the variation may be caused by the bias of two 

sequencing methods. Although there is variation between different databases, the 

patterns for the phyla with each age group is similar, therefore we used the Humann2 

database to further explore the structure of the gut microbiota in different age groups. 

3.2 Achaea and virus in gut detected by shotgun metagenomic sequencing 

Shotgun metagenomic sequencinig can detect not only bacterial composition but also 

the presence of Achaea and viruses in the gut. Methanobrevibacter smithii, the 

dominant Archaea in the human gut ecosystem was frequently detected in Sardinians, 

the mean relative abundance reached 1.8%. We detected viruses belonging to 

Caudovirales which are double strand DNA virus. The mean relative abundance of 

Siphoviridae represented 0.58% and is the most abundance virus species detected, 

followed by Myoviridae represented by 0.056%. Bacterial phage belongs to 

C2likevirus was most frequently detected genus. 

3.3 Compositional variation of gut microbiota among different age groups 

3.3.1 Phylum level variation among the three age groups 

Firmicutes has a higher abundance in the elderly group compared with that of the 

young group, and the abundance is even greater in the centenarian group when 
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compared to the elderly group (Kruskal-Wallis test, χ
2
 = 12.893, df = 2, p-value = 

0.0016). The variation of abundance for Firmicutes among three age groups was 

tested using ANOVA (Figure 4.3). 

 

Figure 4.3 Boxplot of the abundance of Firmicutes among three age groups 

Proteobacteria is enriched in the elderly and especially enriched in centenarians when 

compare to the young individuals (Kruskal-Wallis test, χ
2
 = 9.0686, df = 2, p-value = 

0.0107). As the most abundant two phyla in the gut, the Firmicutes/Bacteroidetes 

proportion (F/B) is an important index for the structure of gut microbiota. The F/B 

ratio was significantly lower in the centenarians compared with the elderly (Figure 

4.4). 

 

Figure 4.4 F/B ratio in the gut microbiota among three age groups. 
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3.3.2 Genus level variation among the three age groups 

To explore gut microbiota composition in detail, we determined the relative 

abundance of each genus of gut microbiota for the three age groups (Figure 4.5). The 

relative abundance of the dominant genus was sharply rearranged in centenarians 

compared with that of young and healthy elderly individuals. Furthermore, the total 

amount of the sub-dominant genus showed an age dependent pattern, in which the 

centenarians group was significantly enriched in the sub-dominant genus. 

 

Figure 4.5 Frequency of the top 20 genera. Other low-abundant genera are summed 

into one group labeled “ Others_Subdominant”. 

 

Comparing the taxonomy compositional profile within each age group, we found 

several genera that were significantly different in abundance and prevalence among 

the three age groups. The dominant genera that were significantly distributed among 
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the age groups are shown in Figure 4.6 (ANOVA followed by Tukey-Kramer post-hoc 

test, p<0.05). 

 

Figure 4.6 Statically significant different genera distribution in three age groups. 

Boxplot with standard deviation of the mean value of relative abundance of genera in 

different age groups is shown. Only the dominant genera with significant difference (p 

value<0.05) between age groups detected by ANOVA followed by Tukey-Kramer test 

are shown. 

For instance, the relative abundance of Faecalibacterium and Ruminococcus are 

lower in the elderly compared with the young, and yet even lower in the centenarians. 

A low relative abundance for Corprococcus and Dorea were also observed in our 

centenarian cohort compared with the young and elderly. A high abundance of 

Prevotella is observed in 8/23 of our elderly individuals (Figure 4.7). 

Methanobrevibacter, a dominant Archaea in the human gut ecosystem, has a high 
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frequency in centenarians (Figure 4.7). Pyramidobacter was also found to be only 

enriched in centenarians. 

 

 

 

Figure 4.7 The abundance of Prevotella and Methanobrevibacter in three age 

groups. Three age groups were indicated by different color: blue for centenarian 

group (C), orange for the elderly group (E) and green for the young group (Y). 

Variations among three age groups were tested by ANOVA, with p value <0.05. 

 

To further investigate the similarity of the community structure of the gut microbiota 

for each individual among the three age groups, Principal Coordinates Analysis 
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(PCoA) based on the Bray-Curtis distance matrix of the relative abundance of genus 

was used to visualize the distribution and cluster of the subjects. The individuals were 

clustered by three age groups with an ellipse of 95% confidence. We found that the 

three age groups clustered separately: the elderly group was positioned similar to the 

young group but both of them were distinct from the centenarian group (Figure 4.8). 

The elderly group cluster overlapped with the young group but showed a slight shift, 

while the centenarians, had some subjects with a profile similar to those of the young 

and elderly, but the cluster shifted in a different direction from that of the elderly. 

Analysis of similarities (ANOSIM) test using Bray-Curtis distance revealed that no 

significant differenence in the composition of gut microbiota at the genus level was 

evident between young and elderly (R-value=-4.602e-05, p-value =0.464). However 

significant differenence between centenarian and young (R-value=0.1792, p-value 

=0.001), and significant differenence between centenarian and elderly was oberved 

(R-value=0.1707, p-value =0.001). Multiple Response Permutation Procedure (MRPP) 

analysis revealed that the delta of the young was 0.65, while that of the elderly was 

0.74 and the centenarian was 0.76 (p = 0.001, A =0.03). This analysis shows that 

within group distance is larger in the elderly and centenarian groups, and the 

inter-group distance is significantly greater than that of the inner group. We 

discovered that the distribution of the individuals in the PCoA was driven by the 

dominant genera (Figure 4.9). 
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Figure 4.8 Gut microbiota composition for three age groups at the genus level in 

PCoA. Ellipses around the centroid are plotted; the age group is labeled as C for the 

centenarian, E for elderly and Y for young. The genus that significantly correlated 

with the ordination in PCoA are shown as arrows (Permutation test, p<0.01), the 

length of the arrow indicated for the Goodness of fit statistic: Squared correlation 

coefficient. Bray-Curtis distance was used for PCoA. 

 

Figure 4.9 Relative abundance of the dominant genera in PCoA. Relative 
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abundance of the dominant genera shows that the similarity of the individuals is 

driven by the relative abundance of the dominant genere: Bacteroides (A); 

Faecalibacterium (B); Bifidobacterium (C) and Eubacterium (D). The relative 

abundance of the four domiant genera was shown by the size of the plots in each 

PCoA. The age group is labeled as C for the centenarian, E for elderly and Y for 

young with a different color. 

 

The genera significantly contributing (permutation correlation test, p value<0.01) to 

the ordination of the samples are shown in Figure 4.8. Faecalibacterium, Bacteroides, 

Roseburia, Sutterella and Parabacteroides were positively correlated and 

significantly contributed to the cluster of the young group, while Eubacterium and 

Blautia were positively correlated and significantly contributed to the cluster of the 

elderly. The enrichment of Bifidobacterium, Methanobrevibacter, Pyramidobacter, 

Synergistes and Escherichia were detected and positively correlated with the cluster 

of centenarians. 

