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Abstract 

The deterioration of walking ability has a huge impact on the quality of life, as 
low gait speed is associated with mortality, dementia, cognitive decline and fall 
risk. This is valid not only in people affected by diseases linked to motor 
impairments, but also in healthy elderly with advancing age. Conversely, the 
maintenance of a good mobility level guarantees the preservation of individual 
independency and wellness in the everyday life. For this reason, the assessment of 
gait in ecological scenarios, that account for internal and external confounding 
factors, may be beneficial to study and try to prevent this condition. In fact, gait 
analysis conducted with the most traditional laboratory technologies is not 
sufficient, alone, to obtain a complete evaluation, since it allows to only evaluate 
motor capacity; therefore, it should be integrated with performance measures. In 
this sense, wearable sensors represent the optimal solution to make this transition: 
in particular, inertial measurement units allow to extract both temporal and spatial 
gait variables, minimizing costs and encumbrance. However, their validation is 
still performed in the laboratory, while it should be carried out in conditions 
comparable to those of end use. In this sense, a technically valid wearable solution 
that provides accurate gait parameters to be used as reference in real-world 
conditions is still missing. 

A fundamental step to perform an accurate gait assessment is the correct 
identification of gait events to segment the walking sequence into gait cycles and 
their subphases (i.e. stance and swing). Despite the high number of IMU-based 
algorithms, they are based on indirect methods and should not be considered a 
proper reference. On the other hand, the available technologies providing a direct 
estimate are often time-consuming (e.g. body cameras), expensive (e.g. pressure 
mapping insoles) or affected by a low spatial resolution (e.g. foot switches). 
Therefore, the first contribution regarded the development and validation of a new 
algorithm based on wearable low-cost pressure insoles for accurate gait events 
detection. Two pressure insoles, including 16 sensing elements each (element area 
= 310 mm2), with a sample frequency of 100 Hz were employed in the study. The 
proposed algorithm used the pressure insoles data as input to detect gait events 
through a cluster-based approach, assuming that at least three sensors in the same 
foot region should be activated or deactivated to have an initial (IC) or final 
contact (FC), respectively. The method was tested on nine healthy participants 
against the force platforms, for a total of 801 IC and 801 FC included in the 



 

 

 

analysis. Performance was evaluated in terms of average root mean square error, 
which resulted low for both gait events (about 20 ms for IC and 10 ms for FC) and 
temporal parameters (20 ms for stance duration and <10 ms for step duration). 
The results obtained on healthy participants suggest that this solution can be used 
as an accurate wearable reference. However, the study should be extended to 
pathological cohorts including also non-rectilinear walking. 

The pressure insoles allow to obtain a temporal characterization of gait, but a 
complete description also requires the estimation of spatial variables. In this 
perspective, a new algorithmic pipeline based on a multi-sensor wearable system 
(INDIP) was developed and validated on both healthy young and elderly subjects 
and patients affected by five different diseases (Parkinson’s Disease, Multiple 

Sclerosis, Proximal Femoral Fracture, Congestive Heart Failure, Chronic 
obstructive pulmonary disease). The INDIP comprised two pressure insoles, three 
IMUs positioned on feet and lower back and two distance sensors. The 
algorithmic pipeline, based on state-of-art algorithms, was developed exploiting 
system redundancy. The system was validated against the stereophotogrammetric 
system in a laboratory experimental protocol, including structured tests of 
different complexity levels and a simulation of daily life activities, specifically 
designed to stress the system. A total of 128 participants from seven different 
cohorts were involved in the study; in addition, they were asked to perform 2.5h 
real-world unsupervised activity, while wearing the INDIP, to evaluate its 
usability. In the structured tests results were excellent for all cohorts and DMOs 
(ICC > 0.95; mean absolute errors: cadence ≤ 0.61 steps/min, stride length ≤ 0.02 
m, walking speed ≤ 0.02 m/s). As regards the SDA test, errors were larger but still 
limited (cadence 2.72–4.87 steps/min, stride length 0.04–0.06m, walking speed 
0.03–0.05 m/s). The validation proved that the INDIP is a feasible solution to be 
used as reference for the analysis of gait in real-world settings. In addition, results 
on stride-level parameters were reported in the present thesis and confirmed the 
accuracy of the system. Nevertheless, further improvements can be made in the 
sensor fusion process (e.g. better exploiting the distance sensors information) and 
in the stride selection process to increase specificity.  

The same multi-sensor system designed to be used as a wearable reference can be 
used as a mobile gait laboratory in clinical and rehabilitation applications. For 
example, it can be used to verify the efficacy of a medical treatment during 
supervised real-world conditions. The third work presented in this thesis regarded 
the use of the INDIP system to quantify gait changes in people with Multiple 
Sclerosis before and after physical rehabilitation. The study involved nine patients 



 

 

who were asked to perform activities of daily living while wearing the INDIP 
system. Primary gait parameters were extracted using the INDIP pipeline; in 
addition, gait variability and gait symmetry were estimated for each primary 
outcome. The clinical relevance of the extracted variables was investigated 
through statistical analysis, comparing the outcomes obtained from the two 
sessions (before and after the treatment). Meaningful differences were noticed in 
stride duration, stride length, swing length and stride speed for a subset of tasks. 
In particular, stride duration showed an average decrease, while the other 
parameters increased their average after the treatment. This work suggests that the 
INDIP system can be used to obtain relevant gait measures and to investigate their 
relevance in clinical applications. However, further studies are required, with a 
higher number of participants and a control group for reference values, to confirm 
the results of this preliminary study.  

In conclusion, this thesis aims at providing effective solutions to transfer the 
validation and the complete assessment of gait in real-world conditions. The first 
two contributions enable the estimation of reference temporal and spatial gait 
parameters based on affordable wearable solutions. The third contribution 
presents the use of the validated solution as a mobile gait laboratory for clinical 
applications and investigates the effective significance of the extracted gait 
outcomes.  
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Chapter 1 

Introduction 

1.1 General introduction 

Walking is a simple gesture, characterized by periodic and standardized 
movements, which is part of our everyday life. The ability to walk has a great 
impact on individual well-being, as it is strictly connected to the mobility and 
quality of life in general [1], [2]. Its deterioration can occur not only due to 
diseases characterized by specific motor dysfunctions but also, merely, with 
advancing age [3], [4]. This problem is becoming more and more present with the 
increase of both longevity of world’s population and probability of survival to 
chronic and disabling diseases. As such, losing motor ability is equivalent to a 
loss of independence in the everyday life. Moreover, a low level of physical 
activity, as also slow walking, is associated with high mortality, dementia, 
cognitive decline and fall risk  [5], [6]. It has been demonstrated that walking 
speed can be considered the sixth vital sign after body temperature, heart rate, 
respiratory rate, blood pressure and oxygen saturation [7]. For this reason, it is 
fundamental to have valid instruments to measure the individual level of mobility, 
in order to detect and, eventually, prevent, this kind of condition. The use of 
technologies for the analysis of gait in a clinical or rehabilitation field allows to 
obtain an objective characterization of the degree of mobility of the individual, 
which can help the clinical specialist to evaluate the pathological conditions, the 
disease progression and the efficacy of a medical treatment [8], [9].  

It is well known that individual mobility is the combination of what a person 
can do (motor capacity) and what he/she actually does (motor performance) [10]. 
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Therefore, a complete assessment should include not only conventional analyses 
in a standardized setting, but also, a quantitative characterization of person’s 

mobility performance in its ecological environment [11]–[15]. However, real-
world gait analysis is an ongoing challenge due to a series of contextual factors 
which can deeply increase gait complexity, such as the presence of breaks 
(leading to more frequent initiation and termination phases), short walking bouts, 
increased number of changes in speed and direction of progression, walking on 
different surfaces, passing obstacles and non-walking activities [16]. The situation 
can be even more complicated in case of people with impaired mobility, due to 
slower walking, use of walking aids and less repeatable gait patterns. This 
requires the development of an algorithmic pipeline specifically conceived to 
address gait in real-world scenarios. 

In some cases, it can be interesting to analyze gait and, in general, mobility 
during task-oriented real-world acquisitions [17]. Unlike unsupervised real-world 
experiments, where the participants do not follow a proper scheme, here they are 
asked to perform a specific set of daily life activities [18] that can be useful, for 
example, to evaluate the efficacy of a treatment. The choice of an appropriate 
treatment is particularly relevant in patients with neurodegenerative diseases such 
as multiple sclerosis [19]. Pharmacological therapies are used in multiple sclerosis 
patients to reduce the relapse rate [20], but robust evidence on their clinical 
effectiveness in disability progression is still lacking [21]–[23]. Conversely, 
recent studies report the clinical efficacy of physical rehabilitation and suggest its 
use as a proper therapeutic treatment [24]. Specifically, improvements have been 
observed in quality of life and activities of daily life [25], [26] but also gait [27]–
[29]. However, changes in walking function after rehabilitation are usually 
evaluated during standard tests [27]–[33] and have been not properly investigated 
in more challenging conditions. In this sense, changes in gait performance can be 
assessed looking at the variation of some relevant gait parameters during two or 
more repetitions of the same activity (e.g. before and after the rehabilitation). For 
example, gait symmetry allows to quantify the differences between right and left 
side and is considered as a relevant measure to monitor rehabilitation progresses 
[34]. Moreover, it can help the clinician in the identification of gait pattern 
changes according to the different type of activities or to the severity of the 
disease [35]. These changes can be also quantified through the computation of 
gait variability, that accounts for the stride-by-stride differences [36], [37]. 

Moving the analysis “out of the laboratory” requires the use of wearable 

sensors that, compared to the most traditional technologies employed in gait 
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analysis (i.e., stereophotogrammetric systems, instrumented mats, and force 
platforms) are low cost, fully portable and do not require an ad-hoc laboratory for 
their usage [38]. 

In this perspective, a single inertial measurement unit (IMU), typically 
positioned on the trunk or wrist, represents the most suitable solution in terms of 
comfort and usability [39], [40], making them particularly convenient for long 
term monitoring applications. However, those locations are quite far from the 
contact point with the ground, making the estimation of gait-related spatial-
temporal parameters more difficult. Conversely a bilateral approach, with IMUs 
mounted on shanks or feet, guarantees more accurate estimations. However, in 
both cases, the gait events are indirectly identified from the accelerometer and 
gyroscope signals. Therefore, IMU-based approaches should be accounted for as 
silver standard solutions and the validity of IMU-based methods should be 
assessed in the same conditions in which they are supposed to be used.  

Despite the strong interest in using wearable sensors for mobility assessment, 
most of the studies still limit the validation to straight walking tasks [41]–[45]. 
Further efforts are hence required to make the transition from laboratory to real-
world settings, adding more complexity to the validation protocols, such as 
curvilinear walking [46] and supervised or unsupervised tasks [47]–[49], to 
simulate what is commonly observed in real-world conditions. The validation in 
unsupervised settings could be extremely beneficial in case of machine learning 
based methods, which require a huge amount of data for a proper testing [17], 
[50].  

Among the technological solutions adopted to detect reference gait events, 
there are body-worn cameras pointing to the subject’s feet [51]–[53]. 
Nevertheless, the labelling of foot contacts is labor-intensive and the resolution is 
strictly linked to camera frame rate. Other options are foot switches [54]–[58] and 
plantar pressure insoles [59], [60]. However, the first ones include two or three 
sensors, limiting the temporal resolution of the detected gait events, especially in 
case of impaired gait [61]. On the other side, plantar pressure insoles usually 
include a high number of sensing elements, resulting in more expensive devices 
with high computational costs. Those limitations might be overcome reducing the 
number of sensing elements: some studies used pressure insoles with a limited 
number of sensing units [62]–[65], but their work was mainly focused on the 
estimation of temporal gait parameters different from IC and FC. Therefore, a 
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validated method to detect gait events based on a more affordable wearable 
technology, e.g. low-cost pressure insoles, is currently missing. 

The above-mentioned solutions can only provide a reference for temporal 
parameters, but they do not provide any information on spatial gait parameters, 
which are crucial for a complete description of walking patterns in both healthy 
and pathological subjects [66]–[68]. The estimation of reference temporal and 
spatial parameters of gait requires the combination of different wearable sensor 
technologies, in order to exploit the complementary characteristics and 
redundancy of information provided. Such a system would be sufficiently robust 
and accurate to be used to assess the performances of other wearable devices, 
working as a mobile gold standard (mGS). On the other side, it could be employed 
as a mobile laboratory to obtain a complete movement analysis in an ecological 
environment, without the temporal and spatial limitations enforced by the 
traditional non-wearable technologies [69], [70]. Until today, few multi-sensor 
systems integrating IMUs and pressure insoles have been proposed, as the result 
of academic [71], [72] or commercial [73], [74] research. Nevertheless, further 
efforts should be made in validating those solutions not only on healthy 
participants but also on diseased cohorts with potential motor impairments, 
including more complex motor tasks different from basic straight walking tests. In 
addition, the commercial solutions follow a black box approach that does not 
allow the access to the algorithms, logic, and inner components. Conversely, a 
fully transparent, accessible, and configurable measurement system would 
facilitate its extensive usage and help the final user in satisfying all the project 
requirements [75]. 

1.2 Aim of the thesis 

A complete gait analysis in real-world conditions can provide a quantitative 
description of how a person walks in his/her everyday environment, including 
social and personal factors. This is even more significant in case of diseased 
people, potentially affected by motor disorders, to target mobility loss and try to 
prevent it, as also to evaluate the efficacy of a treatment. In this perspective, 
activity monitors (i.e. devices including a single IMU) represent the best available 
solution, as they allow for long-term monitoring measurements without causing 
discomfort. However, their validation is still performed in standardized laboratory 
environments, while it should be carried out in the same conditions of end use (i.e. 
real-world unsupervised settings). In fact, those devices are conventionally 
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validated on very simple tasks, including a limited number of strides, which is far 
from what happens in a real-world context.  

The real-world assessment of the above-mentioned devices requires robust 
and reliable gait measures to be used as reference. In case of temporal gait 
parameters, a wearable low-cost solution which provides a direct measure of foot 
to ground contact is needed. In addition, a novel algorithm based on the previous 
solution should be developed and tested against a ground truth before being used 
for the validation of third-party devices.   

On the other hand, the validation of both temporal and spatial parameters calls 
for a system integrating multiple complementary technologies to directly estimate 
foot contacts and displacements and improve the statistical accuracy of such 
variables. Moreover, a structured computational pipeline should be developed and 
validated according to an experimental protocol including motor tasks of different 
complexity level in order to stress the system. Another relevant point is the 
assessment on different populations characterized by various gait patterns to 
ensure the robustness of the method and evaluate its applicability on a wide range 
of speeds and motor impairments. 

The same multi-sensor technology can be used as a mobile laboratory for 
assessing mobility in ecological conditions. For example, it can be employed to 
estimate gait-related parameters during task-oriented experiments conducted 
before and after a rehabilitation treatment. This would allow to obtain an accurate 
evaluation even without the use of the most traditional laboratory technologies, 
thus minimizing the costs, encumbrance and complexity. 

Based on the above, the aims of the here presented thesis are the following: 

1. The development and validation of a new algorithm for accurate gait 
events detection based on wearable low-cost pressure insoles data. 

2. The development of a new algorithmic pipeline for real-world gait analysis 
using a multi-sensor wearable system and its validation on both healthy 
young and elderly subjects and patients with different diseases. 

3. The extraction of gait related parameters to quantify changes in gait before 
and after physical rehabilitation in people with multiple sclerosis while 
performing Activities of Daily Living (ADL). 
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1.4 Outline of the thesis  

This section illustrates the organization of the present thesis. 

Chapter 1 (current chapter) introduces the general motivation and objectives of 
the thesis, also including the list of contributions and the outline. 

Chapter 2 introduces the basic notions necessary to understand the background of 
the here presented work: the concept of human gait, differences between normal 
and pathological gait, motor characteristics of the pathological cohorts involved in 
this study and consequences on gait patterns, gait related parameters including the 
most traditional ones and those necessary to move the analysis in real-world. 
Finally, an overview on the technologies used for gait analysis purposes, both 
non-portable and wearable, is given. 

Chapter 3 illustrates the current state of the art. A first section regards the 
estimation of gait events using wearable technologies. Then, the most relevant 
methods for gait assessment based on wearable technologies are presented, 
together with an overview of the validation process and its transition from 
standardized to real-world settings. Finally, the state of the art regarding the main 
studies based on activities of daily living for the mobility assessment is described. 

Chapter 4 presents the sensors employed in the current study, with a focus on the 
working principle of the different technologies and a detailed description of the 
multi-sensor system used, i.e. the INDIP system.  

Chapter 5 reports the abstract of the contribution regarding the development and 
validation of a new algorithm for accurate gait events detection based on wearable 
low-cost pressure insoles data. The full contribution is reported in Appendix A in 
its original form. 

Chapter 6 regards the second aim of the thesis, i.e. the development of a new 
algorithmic pipeline for real-world gait analysis using a multi-sensor wearable 
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system (INDIP) and its validation. The first part describes the design of the 
algorithmic pipeline, followed by the abstract of the main contribution including 
the algorithm workflow and the validation of WB level DMOs on both healthy 
and pathological subjects. The full contribution is reported in Appendix B in its 
original form. Then, results of the validation of stride level DMOs is presented 
and discussed. 

