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Abstract
Polycomb group proteins represent a global silencing 

system involved in development regulation. In specific, 
they regulate the transition from proliferation to differ
entiation, contributing to stem-cell maintenance and 
inhibiting an inappropriate activation of differentiation 
programs. Enhancer of Zeste Homolog 2 (EZH2) is 
the catalytic subunit of Polycomb repressive complex 
2, which induces transcriptional inhibition through the 
tri-methylation of histone H3, an epigenetic change 
associated with gene silencing. EZH2 expression is high 
in precursor cells while its level decreases in differen
tiated cells. EZH2 is upregulated in various cancers 
with high levels associated with metastatic cancer and 
poor prognosis. Indeed, aberrant expression of EZH2 
causes the inhibition of several tumor suppressors 
and differentiation genes, resulting in an uncontrolled 
proliferation and tumor formation. This editorial explores 
the role of Polycomb repressive complex 2 in cancer, 
focusing in particular on EZH2. The canonical function of 
EZH2 in gene silencing, the non-canonical activities as 
the methylation of other proteins and the role in gene 
transcriptional activation, were summarized. Moreover, 
mutations of EZH2, responsible for an increased meth
yltransferase activity in cancer, were recapitulated. 
Finally, various drugs able to inhibit EZH2 with different 
mechanism were described, specifically underscoring the 
effects in several cancers, in order to clarify the role of 
EZH2 and understand if EZH2 blockade could be a new 
strategy for developing specific therapies or a way to 
increase sensitivity of cancer cells to standard therapies. 
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Core tip: Epigenetics modifications are key players in 
differentiation programs and are frequently altered in 
cancer. Since chromatin changes can be reversed with 
specific drugs, in the last years several studies explored 
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the possibility to target epigenetics alteration as a new 
strategy for cancer treatment. This editorial focuses 
on Enhancer of Zeste Homolog 2 (EZH2), the catalytic 
subunit of Polycomb repressive complex 2 in cancer, 
analyzing different roles of this protein in various 
cancers. Several different classes of EZH2 inhibitors are 
also highlighted, giving distinct thoughtfulness to small 
molecules that are now under consideration as potential 
candidates for cancer treatment alone or in combination 
with other drugs. 
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INTRODUCTION
The chromatin structure in eukaryotes depends on 
covalent modifications that distinguish transcriptionally 
active and silent regions of the genome and affects 
the genetic material functionality. Histone post-trans
lational modifications play a key role in the regula
tion of chromatin structure and gene expression. For 
instance, acetylation of histone H3 tail, on several 
lysines, is associated with gene expression, whereas the 
trimethylation of histone H3 on Lys27 (H3K27me3) or 
trimethylation of histone H3 on Lys9 is a mark of silent 
chromatin[1,2].

Several enzymes dynamically deposit or remove 
specific marks on the chromatin regulating gene ex
pression and drive numerous biological processes. For 
instance, the differentiation of distinctive cell types in an 
organism is rigorously related to the establishment, while 
the maintenance of the correct epigenetic status and 
alteration of chromatin structure is frequently associated 
with different disease disorders, including cancer[1-3].

Numerous cancer types are associated with specific 
patterns of histones H3 and H4 modification and several 
epigenetic patterns enable to distinguish disease sub
types[4,5].

Epigenetic changes are reversible and specific drugs 
are capable to recover the correct chromatin status of a 
normal cell and, in turn, promote differentiation, cellular 
senescence or apoptosis. Therefore, the inhibition of 
epigenetic enzyme could be a good strategy for cancer 
treatment[6].

This editorial focuses on the role of the Enhancer 
of Zeste Homolog 2 (EZH2), the catalytic subunit of 
Polycomb repressive complex 2, which catalyzes the 
addition of methyl groups to lysine 27 of the N-tail of 
histone H3. This enzyme is responsible for the silencing 
of various genes involved in several processes as cell 
cycle progression, apoptosis and differentiation and it is 
frequently deregulated in cancer[7]. 

POLYCOMB GROUP PROTEINS 
Polycomb group proteins (PcG) are a family of proteins 
highly conserved among eukaryotes, involved in deve
lopment, stem cell biology and cancer[8-13]. They are 
regulators of the epigenetic gene silencing required 
in many processes, like mammalian X-chromosome 
inactivation and imprinting[14,15]. Moreover, the PcG-
dependent epigenetic silencing controls the timely 
expression of genes involved in stem cell fate and 
lineage commitment[9-11,16], ensuring the establishment 
and maintenance of the correct transcriptome during 
development[17].

In mammals, PcG proteins form two main complexes: 
Polycomb-repressive complex 1 (PRC1) and 2 (PRC2)[18-22]. 
PRC1 is formed by BMI1, RING1A/B, CBX, and PHC 
subunits[23]. As of now, the mechanism of PRC1 dependent 
gene silencing is not completely clear. RING1A/B is an 
ubiquitin E3 ligases which catalyze the monoubiquitylation 
of histone H2A at lysine 119 (H2AK119ub1), an histone 
post translational modification associated with gene 
silencing[13,24]. Nevertheless, transcriptional silencing has 
been detected also in absence of ubiquitylation[18]. Other 
studies in vitro demonstrated that PRC1 prevents the SWI/
SNF-dependent chromatin remodeling, competing for the 
binding with target nucleosomes. Indeed PRC1 complex is 
able to bind three nucleosomes, resulting in the chromatin 
compaction[25]. PRC1 affects also the transcription while 
inhibiting a correct assembly of RNA Polymerase Ⅱ prei
nitiation complex[26].