The heatmap of the relative abundance of the genera that significantly correlated with 

the cluster of age groups is displayed in Figure 4.10. Interestingly, eight centenarians 

formed a separate group in the hierarchical cluster with high abundance of 

Bifidobacterium, Methanobrevibacter and Echerichia. 
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Figure 4.10 Heatmap of the relative abundance of genera that are significantly 

correlated with the samples separation in PCoA in three age groups. The relative 

abundance was base 10 logarithm as input, complete linkage clustering was used. 

 

3.3.3 Species level variation among the three age groups 

Survey the taxonomic composition at the species level, we found the α diversity of 

the gut microbiota was not significantly different among age groups. Compared with 

young and elderly individuals who shared a similar speciesα  diversity, the 

centenarian group had higherα diversity but was not significant (Figure 4.11). 
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Figure 4.11 Species richness and Shannon index for three age groups. Boxplot 

with standard deviation of the mean value of Species richness and Shannon index of 

in different age groups is shown. The age group is labeled as C for the centenarian, E 

for elderly and Y for young. The variation among three age groups is detected by 

Kruskal-Wallis test. 

 

The dominant species that were significantly different among the three age groups are 

shown in Figure 4.12. 

 

Figure 4.12 Statically significant different species distribution in three age 

groups. Boxplot with standard deviation of the mean value of relative abundance of 

species in different age groups. Only the dominant species with significant difference 

(p value<0.05) between age groups detected by ANOVA followed by Tukey-Kramer 

test are shown. 
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3.4 Core microbiota in different age groups of Sardinians 

The core microbiota referred as a group of microbes shared among individuals, it‟s 

found associated with the function of the microbiota and healthy status of the host 

[152, 171]. Studies in the elderly population observed the age related loss of diversity 

in the core gut microbiota [62, 152]. In our dataset, we found that at the genus level 

the richness of the core microbiota (shared by 50% individuals) among three age 

groups is similar, while at the species level, the centenarians show an increase of the 

core microbiota richness compared with young and elderly (Figure 4.13). 

 

Figure 4.13 Core microbiota in different age groups. Vienn diagram representation 

of the core microbiota at the Genus level and the Species level. Percentages are shown 

in (). 

 

The relative abundance of the centenarian specific core microbe distribution in three 

age groups are shown in Figure 4.14. We observed the enrichment of several species 
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belonging to Bacteroides, Bifidobacterium, Clostridium, Erysipelotrichaceae and 

Lactobacillus in centenarians. 

 

 

Figure 4.14 Distribution of the relative abundance of centenarian unique core 

microbiota in three age groups. The relative abundance of centenarian unique core 

microbiota in three age groups is represented using Box plots for centenarians (C), 

elderly (E), and young (Y). 

 

3.5 Co-abundance network of taxa in gut microbiota for three age groups in Sardinia 

Correlation analysis of the genus in the gut microbiota (Figure 4.15) revealed that 

Bacteroides as the most abundant genus in the gut formed a positive network with 

dozens of other sub-dominant genus. Bacteroides showed no correlation with 

Faecalibacterium, Bifidobacterium nor Eubacterium. Meanwhile, Bifidobacterium 

and Eubacterium show a strong negative correlation. Besides, Feacalibacterium, 
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Roseburia and Coprococcus show a positive correlation, corresponding to the same 

pattern in three age groups. Interestingly, there are positive association among 

Lactobacillus, Methanobrevibacter and Streptococcus, which all show a correlation 

with dairy product consumption [172, 173]. 

 

 

Figure 4.15 Co-abundance network of taxa in gut microbiota for Sardinian in 

age groups. Genera were plotted as circle nodes in the network. The size of the 

circles indicated the mean abundance in the Sardinian population. The edge represents 

the Pearson‟s correlation between each genus. Only the absolute correlation that >0.3 

is shown. The thickness of the edge line indicates the proportion to the strength of the 

correlation; the colors represent positive and negative correlations. 

 

The patterns of co-abundance networks of the core microbes in the gut microbiota 
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were obtained by calculating the associations among core species. The networks show 

several separated clusters of co-abundance groups, which represented the main basic 

gut microbiota structure in Sardinians (Figure 4.16). As the most abundant species, 

Faecalibacterium prausnitzii and Eubacterium rectale did not form a cluster with 

other species. Different species of Bacteroides formed a cluster separated from the 

core cluster. Interestingly, Subdoligranulum correlated with a group of species that 

formed the core co-abundance cluster. Methanobrevibacter smithii and 

Bifidobacterium adolescentis are not only significantly enriched in centenarians, but 

also are significantly correlated within all the age groups. 

 

 

Figure 4.16 Network of the core species shared by young, elderly and 

centanarians. Core species shared by the three age groups in Sardinians were plotted 

as circle nodes in the network. The size of the circles indicated the average species 
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abundance in the Sardinian population. The edge represents the Pearson‟s correlation 

between each pathway. Only the absolute correlations that >0.3 with p>0.01 are 

shown. 

 

4. Compared gut microbiota in Sardinian with other populations 

The variation of gut microbiota has previously been studied for different geographical 

populations [174]. In our study, we compared the findings of the Italian study with our 

findings and found that at the phylum level, the Sardinians have a different profile 

compared with urban individuals from Bologna, Italy [78]. Interestingly, 

Protebacteria has low abundance in Bologna and a Dutch cohort [170] but are shared 

by the Sardinian and Hadza cohorts [78] and are enriched in the Sardinian 

centenarians. The abundance of Bacteroidetes is similar for Sardinian and Hadza 

populations, having higher abundance when compared with Bologna and Dutch 

populations. Meanwhile, the abundance of Actinobacteria is extremely low in the 

Hadza population but is higher abundance in Sardinian, Bologna and Dutch 

populations (Figure 4.17) 
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Figure 4.17 Relative abundance of dominant phylum in different populations. 

The Hadza hunter-gatherer population and Bologna data were generated by 16s rRNA 

V4 sequencing [78]; the Sardinian dataset was generated by 16s rRNA V3V4 

sequencing in the present study; and the Dutch dataset was generated by 16s rRNA 

v3V4 sequencing [170]. 

 

Comparing the Bologna results on gut microbiota in centenarians [63] with their data, 

we found certain features that are shared with two cohorts. At the phylum level, we 

found that centenarians in both cohorts accumulated Proteobacteria and 

Actinobacteria (Figure 4.18). 
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Figure 4.18 Relative abundance of dominant phylum in Sardinian and Bolognian 

cohorts. Both data were generated by 16s rRNA V3V4 sequencing. 