Chapter 7 illustrates the third aim of the thesis, regarding the estimation of gait-
related parameters during Activities of Daily Living in multiple sclerosis patients 
using the validated INDIP system pipeline to quantify changes in mobility after 
physical rehabilitation.  

Chapter 8 summarizes the findings of the present thesis with an outlook to 
limitations and future perspectives.  
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Chapter 2 

Basic notions 

2.1 Human gait 

The term gait indicates the bipedal locomotion characterizing the way in which 
human beings move from one place to another. It consists in moving forward the 
center of mass thanks to the alternating movement of the lower limbs [76], [77]. 
Gait is a physical activity that every human being usually learns to perform 
around one year old, getting soon to the minimum energy expenditure required 
[78]. Despite the seeming simplicity, human locomotion involves different body 
parts such as muscles, cortical and subcortical structures [78]. An objective and 
instrumented analysis of gait requires a quantitative description of the movement. 
Physiological gait is a cyclic and periodic activity, defined by the repetition of the 
same functional sequence, called gait cycle [77], [79]. The gait cycle, or stride, is 
defined as the time interval between two consecutive initial contacts of the same 
foot (i.e. ipsilateral contacts). The interval between two consecutive initial 
contacts of opposite feet (i.e. contralateral contacts) is instead called step. A stride 
includes two distinct phases of the foot: a phase of support, or stance phase (about 
60% of the gait cycle), and a phase of oscillation, or swing phase (about 40% of 
the gait cycle). During the gait cycle the feet alternate their support and oscillation 
phases. Figure 1 shows, as an example, a temporal description of one stride of the 
right foot. In particular, the gait cycle starts with the initial contact (IC) of the 
right foot, followed by: 
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• A first 10% of double support phase (i.e. both feet are in contact with the 
ground) which finishes with the final contact (FC) of the left foot. 

• A swing phase of the left foot starts with the left FC and stops with the left 
IC, getting to the 50% of the cycle. 

• At this stage, both feet are in contact with the ground (second 10% double 
support phase) that finishes with the right FC (60% of the gait cycle). 

• A swing phase of the right foot starts with the right FC and stops with the 
right IC, getting to the end of the cycle. 

2.2 Normal gait versus pathological gait 

Normal gait is distinguished by the regular and periodic repetition of the same 
sequence described above. The lower limbs alternate their movement, while the 
body maintains its erect posture, balance, and stability [80].  

In pathological gait, the regularity of the movement depends on the disease 
and the specific level of motor impairment. In general, pathological gait patterns 
can be characterized by modified gait cycles, asymmetry, failure to maintain the 

Figure 1: Gait cycle phases, example on right foot. 
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alternating movement. This results in a higher energy expenditure, loss of balance 
and joints fatigue due to the excessive loads, with major implications in life 
quality [80], [81]. Gait impairments can be a consequence of different diseased 
conditions, such as neurological disorders [82], cardiovascular pathologies [83], 
post stroke symptoms [84] or orthopedic injuries [85]. 

The data used in the present thesis have been acquired on healthy young 
adults (HYA), healthy older adults (HOA) and five cohorts of patients affected by 
different diseases (Parkinson’s disease, multiple sclerosis, chronic obstructive 

pulmonary disease, congestive heart failure, proximal femoral fracture) within the 
Mobilise-D European project [16]. These cohorts of patients are characterized by 
diverse mobility impairments leading to specific disease patterns. For this reason, 
the gait-related outcomes used to describe them are very different from each 
other. As one of the goals of Mobilise-D project is to identify common mobility 
outcomes across multiple conditions, the choice of including a variety of cohorts 
was made to reach this aim according to a comprehensive approach. The 
following subparagraphs give details on the features and the gait impairments 
typically associated to each pathology.  

2.2.1 Parkinson’s disease 

Parkinson’s disease (PD) is a neurodegenerative disorder affecting around 10 
million people worldwide [86]. The large majority of PD patients are over 60 
(90%), with a higher percentage of men (ratio 2:1) than women affected [86]. PD 
is a fast-growing syndrome, which causes a broad spectrum of symptoms [87]. As 
regards effects on mobility, PD condition is characterized by bradykinesia (i.e., 
slowness of movements), which can be accompanied by tremor, rigidity, reduced 
gestures amplitude and smoothness [88]. In term of walking ability, this translates 
into reduced walking speed and stride length, increased rigidity and shuffling 
steps [88] – particularly evident during turning maneuvers, presence of obstacles 
and other changes in the path – and, in some cases, gait arrest episodes, better 
known as freezing of gait [89].   

2.2.2 Multiple sclerosis 

Multiple sclerosis (MS) is a chronic neurological disease which affects more than 
2.8 million people worldwide [90]. MS commonly affects people in their young 
adulthood and it is three times more common in women [90]. As a progressive 
degenerative disease, it causes damages in the central nervous system which can 
lead to several motor impairments, balance loss and alterations in gait capacity 
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and performance [91]. In particular, MS patients show reduced walking speed, 
stride length and swing phase duration [92]. According to LaRocca [93], about 
85% of people with MS indicate walking impairment as a major disability in their 
daily life. 

2.2.3 Chronic obstructive pulmonary disease 

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease 
that limits airflow in and out of the lungs [94]. It affects both men and women 
worldwide and can be caused by tobacco smoking or the exposure and inhalation 
of other toxic particles or gases [95]. Besides the evident respiratory symptoms, 
COPD patients can manifest abnormalities in skeletal muscle structure that 
underlie the decreased mobility [96]. The limited motor functions translate into 
postural control and balance issues, which cause frequent falls, especially during 
walking [97]. The deterioration of walking ability, associated with reduced 
walking speed, step length and cadence, represents the main risk of fall and it is 
strongly related to the risk of death [97].  

2.2.4 Congestive heart failure 

Congestive heart failure (CHF) is a clinical condition in which the heart blood 
pumping is reduced and inadequate to meet body requirements [98]. CHF can be 
the consequence of different diseases and it affects 26 million people in the world 
[98]. Fatigue symptoms, as also decreased exercise endurance and pulmonary 
function, have a huge impact on life quality and everyday activities [99]. 
Moreover, the insufficient blood flow results in a reduced lower limb muscle 
strength, that inevitably deteriorates gait function [99]. The most common 
impairments are associated with loss of balance, postural control, with a reduction 
of gait speed, stride length and stride duration [100].  

2.2.5 Proximal femoral fracture 

Proximal femoral fracture (PFF) consists in a break in the upper part of the femur, 
close to the hip joint [101]. PFF is quite common after a fall or a hip injury but, 
sometimes, can be caused by other conditions such as cancer [102]. Especially in 
elderly subjects, hip fracture represents an important risk factor of death (rate of 
5-10% after one month) [103]; whereas in the majority of survivors it provokes 
pain and motor disabilities [101]. In particular, PFF can lead to a decrease in hip 
function and muscles strength, which can reflect negatively on the ability of 
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walking and result in evident gait asymmetry, both in temporal and spatial 
variables [104]. 

2.3 Parameters of gait 

According to the quantitative description of gait phases reported in 2.1, this 
paragraph provides a detailed summary of the fundamental gait parameters. The 
parameters of gait are also called spatial-temporal parameters and can provide 
temporal information, spatial information or a combination of the two. It is worth 
mentioning that the gait parameters described in the following are those assessed 
and considered as relevant for the present study, but other primary and secondary 
parameters could be derived to describe human locomotion. Gait events timings, 
i.e. the instant at which each IC and FC occur, are not properly considered as gait 
parameters; however, the correct estimation of those events is fundamental to 
segment strides and define all the temporal variables. 

Temporal parameters   

• Stride duration: time interval between two consecutive ICs of the same 
foot. 

• Step duration: time interval between the IC of one foot and the subsequent 
IC of the contralateral foot. 

• Stance time: time interval between an IC and the subsequent FC of the 
same foot. 

• Swing time: time interval between a FC and the subsequent IC of the 
same foot. 

• Cadence: number of steps per minute, computed as a function of stride 
duration. 

𝐶𝑎𝑑𝑒𝑛𝑐𝑒 =  

∑
60

𝑆𝑡𝑟𝑖𝑑𝑒_𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗

#𝑠𝑡𝑟𝑖𝑑𝑒𝑠
𝑗=1

#𝑠𝑡𝑟𝑖𝑑𝑒𝑠
∗ 2 

Spatial parameters 

• Stride length: displacement covered within a stride. 
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• Stance length: displacement covered within a stance phase.  

• Swing length: displacement covered within a swing phase. 

 

Spatial - temporal parameters 

• Stride speed: ratio between stride length and stride duration. 

• Walking speed: average stride speed in a selected interval of gait. 

𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 =  ∑
𝑆𝑡𝑟𝑖𝑑𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑗

𝑆𝑡𝑟𝑖𝑑𝑒_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗

#𝑠𝑡𝑟𝑖𝑑𝑒𝑠

𝑗=1
 

Additional parameters 

Starting from the above-mentioned parameters, it is possible to define additional 
parameters, i.e. gait variability and symmetry: 

• Gait variability: describes the stride-by-stride changes of a specific 
parameter, computed as the Coefficient of Variation (CoV) [105]. 
 

𝐺𝑎𝑖𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝐶𝑜𝑉 =  
𝑆𝑇𝐷(𝑃)

𝑚𝑒𝑎𝑛(𝑃)
∗ 100 

• Gait symmetry: describes the differences between right and left side [106]. 
 

𝐺𝑎𝑖𝑡 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =  2 ∗ |
𝑚𝑒𝑎𝑛(𝑃𝑙𝑒𝑓𝑡) − 𝑚𝑒𝑎𝑛(𝑃𝑟𝑖𝑔ℎ𝑡)

𝑚𝑒𝑎𝑛(𝑃𝑙𝑒𝑓𝑡) + 𝑚𝑒𝑎𝑛(𝑃𝑟𝑖𝑔ℎ𝑡)
|  ∗ 100 

Where 𝑃 is a parameter of gait, 𝑃𝑙𝑒𝑓𝑡 and 𝑃𝑟𝑖𝑔ℎ𝑡 are the values of 𝑃 computed 
from the left and right side, respectively. 

  

2.4 Gait analysis in real-world  

Gait-related parameters are commonly estimated and assessed in standard 
laboratory environments during basic tasks. Nevertheless, those conditions are 
quite far from what happens in the real-world, as they do not take into account all 
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the factors linked to the disease or, in general, to the specific individual condition 
(intrinsic) and to the ecological environment (extrinsic).   

Gait has a fundamental role in everyday life, not only as an action end in itself 
but also as means of performing different types of activities independently. Real-
world gait can be defined as free-living and unsupervised [107], in opposition to 
the standardized and controlled laboratory gait. For this reason, the study of real-
world gait complements the traditional laboratory analysis providing a description 
of individual performances [10], [108]. In the last years, the interest of the 
scientific community in real-world gait analysis is increasingly growing thanks to 
the development of wearable technologies, which are described in detail in section 
2.5.2. The description of gait in real-world conditions requires the definition of 
additional parameters or digital mobility outcomes (DMOs) [16], provided in the 
following, for an accurate assessment on different granularity levels.  

Walking Bout  

A Walking Bout (WB) or continuous walking period is defined by the 
combination of consecutive right and left strides that maintain the alternance 
[107]. For the purposes of this work, a specific definition of WB was adopted in 
accordance with the Mobilise-D consortium, which provides that the WB is a gait 
sequence including a minimum of two left and two right strides. Each WB can 
include rectilinear walking, curvilinear walking and incline walking (i.e., walking 
on stairs or along an inclined path), as also breaks and/or spurious movements 
with a duration < 3s (Figure 2). Moreover, some strides requirements, agreed 
within the Mobilise-D consortium, were imposed to discard spurious movements: 

• Minimum stride duration equal to 0.2 s 

• Maximum stride duration equal to 3 s 

• Maximum stride height in case of level walking equal to 0.15 m 

• Minimum stride length equal to 0.15 m 

• Maximum stride length, defined as proposed by Zijlstra and Hof [109] and 
based on individual anthropometric features: 

𝑆𝐿𝑚𝑎𝑥,𝑗 = 2 ∗ (√2 𝐿𝑗  ℎ𝑗 − ℎ𝑗
2) 
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Where 𝐿𝑗 is the leg length of the 𝑗 − 𝑡ℎ subject and ℎ𝑗  is the maximum 
displacement of the center of mass, defined in the following way, 
according to Miff et al. [110]:  

ℎ𝑗 = 0.038 ∗ 𝑣𝑚𝑎𝑥,𝑗
2  

Where 𝑣𝑚𝑎𝑥,𝑗 is the maximum walking speed, described as a function of 
leg length [111], [112]: 

𝑣𝑚𝑎𝑥,𝑗 = √𝐹𝑟 ∗ 𝑔 ∗ 𝐿𝑗 

The leg length 𝐿𝑗, necessary to compute the above-mentioned variables, is 
defined with respect to the subject’s height, according to what proposed by 
Winter [113]: 

𝐿𝑗 = 0.53 ∗ 𝐻𝑗 

 

Stride level DMOs 

In this thesis, Stride level DMOs include all the gait parameters extracted for each 
stride in a Walking Bout and validated according to a stride-by-stride matching 
with the corresponding reference values. Examples of Stride level DMOs are 
stride duration and stride length. 

An additional class of DMOs is represented by the gait events (i.e., IC and FC 
timings) which can be analyzed with an aggregation strategy similar to that used 
for stride level DMOs, as we have multiple gait events values for each Walking 
Bout.   

Walking Bout level DMOs 

In this thesis, Walking Bout level DMOs include all the gait parameters extracted 
and validated at Walking Bout level. Examples of those DMOs are the walking 
speed and cadence but also the average stride length in a WB, obtained from the 
aggregation of individual stride lengths at WB level. For the Stride level DMOs 
we have multiple values associated to a WB, equal to the number of strides 
detected in the WB itself. Conversely, for Walking Bout level DMOs we have a 
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single value associated to the considered WB, as those parameters give a 
description of the entire gait sequence. 

 

2.5 Technologies for instrumented gait analysis  

The instrumented gait analysis entails the collection of quantitative data, allowing 
to estimate and assess specific parameters that cannot be explored with the 
conventional observational gait analysis [114], [115]. In fact, the latter is operator-
dependent, resulting in an objective evaluation that can be only moderately 
reliable [116] and it is not sufficient, alone, to get a complete clinical picture 
[117]. In this sense, different technologies are used in clinical settings to better 
describe functional limitation and impairments, better understand the gait patterns 
associated to complex diseases, measure the efficacy of a medical treatment and 
help clinicians in the decision-making process [118]. For a better understanding, 
the following sections provide a description of the most used technologies for 
instrumented gait analysis both in laboratory settings and real-world conditions 
(i.e. wearable sensors). A representative picture is reported in Figure 3.  

2.5.1 Laboratory technologies 

Technologies used for laboratory gait analysis have a key role in the description 
of human mobility, as they have been widely used for the conventional 
assessment of motor capacity [119]–[122]. Those technologies include force 
platforms, instrumented walkways, optoelectronic stereophotogrammetric systems 

Figure 2: Example of Walking Bout that includes straight walk, curvilinear walk and 
breaks/spurious movements < 3s.  
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and marker-less solutions. Details on the working principle, advantages and 
limitations of the above-mentioned solutions are provided in the following. 

• Force platforms: force platforms are used to measure the ground reaction 
force resulting from the subject stepping above it [123]. They work thanks 
to the presence of load cells that, due to their structure, can measure the 
deformation caused by an external load in terms of force needed to 
produce such deformation [124]. The foot support during the stance is 
evaluated as a point-contact on the force platform surface, corresponding 
to the center of pressure. Force platforms are commonly employed in gait 
analysis to obtain accurate and reliable measures of gait events instants 
[125], [126], as well as the other temporal parameters. However, they do 
not allow for the estimation of spatial variables.  

• Instrumented walkways: instrumented walkways include a high number of 
pressure sensors, organized in arrays, covering the entire mat surface 
[127]. This allows to obtain a full mapping of the foot-ground contact 
when the subject walks on it. The system is able to provide a large variety 
of temporal and spatial variables simply knowing which sensors have been 
activated or deactivated, the associated time instant and position on the 
mat [128]. Commercially available instrumented walkways include for 
example the GAITRite (CIR System, Inc., USA). 

Figure 3: Representative picture of laboratory and real-world technologies. Laboratory 
technologies (left side) include all the traditional non-wearable devices that restrict the analysis to 
a confined setting (e.g., force plates, instrumented mats, stereophotogrammetric system and 
markerless system). Real-world technologies include wearable sensors of different types (e.g., 
footswitches, pressure insoles, IMUs) that can be used without any spatial restriction for analyzing 
gait both in supervised and unsupervised environments. 
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Both force platforms and instrumented walkways are considered a ground 
truth reference for the validation of other devices. However, the limited surface 
extension of both systems constraints the gait analysis to a limited number of 
consecutive strides on a rectilinear path [129]. Other technologies, such as 
optoelectronic stereophotogrammetric systems and markerless optical motion 
capture systems, can partially overcome this issue. 