PRC2 is composed by EZH2 or EZH1, EED, SUZ12 
and RbAp46. EZH2 is the most studied catalytic subunit 
of PRC2 and contains the SET domain responsible for 
the histone methyltransferase activity on lysine-27 of 
histone H3[19-22]. SUZ12 and EED stimulates H3K27 
histone methyltransferas increasing more than 1000 
fold the catalytic activity of EZH2 alone whereas RbAp46 
is responsible for the histone binding[13]. EZH1 is a 
homologue of EZH2, which originates an alternative 
PRC2 complex, however, data about this protein are 
sometimes contrasting[27]. It has been demonstrated 
that EZH1, in embryonic stem (ES) cells, is able to tri-
methylates H3K27, contributing to the silencing of a 
subset of developmental genes. Its activity partially 
complements EZH2 role in the maintenance of the ES 
cells pluripotency[28]. On the other hand, other findings 
showed that EZH1 and EZH2 are recruited at the same 
set of target genes but EZH1 is ubiquitously expressed, 
whereas EZH2 expression is associated with proliferating 
cells[29]. There is also evidence that EZH1, compared to 
EZH2, exhibits a weaker histone H3 methyltransferase 
activity, while its depletion does not affect the global 
H3K27me2/3 levels; despite this, it is able to efficiently 
compact the chromatin through a mechanism indepen
dent of the presence of the methyltransferase cofactor 
S-Adenosyl methionine (SAM)[29].

Remarkably, during muscle differentiation several 
evidences showed a role of EZH1 in transcriptional 
activation. Indeed, EZH1 occupies transcriptionally active 
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genes marked with H3K4me3 and interacts with RNA Pol 
Ⅱ, promoting transcriptional elongation[30]. It has also 
been shown that the interchange between PRC2-EZH2 
and PRC2-EZH1 complexes controls the correct timing of 
transcriptional activation of muscle specific genes such as 
myogenin[31]. A similar mechanism has been discovered 
at the promoter of PSD-95 gene during the development 
of hippocampal neurons[32].

The most common PcG-dependent gene silencing 
mechanism is the cooperation between PRC1 and 
PRC2; in fact, the establishment of H3K27me3 by PRC2 
complex induces the recruitment of PRC1 by binding the 
chromodomain of the PHC subunits[21,33]. Once recruited, 
PRC1 brings transcriptional repression of target genes 
through the mechanisms described above.

PRC2 is also able to cooperate with other epigenetic 
silencing enzymes, for instance, it acts upstream of 
DNA methyltransferases (DNMTs) in order to induce 
a more stable transcriptional silencing characterized 
by the methylation of di-nucleotides CG. Although 
the mechanism is not completely clarified, essential 
proofs supported that DNMTs recruitment depends on 
the presence of the active form of EZH2, suggesting a 
context-dependent crosstalk between EZH2 and DNMTs. 
However, much remains unknown about this interaction, 
particularly, it is not clear if DNMTs bind directly EZH2 or 
H3K27me3 or if other factors are involved[34-37]. 

PRC2 is also able to associate with histone deace
tylases, reinforcing transcriptional repression of target 
genes[6,19-22,38-40]. 

Other than transcriptional repression, EZH2 has a role 
in the promotion of gene activation[41-43], this mechanism 
has been discovered in breast and prostate cancer and it 
is described below.

EZH2 AND CANCER
Epigenetic modifications have a key role in the normal 
mammalian development and are required in all somatic 
cells. In ES cells and in precursor, PRC2 contributes to 
silence the principal genes involved in the differentiation 
promotion, preventing the premature activation of the 
differentiation processes and maintaining their pluri
potency[9-11]. In addition, the main targets of EZH2 are 
genes involved in cell cycle regulation, as for instance 
Ink4b/Arf/Ink4alocus; its inhibition impedes cell cycle 
arrest and contributes to preserve the proliferative 
potential[9,44-50].

Because of its importance in various aspects of 
cellular development and tissue differentiation, EZH2 
expression is strictly regulated. For instance high levels 
are detected in stem cells and undifferentiated cell 
progenitors, while its expression decreases during the 
differentiation process[6,7,51]. EZH2 activity could be 
regulated, other than transcriptionally, also by different 
mechanisms as several miRNA and post translational 
modifications (reviewed in[7]). Furthermore, the recruit
ment of PRC2 complex at target promoters covers a very 
important role: PRC2 binds DNA with low affinity and 

recruiting factors are supposed to be necessary to drive 
the complex to target genes[52]. This hypothesis could 
also explain why EZH2 is recruited, in different tissue, at 
different set of genes. 

Epigenetic abnormalities result in an inappropriate 
gene expression that drives to an altered cellular phy
siology in several diseases. The first evidences of the 
involvement of EZH2 in cancer were found in breast and 
prostate[39,53] but a number of human tumors are nowa
days associated with EZH2 alteration[7]. Frequently, EZH2 
expression is correlated with metastatic cancer cells and 
poor prognosis[6,7,51].

The role of EZH2 in cancer could be linked to its 
activity in self-renewal promotion and in the mainte
nance of undifferentiated state of cells. 