 

In the PCoA plot (Figure 4.19), the young and elderly in both studies are similarly 

clustered for both populations, and the centenarians clustered separately. 
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Figure 4.19 The bacterial community similarities for different age groups in 

PCoA for Sardinians and Bolognians 

 

At the genus level, our Metagenomic sequencing detected the enrichment of 

Bifidobacterium and Methanobrevibacter. Both genera were found enriched in 

Bologna centenarians, while, the enrichment of Akkermansia reported in Bologna 

centenarians [63] is not high enriched in Saridnian centenarians (Figure 4.20). 

 

 

Figure 4.20 Comparison of the relative abundance for several genera in different 

age groups for Sardinian and Bolognian cohorts. 
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5. Gut microbiota functional profiles in Sardinian cohorts of different ages 

To determine if metabolic activities in gut microbiota shift with aging, metagenomic 

sequencing data were processed by Humann2 pipeline using the UniRef90 database. 

The relative abundance of gene families and gene pathways were obtained. We 

detected 384,425 gene families assigned to 1,924 species. A total of 463 gene 

pathways were rebuilt, which were calculated from the constituent gene family 

abundance for each individual. After normalizing and regrouping the gene family 

profile into a Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology profile, 

we obtained the mean relative abundance profile for each of the KEGG orthology 

(KO) in the three age groups. 

5.1 Validate the functional annotation of gut microbiota from two databases. 

For two dataset, the Shannon diversity and richness of KO both show significant 

increases in the centenarian group consistent with the increase of Shannon diversity of 

genus in gut microbiota, while the diversity in the young and healthy elderly was not 

significantly different (Figure 4.21). Considering that the two datasets have similar 

results, we next used the Humann2 dataset to obtain functional annotation. 
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Figure 4.21 αdiversity of the KEGG orthology comparison between different 

age groups in two datasets. Variation detected by Kruskal-Wallis Test. Mean value 

of Richness in Humann2 (A); Mean value of Shannon diversity index in Humann2 

(B). Mean value of Richness in IGC (C); Mean value of Shannon diversity index in 

IGC (D). 

5.2 Functional variation in the gut microbiota among different age groups 

We compared the mean relative abundance for each KO between different age groups 

to see how aging affects the gut microbiota gene abundance in each group (Figure 

4.22). We observed that the majority of KO present in gut microbiota are in low 

proportions (<0.02%). Furthermore, the young and elderly share similar abundance 

patterns. When compared with the elderly, the centenarians have a lower abundance 

of most of the dominant KO. 



89  

Wu Lu, “A cross-sectional study of diverse bacterial and fungal communities in different body habitats in Sardinian 

centenarians”, Ph.D. thesis in the PhD Course in Life Sciences and Biotechnologies, University of Sassari 

 

 

Figure 4.22 Relative proportion of all KEGG orthologs detected within gut 

microbiota in different age groups. Centenarians compared with healthy elderly (A); 

Healthy elderly compared with young (B); Centenarians compared with young (C). 

Points on either side of the grey dashed y = x line are enriched in one of the two 

groups. Welch‟s two side T test was used to determine if the observed difference was 

significant. Confidence intervals for each KO are displayed and are calculated using 

the Wilson score method. 
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Gene pathway profile similarities assessed among individuals by Nonmetric 

multidimensional scaling (NMDS) revealed that, consistent with the taxonomic and 

KEGG KO profiles, the inter-individual differences increased with aging. The elderly 

group shared a similar gene profile with the young group but differed strikingly with 

the centenarian group (Figure 4.23). 

 

Figure 4.23 Dissimilarities of the functional profile for gut microbiota among the 

three age groups. Dissimilarities of the functional profiles based on the relative 

abundance of KEGG KO using PCoA (A); Dissimilarities of the functional profiles 

based on the relative abundance of gene pathways using non-metric multidimensional 

scaling (NMDS) (B). 

 

Although most of the gene pathways we detected were shared by all the age groups, 

the dominant pathways were conserved in all individuals. For example, the gene 

pathway for Nucleotides Biosynthesis and Cell Wall Biosynthesis are highly abundant 

in all age groups. Based on the ANOVA test, we detected 115 pathways out of 463 

pathways that have significant variation among the three age groups. Gene pathways 
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for metabolic functions for each age group are shown in Figure 4.24. 
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Figure 4.24 Functional signatures of gut microbiota in different age groups. 

Relative abundance of the gene pathways that are significantly different in the three 

age groups. The centenarian groups compared with the elderly group (C vs E), and the 

centenarian groups compared with the young group (C vs Y), and the elderly 

compared with the young group (E vs Y) are shown in each panel. The length of the 
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bar indicates the base 2 logarithm value of the relative abundance ratio between each 

age group. Gene pathways are grouped in related pathways: (A) Sugar degradation 

related pathways. (B) Glycolysis related pathways. (C) Vitamin metabolism related 

pathways. And (D) Amino acid metabolism related pathways. Gene pathway variation 

between age groups are detected by ANOVA followed by Tukey-Kramer test (p 

value<0.05). 

 

As a core function of gut microbiota, carbohydrate metabolism-related pathways were 

abundantly detected with significant variation in distribution among the different age 

groups (Figure 4.24 A&B). Our results revealed that the relative abundance of the 

pathways for polysaccharide degradation were similar for the elderly and young 

groups but significantly decreased in centenarians, except for the starch degradation 

III pathway that is only utilized by the Archaea (Figure 4.24A) Interestingly, in 

centenarians we detected a high prevalence of gene pathways involved in glycolysis 

and the related Tricarboxylic Acid Cycle (TCA) and related respiration pathways in 

gut microbes (Figure 4.24B). Additionally, in centenarians, we also detected high 

abundance of KO for the Phosphotransferase System (PTS) and the major facilitator 

superfamily (MFS) system transporters, which can facilitate the transfer of sugar into 

the cytoplasm of bacteria (Figure 4.25). 
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Figure 4.25 Relative abundance frequency of KEGG orthologs in three different 

age groups. 

 

Gene pathways related to vitamin metabolism are shown in Figure 4.24C. We found 

the centenarian group displayed a significant enrichment of menaquinone (vitamin K2) 

gene pathways compared with the elderly group. We further noticed that menaquinone 

related pathway abundance also showed an increase in the elderly group compared 

with the young group, which indicates a possible age-dependent increase pattern. 

Moreover, in our study, the riboflavin (vitamin B2) synthesis pathway was also highly 

enriched, with the age-dependent Archaea increase in centenarians. The synthesis of 

thiamine (vitamin B1) appeared to decrease with aging. 

The results for protein and amino acid metabolism related pathways are shown in 

Figure 4.24D. As expected, the centenarians but not the healthy elderly exhibited a 

decline in most of the amino acid biosynthesis pathways compared with the young 
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group participants. For instance, L-Lysine, L-isoleucine, and L-methionine related 

pathways were decreased in centenarians. Additionally, some pathways were enriched, 

in the centenarians, such as the L-phenylalanine metabolism related pathways, the 

Chorismate biosynthesis pathway, and the L-lysine fermentation pathway. 