• Optoelectronic stereophotogrammetric systems: stereophotogrammetric 
(SP) systems base their operation on the so-called “stereoscopic vision”, 

i.e. the perception of three-dimensionality of an object thanks to the 
combined action of both eyes [130]. This is because each eye can provide 
only a two-dimensional image of its surroundings, whereas the three-
dimensional vision is given by the combination of the two. The SP system 
uses the same principle: it includes two or more cameras, operating in the 
visible or near-infrared region, and some retroreflective markers which are 
positioned on the subject. The position of each marker in the space is 
obtained thanks to the information provided by at least two cameras, that 
captured the same marker in the same instant from two different points of 
view. Basically, cameras work as human eyes. Marker trajectories can be 
used to obtain both temporal and spatial gait parameters. In particular, as 
trajectories are directly measured, the SP system represents the laboratory 
gold standard for spatial variables and it is often used for validating third 
party devices [131]. Among the commercial systems, the most used are the 
Vicon system and the Qualisys system. Despite their large use, SP systems 
are quite complex to use, as they require the positioning of a set of 
markers on the subject to reconstruct movement and the data acquisition 
needs to be managed by an expert operator. 

• Markerless optical motion capture systems: markerless optical systems 
represent an affordable alternative to record human gait without the use of 
markers [132]. They are usually based on an RGB-camera used to track 
subject’s movement minimizing efforts and complexity, but with a lower 

accuracy with respect to SP system in the estimation of temporal and 
spatial variables. 

Compared to force platforms and instrumented walkways, SP systems allow 
to increase the number of strides and to set up more complex experimental 
protocols, for example including curvilinear walking and obstacles [133], as also 
markerless optical systems but with a lower accuracy. However, the assessment is 
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still limited to the capture volume, making all those technologies suitable only for 
laboratory measurements. Moreover, being all those technologies non-wearable 
and/or non-portable, they do not allow to move the analysis in real-world settings. 

2.5.2 Wearable technologies 

In the last decades, there is a growing interest in the use of wearable sensors for 
gait monitoring and health applications in general [134], [135]. Wearable sensors 
are low-cost devices, usually powered by an internal battery, which makes them 
fully portable [136]. For this reason, wearable technologies are suitable for 
moving gait analysis in real-world unconstrained conditions to evaluate motor 
performances [137]. Among the wearable technologies employed in gait 
assessment applications, there are foot switches, plantar pressure insoles and 
IMUs. 

• Foot switches: foot switches are wearable devices, usually including two 
or three sensing elements positioned inside the shoe, between the foot and 
the internal insole [138]. The sensing elements can be compression closing 
or force sensitive resistors. Those devices allow the direct estimation of 
the foot-ground contacts and the other temporal parameters of gait through 
the measure of the impact force [56]. However, the presence of a reduced 
number of sensing elements limits the spatial resolution that, in turn, 
affects the correct foot contacts detection. In fact, the contacts can be 
detected only in correspondence of the sensing elements, that do not 
entirely cover foot surface. This can be even more difficult in case of 
pathological gait, where ground-foot contacts differ from the usual 
patterns [61]. 

• Plantar pressure insoles: plantar pressure insoles are instrumented insoles 
that integrate arrays of sensing elements covering the entire surface of the 
device. The insoles can be based on different technologies and the number 
of sensing elements usually varies from a hundred to a thousand [139]. 
The high resolution of pressure insoles with a high number of sensors 
makes them particularly suitable for foot pressure mapping applications 
without spatial resolution limitations [140]. However, such a high number 
of sensors greatly increases the cost and the amount of data and is not 
crucial for basic foot contacts identification.   
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• IMUs: inertial measurement units (IMUs) are one of the most widespread 
wearable solutions to monitor gait and mobility in general [141]. This 
because, compared to the previously mentioned wearable technologies, 
IMUs are able to provide not only temporal (indirectly derived) variables, 
but also a spatial description of gait [142]. They include an accelerometer 
and a gyroscope, but can also include a magnetometer and, in this case, are 
called magneto inertial measurement units (magneto-IMUs). Thanks to 
their small size and minimal invasiveness, they can be directly positioned 
on the body, integrated with clothing [136] or with other “smart” devices 

(telephones, watches or glasses) [143]–[145].   
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Chapter 3 

State of the art 

This chapter summarizes the state of the art of solutions proposed for the analysis 
of gait using wearable sensors, relevant for the objectives of the present thesis. 
The first part concerns the estimation of foot contacts (i.e. IC and FC) using 
wearable sensors, with an overview on the methods and technologies proposed in 
literature. The second part covers the state of the art on wearable solutions for gait 
assessment in real-world conditions and their technical validation. The third part 
gives an overview on the studies based on the evaluation of mobility during ADL, 
with a focus on MS population.  

3.1 Gait events detection using wearable sensors 

The estimation of gait events is crucial in the assessment of gait, as it allows to 
segment the strides and their phases. With the growing interest in moving gait 
analysis in real-word settings, several solutions have been proposed for the 
extraction of IC and FC using wearable sensors. The proposed methods vary 
depending on the number and type of sensors used, their working principle and 
the positioning. 

The IMUs surely represent one of the most popular solutions employed for 
gait assessment to detect gait events, thanks to their low cost, reduced size and 
limited power consumption [146], in addition to the possibility of extending the 
analysis to spatial parameters (see Section 2.5.2 for further details). The 
algorithms for gait events detection using IMU data are commonly based on the 
study of signal morphology [147]–[150] or the application of machine learning 
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methods [151]–[153]. The characteristics of the developed method are strictly 
linked to sensor’s positioning: in general, the further from the contact point with 

the ground, the more difficult the estimation of the gait-related variables becomes, 
as the signal pattern is more attenuated. The IMU-based approaches proposed in 
the literature typically use a single sensor or multiple sensor configuration. 
Usually, a single sensor, placed on the trunk, pelvis, or wrist, represents the most 
convenient solution in terms of usability and user-acceptance [39], [154] for long-
term monitoring. In case of multiple IMUs, the preferred location is on feet or 
shanks, which is more suitable if a high accuracy in the estimation is required, 
especially in people with gait disorders [42], [155]–[157]. Despite their large use 
and suitability for real-world applications, IMU-based approaches for gait events 
detection are indirect methods and, therefore, they cannot be considered as a 
proper reference. 

The validation of third-party devices in real-world settings requires the use of 
technologies which provide a direct measure of foot to ground contacts. Some 
works presented the use of body-worn cameras [51]–[53] for gait analysis 
applications, especially activity recognition. An example is the work from Hickey 
et al. [53], which proposed the use of a body worn camera, pointing on subject’s 

feet, as reference for the validation of a 3D accelerometer mounted on the waist. 
Experiments were performed on ten healthy subjects and were carried out in real-
world conditions, by recording the activity of the participants for one hour on two 
days. Videos were used to test the correct WBs detection and step count and the 
agreement between the two methods resulted to be excellent, as proved by the 
ICC values (0.941 for WB detection and 0.975 for step count). 

Camera-based methods could be also used for gait events detection; however 
they rely on manual labelling, which is time-consuming and is strictly linked to 
camera resolution, in addition to potential privacy issues [158].  

An adequate solution proposed in different studies is represented by 
footswitches [54], [56], [58]. Hausdorff and colleagues [56] presented a 
footswitch system for the estimation of IC and FC timings. The device included 
two footswitches connected in parallel, one placed under the anterior portion of 
the foot and the other under the heel. The algorithm was based on the initial 
identification of the local minima near the rising and falling edges. Then, each IC 
and FC was found by applying a threshold proportional to the value of the local 
minimum. Performance of the proposed method was validated against force 
platforms using data collected on ten healthy subjects with a sample frequency of 
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500 Hz. Participants were asked to walk stepping over the platforms ten times 
each at slow, comfortable and fast speed. Results from the comparison were 
computed in terms of mean errors showing a good accuracy both in ICs detection 
(0 ± 3ms) and FCs detection (-1 ± 8ms).   

As already explained in Section 2.5.2, the footswitch technology includes two 
or three sensing elements, that are activated when the foot hits the ground and 
deactivated when it is lifted. Basically, IC and FC correspond to the instants of 
activation and deactivation of one or more switches, respectively, depending on 
how they have been positioned under the foot. Despite the accuracy of some 
footswitch-based methods, as that proposed by [56], the low spatial resolution can 
affect the correct gait events detection, especially in case of atypical or 
pathological foot support [61], thus limiting the validity of footswitches-based 
methods.  

Another option is the use of plantar insoles for pressure mapping to detect 
temporal gait features by exploiting the variations in pressure values. As an 
example, the work from Catalfamo and colleagues [159] presented a method for 
the estimation of ICs and FCs, using the commercial pressure insoles F-scan 
Mobile Tekscan (sample frequency 200 Hz, 960 sensing elements). The proposed 
algorithm was based on the loaded area distribution during the gait cycle, that 
varies according to the foot portions in contact with the ground. An empirically 
set threshold was used for IC and FC detection to discard the insole areas that 
could be constantly loaded also during the swing phases. The method was 
validated using force platforms as reference. Ten healthy young subjects 
participated to the study and were asked to walk at their self-selected comfortable 
speed along a 10m path for six times, stepping over the platforms. Accuracy was 
evaluated in terms of mean absolute errors computed across all the observations 
(210 ICs and 210 FCs), which resulted to be quite low (22 ± 9 ms for IC, 10 ± 4 
ms for FC). Nevertheless, the high cost of those devices prevents them for being 
the best available solution for reference gait events detection. 

Some studies proposed the use of pressure insoles [62]–[65] with a number of 
sensors lower with respect to that of commercial devices specifically conceived 
for pressure mapping. However, the analysis was focused on temporal parameters 
other than gait events, in some cases without a proper reference [65].  

The work from Braun et al. [62] suggested the use of a commercial pressure 
insole system including 13 capacitive sensors and a triaxial accelerometer 
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(Moticon GmbH, sampling frequency 50 Hz). Twelve healthy subjects were 
involved in the experiments and performed 30 steps with the dominant leg over a 
force platform, used as reference. The authors processed the data using the 
commercially available software, following a black box approach. Moreover, the 
analysis was focused on parameters other than gait events, such as the stance time. 

Crea and colleagues [64] proposed a newly designed insole for foot pressure 
mapping during gait. The insole included 64 sensing elements and was validated 
against force platforms using data collected on two healthy subjects. Both 
participants were asked to walk along a straight path of about 10m without 
necessarily stepping on the force platform to avoid gait alterations. The task was 
repeated 15 times both at comfortable and fast speed. Validation focused on gait 
phases timings (e.g., stance and swing duration) but not on IC/FC detection. 

Martini et al. [160] presented a new pressure insole based on optoelectronic 
technology, including a total 16 sensors, for measuring foot-to-ground reaction 
forces in lower limb robot applications. Ten healthy subjects participated in the 
experiments and were asked to walk on a 10m rectilinear path stepping over the 
force platforms, used as reference. ICs and FCs were obtained from the vertical 
ground reaction force given as output by the pressure insoles, applying a threshold 
of 3N. Algorithm performance was evaluated through the median absolute error 
computed across all the detected events for both ICs (60 ± 20 ms) and FCs (40 ± 
20 ms). 

An interesting work is that from Benocci and colleagues [161], as the authors 
provided a detailed description of the proposed method to detect gait events from 
pressure insoles data, but algorithms performance was not validated against a 
reference. Another study in which pressure insoles were used is that from Roth 
and colleagues [162], but the gait events were detected through a manual labelling 
and not with the application of a proper automatic method.  

The current state of the art highlights the lack of a robust method based on an 
affordable wearable solution for gait events detection to be used as reference in 
the real-world, which is currently needed to move the validation of temporal 
parameters in unsupervised and unconstrained settings.  
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3.2 Gait assessment: from laboratory to real-world 
conditions  

Recently, several studies have been published regarding the transition from 
laboratory to real-world conditions [12], [163]–[166] to capture the proper 
mobility performance of an individual, which cannot be observed during 
standardized assessments [165]. 

The transfer of gait assessment from standardized ambulatory or laboratory 
environments to unsupervised real-world settings requires the use of wearable 
technologies, which are low-cost, low-power and minimally obtrusive [136]. 
However, the availability of the suitable technology for real-world applications is 
not sufficient alone to make this transition. In fact, the proposed method should be 
validated in conditions similar to those of end use, to verify its applicability in 
ecological settings. However, this is not possible due to the lack of a wearable 
mobile gold standard to be used for the validation of wearable devices in real-
world conditions. A system like that should be, in turn, validated against a gold 
standard system to assess its reliability as a reference. This requires the simulation 
of some of the most common circumstances encountered during everyday life. In 
addition, the method should be tested in real-world settings to establish its 
usability and the coherence of the estimated DMOs with those reported in the 
literature. As a further proof of reliability, the proposed solution should be tested 
on different populations, both healthy and pathological, to verify its applicability 
on different gait conditions. 

3.2.1 Technical validation in standardized settings 

In the last years, several wearable solutions were proposed and validated in 
standardized settings, with a focus on IMU-based approaches that exploit 
shanks/feet positioning. However, the large majority of the studies found in 
literature limits the assessment to basic motor tasks (i.e., straight walking 
patterns), which are quite far from what can be observed in real-world conditions.  

Gastaldi and colleagues [41] proposed the assessment of a method based on 
two magneto-IMUs positioned on the shanks to estimate temporal gait parameters 
(i.e., stride duration, stance duration, swing duration, double support duration and 
cadence). These outcomes were compared with those obtained from a footswitch 
system (STEP32) using the proprietary software. The experiments were carried 
out on one healthy participant who walked along a 12m rectilinear path six times 
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back and forth, repeating the task three times. The authors reported that the error 
obtained for all the parameters was < 5% of the gait cycle.  

Trojaniello et al. [42] presented a method for the estimation of gait spatial-
temporal parameters based on two magneto IMUs attached above the ankles. Data 
were collected on four different cohorts (hemiparetic, choreic, PD and healthy 
elderly), each including ten subjects. Participants were asked to walk along a 12m 
straight path back and forth for one minute both at comfortable and fast speed. 
Performance of the proposed method was validated against an instrumented mat, 
used as reference, for the following parameters computed on each cohort: gait 
events, stride duration, step duration, stance duration, swing duration and stride 
length. Authors reported very good results for all the parameters, for example they 
reported mean absolute percentage errors of 1% for stride time and  3% for stride 
length.  

The validation of the method proposed by [42] was further extended in the 
work from Bertoli and colleagues [43]. A total of 236 participants were involved 
(healthy older adults, older adults with mild cognitive impairment and PD) in the 
experiments, which followed the same experimental protocol illustrated for the 
above-mentioned study. Also in this case, the method was tested against the 
instrumented mat computing the errors on several spatial and temporal gait 
parameters. Results confirmed the accuracy of the method, with mean absolute 
errors ranging between 1% and 4% for the temporal parameters, around 2% for 
stride length and  3% for walking speed.    

Zhou and colleagues [44] validated a method based on two IMUs mounted on 
the feet from Physiolog5 system (GaitUp) using the OptoGait system as 
reference. The algorithm was based on a previous study [167] and allowed to 
compute a series of gait related parameters, including stride duration and stride 
length. Validation experiments involved five healthy participants who walked 
back and forth between the OptoGait bars for a total of 60m in three conditions 
(normal strides, short strides, long strides). The trials did not include gait initiation 
and termination as each participant was asked to start and stop walking outside the 
area delimited by the OptoGait bars. Results were reported in terms of root mean 
square errors for stride lengths (0.05m) and stride durations (0.04s) obtained over 
a total of 729 strides analyzed. 

Jakob et al. [45] tested a wearable system (Portabiles-HCT GaitLab-System) 
made of two IMUs, each integrated in the midsole shoe, against a 
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stereophotogrammetric system. The experiments involved 33 PD patients who 
were asked to walk five times along a 10m path at self-selected speed. The 
algorithm used to extract gait related parameters from the wearable system signals 
was previously validated on different populations [168]–[170]. Agreement 
between the two system was computed using the Intraclass correlation coefficient 
(ICC) and showed excellent results for stride duration (0.966), stride length 
(0.985) and walking speed (0.986). 

Although the results obtained in all studies were promising, the experimental 
protocols included only straight walk tasks, with a reduced number and variability 
of strides analyzed. The low complexity level does not reflect the heterogeneity of 
conditions that can be encountered in real-world environments, thus limiting the 
validity of the proposed methods. The limits linked to a standardized environment 
can be partially overcome including also curvilinear walking and dual-task 
conditions in the experimental protocol.  

Romijnders et al. [46] stressed this necessity in their work, regarding the 
validation of an algorithm based on shank mounted IMUs for gait events 
detection. The method was tested on three populations (elderly subjects, PD 
patients and stroke patients) using the stereophotogrammetric system as reference. 
Each subject performed the following tests: 5m straight walk, 5m slalom walk, 
walk along an elliptical path while performing a numerical test (Stroop test). 
Performance was evaluated in terms of recall and precision obtaining very good 
results (recall from 84 to 100%, precision from 95 to 100%) in all cohorts. 

Despite the higher complexity with respect to straight walking tasks, the 
introduction of curvilinear patterns and dual task walks in the experimental 
protocol is not sufficient, alone, to reproduce the heterogeneity and variability that 
characterizes daily-life environments. This further emphasizes the need for a 
greater effort in the validation of solutions specifically designed for real-world 
applications. 

3.2.2 Technical validation in real-world settings 

In the recent years, the scientific community highlighted the importance of 
moving the technical validation of gait analysis solutions in real world settings. 
Rochester and colleagues [15] stressed this point in their work, emphasizing the 
necessity of a proper validation in the same conditions of end use. This implies 
that solutions specifically conceived for real-world applications should be 
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validated in daily-life settings on the populations of interest to account for both 
intrinsic and extrinsic factors. Nevertheless, very few studies tried to address the 
challenge until now. 