EZH2 target genes are generally crucial regulators 
of the balance between cellular differentiation and 
cell cycle progression, and their deregulation is able 
to promote cancer progression[6]. For instance, EZH2-
dependent silencing of Ink4b/Arf/Ink4alocus leads to 
the downregulation of p16, p15 and p14, resulting in 
uncontrolled proliferation and inhibition of apoptosis[54,55]. 
Furthermore, EZH2 inhibits other tumor suppressor 
genes such as p21, PTEN, DAB2IP, and Bim[56-60]. 

PRC2 complex inhibits also several miRNA involved in 
cell cycle regulation, for instance mir-31 in melanoma[61], 
miR-139-5p, miR-125b, miR-101, let-7c, and miR-200b 
in metastatic liver cancers, promoting cell motility and 
metastasis[62]. 

The other class of EZH2 target genes is composed 
by differentiation-related factors. Genome wide assays 
showed that factors as Gata, Sox, Fox, Pou, Pax, com
ponents of Wnt, TGF-β, Notch, FGF and retinoic acid 
pathways are silenced by EZH2. The activity of EZH2 
inhibits differentiation and promotes carcinogenesis[8-12]. 
In embryonal rhabdomyosarcoma, for example, high 
levels of EZH2 inhibit the activation of muscle specific 
genes and its depletion promotes muscle specific genes 
transcription and a partial recovery of the muscle differ
entiation program[63].

Activity of EZH2 independent of H3K27me3
EZH2 activity is not restricted to H3K27 trimethylation, 
in fact several studies reported that it is also able to 
methylate other proteins[64-68].

EZH2 and other PRC2 subunits have been found in 
the cytoplasm, where they control actin polymerization 
and cell proliferation of T-lymphocytes and fibroblasts[64]. 
Aberrant EZH2 overexpression has been detected in both 
nuclei and cytoplasm of human prostate cancer cells. 
The cytoplasmic fraction, responsible for the reduction 
of the pool of insoluble F-actin, influences cell adhesion 
and migration, therefore contributes to invasiveness and 
metastatic ability of tumor cells[65].

Previous studies showed that EZH2 is able also to 
methylate other histones as the histone H1 at lysine 
26 when associated with a different isoform of EED[66]. 
Recently it has been discovered that EZH2 is also 
able to methylate GATA4, inhibiting its transcriptional 
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activity in heart[67]. This is the first evidence that PRC2 
influences the function of transcription factors involved 
in the developmental processes not only modulating 
their expression levels but also regulating their post-
translational modifications. 

This evidence is also supported by another study 
showing that in breast cancer, EZH2, in association with 
other PRC2 components, plays an essential role in the 
regulation of p38 pathway. p38 mitogen-activated protein 
kinase signaling pathway is involved in the promotion of 
epithelial-to-mesenchymal transition, cell invasion and 
motility. EZH2 is able to bind the phosphorylated and 
activated p38 counterpart, increasing its downstream 
signaling. This study highlighted a novel fundamental role 
of EZH2 in breast cancer. EZH2 overexpression enhances 
the levels of phospho-p38 while EZH2 knockdown 
induces a mesenchymal-to-epithelial transition and 
decreases cell motility. Clinical breast cancer specimens 
reveal that EZH2 is overexpressed, and co-expressed 
with phospho-p38 in about two-third of cases, while 
EZH2 inhibition results in a reduction of spontaneous 
breast cancer metastasis in vivo[68]. 

Finally, EZH2 is also able to promote transcrip
tional activation interacting with different transcription 
factors[41,42,69]. In breast cancer, for instance, EZH2 
interacts with ERα, Wnt signaling components TCF, and 
β-catenin at the promoter of target genes, enhancing 
transcriptional activation of c-Myc and cyclin D1 genes; 
this mechanism is independent of the methyltransferase 
activity[41]. Still in breast cancer, EZH2, independently 
from other PRC2 subunits, is also able to activate NF-
κB signaling, interacting with its components Rel A and 
Rel B, and inducing the activation of genes implicated 
in oncogenesis such as IL6 and TNF[42]. Similarly, in 
castration-resistant prostate cancer the oncogenic func
tions of EZH2 are not dependent on its transcriptional 
silencing activity but on the transcriptional activation of 
a subset of genes. EZH2 does not bind these genes by 
recruiting other PRC2 components, but rather through 
the association with the androgen receptor (AR), which 
in turn, after EZH2 dependent methylation, leads to 
increase the transcriptional activation of these genes. 
It has been proposed that the methylation of AR is 
dependent on AKT that phosphorylates EZH2 at serine 
21, promoting the binding with AR[43,70]. Interestingly, it 
has been shown that AKT-dependent phosphorylation 
decreases the affinity of EZH2 with histone H3, resulting 
in a reduction of the H3K27 methylation[71]; this event 
can promote the binding of EZH2 with AR and the role of 
the methyltrasferase as transcriptional activator. 

Finally, EZH2 is also able to promote cyclin A trans
cription[72]. Cyclin A gene transcription is inhibited by 
pRb2/p130, a member of Rb family with an onco-sup
pressor role[73]. pRb2/p130 is able to recruits HDAC1 at 
cyclin A gene inducing gene silencing and G1 arrest[74]. 
EZH2 competes with HDAC1 for its binding with pRb2/
p130, disrupting the occupancy of both proteins on cyclin 
A promoter and inducing gene activation and cell cycle 
progression[72,75]. 