5.3 Co-abundance of functional pathway define the metabolic potential of different 

age groups 

To further explore the correlation among differentially distributed pathways, we 

calculated the Pearson correlation among each pathway. The network of the pathways 

is shown in Figure 4.26, The correlation network among gene pathways for different 

age groups indicates that over abundant gene pathways in the young and healthy 

elderly groups were positively correlated, while for the centenarians, the enrichment 

pathways were not tightly correlated with gene pathways that were enriched in the 

young and healthy elderly, but displayed a strong negative correlation with defined 

pathways that were enriched in the elderly. The gene pathways belonging to Achaea 

were also positively associated with each other and showed co-abundance in 

centenarians corresponding to the enrichment of Achaea in taxonomy composition. 
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Figure 4.26 Network of the gene pathways that are significantly distributed in 

three age groups. Gene pathways with significantly different abundance between age 

groups were plotted as circle nodes in the network. The size of the circles indicated 

the average pathway abundance in the three age groups. The color of the circles 

represents an enrichment of the pathways in each age group. The edge represents the 

Pearson‟s correlation between each pathway. Only the absolute correlation that is >0.3 

is shown. The thickness of the edge line indicates the proportion of the strength of the 

correlation; the colors represent positive and negative correlations. 
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The correlation matrix of the gene pathways is presented in Figure 4.27. The matrix 

showed that significantly distributed pathways mainly separated into two negatively 

correlated parts. Within those two groups, we observed a correlated cluster of several 

pathways; for instance, the amino acid metabolism related pathways were closely 

correlated and further positively correlated with polysaccharide degradation pathways. 

Manaquinol biosynthesis and glycolysis related pathways were also significantly 

positively correlated. 

Figure 4.27 Correlation Matrix among gene pathways that have significantly 
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different abundance in three age groups. Pearson correlation was used to calculate 

the correlation between pathways. Only the corresponding correlation coefficient that 

was significant was plotted (p<0.05). Circles show the absolute value of 

corresponding correlation coefficients. Color of coefficients added on the bar: blue = 

positive correlation; red = negative correlation. The pathways were clustered by 

hierarchical clustering. 

 

6. Association among gut microbiota composition, gut microbiota function and 

host clinical parameters 

The statistics of clinical and health measurements for 59 subjects within the three age 

groups are shown in Table 4.2. On average, the centenarians in our cohort scored 

poorly for diverse health parameters, including Mini-Mental State Examination 

(MMSE), Mini Nutritional Assessment (MNA) and Functional Independence Measure 

(FIM) compared with the healthy elderly, who had similar scores with the young. 

Furthermore, MMSE, MNA and FIM of the centenarians varied significantly. 
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Table 4.2 Statistics of the clinical characteristics and health measurements in the 

three age groups. 

Parameters Centenarians(n=19) Elderly(n=23) Young(n=17) 

 Mean±SD (Range) 

Age(yrs) 101.8±1.4(99-107) 76.7±5.9(68-88) 25.5±3.5(21-33) 

Male (%) 76.50% 56.60% 41.2 

Weight(kg) 57.1±5.7（43-73） 68.7±14.3(42-103) 63.2±3.5(44-95) 

BMI(kg/m
2
) 23.5±2.1(17.9-28.1) 25.9±4.1 (19.5-36.9) 22.8±3.7(16.1-40.1) 

MMSE(0,30) 15.8±6.7(5-26) 26.6±3.0(22-30) 30(30-30) 

MNA(0,30) 18.9±3.7(8-26) 24.1±2.0(18-28) 24.3±1.3(20.5-28) 

FIM(0,126) 77.5±21.1(31-123) 123.7±1.9(119-126) 126(126-126) 

* Total number of subjects is 59 excluding individuals with unqualified stool samples 

(N=6). 

Values are presented as Mean±SD with the range in parentheses. 

BMI: Body Mass index; MMSE: Mini-Mental State Examination; MNA: Mini 

Nutritional Assessment; FIM: Functional Independence Measure 

 

6.1 Association between the compositional and functional profile for gut microbiota 

Using Mantel test to evaluate the correlation between individual specific gut 

compositional profile distance matrix and KEGG KO functional profile distance 
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matrix, we found that Mantel statistic r is 0.718 with p value 0.001, indicating there is 

a strong positive association between the compositional and functional profile for gut 

microbiota. 

6.2 Clinical parameters associate with gut microbiota composition 

The correlation between health parameters and microbiota composition were 

examined using Mantel tests (Table 4.3). Calculating the correlation between the 

similarities of gut microbiota composition measured by Bray-Curtis distance and 

Body Mass index (BMI), MNA, MMSE, FIM and Drug parameters we observed. 

Significant associations between the composition of gut microbiota and MMSE, 

MNA, FIM and Drug were detected respectively. No association was observed 

between the gut microbiota composition and chronological age, BMI. 

Table 4.3 The Mantel tests of correlation between clinical parameters and 

microbiota composition in the three age groups. 

Parameters Mantel r statistic p-value 

Age 0.0019 0.484 

BMI -0.0391 0.704 

Drug 0.2827 0.001 

MNA 0.2585 0.001 

MMSE 0.2931 0.001 

FIM 0.3739 0.001 
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BMI: Body Mass index; MMSE: Mini-Mental State Examination; MNA: Mini 

Nutritional Assessment; FIM: Functional Independence Measure; Drug: The number 

of medicine the subject taking. The Correlation method is spearman, the Number of 

permutations is 999. 

 

As the young and elderly had relatively consistent clinical parameters we measured, 

in order to further explore the correlation of the health parameters with gut microbiota 

in centenarians, we determined the correlation of the health parameters with the gut 

microbiota composition (Figure 4.28). We found that in centenarians the FIM score is 

significantly associated with the separation of the individuals in the PCoA. That 

indicates centenarians with similar FIM scores tended to have similar gut microbiota 

composition. We also observed that age is not associated with FIM, which further 

suggests that health in centenarians is not related with chronological age. The MNA 

was detected as positively related with FIM, emphasizing the potential importance of 

diet for maintaining healthy aging. 
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Figure 4.28 Gut microbiota in centenarians correlate with clinical parameters. 

PCoA based on the Bray-Curtis distance was plotted for the bacterial microbiota 

composition of centenarians at the species level. The colour of the spots was ranked 

by FIM index. Clinical parameters including FIM (FIM-C: cognitive FIM, FIM-M: 

motor FIM), MMSE, MNA, BMI, Age and Drug were used as factors to show 

correlation with the ordination configuration. The lengths of factors indicate the level 

of the correlation. Permutation was used to test the significance of the fitness, the 

number of permutation was 999. Significant codes: 0.001 „**‟, 0.01 „*‟. 