A possible solution is the use of methods based on global navigation satellite 
systems to obtain reference values. In their work, Soltani and colleagues [70] used 
this approach to validate the estimation of walking speed from a wrist mounted 
sensor. Despite the low positional errors that those systems can provide [171], 
their performance depends on environmental conditions, their use is limited to 
outdoor settings [172], the temporal resolution is low and a stride-by-stride 
description is not possible [47]. Moreover, they suffer from privacy issues as the 
participant’s position can be detected [47].  

Atrsaei and colleagues [47] used feet mounted IMUs as reference to validate 
the estimated of WBs detection and walking speed obtained from a lower back 
IMU. Data collection was performed on MS patients in three sessions: 10m test, 
repeated three times in a clinical setting; unsupervised 10m test performed at 
patient’s home and repeated twelve times; real-world 6-hour recording in which 
the participant was asked to perform the usual daily living activities. The first 
session involved 35 patients, while the second and the third one was performed by 
a subset of participants (14 and 9, respectively). Compared with the reference, the 
algorithm for gait speed estimation showed mean errors of 0.00 m/s for both 10m 
test conditions and 0.02 for real-world acquisitions. The algorithm for WB 
detection, based on machine-learning techniques, reached an F1-score of 78.6%. It 
is important to recall that, as IMUs do not provide a direct measure of the 
quantities of interest, the solution adopted in this study as reference should be 
considered a silver standard, as also specified by the authors [47]. 

Storm and colleagues [48] proposed the use of pressure insoles for the 
validation of temporal parameters obtained from two different algorithms, one 
based on a single waist mounted IMU and the other on two IMUs positioned on 
the shanks. Experiments involved ten healthy participants that were asked to walk 
in four different conditions: indoor 20m walk at preferred speed, repeated eight 
times; outdoor 20m walk at preferred speed, repeated six times; indoor two 
minutes’ walk inside a university building; outdoor real-world walk of fifteen 
minutes, avoiding stairs. The DMOs computed included gait events and temporal 
parameters such as stride duration and stance duration. Results were reported in 
terms of mean absolute error, obtaining good results (0.04s for the shank method 
and 0.03s for the waist methos in case of stance duration). 
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Roth et al. [49] published a relevant study regarding the validation of an 
algorithmic pipeline based on feet mounted IMUs for gait assessment. For this 
purpose, force sensitive resistor pressure insoles were used as reference. Data 
were collected on twenty healthy subjects while walking in supervised real-world 
conditions, including level walking, stairs ascending and stairs descending at 
different speed (i.e. slow, normal and fast). Performance in the estimation of 
temporal parameters was evaluated in term of mean absolute error, that ranged 
between 0.01s and 0.03s in all cases for gait events, stride time, swing time and 
stance time.  

The present literature suggests the relevance of studies conducted in real-
world conditions for the analysis of gait performance. Nevertheless, it also reveals 
that, in the large majority of cases, the solutions employed as reference suffer 
from some limitations. IMUs can be used to estimate both temporal and spatial 
parameters, providing a complete description of gait patterns; however, temporal 
parameters are obtained through indirect methods, thus limiting their use to a 
silver standard. Conversely, pressure insoles provide a direct measure of the gait 
events and the other temporal parameters, but do not allow the estimation of 
spatial variables. These considerations reinforce the need for a system combining 
different technologies to overcome those obstacles and provide an accurate 
reference.  

3.2.3 Multi-sensor solutions for real-world gait analysis 

The use of a multi-sensor approach has been proposed in some studies [71], [72], 
[173]–[176], but only a small subset addressed the systematic validation of the 
system with respect to a gold standard.   

A preliminary work published by Li and colleagues [175] deals with the 
validation of a newly designed multi-sensor system including three force sensors, 
one IMU and four range sensors positioned on each foot. The proposed solution 
was tested against the stereophotogrammetric system using data acquired on four 
male healthy participants. The experiments were carried out indoor and included 
straight line walking along a 4m path. Among the parameters presented in the 
study, also stride length and walking speed were computed, obtaining percentage 
errors of 9.34% for stride length and 5.90% for walking speed.  

Duong et al. [71] presented a multi-sensor solution (SportSole II) which 
consists of a pressure sensitive insole with eight force resistor elements and an 
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IMUs for each foot. The system was validated with respect to an instrumented mat 
using data collected on eleven HYA. In particular, the participants were asked to 
perform tasks including different activities (e.g., level walking, stair walking, 
sitting on a chair), both in a fixed order (structured) and self-selected order 
(unstructured). Then, portion of straight and curvilinear walking on the 
instrumented mat were selected and used for the validation. A support vector 
regression algorithm was used to extract gait parameters, obtaining good results in 
terms of mean absolute errors (Structured tests: 2.97% for stride length, 3.16% for 
stride speed; unstructured tests: 3.55% for stride length, 3.59% for stride 
velocity). 

Although both studies show promising results, the validation should be 
extended to a larger sample of participants. Moreover, it should include different 
cohorts, both healthy and pathological, to establish the feasibility and robustness 
of the proposed solution on various gait patterns and walking speed ranges. In 
addition, a validation limited to straight and curvilinear walking portions is not 
sufficient, alone, to assess the applicability in real-world conditions. To this end, 
the experimental protocol should be designed ad hoc for stressing the system 
including a large variety of activities on different complexity levels, trying to 
mimic the conditions of end use.  

3.3 Gait analysis during Activities of Daily Living  

Despite the high relevance of gait analysis in unsupervised real-world settings, 
also the assessment during task-oriented acquisitions, including daily life 
activities, is of great interest. The first condition enables the evaluation of 
mobility performance, taking into account all the possible intrinsic/extrinsic 
factors linked to the individual environment; whereas the second condition can be 
useful to assess the performance during specific activities of interest, that are part 
of the protocol, and to study the effects of a treatment on the individual mobility 
through a direct comparison of two or more repetitions of the same activity. This 
can be beneficial in case of patients with neurological disorders to verify if a 
specific therapy has a significative impact on gait performance in terms DMOs 
changes and differences between right and left side [35], [164].  

There are different ways to evaluate gait performance during ADL. Several 
studies base the evaluation on clinical scales, including the modified Barthel ADL 
Index [177], [178] and other disease-specific scales [179]. However, those 
evaluation are not sufficient alone to obtain an accurate assessment. Other studies 



 

37 

 

use various technologies for a more quantitative analysis, from the traditional SP 
systems [180], [181] to the most recent wearable technologies [182]–[189], that 
allow to overcome the spatial-temporal constraints. However, the large majority 
of them is focused on outcomes different from DMOs related to gait, e.g. 
activities recognition [182]–[184], kinematic analysis [185]–[187] or 
quantification of energy expenditure [188], [189]. In addition, most of them 
include patients with diseases other than MS or healthy elderly people.  

A relevant but preliminary study is that from Chen and colleagues [38], that 
proposes a multi-sensor system for the assessment of gait during ADL, including 
a plantar pressure insole with 96 sensing elements and an IMU for each foot. The 
algorithmic pipeline, described in detail, provides up to 26 gait parameters 
comprising temporal parameters, but also gait variability and asymmetry. The 
algorithm is able to discriminate between different activities and provide the gait 
parameters for each of them. In fact, the authors highlight the importance of 
knowing the association between DMOs and activity for clinical purposes. 
Moreover, they stress the relevance of the above-mentioned parameters for an 
objective evaluation of the effectiveness of the therapy in patients with 
neurodegenerative diseases, as reported in previous studies [190]. However, the 
algorithm validation included only data acquired on healthy participants (one 
subject for temporal parameters block, ten subjects for ADL recognition block). 
Accuracy of temporal parameters block was evaluated on 20 steps using video 
recording as reference, obtaining low errors for gait events (IC 0.0 ± 14.1 ms, FC 
5.2 ± 15.5 ms) and temporal parameters (1.2 ±14.9 ms for stride duration, −3.5 ± 

15.6 ms for stance duration, 5.2 ± 8.0 ms for swing duration). ADL recognition 
block – based on a linear SVM classification model - was tested through five-fold 
cross validation including only the strides in the middle of the acquisition 
performed on the ten participants, resulting in an overall accuracy of 99.8%. 

The above-cited studies propose the ADL monitoring as a one-time evaluation 
of mobility. To the best of my knowledge, there are not studies proposing the 
assessment of gait parameters during ADL to quantify potential changes after a 
physical rehabilitation treatment, as this type of analysis is usually performed 
through standard walking tests [27]–[31]. The current literature highlights the 
need for further investigation on the efficacy of medical treatments with the aid of 
validated technologies. In this perspective, the use of a reliable wearable system to 
obtain a quantitative mobility assessment could be beneficial to support the 
clinician in the decision-making process. This can be particularly relevant in case 
of patients with neurodegenerative diseases, such as MS, in which the 
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effectiveness of the treatment is fundamental to slow down the disease 
progression [19].  
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Chapter 4 

Sensors overview  

This chapter introduces the multi-sensor system used in the present thesis, called 
INDIP (INertial module with DIstance sensors and Pressure insoles). The first 
section regards the working principles of the different sensor technologies 
integrated in the system. The second part provides a detailed description of INDIP 
hardware, including not only the sensing units, but also the other components. The 
knowledge of this fundamentals is important to understand the limitations of the 
different technologies, as also to correctly process and analyze the measured 
signals.   

4.1 Sensors working principle 

The following section provides a description of the functioning principle for the 
different types of sensors employed for this thesis work. Three sensor 
technologies – IMUs, force sensitive resistors and time-of-flight infrared distance 
sensors – were integrated in the INDIP multi-sensor system for assessing gait in 
both standardized and real-world conditions.  

4.1.1 Force sensitive resistors 

Force sensitive resistors (FSRs) represent a possible solution for the measurement 
of foot pressure, which can be used for the estimation of IC and FC events and, as 
a result, of the temporal gait parameters. FSRs work thanks to the presence of a 
material whose resistance varies with the application of a force applied in normal 
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direction with respect to the surface [191]. In particular, the resistance is inversely 
proportional to the applied force, according to a non-linear trend [192], [193]. 
Basically, a FSR is made of a polymer matrix in which conductive particles are 
immersed; this material lies between two metal electrodes [194]. To better 
understand the working principle, the overall resistance across the FSR can be 
defined as reported in [194]: 

𝑅𝐹𝑆𝑅 =  𝑅𝑏𝑢𝑙𝑘 + 2𝑅𝐶 

Where 𝑅𝑏𝑢𝑙𝑘 is the resistance of the conductive polymer deriving from the 
quantum tunneling conduction mechanism and 𝑅𝐶  is the contact resistance 
between the electrodes and the conductive particles.  

When no force is applied, the two electrodes are separated by a certain 
distance. The overall resistance is mainly due to the polymer resistance (𝑅𝑏𝑢𝑙𝑘), 
while the contact resistance (𝑅𝐶) gives a small contribution, as only few particles 
are in contact with the electrodes. Conversely, under an external force, the inter-
particle distance diminishes, thus reducing the contribution of 𝑅𝑏𝑢𝑙𝑘; moreover, 
the deformation causes a reduction in the contact resistance 𝑅𝐶. This leads to a 
decrease in the overall resistance value (Figure 4).  

Due to their thickness, FSRs are quite flexible and can be integrated into other 
devices, such as insoles or smart shoes for gait analysis application. To obtain a 
more linear trend, usually resistance is placed with conductance, for example 
using a transimpedance amplifier [195].  

Figure 4: Force sensitive resistor working principle. The application of an external force 
causes a reduction of inter-particle distance, leading to a lower Rbulk value and to a decrease of the 
overall resistance. 
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4.1.2 Inertial measurement units 

In the recent years, the introduction of technologies like micro electromechanical 
systems (MEMS) and complementary metal oxide semiconductors (CMOS) 
enabled the development of low cost, miniaturized sensors for motion tracking 
[196]. Thanks to their characteristics, those sensors can be easily integrated with 
other electronic devices, e.g. smartphones, tablets and toys, and their use is widely 
spread in different fields, including the study of human mobility. Thanks to 
MEMS/CMOS technologies, a single silicon substrate can house various sensor 
types, thus allowing the construction of MEMS IMUs [196].  

The working principle of an IMU is based on the mass/spring system. If the 
mass is subject to an external force, it undergoes a certain displacement [196]. 
According to the type of force applied, it can produce an acceleration or an 
angular rotation of the mass: the first one is well described by the principle of 
inertia, while the second one can be related to Coriolis effect. As a result, the IMU 
will measure the linear acceleration, sensed by the accelerometer [197], or the 
angular velocity of the mass, sensed by the gyroscope [198].  

The term IMU is commonly used to indicate the entire device, where the 
sensors (i.e., accelerometer and gyroscope) are combined with a dedicated circuit 
that allows to convert the output signal from analog to digital. Moreover, it 
applies a preprocessing (including for example noise removal, filtering, sensor 
stabilization over temperature) that provides the desired signal for the specific 
application [196]. 

The number of measurement axis of the sensor can vary, leading to different 
degrees of freedom. Usually, IMUs combine a 3D accelerometer and a 3D 
gyroscope (6 DOF). However, they can also include a 3D magnetometer (9 DOF) 
and in this case they are called magneto inertial measurement units (magneto-
IMUs). Even if the INDIP system includes magneto-IMUs, the magnetometer has 
not been used for the purpose of this thesis. For this reason, the following section 
will focus on accelerometer and gyroscope only.  

Accelerometer 

An accelerometer is a sensor that provides a measure of the linear acceleration. 
More precisely, it measures the proper acceleration [199], i.e. the physical 
acceleration felt by an object, which is defined as: 

𝑎𝑝 =  𝑎𝑠 − 𝑔 
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According to Mohammed and colleagues [200], an accelerometer can be 
described as a second order spring/mass/damper system, represented in Figure 5. 
If an external force (𝐹𝑒𝑥𝑡) is applied to the mass, it can be defined as: 

𝐹𝑒𝑥𝑡 = 𝑚𝑎𝑒𝑥𝑡  

While the spring and damping forces correspond to: 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘𝑥 

𝐹𝑑𝑎𝑚𝑝𝑒𝑟 = 𝑏�̇� 

 

According to Newton’s second law (𝐹 = 𝑚𝑎), which describes the 
translational motion, the sum of the forces acting on the mass is directly 
proportional to the desired acceleration of the object. In this case we have: 

𝐹𝑒𝑥𝑡 −  𝐹𝑠𝑝𝑟𝑖𝑛𝑔 − 𝐹𝑑𝑎𝑚𝑝𝑒𝑟 =  𝑚�̈� 

𝐹𝑒𝑥𝑡 =  𝑚�̈� + 𝑏�̇� + 𝑘𝑥 = 𝑚𝑎𝑒𝑥𝑡 

Figure 5: Second order spring/mass/damper system used as accelerometer 
model. 
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This means that the applied acceleration can be obtained as a function of the 
displacement. The accelerometers can be classified according to the mechanism of 
transduction of the displacement into a measurable electric signal. The most 
common technique is based on the use of a capacitor to measure the displacement 
[196], [200]. In practice, a change in displacement results in a proportional 
differential change in capacitance which is then converted in a voltage [196], 
[200]. A simplified illustration is reported in Figure 6.  

Gyroscope  

Gyroscope sensors are used to measure the angular velocity. Among the different 
working principles, gyroscopes designed according to the Coriolis effect are the 
most used in consumer-grade IMUs [201]. The Coriolis effect occurs when an 
object moves in a rotating reference frame: in this case the observer will see the 
object moving along a curvilinear trajectory, under the action of a transverse force 
(namely, Coriolis force [202]). Conversely, the same object observed from a 
stationary reference frame will result in a uniform linear motion. The Coriolis 
force is defined as: 

𝐹𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠 =  −2𝑚𝛺𝑧�̇� 

Where 𝛺𝑧 is the angular velocity around the vertical Z-axis. 

Figure 6: Working principle of a capacitive accelerometer. When an external force is 
applied, it causes a change in displacement that translates into a change in capacitance.  
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Gyroscopes based on the Coriolis effect are also called vibrating gyroscopes 
and can be schematized as a spring-mass-damper system with two degreed of 
freedom [201], [203], as shown in Figure 7: 

  

Also in this case, the forces acting on the mass can be defined according to 
the Newton’s second law in both drive and sense direction [203]: 

𝐹𝑥 = 𝑚�̈� + 𝑏𝑥�̇� + 𝑘𝑥𝑥 

𝐹𝑦 −  2𝑚𝛺𝑧�̇� = 𝑚�̈� + 𝑏𝑦�̇� + 𝑘𝑦𝑦 

This in turn means that the angular velocity can be obtained through the 
estimation of the mass displacement.  

Although there are various constructional designs, the most popular solution 
is based on the use of capacitors which can be arranged in configurations of 
different complexity levels [204], [205]. The simplest gyroscope structure (Figure 
8) comprises a proof mass attached to a substrate, driving electrodes (providing a 
constant momentum along the driving direction), sensing electrodes (providing 
the Coriolis force) and a suspension architecture made by four suspension pillars 
[201], [203]. Basically, the combined movement of driving and sensing electrodes 
causes a differential capacity change that is used to measure the Coriolis force 
and, in turn, the angular velocity. 