Mutations
The activity of EZH2 in cancer is also influenced by 
mutations. In diffuse large B-cell lymphoma, an hetero
zygous mutation of EZH2 at Tyrosine 641, (Y641), which 
affects its catalytic domain, was initially associated with 
a loss of functions, but other studies showed that this 
mutation results in a limited capacity to carry out H3K27 
monomethylation but augmented ability for di- and tri-
methylation. In these tumors, wild type Tyrosine can be 
substituted with different amino acids (Phenylalanine 
Y641F, Histidine Y641H, Asparagine Y641N and Serine 
Y641S) and mutants cooperate with wild type protein 
to increase EZH2 activity[76-78]. Another mutation, called 
A677G, has been discovered in lymphoma cell lines and 
primary tumors. This mutation, that replaces Alanine 
with Glycine, as the mutation in Y641, increases the 
trymethylation of H3K27 but, on the contrary, displays 
similar affinity for all three substrates: Unmethylated, 
mono-edy-methylated H3K27[79]. A687V is another gain-
of-function (GOF) mutation discovered in lymphoma, 
it substitutes Alanine 687 with Valine, and it is similar 
to other mutations since enhances EZH2 ability to 
perform dimethylations, whereas the ability of catalyzing 
trimethylations remains the same[80]. Parallel mutations 
have been discovered also in melanoma, where they 
contribute to the promotion of tumor growth[81,82].

EZH2 INHIBITORS 
The peculiar role of PRC2 in the promotion of tumor 
growth, deregulation of apoptosis, and alteration of 
proper proliferation and differentiation programs, sug
gests that EZH2 can be a good target for therapy in 
cancer. Several inhibitors of EZH2 have been designed 
and they can be classified based on the different mecha
nism of inhibition (Figure 1 and Table 1). 

Regulators of EZH2 levels
3-Deazaneplanocin A (DZNep) is a S-adenosyl-l-homo
cysteine (AdoHcy) hydrolase inhibitor able to deplete EZH2 
and to reduce H3K27me3 at PRC2 target genes. The 
mechanism is not completely understood but it seems that 
an absent or reduced activity of AdoHcy hydrolase and 
the successive AdoHcy accumulation causes an inhibition 
of SAM-dependent methyltransferases. DZNep treatment 
reduces levels of EZH2 and other PRC2 components 
thought a proteosome-mediated degradation, while 
RNA transcription does not change[83]. DZNep treatment 
induces apoptosis in breast, colorectal, prostate cancer 
and hepatocellular carcinoma whereas apparently, it 
is able to discriminate between cancerous and non-
cancerous cell lines; consequently, it does not induce 
cell death in breast and lung epithelial cells, primary 
lung fibroblast, and human skin fibroblast cells[83]. Other 
studies, focusing on several non-small cell lung cancer 
(NSCLC) cell lines, showed that DZNep induces p27 
accumulation, cell cycle arrest and apoptosis, while 
immortalized bronchial epithelial and fibroblast cell lines 
are less sensitive to apoptosis[84]. Interestingly, studies 
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performed in several gastric cancer cell lines and in 
primary human gastric cancer cells showed that the 
effects of DZNep are related to p53 status, and cells 
with p53 wild type are more sensible to the treatment. 
p53 genomic status could be a potential predictive 
marker of DZNep response in this specific cell type[85].

Effects on the EZH2 protein levels have been detected 
also during the treatment with (-)-epigallocatechin-3-
gallate (EGCG), a green tea-derived bioactive polyph
enol. In skin cancer cells, treatment with EGCG induces 
a global reduction of H3K27me3 and reduces the levels 
of two PcG proteins: Bmi-1 and EZH2. Reduced levels 
of these PcG proteins are associated with decreased 
expression of several cyclin dependent kinases (CDKs) 
and cyclins (CDK1, CDK2, CDK4, cyclin D1, cyclin E, 
cyclin A and cyclin B1) and increased levels of p21 and 
p27 that, in turn, induce cell cycle arrest. Apoptosis 
is also stimulated by the treatment, indeed levels of 
caspase 3, 8 and 9 and PARP cleaved and Bax are 
higher compared with not treated cells whereas level 
of Bcl-xL expression decreased. Bmi-1 over expression 
reverses these EGCG-dependent changes[86] indicating 
that effects are dependent on PcG proteins. Similarly 
to DZNep, EGCG reduces the levels of EZH2 and Bmi-1 

through a mechanism proteasome-dependent but, in 
skin cancer cells, the combination of EGCG with DZNep is 
more effective than each single agent[87]; indicating that 
the two molecules can also cause responses in different 
pathways.

The functions of PRC2 are tissue-specific and its 
expression is strictly regulated during normal develop
ment. The main regulators of PRC2 expression are 
proteins of pRb/E2F pathway; it has been demonstrated 
that E2F factors are required for the expression of 
EZH2 and EED in mouse embryonic fibroblasts and 
ectopic expression of pRb and p16, that are involved 
in E2F target gene repression, induces transcriptional 
repression of PRC2 subunits; silencing of pRb, on the 
contrary, increases their transcription[88-90]. Also c-Myc 
binds EZH2 promoter and induces transcription through 
the acetylation of histones H3 and H4[91]. Furthermore, 
several miRNA are also involved in EZH2 regulation[92]. 