 

7. The prevalence of ARG (Antibiotic Resistance Genes) in the gut microbiota of 

Sardinians across age 

7.1 The prevalence of ARGs in the gut microbiota of the three age groups in Sardinia 

Following the pipeline of DeepARG, we obtained the ARG distribution profile for 

each subject. In total, 578 ARG subtypes belonging to 30 ARG types were detected in 
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the three age groups. ARGs type resistant to glycopeptide, multidrug, tetracycline and 

macrolide lincosamide streptogramin (MLS) are highly enriched in our cohorts, with 

abundance ranging from 0.83-0.9 copy of ARG/cell. Among these, MLS has the 

smallest variation in each subject while tetracycline has the widest variation. MACB 

coding for MLS resistance was the most enriched ARG gene in our cohorts with mean 

abundance 0.52 copy of ARG/cell, followed by UPPP and BCRA genes coding for 

bacitracin resistance. The enriched ARGs within gut microbiome in our cohorts were 

shown in Figure 4.29. 

 

Figure 4.29 Enriched ARGs within gut microbiome in the three age groups in 

Sardinia. Top10 enriched ARG Type (A); Top15 enriched ARG Subtype (B). The 

abundance of ARGs was normalized and expressed as copy of ARG/cell. 

 

7.2 ARGs distribution profile feature in different age groups 

Compared the abundance of the enriched ARGs among all three age groups in Figure 

4.30, we found that the centenarians highest accumulation of ARGs, while 
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interestingly, the elderly had least ARG enrichment when compared with the young 

group. For the top 10 enriched ARG types, on average, each centenarian have over 5.9 

copies of different ARG types per gut microbe compared with each elderly individual 

having 4.4 copies, each young individual having 4.8 copies. The ARG subtype gene 

shows a similar patter with as ARG types. 

 

Figure 4.30 ARGs abundance in three different age groups. Barplot of the top10 

enriched ARG Types (A); Boxplot of the top15 enriched ARG types (B). Barplot of 

the top10 enriched ARG subtypes (C); Boxplot of the top15 enriched ARG subtypes 

(D). 

 

PCoA plot was used to display the similarities of the ARG distribution profiles for 

each individual among three age groups (Figure 4.31). The clustering pattern shows 

that the young and healthy elderly share similar ARG profiles, while the centenarian 
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group has a distinct ARG profile with wide variation among individuals. 

 

Figure 4.31 PCoA plot of the ARGs subtype profiles in different age groups 

 

The boxplot in Figure 4.32 shows the relative abundance of the ARG type which has 

significantly less variation among three age groups. Tetracycline and multidrug 

resistance ARGs are highly enriched in the centenarians although a with wide 

variation among individuals. Noticeably, the glycopeptide and bacitracin resistance 

ARGs shows an age dependent decline in accumulation. The centenarian group has 

the lowest enrichment while the young group has the highest abundance. Meanwhile, 

the glycopeptide resistance ARGs has wide variation among individuals in the young 

group. 

 

Figure 4.32 ARGs distribution in different age groups. (ANOVA, p<0.05) 
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7.3 ARG distribution correlated with gut microbiota composition and function in the 

three age groups in Sardinia 

Considering that the clustering of the ARG distribution profiles for the three age 

groups in PCoA is similar to the clustering of gut microbiota composition and 

function profiles in our cohorts, we further explored the correlation of the ARG 

distribution with gut microbiota composition and function by the Mantel test (Table 

4.4). A significant positive correlation was detected between the ARG profile and gut 

microbiota composition, and also between ARG profile and gut microbiota function. 

 

Table 4.4 Mantel test of the correlation between the ARG profile and gut 

microbiota composition and function profile 

Distance matrix 1 Distance matrix 2 Mantel statistic r P value 

Gut species composition ARGs Type 0.4395 0.001 

Gut species composition ARGs Subtype 0.6039 0.001 

Gut KEGG KO function ARGs Type 0.5374 0.001 

Gut KEGG KO function ARGs Subtype 0.7171 0,001 
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ChapterⅤ. Discussion 

Surveying the full view of the microbiota across age in different body habitats, our 

results indicated that for each body habitats, the diversity of bacterial and fungal is 

dramatically different. Both α and β diversity of fungi are lower than that of bacteria 

in all body habitats. The skin had higher fungi α diversity but lower bacterial α 

diversity compared with oral and gut. While the skin had higher fungal β diversity but 

lower bacterial β diversity compared with gut and oral. Interestingly, fungal α 

diversity was positively correlated with bacterial α diversity in the skin, but 

independent of each other in the oral and gut. The variation of α and β diversity for 

human microbiota may be caused by the differences of the ecological niche in each 

body habitat. The skin habitat may provide more a compatible environment for the 

fungi but not for bacteria, so the colonization of the fungi in the skin is easier leading 

to universal colonization of different fungi (higher α diversity ) and finally making the 

skin community more similar for each individual (lower β diversity). On the contrary, 

the bacteria but not fungi had higher fitness in the oral and gut niche. 

We demonstrated that the distribution of microbiota in human was largely determined 

by body habitats and individuals, consistent with former research [15, 25]. Besides, 

with an integrated view of microibota in different habitats, we found that the 

microbiota correlation between different body sites was diverse. In four skin sites, the 

fungal communities were correlated but bacterial communities were correlated only 
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between the sites commonly in contact with foreign surfaces, such as palms and 

forehead. Interestingly, significant positive association between bacterial and fungal 

communities were detected only in palms, similar results also found in another study 

where the palms showed the greatest positive correlation [175], the reason why palms 

are distinct from other body habitats is currently unknown. For the gut and oral, the 

specific mucosal niche might account for the microbiota community differences 

between skin habitats. Further studies that utilize strain and SNP level of resolution 

for microbiota community genomic analysis are needed to explore the correlation of 

microbes among different body habitat [176]. 

We surveyed three typical biographical habitats for skin microbiota in our study: the 

forehead represents a sebaceous niche with high environment exposure; two 

symmetric palms represent dry niches with high-exposure and perturbation; umbilical 

represents another dry niche though with lower exposure. We detected a positive 

association between the Shannon diversity of fungal and bacterial communities in 

each individual in all four skin sites, suggesting that the biological niches in the skin 

have a similar affect for bacterial and fungal communities, similar results were 

observed in a Hongkong population [175]. For the bacterial communities in the skin, 

we observed that the three age groups displayed different compositional profiles, 

consistent with the former study in Japan but different from a study in China [27, 31]. 