Figure 7: Spring/mass/damper system used to model the gyroscope.  
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4.1.3 Time-of-Flight Infrared distance sensors 

The Time-of-Flight Infrared (IR-ToF) distance sensors represent a recent solution 
for the estimation of inter-foot distance in the analysis of human movement [206]. 
The working principle (Figure 9) is based on the phase difference between the IR 
wave emitted by the sensor 𝑠(𝑡), directed to the target object, and the reflected IR 
wave detected by the sensor 𝑟(𝑡) [206], [207], defined as: 

𝑠(𝑡) =  sin(2𝜋𝑓𝑀𝑡) 

𝑟(𝑡) =  R ∗ sin(2𝜋𝑓𝑀𝑡 −  𝜑) =  R ∗ sin [2𝜋𝑓𝑀 (𝑡 −
2𝑑

𝑐
)]   

Where R is the reflection coefficient, 𝑓𝑀 is the modulation frequency of the 
two signals and 𝑐 is the speed of light [206]. 

Figure 8: Simplified architecture of a capacitive vibrating gyroscope. The external 
force causes a displacement that results in a change in capacitance.  
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The distance between the sensor and the target object is then obtained as a 
function of the phase difference [206]–[208]: 

𝑑 =
𝑐

4𝜋𝑓𝑀
𝜑 

This technology has several advantages, including the small size, the 
integration of transmitter and receiver in the same unit, the robustness to 
environmental conditions (e.g., ambient light) and the high output frequency (up 
to 50 Hz) [206]. Moreover, the low power consumption (2–5 mA) makes them 
particularly suitable for long monitoring applications.  

4.2 The INDIP system  

The INDIP (manufacturer (mfr.) 221e S.r.l. [209]) is a multi-sensor system 
including a magneto-IMU, which constitutes the motherboard, that can be 
enhanced by different sensing peripherals. Figure 10 shows a detailed picture of 
the system hardware architecture, the communication interfaces and the sensing 
peripherals (i.e., IR-ToF distance sensors and pressure insoles).  

 

 

 

 

Figure 9: IR-ToF distance sensor working principle. 
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4.2.1 Motherboard   

The motherboard is the result of a design aimed at: (i) combining motion sensing 
and processing capabilities in a single system unit with a low power consumption; 
(ii) allowing data storage thanks to an on-board memory; (iii) ensuring 
wire/wireless transmission thanks to the presence of both USB connector and 
Bluetooth Low Energy module (BLE). The motherboard has a form factor of 31 
L× 29 W× 7 H mm3 (35 L × 47 W × 19 H mm3 including case and battery, for a 
total weight of 16g). A detailed description of the architecture at the base of the 
core system functions is reported in the following. 

Processing 

The central unit of the motherboard is an ultra-low power microcontroller unit 
(STM32L433, mfr. STMicroelectronics). Based on the high-performance ARM® 
Cortex®-M4 32-bit architecture, it embeds high-speed memories (256 kB of flash 
memory and 64 kB of SRAM), a low-power real-time clock and an extensive 
range of enhanced inputs/outputs (I/Os) and peripherals. In addition, an external 
crystal (ASTMTXK, mfr. Abracon) has been connected to the microcontroller 
unit to generate time values with a higher accuracy and precision. This crystal 

Figure 10: INDIP hardware’s architecture. 
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generates a clock signal of 32.768 kHz, with a frequency stability of ±5 ppm 
(parts per million) and a deviation of only ±18ms per hour. 

Sensing 

The sensing capabilities concern the motion measurement by means of two 
different sensors which allow to obtain both inertial and magnetic data. To work 
at higher baud rates both sensors were connected to the microcontroller via serial 
peripheral Interface (SPI). 

The first sensor (LSM6DSO, mfr. STMicroelectronics) is a system-in-
package with a 3D digital accelerometer (full scale ranges ±2/±4/±8/±16 g) and a 
3D digital gyroscope (full scale ranges ±125/±245/±500/±1000/±2000 dps). The 
chip has a current draw of 0.55 mA when both sensors set to operate in high-
performance mode, and it enables always-on low-power features.  

The second sensor (LIS2MDL, mfr. STMicroelectronics) is an ultralow-
power, high performance 3D digital magnetometer with a magnetic field dynamic 
range of ±50 gauss.  

Storage 

A Quad SPI NOR flash memory (S70FL01GS, mfr. Cypress) is used for storage 
purposes. The memory is connected to the microcontroller unit via SPI and allows 
data logging up to 13 hours.  

Connectivity 

The communication with external devices, such as laptops and 
smartphones/tablets, can be performed in two different ways: via Bluetooth or via 
USB. The Bluetooth connection is provided by an easy-to-use BLE master/slave 
network processor module (SPBTLE-RF, mfr. STMicroelectronics) compliant 
with Bluetooth v4.1. The USB connection is the micro-USB 2.0 high-speed port 
which is connected to the microcontroller unit. Both solutions allow data transfer 
in both directions (read/write). 

Power management 

The system is powered by a lithium polymers battery (nominal voltage: 3.7 V; 
capacity: 155 mAh, dimension: 24 L× 20 W× 3.8 H mm3) scaled down to an 
operating volage of 3 V by means of a high efficiency step-down converter 
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(TPS62740, mfr. Texas Instruments). The battery can be recharged through the 
dedicated micro-USB connector and the process is managed by a constant 
current/voltage charger (STC4054, mfr. STMicroelectronics). Moreover, the 
micropower current fuel gauges for lithium-ion batteries (MAX17048, mfr. 
Maxim Integrated) was integrated into the board and connected to the 
microcontroller via the inter-integrated circuit protocol (I2C). 

Analog front-end 

The analog front-end comprises a negative feedback operational amplifier (gain 
equal to 6) where a voltage divider with two resistors works as voltage reference. 
Two identical amplifying stages, including an operation amplifier (AD8607, mfr. 
Analog Devices) and a multiplexer (74HC4051, NXP Semiconductors), were 
utilized to optimize the design and the management of the analog inputs (16 lines: 
one for each pressure insole sensing element). This allowed the connection of 
only 6 lines instead of 16 to the microcontroller (3 lines for each multiplexer 
allow to select up to 23 input signals). 

I/O 

The connection of external sensing peripherals is enabled by the presence of two 
communication interfaces. The first one is an 18-pin ZIF-connector mounted on 
the bottom of the motherboard, that allows the connection between the pressure 
insole and the microcontroller through an analog front-end. The second one 
consists of two 6-pin connectors that enable to manage every type of sensor 
supporting the I2C communication, in this case the IR-ToF distance sensor.  

The motherboard supplies the required power, storage and connectivity 
capabilities: this allows to include only the strictly necessary components in the 
external sensing peripherals and to minimize their form factor. 

External synchronization 

The synchronization with third-party devices is supported through an external 
equipment and can be performed in two modes: (i) Output synchronization: when 
the motherboard starts recording, it sends a signal to the external equipment using 
the ID pin of the micro-USB; (ii) Input synchronization: the motherboard starts 
the recording when it receives a signal from the external equipment on the ID pin 
of the micro-USB.  
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4.2.2 Sensing peripherals 

The sensing peripherals utilized in this thesis include IR-ToF distance sensor and 
FSR pressure insole. 

IR-ToF distance sensor 

The IR-ToF board integrates a sensor (VL6180X, mfr. STMicroelectronics) 
combining an IR emitter, a range sensor and an ambient light sensor. The range 
sensor can measure distances up to 0.2, 0.4 and 0.6 m at 50, 33, and 25Hz, 
respectively. A form factor, including the case, of 36.2 L × 25.2 W × 11 H mm3 
has been achieved, with a total weight of 4g. The sensor was fully characterized in 
[ref] taking into account different factors (e.g., target color, sensor-target distance, 
and sensor-target angle of incidence) in both static and dynamic conditions. 

FSR pressure insole 

The FSR pressure insole, with an overall thickness of 240µm includes 16 force 
sensing resistors covered with a polyester layer. Each force sensing resistor 
exhibits a resistance value which is inversely proportional to the amount of 
applied force. With the increasing applied force, the sensor resistance decreases. 
Pressure insoles are available in different sizes (EU 36-37 to 46-47) according to 
the user foot length. 

4.2.3 Firmware  

The firmware embedded on the motherboard has been implemented with the 
CubeMX hardware abstraction layer and the integrated development environment 
Atollic TrueSTUDIO® for STM32. 

The application firmware is uploaded on the main board thanks to the 
presence of a bootloader, that allows to easily update it on the microcontroller via 
USB when a new version is available (e.g., new available features, bug fixed, 
etc.). After the application firmware has been correctly started, a general check of 
the main components of the main board (i.e., inertial module, magnetometer, 
memory, BLE, battery charger, fuel gauge) and of the connected sensing 
peripherals (i.e., IR-ToF distance sensor, pressure insole) is carried out. 
According to the result of the check, the system can move to different states: 
ERROR if the check fails (red light on), from INIT to IDLE if the check is 
successful. In this state all the components, except for the BLE module, are 
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switched off to reduce power consumption. From the IDLE state, the system can 
move to three different states depending on what happens: 

1) LOG state: when the system receives the start LOG command via USB, BLE, 
or external trigger, then it starts logging data on the on-board memory. The 
data logging can be stopped through the STOP command either via USB, 
BLE, or external trigger and the system moves to IDLE. 

2) TX state: when the system receives the TX command via BLE, it starts 
streaming data via BLE. Data streaming can be stopped via BLE through the 
STOP command. Streaming is not possible if the system is connected via 
USB.  

3) READOUT state: when the system receives the READOUT command and the 
information about the recording to read, it starts transmitting the recorded data 
from the on-board memory. When all data have been sent or when the read 
timeout has expired, the system returns to the IDLE state. 

Finally, the system moves to STANDBY when the button has been pressed 
and hold for at least 7s or the SHUTDOWN command has been sent by the user. 
Additional details on INDIP system firmware can be found in the supplementary 
material in [210]. 

4.2 INDIP system gold standard configuration 

The INDIP system can be used in different configurations thanks to its 
modularity. For the purpose of this thesis, it was used in its gold standard 
configuration. In practice, it included: 

• Three magneto-IMUs, with full range scale set to ± 16 g for the 
accelerometer and ± 2000 dps for the gyroscope. 

• Two IR-ToF distance sensors with range set to 0.2 m at 50 Hz. 
• Two FSR pressure insoles of appropriate size. For this study, one small 

size (EU 36–37) and one large size (EU 42–43) have been used. 

Of the three magneto-IMUs, two were positioned over the instep and fixed to 
the shoelaces using custom-made clips. The third magneto-IMU was positioned 
on the lower back through an elastic Velcro belt. One IR-ToF distance sensor and 
one FSR pressure insole were connected to each of the feet magneto-IMUs via 
cable. The pressure insoles were selected according to subject’s foot size and 
inserted between the insole and midsole of the shoes. The distance sensors were 
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fixed to the shanks using Velcro straps, both pointing medially. In particular, they 
were positioned asymmetrically (one just above the left ankle and the other about 
3 cm higher on the right side) to avoid mutual interferences. Figure 11 shows the 
INDIP system gold standard configuration and its positioning. 

 

 

 

 

Figure 11: INDIP gold standard configuration and subject positioning 
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Chapter 5 

Gait events detection from pressure 
insoles  

This chapter reports the abstract of the contribution regarding the development of 
an algorithm for gait events detection based on pressure insoles data [211]. The 
full-length paper is reported in Appendix A. 

5.1 A method for gait events detection based on low 
spatial resolution pressure insoles data 

Salis, F. et al.: A method for gait events detection based on low spatial 
resolution pressure insoles data. In: Journal of Biomechanics, 127(2), 2021, p. 
110687. 

Abstract 
The accurate identification of initial and final foot contacts is a crucial 
prerequisite for obtaining a reliable estimation of spatial-temporal parameters of 
gait. Well-accepted gold standard techniques in this field are force platforms and 
instrumented walkways, which provide a direct measure of the foot-ground 
reaction forces. Nonetheless, these tools are expensive, non-portable and restrict 
the analysis to laboratory settings. Instrumented insoles with a reduced number of 
pressure sensing elements might overcome these limitations, but a suitable 
method for gait events identification has not been adopted yet. The aim of this 
paper was to present and validate a method aiming at filling such void, as applied 
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to a system including two insoles with 16 pressure sensing elements (element area 
= 310 mm²), sampling at 100Hz. Gait events were identified exploiting the sensor 
redundancy and a cluster-based strategy. The method was tested in the laboratory 
against force platforms on nine healthy subjects for a total of 801 initial and final 
contacts. Initial and final contacts were detected with low average errors (about 20 
ms and 10 ms, respectively). Similarly, the errors in estimating stance duration 
and step duration averaged 20 ms and less than 10 ms, respectively. By selecting 
appropriate thresholds, the method may be easily applied to other pressure insoles 
featuring similar requirements. 
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Chapter 6 

Development and validation of a 
pipeline based on a multi-sensor 
system for real world gait analysis.  

This chapter describes the work relative to the development and validation of a 
pipeline based on the use of a multi-sensor system (INDIP) for analyzing gait in 
real-world. The first part regards the design of the algorithmic pipeline, including 
the identification of the sensors suitable for the computation of each DMO and the 
project of algorithm workflow. The second part reports the abstract of the paper 
about the validation of INDIP-based algorithm on both healthy and pathological 
cohorts, with a focus on Walking bout level DMOs. The full-length paper is 
reported in Appendix B. The third section illustrates the results obtained from the 
validation of INDIP system considering stride level DMOs on the same dataset. 

6.1 Design of the algorithm pipeline 

The gait-related parameters of interest have been chosen by the Mobilise-D 
consortium in accordance with the granularity levels that can be exploited in a 
real-world context. The DMOs, including the most traditional spatial and temporal 
parameters but also the concept of Walking Bout, have been introduced in Section 
2.4. Knowing the DMOs of interest allows to understand which variables are 
needed for their estimation, which is a fundamental prerequisite for the pipeline 
construction. In particular, a complete description of gait with the DMOs 
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previously describes, calls for the estimation of both temporal (i.e. feet contacts) 
and spatial (i.e. feet displacement) variables.   

To establish how to extract the variables useful for DMOs estimation and how 
to integrate the information provided by the different INDIP sensors, the macro 
problem was divided into sub-problems, as depicted in Figure 12.  

The first step is the dynamic activities recognition, for which the lower back 
IMU is used together with the feet mounted IMUs. The second step is the 
identification of feet contacts: to do that, both PI and feet mounted IMUs are used, 
exploiting the redundancy of the system to minimize the number of missed events. 
The following step is the spatial description of both feet in terms of displacement; 
in this sense, the most reliable approach is based on the use of feet mounted 
IMUs. The steps computed till now allow the estimation of temporal and spatial 
variables that are used to define the strides. At this stage, distance sensors are 
employed as stride counters for an additional check on the correct strides 
detection. Having all the information, it is possible to construct the WB in 

Figure 12: Workflow for the identification of the optimal sensor for each subproblem 
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accordance with its definition. Turning maneuvers within a WB are identified 
through the use of the lower back IMU. Finally, all the relevant DMOs are 
extracted within each WB. Starting from the segmentation in subproblems, the 
algorithm flow for the estimation of spatial and temporal DMOs was defined. A 
detailed description of INDIP algorithm is reported in [210]. 

6.2 A multi-sensor wearable system for gait assessment in 
real-world conditions: performance in individuals with 
impaired mobility 

Salis, F. et al.: A multi-sensor wearable system for gait assessment in real-
world conditions: performance in individuals with impaired mobility. 
Submitted to: Frontiers in Bioengineering and Biotechnology. 

Abstract 

Accurately assessing people's gait, especially in real-world conditions and in case 
of impaired mobility, is still a challenge due to intrinsic and extrinsic factors 
resulting in gait complexity. To improve the estimation of gait-related digital 
mobility outcomes (DMOs) in real-world scenarios, this study presents a wearable 
multi-sensor system (INDIP), integrating complementary sensing approaches (two 
plantar pressure insoles, three inertial units and two distance sensors). The INDIP 
technical validity was assessed against stereophotogrammetry during a laboratory 
experimental protocol comprising structured tests (including continuous 
curvilinear and rectilinear walking and steps) and a simulation of daily-life 
activities (SDA, including intermittent gait and short walking bouts). To evaluate 
its performance on various gait patterns, data were collected on 128 participants 
from seven cohorts: healthy young and older adults, patients with Parkinson's 
disease, multiple sclerosis, chronic obstructive pulmonary disease, congestive 
heart failure, and proximal femur fracture. Moreover, INDIP usability was 
evaluated by recording 2.5-hours of real-world unsupervised activity. Excellent 
absolute agreement (ICC > 0.95) and very limited mean absolute errors were 
observed for all cohorts and DMOs (cadence ≤ 0.61 steps/min, stride length ≤ 

0.02 m, walking speed ≤ 0.02 m/s) in the structured tests. Larger, but limited, 

errors were observed during the SDA (cadence 2.72-4.87 steps/min, stride length 
0.04-0.06 m, walking speed 0.03-0.05 m/s). Neither major technical nor usability 
issues were declared during the 2.5-hours acquisitions. Therefore, the INDIP 
system can be considered a valid and feasible solution to collect reference data for 
analyzing gait in real-world conditions. 
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6.3 Validation of stride-level DMOs and gait events 
timings 

An approach analogous to what described in [210] was adopted to perform a 
stride-level validation of INDIP system performances against the 
stereophotogrammetric system. In this context, the following DMOs were 
considered: 

• Stride duration 

• Swing duration 

• Stance duration 

• Stride length 

• Swing length 

• Stance length 

• Stride speed 

In addition, also IC and FC timings were included, since their validation 
follows an approach similar to that used for stride level DMOs. This section 
describes the procedure followed for stride-level DMOs and gait events 
validation, including the metrics description, the presentation of the results and 
their discussion. Further details about the experimental setup, protocol, 
participants and the algorithm pipeline can be found in [210]. 