It has been discovered that a natural compound 
isolated from the bark of Polyalthia longifolia, 16-Hydroxy
cleroda-3,13-dien-15,16-olide (PL3), induces apoptosis 
in leukemia cells[93]. The effects of this compound, 
already known for its anti-inflammatory activity and 
for its potential cytotoxicity in breast cancer cells and 
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hepatocellular carcinoma cells, seem dependent on the 
repression of EZH2 and Suz12 expression. PL3 treatment 
reactivates the tumor suppressor targeted by PRC2 
while inducing apoptosis[93]. The concentration required 
for pro-apoptotic effects in cancer cells is high, therefore 
additional studies focused in designing novel PL3-derived 
compound are required to improve the pharmacological 
properties and decrease the side effects of the molecules. 
Alternatively, the compound can be used in combination 
with other drugs to increase the effects at lower con
centration[93].

Another natural compound called diflourinated-
curcumin (CDF), a synthetic derivative of curcumin chara
cterized by natural antitumor activity, is able to decrease 
EZH2 expression in pancreatic cancer cells. This molecule 
exhibits a particular mechanism of action, which involves 
the upregulation of a set of microRNAs (miRNA) such as 
let-7a,b,c,d, miR-26a, miR-101, miR-146a, and miR-200b,c, 
typically downregulated in pancreatic cancer[94]. Some of 
these miRNA are, at the same time, target and regulator 
of EZH2[7]. Although it has been confirmed that the re-
expression of miR-101 is able to significantly decrease 
the expression of EZH2[95,96], however the peculiar ability 
of CDF to inhibit pancreatic tumor growth remains 
controversial[94]. Numerous evidences underscored that 
miR-101 plays a key role in the regulation of EZH2 in a 
wide panel of cancer and that miR-101 is linked to EZH2 
through a negative mutual feedback loop. Indeed re-
expression of miR-101 downregulates EZH2 expression, 
while the inactivation of EZH2 leads to the upregulation 
of miR-101[94]. In hepatocellular carcinoma, EZH2 is a 
direct target of miR-101, the expression level of this 
latter is negatively correlated with the protein level of 
EZH2; in fact, miR-101 is frequently underexpressed. 

MiR-101 overexpression downregulates EZH2, repressing 
proliferation, invasion, colony formation and cell cycle 
progression in vitro, while suppresses tumorigenicity 
in vivo[97]. miR-101 is also able to increase sensitivity 
to doxorubicin or fluorouracil, improving the activity 
of chemotherapeutic drugs in liver cancer cells[97]. 
Remarkably, in hepatocellular carcinoma, treatment with 
12-O-tetradecanoylphorbol-13-acetate (TPA) promotes 
miR-101 expression reducing levels of EZH2, EED and 
H3K27me3. In liver cancer cells, TPA induces G0/G1 cell 
cycle arrest with a mechanism mediated by PKCα and 
ERK pathways[98]. 

Finally, Sorafenib, a multikinase inhibitor used for the 
treatment of advanced-stage hepatocellular carcinoma, 
reduces level of EZH2, accelerating the proteasome-
mediated EZH2 degradation. Sorafenib induces cell 
growth arrest and apoptosis and its effects can be 
reversed by the overexpression of EZH2. The combina
tion of Sorafenib with DZNep has synergic effects in 
cell growth arrest and apoptosis and these properties 
could be evaluated in the future as a new combination 
therapy for the treatment of advanced hepatocellular 
carcinoma[99]. 

SAM analogues
The development of indirect methods inhibiting EZH2 
protein levels could be recognized as a promising stra
tegy for therapy, although it is crucial to consider the 
potential involvement of other pathways that may lead to 
a decrease of the specificity and an increase of the side 
effects.

The specific targeting of EZH2 catalytic domain 
could prove to be a powerful tool in gene based therapy, 
which could solve the problems related to the indirect 

Mechanism of inhibition Drug Level of development Ref.

Regulators of EZH2 levels DZNep [83-85,87]
EGCG [86,87]

PL3 [93]
CDF [94]
TPA [98]

Sorafenib [99]
SAM analogues EPZ005687 [100]

EI1 [101]
GSK126 [102,109]
GSK343 [103]
GSK926 [103]

EPZ-6438 Phase 2 (ClinicalTrials.gov Identifier: NCT01897571) [104,110]
UNC199 [105,109]

Tanshindiols [106]
5-Methoxyquinoline Derivatives [107]

Tetramethylpiperidinyl Benzamides [108]
Inhibition of the interaction between EZH2 
with other PRC2 subunits

SAH-EZH2
Astemizole

[111]
[112]

Unknown CPI-1205 Phase1 (ClinicalTrials.gov Identifier: NCT02395601)
GSK2816126 Phase 1 (ClinicalTrials.gov Identifier: NCT02082977

Table 1  Enhancer of Zeste Homolog 2 inhibitors classified for Enhancer of Zeste Homolog 2 inhibition mechanism

PRC2: Polycomb-repressive complex 2; EZH2: Enhancer of Zeste Homolog 2; PL3: 16-Hydroxycleroda-3,13-dien-15,16-olide; CDF: Diflourinated-curcumin; 
SAM: S-Adenosyl methionine; DZNep: 3-Deazaneplanocin A; EGCG: (-)-epigallocatechin-3-gallate; TPA: 12-O-tetradecanoylphorbol-13-acetate; SAH-
EZH2: Stabillized alpha-helix of EZH2.
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mechanisms. Specific molecules, competitors of S-ade
nosyl-methionine (SAM), have been developed and 
are able to inhibit methyltransferase activity of EZH2 
competing for the binding with the active site of EZH2, 
without affecting its expression levels. 