We found that the elderly had more complicated skin bacterial communities compared 

with young and centenarians, similar results were also observed for the fungal 
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communities. Bacterial communities in skin displayed an age related cluster pattern, 

especially for the palms. Unexpectedly, fungal communities were more similar 

between young and centenarian but distinct from the elderly. So the variation of the 

diversity for the skin communities in different age group was not only related with the 

age but also could associate with additional factors such as host physiology and 

environment exposure. The forehead with high sebaceous gland activity was highly 

enriched in lipophilic microorganisms. Propionibacterium was especially enriched in 

the young group. A significant decrease of Propionibacterium with aging was 

detected, which could correlate with the decrease of the sebaceous gland activity in all 

skin sites with aging, consistent with prior studies [13, 31]. The high abundance of 

potential pathogenic genera Staphylococcus and Streptococcus in centenarians‟ palms 

suggested a higher risk of infection for centenarian was possible. Various groups have 

explored the direct interactions of skin inhabitants with the host immune system, 

immunosenescence in centenarians may associate with this risk [177-179]. Further 

attention should be paid to the potential infection in centenarians. The dominant 

Malassezia was observed to significantly decline in the elderly compared with young, 

this is different from a former research study in a Toronto population where the 

elderly had the highest abundance of Malassezia [180]. As a lipophilic microorganism, 

the decrease of Malassezia in the elderly skin may be explained by the decrease in the 

level of skin lipids in aging people, however, the centenarian group showed a higher 

abundance of Malassezia compared with that of the elderly, which suggested that the 
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alternation of lipids level in the skin was not the only determinant of Malassezia 

colonization. 

Evidence shows that specific microbes in the oral cavity are associated with oral 

health and disease, and even linked with other systemic disease [37] [39]. With the 

aging process, although physiologic changes may cause dental problems and tooth 

loss, we found that both the bacterial and fungal communities in the oral cavity did 

not display distinct clustering for different age groups, suggesting that the oral 

microbita is not age dependent in Sardinians. Meanwhile, we found the clustering for 

the bacterial communities for different individuals was driven by the dominant genera, 

indicating that the relative abundance of the dominant genera determine the 

similarities of their community structure in the oral cavity. Similar “salivary type” 

microbes driven by dominant genera was also observed in another Italian study and a 

Japanese study [33, 181]. Variation of the oral microbial associated structure with 

aging in a Chinese cohort was not observed in our cohort [32]. 

Among those microbial communities distributed across the body, the gut microbiota is 

the most comprehensively studied microbial community and has the strongest 

association with human disease and health [21]. Besides, numerous recent studies 

indicate the gut microbiota has a major impact on the host metabolic status and can 

regulate host lifespan in animal models [148, 154, 155, 182]. Studying the gut 

microbiota in centenarians which represent a population with an extremely long 

lifespan, may contribute to identifying features that correlate with aging and longevity. 
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As a first step in exploring the potential association between longevity and gut 

microbiota in human, we used 16s rRNA, ITS1 and metagenomic sequencing to get a 

full picture of the taxonomic and functional profile of gut microbiota in Sardinians. 

Our data confirmed the results found in HMP cohort, that indicated the basic fungal 

and bacterial community characters in gut：such as the fungal diversity was lower than 

bacterial diversity, the independent relationship between the α diversity of the 

bacterial and fungal community, and the dominant fungal genera that included 

Saccharomyces, Malassezia and Candida [18]. But the Sardinian population showed a 

higher prevalence of Penicillium which means relative abundance in each individual 

make up more than 10% of gut micorbes compared with less than 4% in the HMP 

cohort. Other dominant fungal genera such as Cladosporium detected in HMP cohort 

was lower in the Sardinia cohort. Besides, for both 16s rRNA and shotgun 

metagenomic sequencing, we observed that young and elderly shared similar gut 

bacterial community structure, consistent with previous studies [62, 150], but distinct 

from most of the centenarians. 

For bacterial communities we detected by 16s rRNA sequencing, we identified the 

aging dependent decline of Feacalibacterium and Roseburia. The enrichment of 

Bilophila, Butyricimonas and Christensenella in centenarians was also detected in our 

study and others [63]. The Clostridium which was reported to be increased with aging 

was found increased in our elderly group compared with the young but significantly 

decreased in the centenarians compared with the elderly. Moreover, Parabacteroides 
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was detected enriched in our centenarian cohort but was decreased in a Chinese 

centenarian cohort [158]. Prevotella is a dominant taxon in subjects classified as 

“enterotypes 2” which are associated with a carbohydrate rich diet [45, 77]. The 

reason Provetella can only be detected highly enriched in the elderly group in 

Sardinia is still unknown. Bifidobacterium was detected decreased in another Italian 

centenarian cohort [63, 183], while in our cohort the mean relative abundance of 

Bifidobacterium reached 5.6% of the total genera in centenarians, compared with 2.9% 

in the young and 2.3% in the elderly. What‟s more, Bifidobacterium was positively 

contributed to the similarities of the centenarian gut bacterial communities. 

Bifidobacterium is believed to have health-promoting properties as a probiotic for 

human [184]. Bifidobacteria naturally occur in a range of ecological niches that are 

either directly or indirectly connected to the human gastrointestinal tract. The 

significant enrichment of Bifidobacterium was detected in our centenarians‟ plams 

and face, which may be correlated with the high prevalence of Bifidobacterium in the 

gut of Sardinian centenarians. 

Fungi detected by ITS1 sequencing in the gut can be divided into two types: resident 

and no-resident. Penicillium and Debaryomyces which are found on fermented foods 

but cannot grow in the gut niche [185], have a high prevalence in Sardinians 

compared with the HMP population from Houston and Texas (USA) and may 

correspond to the high consumption of cheese, ham and sausage in Sardinian [18]. 

Besides, Debaryomyces was significantly enriched in the young group, displayed an 
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aging dependent decrease in our cohort. Saccharomyces also presumably originates in 

food, and is enriched in yeast-containing foods such as bread and beer. The young 

group also have a significantly higher abundance of Saccharomyces compared with 

the elderly and centenarians. The variation of Debaryomyces and Saccharomyces may 

be partly caused by the diet preference for different age groups. Previous study 

observed a decreased proportion of Saccharomyces and an increased proportion of 

Candida in IBD patient compared with healthy controls [61]. Further study will need 

to determine the role of that fungi plays in the gut during aging. Candida and 

Malassezia belong to resident fungi. However, the resident fungi also had a wide 

variation of relative abundance between individuals, although the variation between 

age groups was not significant. Research has shown that diet can module the fungi 

communities in the murine gut [186], while in our cohort different age groups didn‟t 

display a clear age-dependent cluster. Intriguingly, we found the dominant genera 

with a significant contribution for the gut fungi community similarities was divided 

into two negatively associated groups: one including Debaryomyces, Saccharomyces 

and Penicillium represented the food original non-resident species; the other group 

included Candida and Malassezia representing resident species. The clustering of 

subjects dominated by non-resident fungi may be associated with a diet of enriched 

fungi, further suggesting that caution should be made in metagenomic studies because 

separating live from dead, and resident from non-resident microbes can be difficult. 

Preliminary evaluation of the association between fungi and bacteria revealed that the 
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associations were site-specific and population-specific. For instance, lipophilic 

Malassezia and Propionibacterium showed a significant strongly positive association 

in the skin, reflecting their similar nutrition requirement. While in the mucous habitats, 

the correlation was not clear because Propionibacterium was not a dominant genus. 