Statistical analysis  

The INDIP outputs obtained from the laboratory acquisitions were compared with 
those obtained from the SP system. Also in this case, the analysis was conducted 
separately for the structured tests and the simulated daily activities (SDA) test. 
While for the structured tests a 1:1 correspondence between WB and trial is 
expected, for simulated daily activities test a single trial can correspond to more 
WBs, as this type of test also includes pauses and other activities different from 
gait [212]. The here-presented analysis takes into account only the WBs detected 
by both the systems (matching WBs). For each matching WB, the IC and FC 
identified by both the systems were selected by applying a tolerance window of ± 
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0.25 s around the INDIP event and by selecting the closest SP event within that 
interval. A similar approach was adopted to match the strides but, in this case, a 
necessary condition to find the correspondence was the matching of the ICs 
defining the start and stop timings of the considered stride.  

The analysis was performed by aggregating the DMOs values, computed for 
each stride (or for each gait event, in case of IC and FC timings) of the considered 
WB, at cohort level. For sake of brevity, the aggregation procedure will be 
explained only for stride level DMOs, but it is performed in the same way for gait 
events. For example, considering a cohort composed by N subjects, the i-th 
subject performs several trials corresponding to a number of WB equal to 𝑚𝑖 and 
for the j-th WB the number of strides is equal to 𝑠𝑗. The total number of stride-
level DMOs for the cohort of interest is then: 

𝑆 =  ∑ ∑ 𝑠𝑗

𝑚𝑖

𝑗=1

𝑁

𝑖=1
 

For each DMO, mean and standard deviation (STD) values were computed 
for both INDIP and SP measures over the S observations, equal to the total 
number of strides obtained for a given population (𝐷𝑀𝑂̅̅ ̅̅ ̅̅

�̅�𝑃, 𝐷𝑀𝑂̅̅ ̅̅ ̅̅ ̅
𝐼𝑁𝐷𝐼𝑃, 

STD(𝐷𝑀𝑂𝑆𝑃), STD(𝐷𝑀𝑂𝐼𝑁𝐷𝐼𝑃). 

Moreover, for each DMO, errors (𝐸𝑘) and relative errors (𝐸%𝑘) for the k-th 
stride were computed as: 

𝐸𝑘 = 𝐷𝑀𝑂𝐼𝑁𝐷𝐼𝑃,𝑘 − 𝐷𝑀𝑂𝑆𝑃,𝑘 

𝐸%𝑘 =  
𝐷𝑀𝑂𝐼𝑁𝐷𝐼𝑃,𝑘 − 𝐷𝑀𝑂𝑆𝑃,𝑘

𝐷𝑀𝑂𝑆𝑃,𝑘
 

Were 𝐷𝑀𝑂𝑆𝑃,𝑘 and 𝐷𝑀𝑂𝐼𝑁𝐷𝐼𝑃,𝑘 are the DMO values obtained for the INDIP 
system and the SP system, respectively, for the k-th stride with 𝑘 = 1: 𝑆. 

Median value, median absolute value and interquartile range value of the 
errors were computed over the S observations obtained for the relevant cohort to 
describe performance in terms of bias, accuracy and precision. Mean value and 
mean absolute value were also computed to allow the comparison with previous 
studies. 
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Results 

For the stride-level analysis, 119/128 participants were taken into account, 
applying the same exclusion criteria explained in the INDIP validation paper 
[210]. As in the WB analysis, also in this case it was necessary to check the trials 
having gaps longer than 0.5 s in a foot marker trajectory from the SP data. Those 
gaps affected 44 subjects in at least one trial, for a total of 129 trials with gaps to 
be checked. In particular, the strategy for gaps check was based on the error 
distribution obtained from the trials without gaps. The 75th percentile of that 
distribution was considered as a threshold T to discard potential outliers, i.e. 
DMOs with errors higher than T, belonging to the distribution of errors obtained 
from the trials without gaps. This procedure allowed to minimize the number of 
strides/gait events discarded, as it considers the single values separately and not at 
the entire trial. In total, 335 strides, 278 IC, 201 FC were discarded from 
structured tests; while 211 strides, 277 IC, 182 FC were discarded from the SDA 
test. Overall, 12773 strides, 14989 IC, 12787 FC were analyzed for the structured 
tests and 3225 strides, 4180 IC, 3114 FC for the SDA test. These values are 
reported in detail in Table 1. 

Table 1: Number of analyzed strides, IC and FC in laboratory (Structured tests and SDA test)  
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The results obtained from the comparison of INDIP and 
stereophotogrammetric systems are reported in Table 2 for the structured tests and 
in Table 3 for the SDA test. For each cohort and relevant DMO, descriptive 
statistics (M and STD) of the relevant stride-level DMOs values obtained from 
INDIP and stereophotogrammetric system are reported. In addition, the following 
metrics were reported: mean error, mean absolute error and relative percentage 
values (ME, MAE, ME%, and MAE%); median error, median absolute error and 
relative percentage values (MDE, MDAE, MDE%, and MDAE%); interquartile 
range error and relative percentage value (IQRE and IQRE%). 

Structured tests 

Considering the results obtained from all cohorts, the structured tests show 
MDE% between -4.25% and 2.08% and ME% between -4.40% and 3.71% for all 
DMOs except for stance length, were small biases (MDE -0.01 and ME 0.01) lead 
to high percentage errors (MDE% up to -11.14% in MS, ME% up to 14.28% in 
HOA). In case of IC, FC and temporal parameters, both mean and median 
absolute errors show low values in all cohorts (MAE and MDAE  0.04s for IC 
and FC timings, stride duration, swing duration and stance duration). Also for 
spatial parameters the errors are limited (MDAE  0.04m for stride length and 
swing length,  0.03m for stance length; MAE  0.05m for stride length, swing 
length and stance length). A similar trend can be noticed for walking speed, with 
slightly larger, but still limited MAE ( 0.05 m/s) compared to MDAE ( 0.04 m/s) 
for all cohorts. Percentage errors are enough content for all DMOs (MDAE%  
1.23% for stride duration, lower or around 4% for stance duration, stride length 
and walking speed,  4.43% for swing length) except for swing duration (up to 
7.32% in PFF) and stance length (up to 24.60% in MS). 

SDA test 

Also the SDA test shows good results across the different cohorts. The MDE% is 
between -5.26% and 2.51%, while the ME% -1.09% and 5.68%. Only for stance 
length we reach higher percentage values with biases between -0.01 m and 0.01 m 
for both MDE and ME (MDE% up to -8.43% in PFF, ME% up to 34.35% in 
HOA). The median absolute error shows low values in all cohorts for the temporal 
DMOs and IC/FC timings (MDAE  0.03s for IC and FC,  0.02s for stride 
duration,  0.04s for swing duration and stance duration; MAE  0.03s for IC and 
stride duration). Slightly larger errors were observed in case of MAE for stance 
duration and swing duration ( 0.08s) as also for FC timings ( 0.06s). Also errors 
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in spatial parameters and walking speed are limited for the SDA test (MDAE  
0.04m for swing length and stance length;  0.05m for stride length;  0.03 m/s 
for walking speed). As for the temporal parameters, also in this case MAE are 
slightly higher ( 0.07m for stride length,  0.05m for swing length,  0.05m/s for 
walking speed,  0.04m for stance length). Percentage errors are  6% for almost 
all DMOs and cohorts, except for swing duration (up to 10.00% for PFF) and 
stance length (up to 30.68% for HOA) which show higher values.  
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Table 2: Comparison between INDIP and SP system for IC, FC and relevant stride-level 
DMOs (structured tests) 
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Table 3: Comparison between INDIP and SP system for IC, FC and relevant stride-level 
DMOs (SDA test) 
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Discussion 

Results obtained on stride-level parameters confirm the reliability of the INDIP 
system in assessing gait, as already established in [210]. As expected, stride-by-
stride errors are slightly larger with respect to those computed at WB level, as also 
with respect to previous studies [42], [43] from which INDIP algorithms were 
derived and optimized. For example, MAE for average stride length was 0.03m for 
structured tests and 0.05m for SDA test; while in this case we have a MAE on 
stride length of 0.05m for structured tests and 0.07m for SDA test due to the 
different type of aggregation. Despite this, results are very encouraging, also 
considering the higher complexity level reached in the experimental protocol and 
the good performance on all cohorts. This can be easily noticed comparing the 
INDIP results with those obtained in previous studies. 

The work from Storms and colleagues [48] reported an average absolute error 
of 0.04 s on stance duration obtained from two shank mounted IMU using data 
collected on ten healthy participants while performing straight and curvilinear 
walking. The INDIP system showed a MAE of 0.03s in healthy cohorts (YHA and 
HOA), as also in COPD and CHF, and 0.04s in the remaining cohorts (PD, MS, 
PFF) for stance duration computed from structured tests. On the other side, the 
work from Roth et al. [49] showed a low MAE for stance duration (0.02s level 
walking, 0.03s ascending stairs, 0.02s descending stairs) during supervised real-
world conditions on healthy participants. This result is comparable to what 
obtained for the INDIP system during structured tests (0.03s in YHA and HOA). 

Li and colleagues [175] presented the results obtained on healthy participants 
in terms of stride length and stride speed on straight walk (MAE% 9.34% and 
5.90%, respectively). Looking at the structured tests, the INDIP showed better 
performance (MAE% 4.57% for stride length, 4.73% for stride speed in YHA). 
Lower errors were reported by Duong et al. [71] (MAE% structured session: 
2.97% for stride length and 3.16% for stride velocity; MAE% unstructured 
session: 3.55% for stride length and 3.59% for stride velocity) but performance 
was validated only on selected gait portions (i.e., when the subject was walking on 
the instrumented walkway) and not on the entire task.  

In general, the INDIP method shows promising results for what concerns the 
stride-level analysis, bearing in mind the complexity of the designed protocol 
[212] [213], both in terms of tasks and participants included.  
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Chapter 7 

Quantification of gait changes after 
physical rehabilitation in people 
with multiple sclerosis during 
Activities of Daily Living 

This chapter regards the use of INDIP system to extract gait-related variables and 
quantify gait changes in patients with MS during ADL, performed before and 
after physical rehabilitation. First, the experimental setup and protocol are 
described, together with the population participating in the study. Then, results 
obtained from the explorative analysis on INDIP system outcomes are presented 
and commented. 

7.1 Materials and methods 

Experimental setup 

Each participant was equipped with the INDIP system in its gold standard 
configuration (described in Section 4.2). In addition, three INDIP magneto-IMUs 
were positioned on head, left wrist and right wrist, respectively. Only the sensors 
belonging to the gold standard configuration were used for the purposes of the 
present study; however, the additional INDIP magneto-IMUs were used in other 
works. 
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Experimental protocol 

Experiments were conducted at the Department of Biomedical Sciences of the 
University of Sassari (Italy) as part of a project financed by the FISM 
(Federazione Italiana Sclerosi Multipla) society. The protocol included a 
supervised ADL acquisition comprising the following tasks: 

• Wash the floor: typical housework simulation. 
i. Starting from the sitting position, stand up and take the bucket 

filled with water and put the detergent inside; 
ii. Dip the floor rag into the bucket and put it under the scrubber to 

wash the floor; 
iii. Dip again the floor rag into the bucket to clean it; 
iv. Wring out the floor rag and put it under the scrubber to dry the 

floor; 
v. Put the floor rag into the bucket and go to the sitting position. 

• Transfer light: move from one room to another on the same floor. 
i. Starting from the sitting position, stand up and walk from room A 

to room B along a 20m distance; 
ii. Go back from room B to room A and return in sitting position.  

• Do the laundry: laundry progress simulation. 
i. Starting from the sitting position, stand up and select garments 

from the washing basket; 
ii. Put the garments inside the washing machine; 

iii. Remove the garments from the washing machine at the end of the 
wash cycle; 

iv. Spread the garments on the clothes horse to let them dry; 
v. Go to the sitting position. 

• Meal management: from table setting to meal consumption. 
i. Starting from the sitting position, stand up and set the table with 

the necessary crockeries (1 plate, 1 knife, 1 fork, 1 spoon, 1 glass); 
ii. Serve the sandwich on a plate on the table; take the bottle and fill 

the glass with water; 
iii. Sit down and eat; 
iv. Stand up, remove all the items and clear the table; 
v. Go back to sitting position. 
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• Clean surfaces: housework simulation. 
i. Starting from the sitting position, stand up and take the rag and the 

detergent; 
ii. Spray the detergent on the surface of the table and clean it, moving 

around the table; 
iii. Spray the detergent on the other surface of the kitchen floor and 

clean it, moving all the stuff upon the floor; 
iv. Go back to sitting position. 

• Climb stairs: move from one place to another doing stairs. 
i. Starting from the sitting position, stand up and go to the stairs; 

ii. Walk up the stairs (two floors) at self-selected speed; 
iii. Turn on the landing and go back downstairs at self-selected speed; 
iv. Return to sitting position. 

Each participant was asked to execute the ADL in two sessions: the first one 
performed before the physical rehabilitation treatment and the second one 
performed after the treatment.   

Participants  

The experiments involved 20 patients affected by MS (inclusion criteria: EDSS  
6.5, no cognitive impairments) and are still in progress. All participants provided 
written informed consent before taking part to the study. A subset of 9 participants 
was included in the present study (1 male/8 females, 48.89±11.36 years old, 
EDSS 3.33±1.90). 

7.2 Data processing and analysis 

Data collected on the MS participants were manually segmented in the different 
ADL activities thanks to the annotations provided by the operators regarding the 
start and end of each activity. Then, each activity interval was processed with the 
INDIP system pipeline [210] to extract gait related variables (see Chapter 6 for 
more details). In particular, the following DMOs were computed for each subject 
and every ADL activity: 

• Stride duration 

• Stance duration 

• Swing duration 
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• Stride length 

• Stance length 

• Swing length 

• Stride speed 

In addition, two secondary outcomes were computed for each of the above-
listed DMOs, i.e. gait variability and gait symmetry. Mean and standard deviation 
values were computed, for each primary DMO and activity, at group level, 
aggregating the values obtained from all the subjects. Also the secondary 
outcomes were reported in terms of mean and standard deviation obtained from 
the aggregation of the same DMO (e.g. gait variability or gait symmetry) across 
subjects. 

Statistical analysis was performed for each DMO and activity: after verifying 
the normality of each distribution using Shapiro-Wilk test, either paired t-test or 
Wilcoxon signed rank test was performed to assess the presence of statistically 
meaningful differences between the two sessions, before and after the treatment. 

7.3 Results 

Table 4 reports the mean and standard deviation for the primary and secondary 
DMOs in each ADL activity for both experimental sessions. Table 5 shows the 
results of the statistical analysis in terms of p-values obtained from the 
comparison of the two sessions for each DMO and activity.  

7.4 Discussion 

As reported in Table 5, no meaningful statistical differences were observed in 
gait symmetry for all the DMOs and activity; whereas a significant difference was 
observed in stride speed gait variability for transfer light task. Concerning the 
primary DMOs, meaningful differences from the statistical point of view were 
observed in stride duration for the laundry task, stride length and swing length 
(laundry and clean surface tasks) and stride speed (wash floor, laundry and clean 
surface tasks). Looking at the values of those DMOs (Table 4), in the cases 
reporting a statistical difference, it is possible to notice a decrease in stride 
duration (change of -0.09s on average) and an increase in stride length (change of 
0.10-0.17m on average), swing length (change 0.10-0.16m on average) and stride 
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(change of 0.07-0.17 m/s on average) from the first ADL session (before 
treatment) to the second ADL session (after treatment). The here obtained results 
are in line with those presented in previous studies, in which the effectiveness of a 
physical treatment was evaluated looking at the variation of gait parameters 
during standard straight walking trials [31]–[33]. This suggests the suitability of 
the proposed system for detecting changes in DMOs related to gait. However, the 
statistical significance of the differences is not sufficient, alone, to consider the 
changes as clinically meaningful for patients, as it is necessary to look also at the 
magnitude of changes [31]. For example, Learmonth and colleagues [214] 
reported that a change of 20% in stride speed in the six-minute walk test can be 
clinically meaningful. In this study, percentage changes > 20% were obtained for 
the cases reporting a statistical difference (changes in stride speed 21-50% on 
average for Laundry, Clean Surface and Wash Floor). Conversely, no values for 
clinically meaningful change are reported in literature for the other DMOs (i.e., 
stride length, stride duration and swing length). The stride speed gait variability in 
the transfer light task shows values which are higher for the session after the 
treatment with respect to the first session. Some studies suggest a directly 
proportional relation between the gait variability and the severity of the 
impairment [190], [215], meaning that an effective medical treatment should lead 
to a decrease of the gait variability. However, other studies highlighted the 
difficulty in interpreting gait variability [37], which can assume both low and high 
values in elderly or diseased people depending on factors such as age, gender and 
walking speed. Therefore, those results should be further explored through the 
comparison with a control group to provide reference values for the extracted 
DMOs, which is currently missing.  