One of these compounds called EPZ005687 has been 
designed in 2012 and it specifically inhibits H3K27me3 
in lymphoma cells. Specificity for EZH2 is greater 
than 500-fold compared to a panel of 15 other methyl
transferases analyzed, and 50-fold compared to EZH1. 
Particularly, this inhibitor is able to induce specifically G1 
arrest and apoptosis in lymphoma cell lines, carrying 
point mutations of Y641 and A677 residues within the 
catalytic domain of EZH2, but it establishes minimal 
effects on the cell lines containing wild-type EZH2[100]. 

In 2012, Novartis developed an EZH2 inhibitor, 
EI1, which showed a strong selectivity for EZH2 (more 
than 10000-fold compared to other methyltransferases 
and about 90-fold compared to EZH1). This inhibitor 
decreases the global level of H3K27me3 in both EZH2 
wild type and mutant lymphoma cell lines; however, 
it triggers cell cycle arrest and apoptosis specifically in 
mutant cells[101]. 

GSK126, another EZH2 inhibitor discovered in 2012, 
is more than 1000-fold selective for EZH2 compared to 
20 other methyltransferases and more than 150-fold 
compared to EZH1. This inhibitor has a strong effect in 
EZH2 mutated diffuse large B-cell lymphoma cell lines 
and also inhibits the growth of EZH2 mutant large B-cell 
lymphoma in xenografts models[102].

Other SAM-competitive inhibitors have been proposed 
in the last years and their activity has been tested in 
several tumors, for instance GSK343 and GSK926[103], 
EPZ-6438[104], UNC199[105], Tanshindiols[106], 5-Metho
xyquinoline Derivatives[107], Tetramethylpiperidinyl Ben
zamides[108]. UNC199 is the first orally bio-available 
inhibitor characterized by having a strong activity in vitro. 
Although it is an analogue of GSK126, it is less selective 
for EZH1[105,109]. Remarkably, EPZ-6438 is recently going 
through clinical testing for Non-Hodgkin Lymphomas 
patients[110].

Inhibition of the interaction between EZH2 with other 
PRC2 subunits
Interactions with other components as EED or Suz12 
are necessary for the canonical activity of EZH2[6]. 
Another strategy for EZH2 inhibition is to block the 
interactions between the methyltransferase and other 
PRC2 subunits.

A peptide called SAH-EZH2 has been designed 
starting from the alpha-helical domain of EZH2 (aa 
40-68), a 27-mer-peptide domain responsible for the 
binding between EZH2 and EED. This peptide, short 
enough to cross the cellular membranes, is able to 
disrupt the EED/EZH2 complex and to inhibit H3K27me3 
in a dose-dependent manner; moreover, it decreases 
levels of EZH2 possibly impairing its protein stability. MLL-
AF9 leukemia cells treated with SAH-EZH2 underwent cell 
cycle arrest and monocyte/macrophage differentiation, 

while were not driven to apoptosis[111].
Peptides or peptidomimetic inhibitors are generally 

considered metabolically unstable and have poor bioavai
lability to be suitable as therapeutic drugs. Recently, it 
has been identified that Astemizole, a drug previously 
used in the treatment of seasonal allergic rhinitis, is an 
inhibitor of the EED/EZH2 protein-protein interaction. 
Astemizole competes with EZH2 for the binding with 
EED, destabilizing PRC2 complex and inducing cell cycle 
arrest in leukemia cells[112]. Interestingly, the combination 
treatment of SAH-EZH2 or astemizole and various SAM 
analogues produced a significant synergistic effect on 
lymphoma cells[111,112], indicating that the suppression 
of catalytic activity and the disruption of PRC2 complex 
could influence different pathways and a combinatorial 
drug therapy can be a more effective therapeutic strategy.

Combination of EZH2 inhibitor with other drugs
Chromatin alterations are considered excellent can
didates to explain how different factors may increase 
the risk of cancer, for that reason they represent an 
important aspect of tumor biology and may constitute 
good targets for future epigenetic-based therapies. 
For instance, several histone deacetylase and DNA 
methyltransferase inhibitors are already under evaluation 
as potential anticancer drugs, and several clinical trials 
are underway[113,114]. Various studies are exploring the 
possibility to combine the effects of EZH2 inhibitors 
with other epigenetic drugs in order to develop new 
strategies for cancer therapy. The combination of 5-AZA-
2’-deoxycytidine (5-AZA-CdR), a DNA methyltranserase 
inhibitor with DZNep to treat human and murine leuke
mia cells, revealed similar synergic effects accompanied 
by a meaningful reduction in clonogenicity. Additionally, 
microarray analysis showed that the combination therapy 
increases the expression of more than 150 genes, 
including CDKN1A and FBXO32[115]. Histone deacetylases 
are also frequently altered in cancer and can contribute 
to tumor progression. A synergic interaction was observed 
with a three-drug combination of trichostatin-A (TSA: A 
histone deacetylase inhibitor) plus DZNep and 5-AZA-
CdR in acute myeloid leukemia, showing a significant 
activation of several tumor suppressor genes and 
inhibition of cell growth and cell survival[116].