Furthermore, in the skin, Actinomyces was positively correlated with Staphylococcus 

and Streptococcus, whereas in oral, the correlation was negative. Also for different 

populations the co-occurrence pattern is different. In our study, a strong negative 

association was detected between Prevotella and Streptococcus in oral, consistent 

with an Italian study, while in a Japanese study the correlation was positive [33, 181]. 

In the gut, the association relationship we observed, such as the positive association 

between Faecalibacterium and Saccharomyces, was also found in a USA study [186]. 

The correlation we detected based on the co-occurrence didn‟t necessary mean the 

true biological interaction between the species. Our results provide a framework for 

future investigation of the interactions between pathogenic and commensal microbes 

in maintaining human health and contributing to disease pathogenesis. Further 

cultivation assays are needed to gain insight into the mechanisms of these 

correlations. 

Using shotgun metagenomic sequencing, we found the variation between the different 

age groups of the main structure of the gut microbiota is large. Previous studies had 

already associated F/B ratio with BMI, obesity and the production of short chain fat 

acid (SCFA), and aging [171, 187-190]. It has been suggested that a higher F:B ratio 
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may be associated with an increased energy harvest in animal studies [127]. The F/B 

ratio in centenarians showed an interesting trait: significantly lower compared with 

the elderly group, but similar with young. The low ratio of F/B in centenarians may 

lead to the decline of energy harvesting capabilities in centenarians. Although at the 

species level, the gut microbiota α diversity is not statistically different among the 

three age groups, the core microbiota richness of centenarian is higher than that of 

young and elderly, indicating that Sardinian centenarians shared a wide array of 

specific species among individuals. The loss of diversity in the core microbiota has 

been associated with increased frailty in the elderly [62], which was not found in 

Sardinian centenarians. The clusters of the gut microbiota compositional profiles for 

different age groups revealed that the elderly had a similar cluster to that of the young. 

Our cluster data is similar with data from a study of gut microbiota in a large healthy 

cohort in China [150]. However, our data is different from the results of a cohort in 

Italy in which all age groups showed good separation [63]. For the centenarians, the 

cluster shifted sharply from that of the young and elderly, which suggests that most of 

the centenarians have a gut microbiota profile different from the gut microbiota 

profiles of the young and elderly. 

Compositional changes in the gut microbiota ultimately cause functional changes of 

the gut microbiota [157]. Here we used our Sardinian cohort to identify the functional 

profile of gut microbiota in centenarians and compared the profiles with the elderly 

and young to identify specific functional profiles associated with different age groups. 
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Interestingly, the centenarian group has significantly higher α diversity of KOs 

compared with young and elderly, representing the highly functional redundancy in 

centenarians, similar with the Hadza hunter-gatherers population [78, 79]. The 

reduced diversity of the gut microbiome is considered to be related with a low dietary 

fiber intake diet and a disturbed gut eco-system [191, 192]. Consistent with the gut 

microbiota compositional profile, the young and elderly shared similar gut microbiota 

functional genetic profiles. Centenarians had genetic profiles that clustered distinctly 

from the young and elderly. There are two possible explanations for the shifting of the 

clusters of the centenarians‟ gut microbiota compositional and functional profiles. The 

first is a critical point: the health status of the centenarians. Previous research based 

on the elderly population suggests that the health status of the elderly closely 

correlates with the gut microbiota [41, 65, 152]. Our research also demonstrated that 

the diverse health status of centenarians correlated with the gut microbiota. Most of 

the centenarians in our study had lower parameters for health status, which may 

associate with the variation in the gut microbiota. Future investigation of the gut 

microbiota in centenarians will be facilitated by recruiting enough subjects to divide 

them into different subgroups based on health status. This will aid in statistically 

determining the differences between gut microbiota in healthy centenarians and 

centenarians with fragility-related changes. Similarly, in the future we will examine 

elderly with lower health status to confirm the correlation between gut microbiota and 

health status. The second possible explanation is that the centenarian subjects had a 
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unique gut microbiota different from that of the normal population. In our study, 

although with limited samples size, we found centenarians share part of the core 

microbiota that is unique to centenarians. Another limitation of the cross-sectional 

nature of our research is that it was not possible for our study to establish the dynamic 

model of gut microbiota alterations with aging through time. Further follow-up 

research using longitudinal cohorts is imperative to address this question. 

Functional annotation of gut microbiota in centenarians reflects unique energy 

metabolic patterns that are distinct from those of the young and elderly. We found that, 

in centenarians in Sardinia, different microbes seem to have the potential to develop 

an aging adaptation metabolic pattern especially for exploiting carbohydrate. 

Diminished physical activities and energy expenditure are associated with the aging 

process and may cause the decline of energy requirements for humans [193, 194]. In 

Sardinian centenarians, we found that gut microbiota has lower gene pathway 

abundance involved in complex carbohydrate digestion, which correlates with the 

significantly lower prevalence of Ruminococcus and Faecalibacterium in the gut 

compared with young and elderly. Furthermore, the enrichment of gene pathways 

related to the utilization of energy by microbes via glycolysis correlated with the 

enrichment of Enterococcus, Lactobacillus, and Escherichia in centenarians [119]. 

Moreover, the strong negative correlation between glycolysis and sugar degradation 

pathways we observed also supported those results. Former research has shown that 

M.smithii can cooperate with the Bacteroides to enhance fermentation and decrease 
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the level of TMA which has been shown to correlate with clot-related events such as 

heart attacks and strokes [195, 196]. Previous research has shown the Mediterranean 

diet was negatively related to urinary TMAO levels [81]. Related gene families such 

as coenzyme M and F420 were also detected as significantly enriched in the 

centenarian group in our study (Figure 5.1) [197]. 

 

Figure 5.1 Bar graph with standard deviation shows the mean value of relative 

abundance frequency of KEGG orthologs in three different age groups. F420 (A); 

Coenzyme M (B) 

 