An important limit of the present study is the low number of participants 
involved: this number should be increased to improve the robustness of the 
analysis and to test the effective outcomes relevance. It is also relevant to notice 
that the subjects involved had a relatively low impairment (EDSS 3.33 on 
average) and the increase in the number of participants would allow to perform an 
analysis stratification by disease severity.  
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Table 4: Mean and standard deviation (STD) values obtained for primary DMOs (Value) and 
secondary DMOs (gait variability and gait symmetry) for each ADL activity performed in the two 
sessions. 
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Table 5: P-values obtained from the statistical analysis for primary DMOs (Value) and 
secondary DMOs (gait variability and gait symmetry) for each ADL activity. Significant p-values 
are indicated in bold. 
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Chapter 8 

Conclusion 

The present thesis aims at making new advances in the field of gait analysis in 
real-world conditions. New solutions based on wearable technologies to be used 
as reference and extract technically valid DMOs for the validation of third-party 
devices were proposed. In addition, the same solutions were adopted as a mobile 
gait laboratory to enable a complete assessment of gait during supervised ADL in 
people with MS and try to evaluate the efficacy of a rehabilitation treatment 
without the limitations imposed by the most traditional technologies.   

For this purpose, three main works were presented. The first one regards the 
development and validation of a new algorithm for accurate gait events detection 
based on wearable low-cost pressure insoles data [211]. The proposed method was 
tested on nine healthy participants against force platforms in a laboratory setting.  
The low errors obtained in IC and FC detection demonstrated that the combination 
of low-cost PI and a specifically developed algorithmic pipeline are a valid 
wearable solution for the estimation of reference gait events and temporal DMOs. 
In addition, the proposed method represents a good compromise between more 
complex and expensive solutions (e.g. pressure mapping insoles) and foot-switch 
systems. Thanks to the cluster-based approach, the algorithm can be easily 
adapted to different PIs with a sufficient number of sensing elements. This study 
has some limitations regarding the validation of the proposed method on healthy 
subjects and straight walk only, that require further investigation to be overcome.  

The above-mentioned low-cost PIs were then integrated in a multi-sensor 
wearable system (INDIP) in combination with three IMUs positioned on feet and 
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lower back plus two distance sensors to enable a complete gait assessment in real-
world conditions. To this end, a specific pipeline based on state-of-the-art 
algorithms that exploits sensors redundancy was designed to extract relevant 
DMOs. The INDIP system was validated against the SP system on seven cohorts 
of participants, including healthy (HYA, HOA) and pathological (PD, MS, CHF, 
COPD, PFF) subjects, while performing a complex experimental protocol. The 
same system was employed in 2.5h real-world acquisitions. The second 
contribution entails the INDIP system validation and reports the good results 
obtained for WB-level DMOs [210] In addition, results obtained for the stride-
level DMOs were reported and discussed in the present thesis. The validation 
proved that the INDIP system is a reliable wearable solution that can be used as 
reference and enables an exhaustive gait assessment in ecological settings.  

The use of the INDIP system as a mobile gait laboratory was further explored 
within the third work, where the system was employed to extract useful gait 
DMOs in people affected by MS. Participants to the experiments were asked to 
wear the sensors while performing supervised ADL before and after a 
rehabilitation treatment. For both sessions, temporal and spatial parameters of gait 
were extracted, together with two secondary parameters to quantify variability and 
symmetry of the primary DMOs. Differences in the estimates before and after the 
treatment were assessed through a statistical analysis aiming at identifying 
statistically meaningful differences. Results showed that some gait parameters, 
including stride duration, stride length, swing length and stride speed report 
significant differences which might be linked to the physical rehabilitation 
treatment. However, this work should be extended to a larger number of 
participants to confirm these preliminary results and a control group should be 
involved to have reference data and correctly interpret DMOs variation. Despite 
those limitations, the INDIP system proved to be a suitable solution for this kind 
of applications. 

In conclusion, the work presented in this thesis demonstrated the 
enforceability of wearable solutions for the characterization of gait in real-world 
conditions. The proposed methods were validated against a laboratory reference to 
assess their accuracy both in healthy and pathological participants according to a 
structured experimental protocol. In addition, the same methods were exploited in 
a different application to investigate the clinical utility of the extracted DMOs and 
try to provide a concrete support to clinicians.  
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Appendix 

A. A method for gait events 
detection based on low spatial 
resolution pressure insoles data. 
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a Department of Biomedical Sciences, University of Sassari, Sassari, Italy 
b Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Sassari, Italy 
c Insigneo Institute and Department of Mechanical Engineering, University of Sheffield, Sheffield, UK 
d Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy   

A R T I C L E  I N F O   

Keywords: 
Gait analysis 
Wearable sensors 
Pressure insoles 
Locomotion 
Gait events 

A B S T R A C T   

The accurate identification of initial and final foot contacts is a crucial prerequisite for obtaining a reliable 
estimation of spatio-temporal parameters of gait. Well-accepted gold standard techniques in this field are force 
platforms and instrumented walkways, which provide a direct measure of the foot–ground reaction forces. 
Nonetheless, these tools are expensive, non-portable and restrict the analysis to laboratory settings. Instrumented 
insoles with a reduced number of pressure sensing elements might overcome these limitations, but a suitable 
method for gait events identification has not been adopted yet. The aim of this paper was to present and validate 
a method aiming at filling such void, as applied to a system including two insoles with 16 pressure sensing el-
ements (element area = 310 mm2), sampling at 100 Hz. Gait events were identified exploiting the sensor 
redundancy and a cluster-based strategy. The method was tested in the laboratory against force platforms on nine 
healthy subjects for a total of 801 initial and final contacts. Initial and final contacts were detected with low 
average errors of (about 20 ms and 10 ms, respectively). Similarly, the errors in estimating stance duration and 
step duration averaged 20 ms and <10 ms, respectively. By selecting appropriate thresholds, the method may be 
easily applied to other pressure insoles featuring similar requirements.   

1. Introduction 

The gait cycle represents the functional element of walking, tradi-
tionally identified by the initial contact (IC) of the foot with the ground 
and the following IC of the same foot (Della Croce et al., 2018; Whittle, 
1993). A direct approach to detect these gait events (GEs) is by using 
force platforms (FPs) and instrumented walkways. These provide a 
direct measure of forces resulting from the foot–ground interaction, thus 
representing a gold standard for GEs detection. However, both devices 
are non-portable, expensive and require an appropriate laboratory 
environment, therefore constraining the analysis to few strides and/or 
straight walks (Adkin et al., 2000). Moreover, laboratory analysis only 
allows for the assessment of walking capacity, which should ideally be 
complemented with continuous daily living measures of mobility per-
formance to obtain a thorough assessment (World Health Organization, 
2007; Rochester et al., 2020). In this perspective, wearable inertial 
measurement units (IMUs) are the key to enable gait analysis in real- 

world scenarios as GEs can be identified from the accelerations and 
angular velocities signals recorded by two units attached to the ankles/ 
feet (Mariani et al., 2012; Trojaniello et al., 2014). However, being the 
latter an indirect method, processing algorithms performance may be 
affected by errors, and it should, therefore, be regarded as a silver 
standard solution. 

Foot switches are an effective alternative to estimate GEs and their 
use has been explored in several studies over the last decades (Agostini 
et al., 2013; Bae et al., 2011; Hausdorff et al., 1995; Kong et al., 2009; 
Skelly et al., 2001). The foot switch technology, however, generally 
includes only two or three sensing elements, which require a proper 
positioning under the foot. Due its low spatial sensor resolution, the 
approach does not allow to identify the specific area of the sole-ground 
contact and, in turn, it may also affect the GEs temporal resolution. This 
is even more true in case of pathological gait (i.e., pronation, supination, 
equine gait, foot drop, shuffling children with cerebral palsy), for which 
few sensors are not sufficient (Smith et al., 2016). Another attractive 
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option is represented by plantar pressure insoles, based on different 
technologies and sensors configurations (e.g., Tekscan® F-Scan® Sys-
tem; Novel® Pedar® System, etc.). However, these devices are specif-
ically conceived for high-resolution pressure mapping applications and 
generally include a dense grid of sensors (from 99 to 960 sensing ele-
ments) which inevitably lead to higher costs and complexity in terms of 
data management and reading, but which are not strictly necessary for 
simple GEs estimations. 

In this study we propose an original method for GEs detection, based 

on the use of instrumented insoles, each including only sixteen force- 
sensing resistor elements (pressure insoles, PIs). The implemented al-
gorithm exploits the number of sensors by using a cluster-based 
approach to describe foot–ground contacts in a finer way and avoid 
missed and extra GEs, providing information about foot positioning. The 
method was tested against FPs in the laboratory using data collected on 
healthy subjects. 

2. Methods  

A. System Description and GEs algorithm 

Two plantar PIs (mod. YETI, 221e S.r.l., Padua, Italy; 16 sensing 
elements; element area = 310 mm2; fs = 100 Hz; ground reaction force 
threshold = 5 N) were used in this study, with a design similar to that 
adopted by Ciniglio et al. 2021. Each sensing element is constituted by a 
force sensing resistor, exhibiting a resistance value inversely propor-
tional to the applied force. The output is expressed as voltage (full-scale 
voltage value VFS = 2.8 V). Each pressure insole is connected to a central 
processing unit, which also includes a magneto-IMU (Fig. 1) that is not 
used for this study. Data is recorded by an ultra-low-power microcon-
troller and stored in an on-board flash storage. 

The PI signals processing algorithm is described by the following 
steps (Fig. 2):  

(i) Pre-processing. 

PI signals are normalised with respect to VFS, expressed in normal-
ised units (nu), and then filtered using a 5-points non-linear median 
filter to have a smoothing effect while enhancing edges (Stork et al., 
2003);  

(ii) Detection and selection of instants of rising and falling edges. 

Fig. 1. Magneto-IMU and pressure insole used for the right foot.  

Fig. 2. Principal steps of the algorithm shown for one stance. a) Detection and selection of rising and falling edges and local minima (rising and falling minima) for 
each PI signal; b) Identification of one activation/deactivation cluster on PI signals; c) Identification of IC/FC intervals and definition of IC and FC events on 
PI signals. 
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For each of the filtered PI signals Xi(t), where i = 1,..,16 represents 
the i-th PI signal, a first derivative approach (Hopkins, 2001) is applied 
to detect rising and falling edges. Edges are identified from Ẋi(t) using a 
peak detection approach (Benocci et al., 2009) with an amplitude 
threshold defined as Th1 = 5n, being n the signal noise amplitude as 
computed in static conditions (in this study, we used Th1 = 0.05 nu). For 
each PI signal, rising edges are identified as positive peaks > Th1 and the 
corresponding time instants are organized in a vector tRE,i. Similarly, 
falling edges are identified as negative peaks < -Th1 and the corre-
sponding time instants are organized in a vector tFE,i. Rising and falling 
edges are automatically checked, in terms of time distance and ampli-
tude of the PI signal, to discard false positives. Fig. 2a shows an example 
of detection of a rising edge and a falling edge;  

(iii) Detection and selection of local minima (instants of rising and 
falling minima). 

The identification of the instants of rising and falling minima is 
performed by applying to Xi(t) a threshold Th2 = 0.02 nu, using rising 
and falling edges as reference points (Hausdorff et al., 1995). In 
particular, each rising minima is identified as the first point with Xi(t) <
Th2 preceding the considered rising edge instant, while each falling 
minima is identified as the first point with Xi(t) < Th2 after the 
considered falling edge instant. Rising minima instants and falling 
minima instants were organised in vectors, tRM,i and tFM,i respectively. 
Fig. 2a shows an example of detection of one rising minimum and one 
falling minimum;  

(iv) Identification of activation/deactivation clusters. 

Once the rising and falling minima instants are detected for all the PI 
signals, they are organised in chronological order in a unique vector (tRM 
and tFM respectively), also noting the corresponding sensing element 
number in another vector (sRM and sFM). This step is needed to group the 
instants of rising/falling minima corresponding to the same foot contact, 
i.e. the PI sensing elements which activate/deactivate together when the 
foot hits the ground. An activation cluster is identified imposing that the 
time distance between consecutive instants of tRM is lower than Th3 =

0.4 s. Then, a deactivation cluster includes the instants of tFM between 

Fig. 3. a) PI positioning inside the shoe; b) Clip attached to shoe laces; c) Final sensors positioning with magneto-IMU fixed to the clip.  

Fig. 4. Gait events (GEs) detection from both pressure insole (PI) and force plate (FP).  

Table 1 
RMS error, bias, and SD error.  

Variable Average RMS Error 
(ms; frames) 

Average Bias (ms; 
frames) 

Average SD Error 
(ms; frames) 

IC 22; 2 −21; −2 7; <1 
FC 18; <2 3; <1 12; 1 
Stance 

duration 
18; <2 23; 2 7; <1 

Step 
duration 

10; 1 0; <1 10; 1  
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two consecutive activation clusters. For each cluster, the minima in-
stants and the sensing elements numbers are saved (A_clusterj /D_clus-
terj, where j = j-th activation/deactivation cluster). 

Fig. 2b shows an example of one activation cluster and one deacti-
vation cluster.  

(v) Identification of IC/FC (final contact) intervals and definition of 
IC/FC events. 

A foot–ground contact interval is defined when at least three sensing 
elements of the PI belonging to the same spatial neighbourhood are 
consecutively activated and deactivated, i.e. correspond to three 
consecutive minima belonging to the same cluster (A_cluster for ICs and 
D_cluster for FCs). For each PI’s sensing element, the neighbourhood 
consists of those sensing elements which are spatially close to the 
considered unit (Fig. 1) (e.g. for the sensing element no. 12, the neigh-
bourhood includes sensing elements 11, 13, 14, 15, 16; further details 
are reported in Appendix B). In fact, it is reasonable to assume that, when 
an IC or FC occurs, the sensing elements which refer to the same 
anatomically functional area of foot sole are activated or deactivated, 
respectively. 

Each IC interval is identified starting from the first rising minima of 
an activation cluster; while each FC interval is identified starting from 
the last falling minima of a deactivation cluster. 

Finally, each IC is assumed to coincide with the rising minimum 
instant corresponding to the third sequentially activated sensing ele-
ments within the considered IC interval. Likewise, each FC is assumed to 
coincide with the falling minimum instant corresponding to the third 
sequentially deactivated sensing elements within the considered FC in-
terval. Fig. 2c shows an example of one IC interval and one FC interval. A 
workflow of the algorithm can be found in Appendix A.  

B. Experimental setup 

The validation experiments involved nine healthy participants (5 
females and 4 males; age 25.4 ± 1.3 years, shoe size 40.5 ± 4.1 EU) and 
took place at the University of Sassari (Italy). All participants signed an 
informed consent approved by the IRB before taking part to the study. 
PIs were inserted in participants’ shoes and central processing units 
were clipped over the instep (Fig. 3). The only specific requirement for 
the shoes was to avoid knee-high boots. Data from two FPs (AMTI, 
Massachusetts, USA; fs = 1000 Hz) were acquired through a motion 
capture system also including video recordings (Vicon Vue, fs = 50 Hz). 
Data from PIs and FPs were synchronized using an additional central 
processing unit as external trigger, connected to the motion capture 
system via cable. Each participant was asked to walk for six minutes 
back and forth at comfortable speed, stepping on the FPs as many times 
as possible.  

C. Data processing 

For each subject, a preliminary visual inspection of the “good strides” 
(entire foot on the FP during stance phase) was performed using video 
recordings. Then, FP data were down-sampled to 100 Hz. A pre- 
processing procedure was applied for the synchronisation of PIs mea-
surements (started via BLE protocol, v. 4.1) with the FP data, using the 
time vector provided by the trigger to interpolate the data. 

The GEs detection algorithm results were compared with those ob-
tained from the FPs (ground reaction force threshold = 25 N) in terms of 
average root mean square (RMS) error, bias and standard deviation (SD) 
error computed over the stances of all participants. An example of IC and 
FC detection from both PI and FP is shown in Fig. 4. 

3. Results 

RMS error, bias and SD error obtained from the comparison are 

reported in Table 1. A total of 801 ICs and 801 FCs were analysed (89 ICs 
and FCs on average for each participant), while errors on step duration 
were computed considering 315 steps in total. Average errors were 
lower than 10 ms for FCs, 20 ms for ICs, 20 ms for stance duration, <1 ms 
for step duration. 

4. Discussion 

GEs and temporal parameters obtained from the PIs showed a 100% 
correspondence with those estimated from the FPs. Low average RMS 
errors were obtained for stance duration (<20 ms) and for both IC and 
FC events, (22 ms and 17 ms, respectively). IC events, as detected by the 
proposed method were, on average, anticipated with respect to those 
detected by the FP (average bias = 21 ms), while FC events were 
marginally delayed. A bias of 23 ms was obtained for stance duration. 
Very low values were obtained for the average SD error (7 ms for ICs, 12 
ms for FCs and 7 ms for stance duration). For step duration, both RMS 
error and SD error were around one sample, while the average bias was 
zero. 

Similar but slightly larger errors were reported by Catalfamo and 
colleagues (2008) using a F-Scan Mobile Tekscan pressure insole (22 ±
9 ms for ICs and 10 ± 4 ms for FCs). However, it should be noted that the 
proposed algorithm was successful in obtaining lower errors using a 
pressure insole with a much smaller number of sensing elements (16 vs 
960) and using a lower sample-frequency (100 Hz vs 200 Hz), with clear 
advantages in terms of cost and efficiency. 