EZH2 inhibitors can be also used in combination 
with classical chemotherapeutic drugs to solve problems 
related to side effects (combined treatment consent to 
reduce concentration of drugs) or resistance of cancer 
cells often associated to the treatments with the only 
chemotherapeutic agents. The discovery of heterozygous 
EZH2 GOF mutants, identified in non-Hodgkin Lymp
homas, which proved to be more sensitive to EZH2 
inhibitors, leaded to the hypothesis that combination of 
classical treatment with PRC2 inhibitors could improve 
the efficacy of the cancer therapy. Standard Non-Hodgkin 
Lymphoma therapy is a combination of several drugs, 
called CHOP (Cyclophosphamide, Hydroxyldaunorubicin, 
Oncovin, and Prednisone). Studies in vitro and in vivo 
demonstrated that the combination of EPZ-6438 with 
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CHOP increases anti-proliferative benefits compared to 
treatment with the EZH2 inhibitor alone, and this effect 
is thought to be mediated by glucocorticoid receptor 
agonists such as Prednisolone, the active metabolite of 
Prednisone[110]. 

Moreover, other studies investigated the inhibition 
of EZH2 in combination with conventional therapies in 
prostate cancer. Etoposide, an inhibitor of topoisomerase 
Ⅱα (Top2a), is used in combination with other drugs 
in the standard therapy for castrate resistant prostate 
cancer. Levels of Top2a are higher in aggressive cancer 
and in these patients EZH2 expression correlates positively 
with Top2a expression. It has been demonstrated that 
the combined inhibition of EZH2 and Top2a, increases 
anti-tumor response both in vitro and in vivo models of 
prostate cancer, indicating that combination therapy can 
be a new strategy for aggressive prostate cancer[117].

Finally, various studies explored the interplay between 
Myc and EZH2, both involved in cancer. In Myc-driven 
prostate cancer, EZH2 directly suppresses interferon-γ 
receptor 1 (IFNGR1) in a Myc-dependent manner. 
EZH2 depletion restores the expression of IFNGR1, 
increasing the sensitivity of these cells to interferon-γ 
with consequent activation of IFN-JAK-STAT1 tumor-
suppressor signaling that leads to apoptosis. Activity 
of EZH2 in Myc-driven tumors is strictly correlated to 
Myc amplification. Myc knockdown reduces levels of 
EZH2 and H3K27me3 at IFNGR1 promoter only in Myc-
amplified prostate cell lines; while in Myc-independent 
tumor growth, IFNGR1 inhibition seems to be related on 
DNA hypermethylation[118]. This evidence suggested that 
combination of EZH2 inhibition with interferon-γ could be 
a specific strategy for Myc-driven prostate tumors and 
can help to improve the outcome of patients.

Numerous evidences confirm that EZH2 activity is 
strongly correlated with Myc. Definitely, Myc induce the 
expression of EZH2, downregulating miR-26a/b[119]; 
inhibits AKT-dependent phosphorylation of EZH2 at 
Serine 21 increasing its H3K27me3 activity[120]. Re
markably, Myc recruits EZH2 to miR-26a promoter 
and cooperatively suppresses miR-26a expression with 
consequent EZH2 upregulation. EZH2 in turn, inhibits 
miR-494, a repressor of Myc. Consequently, Myc and 
EZH2 generate a positive feedback loop to assure per
sistent high protein levels of both proteins[121]. In several 
hematological malignancies, Myc expression is inhibited 
by a BET bromodomain inhibitor, JQ1[122,123]. In B-cell 
Lymphoma cells, the pharmacological inhibition of EZH2 
with DZNep in combination with JQ1 has a synergic 
effect in the suppression of cell growth and clonogenicity 
with a mechanism mediated by miR26a re-expression. 
The combined inhibition of Myc and EZH2 expression 
levels could result in an effective therapeutic strategy to 
successively suppress tumor growth in aggressive B-cell 
Lymphoma[124]. 

Synthetic lethality
Synthetic lethality occurs when two mutations result 
in cell death when acting in combination, but when 

acting separately they do not have any effect on cell 
viability[125]. Based on the distinctive genomic features 
of each tumor, current cancer research focus on finding 
targets that are able to kill exclusively cancer cells. 
Synthetic lethality screenings such as Synthetic genetic 
array, synthetic lethality by microarray, and genetic 
interaction mapping, are high-throughput methods 
to identify tumor mutations, or altered pathways that 
can lead to the synthetic lethality. Consequently, the 
presence of one of these mutations in cancer cells, 
but not in normal tissues, can make them ready to 
be selectively killed by mimicking the effect of the 
second alteration with targeted therapy[126]. Inhibition 
of EZH2 is under evaluation as a strategy to induce 
synthetic lethality. Recent findings have underlined that 
inactivating mutations in the gene encoding the AT-rich 
interacting domain containing protein 1A (ARID1A), a 
SWI/SNF complex subunit, are frequently detected in 
a large selection of cancers[127,128]. The first evidence, 
capable of proving a synthetic lethality between EZH2 
inhibition and ARID1A mutations, has been reported in 
ARID1A-deficient ovarian clear cell carcinomas (OCCCs), 
an aggressive human cancer that commonly develops 
resistance to treatments[129,130]. ARID1A mutated 
OCCCs treated with EZH2 inhibitor GSK126 exhibited 
significantly cell growth arrest and apoptosis, however 
ARID1A wild type cells are not sensitive to the treatment, 
even if the reduction of H3K27me3 is comparable[131]. 
The same data set demonstrated that gene PIK3IP1, 
an inhibitor of PI3K–AKT signaling, is a direct target 
of both ARID1A and EZH2. These results suggested a 
specific implication of the PI3K/AKT signaling in ARID1A-
mutated cells. ARID1A-deficient tumors appeared to 
be addicted to EZH2 activity, and the pharmacological 
inhibition of EZH2 promoted the upregulation of PIK3IP1 
and contributed to the synthetic lethality through the 
inhibition of the PI3K–AKT pathway. Remarkably, the 
EZH2 inhibitor GSK126 induced regression of ARID1A-
mutated ovarian tumors also in vivo[131]. Similarly, in 
rhabdoid tumors pharmacological inhibition of EZH2 
induced apoptosis in SMARD1 (another subunits of SWI/
SNF) mutated cells[104].