Moreover, Desulfovibrio also has the ability to use hydrogen as electron donors for 

sulfate reduction. M.smithii and Desulfovibrio are abundant in the centenarian group 

in our study, which may explain the increased ability for centenarians to eliminate the 

fermentation product that limits the glycolysis reaction. Gut microbiota in the 

centenarians performs in a way that can be described as CR mimetic, which is a 

process that mimics the effects of CR by targeting carbohydrate metabolic pathways 

affected by CR, but without actually restricting caloric intake [139]. The enrichment 
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of probiotics such as Bifidbacterium and Lactobacillus was also detected in the 

centenarians. Bifidbacterium and Lactobacillus have the potential to produce 

metabolites beneficial to human health, such as amino acids and vitamins. In the 

centenarian group, the enrichment of some low-abundance pathways that may 

function to facilitate longevity and good health were also observed, such as 

menaquinol biosynthesis, flavin biosynthesis and Phytol. They can produce essential 

metabolites such as vitamins that can compensate the aging-related decline of 

microbial products. For instance, menaquinol is mainly present in fermented foods 

such as cheese and natto (fermented soybeans) [198]. It is interesting to note that all 

members of the longevity cohort, such as Sardinians, Japanese, and Korean 

populations traditionally eat fermented foods [1, 57, 64]. Research also shows that 

menaquinol is important for bone and heart health [199-201]. Overall, it appears that 

gut microbes may develop a cooperative relationship with centenarians, which acts as 

a positive factor for longevity. In Figure 5.2, we summarized compositional and 

functional features in the centenarians gut microbiota, which may be related to the 

longevity and healthy aging in Sardinian centenarians. 
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Figure 5.2 Compositional and functional features in the centenarians gut 

microbiota. Observed high abundance (red) or low abundance (green) of 

compositional (ellipse) and functional (round rectangle) features. Potential 

metabolites (triangle) released by the gut microbes. Proposed possible contributions 

of the gut microbes to metabolites (dotted cure) and metabolic functions (arrow) 

 

Population specific compositional features of centenarians‟ gut microbiota have been 

found in former studies [63, 64, 151, 153]. As a dynamic ecological system, gut 

microbiota has various compositions for individuals. The variation may be caused by 

different populations with diverse genetic, dietary, environmental factors, or even the 

use of different methodologies of processing samples and data [47, 67, 174, 202, 203]. 
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Within a defined cohort, different age groups also display diverse gut microbiota 

features [57, 62, 63, 65, 158]. Among the observed gut microbiota features found in 

previous studies and our study reported here, some seem universal, such as the lower 

abundance of Faecalibacterium, Ruminococcus and Coprococcus in centenarians. 

Other features are unique to defined population; for example, the enrichment of 

Methanobrevibacter and Bifidobacterium in centenarians as was detected in our 

centenarian cohort but not in other centenarian cohorts [63, 151, 158]. M. smithii, the 

dominant species in Methanobrevibacter, was reported to correlate with the 

consumption of milk products [172]. The high prevalence of M. smithii in Sardinia 

centenarians‟ gut microbiota may be linked with a dairy rich diet. B. adolescentis and 

B. longum are the most abundant species belonging to Bifidobacterium. We detected 

in our cohort, noticeably, only B. adolescentis which was highly enriched in 

centenarian and young compared with elderly. The enrichment of Bifidobacterium 

was also observed in Romagna, Italy semi-supercentenarians (>105 years of age) but 

not in other centenarian groups. Meanwhile, Escherichia coli which was constantly 

reported enriched in centenarians was also found in our dataset. Akkermansia was 

found with low abundance in centenarians in Sichuan, China, but enriched in the 

semi-supercentenarians but not in the centenarians (100 to 105 years of age) in 

Romagna, Italy. In Sardinia centenarians, the abundance of Akkermansia is not 

statically different from the elderly and young. Overall, the independent studies on gut 

microbiota in centenarians reveal that the gut microbiota in long-living peoples share 
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the features of declining dominant genera but also accumulate diverse sub-dominant 

species. 

Our study analyzed the gut microbiota composition at the species level and metabolic 

function at the community level, further analysis is needed to build a more complete 

picture of aging, healthy aging and longevity with respect to the microbiota and 

metabolic function. When we talk about gut microbiota intervention, we should 

identify the microbes at the strain level because even individual bacterial species can 

contain many functionally different strains with significant genetic diversity. 

Resolution at the strain level must be conducted to assess the contribution of the gut 

microbiota to metabolic function [204]. Furthermore, although we detected specific 

gut bacterial gene pathways that correlate with longevity or aging, without detecting 

the metabolites in the human system, the analysis is only suggestive. One of the 

limitations of the study is that the metagenomic sequencing analysis is at the genomic 

level, without separating the viable microbes from the dead or the resident from the 

transient. Fortunately, some metabolites can be identified by nuclear magnetic 

resonance-based metabolomics of urine and other samples [153]. Also, 

metatranscriptomics can detect gut microbiota at gene expression level [205]. Such 

multi-omics approaches should be integrated into the further studies. Last, if we want 

to demonstrate the causative role the strains play in longevity, we should start 

follow-up mechanistic studies in gnotobiotic models. Eventually, such strains can 

have the potential to become biomarkers for longevity and targets for intervention. 
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Conclusion and prospect 

Investigation of the bacterial and fungal communities in different body habitats in a 

population across age to identify the microbiota variation is the primary step in 

characterizing the factor influencing the diversity and distribution of human 

microbiota, especially the aging. In the first phase, our study indicated that the 

distribution of the microbiota in the human body is not only determined by the body 

habitats but also age-related, revealing the critical role aging plays in shaping the 

microbiota in human. Skin microbiota was age-related, three age groups showed 

dissimilarities in composition. While for oral microbiota, the variation between age 

groups was not significant. For the gut, bacterial communities in Sardinians were 

correlated with health status and age groups of the host. But the fungal communities 

in the gut can‟t be separated by age groups. Compared with the elderly and young 

who shared similar gut microbiota compositional and functional profiles, Sardinian 

centenarians have a distinct gut microbiota profile that correlates with health status. 

Specific enrichment of species was found in Sardinian centenarians. For the first time 

we demonstrated the taxonomic compositional and metabolic functional profile of gut 

microbiota in Sardinians, and further found that centenarians display specific gut 

metabolic pathway patterns, especially in the energy-harvesting related pathways. The 

findings of the specific taxonomic composition and metabolic pathways of gut 

microbiota in centenarians could be helpful in future research to determine the 
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relationship between gut microbiota and longevity and finally provide support for gut 

microbiota intervention. At the first step, we should use the animal model to study the 

relationship between the centenarian enriched species such as the M.smiith and 

B.adolescentis, also further identify their roles in host metabolism. Moreover, to 

further verify the “fragile” gut microbiota pattern we found in the centenarians, a 

cohort from Sardinian which presents the individual with the same age distribution 

with the elderly group but with lower health status is also need be recruited. Besides, 

this study eventually gave way to a second phase of exploring how the aging process 

shapes the microbiota. 

Further integrating the surveillance of habitat environmental factors alternation into 

the microbiota research, we can define the correlation of aging with habitats niche 

alternation and microbita adaptation. For instance, for the skin microbiota, with the 

measurement of clinical skin parameters including the sebum level and pH of the skin 

surface, skin thickness and pore area; for the gut microbiota, with the record of full 

diet information; for the oral microbiota, with the proteomics study of the salivary. 

Moreover, with comparison of this healthy microbiota profile with the “unhealthy” 

disease related microbiota profile also can reveal how the microbiota changes cause 

disease. Meanwhile, the longitudinal study should also be launched to verify the aging 

related alternation pattern of microbiota. 
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