CONCLUSION
In the last years many researchers focused their 
studies on the design of new EZH2 inhibitors and in 
trying to clarify if EZH2 modulation can be a specific 
therapeutic strategy for cancer treatment, alone or 
in combination with other standard drugs or other 
epigenetics inhibitors. Three EZH2 inhibitors are currently 
under observation in clinical trials: CPI-1205 in B-Cell 
Lymphomas (ClinicalTrials.gov Identifier: NCT02395601) 
E7438 (previously called EPZ-6438) in Advanced 
Solid Tumors or B Cell Lymphomas (ClinicalTrials.gov 
Identifier: NCT01897571) and GSK2816126 in Relapsed/
Refractory Diffuse Large B Cell and Transformed Follicular 
Lymphomas (ClinicalTrials.gov Identifier: NCT02082977). 
These studies will help to clarify if EZH2 inhibition is 
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a good strategy for cancer treatment. Indeed the im
portance of polycomb protein during development and 
differentiation processes can lead to side effect. Data 
obtained in vitro in breast cancer showed that EZH2 
specifically induces cell death in cancer cells but not 
in normal cells[83]. Moreover, in vivo studies showed 
that, treatments with some EZH2 inhibitors alone or in 
combination with other chemotherapeutic agents are well 
tolerated by mice resulting in minimal toxicity or modest 
weight loss of 10%[105,117,118].

Nevertheless, the studies described above demon
strated that EZH2 activity can behave differently in 
distinguishing neoplasms, and a singular inhibitor can be 
effective in certain kind of cancer but not in others. For 
instance, it is well known that Top2a inhibitor Etoposide 
is actually effective in a minority of patients with non-
small-cell lung cancer. Recent findings validated that 
in this particular type of cancer, EZH2 inhibition drives 
differential effects in response to the Top2a inhibitors in 
vitro and in vivo. BRG1 (LOF) and EGFR (GOF) mutant 
cancer cells in response to EZH2 inhibition increased 
Top2a inhibitor sensitivity, thus shrinking and fragmenting 
into apoptotic bodies. On the contrary, EGFR and BRG1 
wild-type NSCLC cells responded to EZH2 inhibition 
with upregulation of BRG1 and ultimately become more 
resistant to the Top2a inhibitor[132]. Furthermore, in 
rhabdomyosarcomas, treatment with EZH2 inhibitors has 
different effects in embryonic or alveolar subtypes where 
induces respectively differentiation or apoptosis[133,134]. 

Another interesting example concerning the selective 
inhibition of EZH2 was displayed in prostate cancer. It has 
been shown that in Myc-driven prostate cancer, EZH2 
exhibited a significantly Myc-dependent downregulation 
of IFNGR1. The pharmacological depletion of EZH2 by 
the inhibitor DZNep restored the expression of IFNGR1 
and, when treated in combination of interferon-γ, as 
discussed previously, provided a remarkable synergic 
antitumor effect with interferon-γ. Conversely, EZH2 
catalytic inhibitors, although they efficiently reduced 
H3K27me3, failed to mimic EZH2 depletion. Therefore, 
patients with advanced prostate cancer driven by Myc 
could have benefits from a therapeutic depletion of 
EZH2, indicating that the ability of EZH2 to increase the 
sensitivity of cancer cells to interferon-γ is independent 
by its catalytic activity[118].

An important point for consideration, in order to 
understand if a drug is suitable for therapy, concerns 
taking into account its penetration into the organs. A 
panel of five EZH2 inhibitors was recently tested to 
evaluate the affinity with P-glycoprotein (P-gp/ABCB1) 
and breast cancer resistance protein (BCRP/ABCG2) two 
members of ABC transporter superfamily, both present 
in blood-brain barrier. All of them were able to bind the 
transporters, resulting in a limited brain penetration[135]. 

Another key point to be contemplated concerns the 
real possibility that cancer cells could develop new muta
tions, making themselves resistant to EZH2 inhibitors 
as it was highlighted recently for SAM analogues[136]. 

Moreover, the role of EZH1 in tumorigenesis is not 

completely understood and because functions change 
in different tissues, it will be necessary to evaluate, 
depending form the tumor, inhibitors that target both 
EZH1 and EZH2, or drugs that specifically target EZH2 
maintaining EZH1 activity. 

For all these reasons, further studies are needed to 
better clarify the different roles of EZH2 in cancer, in 
addition noteworthy efforts are required in developing 
new generation of EZH2 inhibitors in order to design 
specific therapeutic strategies that alone or in combina
tion with classical therapy could provide novel potential 
clinical approaches aimed at eradicating a wide variety 
of human cancers.
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