In general, the majority of the methodological studies analysing the 
performance of different pressure insoles, focused on gait parameters 
other than ICs and FCs and reported larger errors (Agarwal et al., 2020; 
Braun et al., 2015; Carbonaro et al., 2016; Crea et al., 2014). For 
instance, the average error reported in Carbonaro et al. (2016) by 
comparing a commercial smart shoe including two force sensors (Foot-
Mov) against a motion capture system was 39 ± 65 ms for stance 
duration. Often, a direct comparison with the results in the literature 
was not possible due to the lack of a gold standard (Benocci et al., 2009), 
adoption of manual labelling of the GE detection (Roth et al., 2018) or 
different research objectives (i.e., PI signals used only for activity 
recognition). 

The low errors found for both ICs and FCs demonstrated that the 
combined use of low-cost PI and specific algorithms for signal processing 
are a good compromise between more complex solutions, such as high- 
resolution pressure mapping technology, and foot-switch systems with a 
low number of sensors. A notable feature of the proposed method is that 
it can be applied to other PIs having a sufficient number of sensing el-
ements. The minimum sensor number and area would clearly depend on 
the shoe size of the subjects to analyse (e.g. children), however, we 
found that an activated/deactivated area of about 900 mm2 (area of 
three sensing unit of the PI) guaranteed for good results for both male 
and female adults. Having a sufficiently high number of sensors allows 
to describe the foot–ground contact in a comprehensive way and 
virtually recognise all the possible strategies of foot-floor contact. Last 
but not least, the PIs here used can be easily combined with IMUs as part 
of a multi-sensor wearable system, which could provide accurate tem-
poral estimates and a for a more extensive gait assessment also in a free- 
living context. Further studies will focus on overcoming the limitations 
of having tested the proposed method only on healthy subjects and on 
straight walking. 
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Appendix A 

In Fig. A1 a detailed description of the algorithm workflow is illustrated. 
Definitions: 

Fig. A1. Algorithm workflow.  
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Xi(t) = pre-processed signal from the i-th sensing element 
#SE = number of sensing elements of the pressure insole 
Ẋi(t) = first derivative of Xpi[n]
tRE,i = rising edges instants 
tFE,i = falling edges instants 
tRM,i = rising minima instants 
tFM,i = falling minima instants 
tRE = rising minima instants of all the sensing units 
tFE = falling minima instants of all the sensing units 
A cluster = activation clusters 
D cluster = deactivation clusters 
Checks on rising and falling edges instants:  

• Check on temporal distance. This is performed applying a threshold Thd = 0.6 s. If the distance between consecutive events is lower than Thd, the 
second event is discarded in case of rising edges, while the first event is discarded for the falling edges.  

• Check on the amplitude reached by xi(t) after each rising edge instant and before each falling edge instant. The amplitude reached in the 
considered window (10 samples after a rising edge instant or 10 samples before a falling edge instant) must be at least 0.3 nu, otherwise the event is 
discarded. 

Appendix B 

The neighbourhood of each sensing element of the PI is defined as reported in the following table:   

Sensing unit number Neighbourhood 

1 2,3,4,6,7 
2 1,3,4,6,7 
3 1,2,4,6,7,8,5 
4 1,2,3,5,7,8,6,9 
5 1,2,3,5,7,8,6,9 
6 1,2,3,4,7,8 
7 1,2,3,4,5,6,8,9 
8 3,4,5,6,7,9,10 
9 5,8,4,7,10,11 
10 9,11,8,5,12 
11 9,10,12,14,13,15,16 
12 10,11,13,14,15,16 
13 11,12,14,15,16 
14 11,12,13,15,16 
15 12,13,14,16,11 
16 12,13,14,15,11  
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Introduction: Accurately assessing people’s gait, especially in real-world
conditions and in case of impaired mobility, is still a challenge due to intrinsic
and extrinsic factors resulting in gait complexity. To improve the estimation of
gait-related digital mobility outcomes (DMOs) in real-world scenarios, this study
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presents a wearable multi-sensor system (INDIP), integrating complementary
sensing approaches (two plantar pressure insoles, three inertial units and two
distance sensors).

Methods: The INDIP technical validity was assessed against stereophotogrammetry
during a laboratory experimental protocol comprising structured tests (including
continuous curvilinear and rectilinear walking and steps) and a simulation of daily-
life activities (including intermittent gait and short walking bouts). To evaluate its
performance on various gait patterns, data were collected on 128 participants from
seven cohorts: healthy young and older adults, patients with Parkinson’s disease,
multiple sclerosis, chronic obstructive pulmonary disease, congestive heart failure,
and proximal femur fracture. Moreover, INDIP usability was evaluated by recording
2.5-h of real-world unsupervised activity.

Results and discussion: Excellent absolute agreement (ICC >0.95) and very limited
mean absolute errors were observed for all cohorts and digital mobility outcomes
(cadence ≤0.61 steps/min, stride length ≤0.02 m, walking speed ≤0.02 m/s) in the
structured tests. Larger, but limited, errors were observed during the daily-life
simulation (cadence 2.72–4.87 steps/min, stride length 0.04–0.06 m, walking
speed 0.03–0.05 m/s). Neither major technical nor usability issues were
declared during the 2.5-h acquisitions. Therefore, the INDIP system can be
considered a valid and feasible solution to collect reference data for analyzing
gait in real-world conditions.

KEYWORDS

gait analysis, IMU, wearable sensors, ecological conditions, pressure insoles, distance
sensors, spatial-temporal gait parameters

1 Introduction

It is well established that gait impairments affect one’s functional
status and overall health, (Laudani et al., 2013; Polhemus et al.,
2021), and that a holistic model of functioning and disability should
not rely only on a conventional laboratory assessment. Rather, it
should also include a quantitative description of a person’s mobility
in its own ecological environment to include social and personal
factors (World Health Organization, 2001; Giannouli et al., 2016;
Galperin et al., 2019; Hillel et al., 2019). Nonetheless, the description
of gait in real-world conditions is still a major challenge in people
with impaired mobility due to the increased gait complexity
associated with changes in speed and direction of progression,
slow walking and use of walking aids, presence of breaks, short
walking bouts, and confounding factors such as non-walking
activities (Mobilise-D 2019). Several technologies and algorithms
have been proposed to extract clinically meaningful spatial-temporal
digital mobility outcomes (DMOs) across a large spectrum of gait
disorders, but technical validity was in most of the cases assessed in a
supervised laboratory setting evaluating basic gait tasks (Zijlstra and
Hof, 2003; Wang et al., 2016; Pacini et al., 2018; Bertuletti et al.,
2019). Further efforts are hence required to generalize results under
real-world conditions.

One of the most promising solutions for mobility assessment
in ecological conditions is the use of wearable inertial
measurement units (IMUs). A single-IMU approach is
preferred when maximizing user acceptance is key (Bonci
et al., 2020; Mobbs et al., 2022). Conversely, a bilateral lower
extremities positioning (i.e., IMUs attached to the shanks or feet)
is suggested to obtain a more accurate gait description in people

with severe gait disorders (Yang et al., 2013; Bourgeois et al.,
2014; Hundza et al., 2014; Trojaniello et al., 2014). However,
when using these devices, the identification of gait events
(i.e., initial and final foot contact timings), which is a
prerequisite for the estimation of the temporal and spatial
parameters, is indirectly derived from the linear acceleration
and angular velocity signals which vary their morphology,
amplitude, and repeatability, depending on specific walking
patterns. This implies that the technical validity of the DMOs
provided by IMU-based methods should be tested against
reference data under the same conditions of end-use.
Furthermore, the availability of reliable reference gait data is
also essential for the development, optimization, and testing of
newly proposed IMU-based machine learning methods
(Martindale et al., 2019; Roth et al., 2021a).

A commonly employed solution to obtain a reference for gait
detection and activity discrimination is the use of body-worn cameras
pointing to the subjects feet (Buso et al., 2015; Full et al., 2015; Hickey
et al., 2016). However, besides potential privacy issues, the temporal
resolution of this approach depends on camera frame rate.
Furthermore, it requires extensive manual intervention for labeling
gait events, and it doesn’t provide information on spatial gait
parameters nor on turning maneuvers. Conversely, methods based
on the use of global navigation satellite systems can potentially provide
low positional errors (Terrier et al., 2000), but their performance greatly
depends on environmental conditions (Reggi et al., 2022), they aren’t
reliable indoor, are characterized by a low temporal resolution, and
don’t allow for a stride-by-stride gait description (Atrsaei et al., 2021).
An accurate and reliable solution for gait events detection is to use
plantar pressure insoles (Hausdorff et al., 1995; Storm, Buckley, and
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Mazzà, 2016; Roth et al., 2018) as this technology provides a direct
sensing of the foot-ground forces (Salis et al., 2021a). When using these
systems, however, no spatial information is provided.

To overcome the intrinsic technological limitations of the
aforementioned systems, the simultaneous integration of
complementary sensing approaches and the exploitation of data
redundancy to improve methods employed and optimize
performance may be beneficial. In this regard, several research and
consumer-grade systems integrating pressure insoles with IMUs
attached to the feet have been proposed (Salis et al., 2021b; Duong
et al., 2022; Refai et al., 2018; Feetme Devices, 2022b; NURVV, 2022).
Based on this sensor configuration, Duong and colleagues (Duong et al.,
2022) have proposed a machine learning model for spatial-temporal
gait analysis (SportSole II). The method’s accuracy was validated in
terms of mean absolute percentage errors on eleven healthy young
adults during simple straight and curvilinear walking, whereas
ecological validation was performed in terms of DMOs agreement
between spatial-temporal parameters estimated in laboratory and real-
world conditions. Although the results of this study were promising,
with errors of stride length ~3.5%, the restriction of including only
healthy young adults does not support applicability of the systems use
within pathological cohorts with potentially impaired gait. In the latest
years, several consumer grade systems such as FeetMe® and NURVV®
have been made available for healthcare applications (Feetme Devices,
2022b; NURVV, 2022). In general, these commercial systems were
designed to improve user-friendliness and provide a full gait report,
however, they operate as a black box system whereby the algorithms
employed are not described in detail, and their validation procedures are
limited to basic gait tasks such as straight walking (Feetme Devices,
2022a).

The aim of this study is thus to present and characterize the
performance of a novel multi-sensor system for gait assessment to be
employed as reference in people with impaired mobility in real-
world. The INDIP system (INertial module with DIstance sensors
and Pressure insoles) integrates two plantar pressure insoles for a
direct measure of foot-to-ground contacts, three IMUs attached to
both feet and lower back for activity recognition, turning detection,
and displacement estimation, two time-of-flight infrared distance
sensors to detect the alternating movements of the lower extremities.

To meet the emerging demands associated with reproducibility
and replicability in biomedical research and regulatory qualification
(Viceconti et al., 2020), a complete description of INDIP system
hardware specifications and of the algorithms used for DMOs
estimation based on standardized operational definitions (Kluge
et al., 2021) is provided here. Furthermore, to assess the INDIP
performances under testing conditions resembling those likely to be
encountered in real life, a multi-task experimental protocol in a lab
setting, which included speed and trajectory changes, surfaces and
inclinations, obstacles, breaks, and even cognitive demand levels
(Mazzà et al., 2021; Scott et al., 2022), was implemented. To
evaluate the potential influence of different gait types on the
accuracy of the estimated DMOs, gait data of 128 participants
were analyzed, including healthy young and older adults, people
with Parkinson’s disease (PD), multiple sclerosis (MS), chronic
obstructive pulmonary disease (COPD), congestive heart failure
(CHF) and proximal femoral fracture (PFF). Finally, INDIP
usability was evaluated by recording 2.5 h of unsupervised activity
performed in the participants habitual environment in five different

clinical centers participating in the IMI2-JU-funded Mobilise-D
project (Number 820820) (Mobilise-D 2019; Mazzà et al., 2021).

2 Materials and methods

2.1 The INDIP system

The central unit of the INDIP system (manufacturer (mfr.) 221e
S.r.l. (221 e S.r.l, 2020) is a state-of-the-art magneto-IMU that can be
connected to various sensing peripherals. The overall system
hardware architecture, as well as the communication interfaces
used, is shown in Figure 1. A description of the firmware’s
architecture, together with some additional details on the
hardware, are reported in Appendix A.

2.1.1 Main board
The main board has been designed to sense motion and process

relevant data with a low power consumption, to store recorded data
on-board and to offer a wired/wireless transmission. Motion data
include both inertial and magnetic data. The inertial module is a
system-in-package featuring a 3D digital accelerometer and a 3D
digital gyroscope (full-scale ranges set to ±16 g and ±2,000 dps
respectively for this study). The magnetic module is an ultra-low-
power, high performance 3-axis digital magnetic sensor (magnetic
field dynamic range of ±50 G).

One 18-pin (i.e., analog front end) and two 6-pin connectors
(i.e., digital I/O port) are mounted on the bottom and right/left side
of themain board, respectively (Figure 1). The 18-pin ZIF-connector
enables the connection between the pressure insoles and the
microcontroller unit through the analog front-end, while the two
6-pin connectors allow the main board to manage any digital sensor
that supports the I2C communication protocol (e.g., the distance
sensor). The main board acts as a “motherboard,” i.e., supplying the
required power and providing storage and connectivity capabilities.
Therefore, any external sensing peripheral (e.g., distance sensor,
pressure insole) could be designed with the strictly necessary
components, thus minimizing its form factor.

An external crystal with a frequency stability of ±5 ppm (parts
per million) has been selected to generate more accurate and precise
time values. The main board also supports the synchronization with
an external equipment in two modes:

• output synchronization: when the main board starts recording
data, it outputs a signal to external equipment by exploiting
the ID pin of the micro-USB;

• input synchronization: when the main board receives a signal
from external equipment on the ID pin of the micro-USB, it
starts recording. Input and output signals can be either rising
edge or level triggered.

2.1.2 Sensing peripherals
• The Time-of-Flight infrared distance sensor includes an
infrared emitter, a range sensor (range set to 0.2 m at
50 Hz for this study), and an ambient light sensor in a
three-in-one package. A fully comprehensive
characterization while considering different factors, such as
target color, sensor-target distance, and sensor-target angle of
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incidence in both static and dynamic conditions, can be found
in (Bertuletti et al., 2017).

• The force sensitive resistor pressure insole (PI) consists of
16 force sensing resistors, with an overall thickness of 240 μm,
covered with a polyester layer. Each force sensing resistor
exhibits a resistance value which is inversely proportional to
the amount of the applied force and, when no force is applied,
the sensor features an infinite resistance. As the applied force
increases, the equivalent resistance of the sensor decreases. In
this study, two different sizes have been used, one small (EU
36–37) and one large (EU 42–43).

2.2 Calibration refinement and
characterization of the inertial sensor noise
level

As sensor performance may deteriorate over time, regular
refinements of the accelerometer and gyroscope calibration
coefficients are recommended to compensate for residual
cross-axis sensitivity and misalignments (Ferraris et al., 1995)
(systematic errors). This is beneficial for ensuring good quality of
the measurements and facilitating results comparability in multi-
center validations. The calibration refinement of both
accelerometers (Ferraris et al., 1995) and gyroscopes (Stančin
and Tomažič, 2014) was carried out for each of the 72 INDIP
IMUs deployed in this study, before their first use. Furthermore,
each INDIP IMU was characterized in terms of noise level
(random errors). This information was relevant for the
optimal tuning of algorithm parameters to estimate
orientation and displacement (Caruso et al., 2021a; Rossanigo
et al., 2021). Moreover, the characterization of the magnitude of
residual random and systematic errors for each signal allowed the

setting of specific reference values to be used to identify poorly
performing IMUs that need to be recalibrated or discarded. The
characterization of the accelerometers and gyroscopes random
errors was performed in accordance with IEEE
2700–2017 Standard for Sensor Performance Parameter
Definitions (IEEE, 2017). In particular, the accelerometer and
gyroscope standard deviation (STD) was computed during a
100 s static acquisition, while the gyroscope bias instability
(i.e., slow fluctuations of the measurement offset described as
a Gauss-Markov process with zero-mean (Unsal and Demirbas,
2012)) was quantified using the Allan variance during an 8-h
static acquisition (El-Sheimy, Hou, and Niu, 2008).

2.3 Experimental measurement set-up

A pair of PIs were selected, according to the subject’s foot size,
and inserted between the insole and midsole of the shoes. Two
magneto-IMUs were positioned over the instep and fixed to the
shoelaces using custom-made clips, and a third magneto-IMU was
attached to the lower back using an elastic belt with Velcro. To avoid
mutual infrared interferences, distance sensors were positioned
asymmetrically using Velcro straps (one just above the left ankle
and the other about 3 cm higher on the right side), both pointing
medially. Both PIs and distance sensors were connected via cable to
the magneto-IMU of the corresponding foot (Figure 2).

To validate INDIP system, stereophotogrammetric technology
was used, as it allows to accurately reconstruct the human
movement also under complex motor tasks. In each laboratory,
marker trajectories were recorded using the stereophotogrammetric
system locally installed (Newcastle: 14-camera Vicon Bonita,
Sheffield: 10-camera Vicon MX T160 Vicon Vero, Tel Aviv: 8-
camera Vicon T10, Kiel: 12-camera Qualisys Miqus, Stuttgart: 8-

FIGURE 1
INDIP system architecture which includes the following components: Bluetooth Low Energy module SPBTLE-RF (mfr. STMicroelectronics), inertial
module LSM6DSO (mfr. STMicroelectronics), magneticmodule LIS2MDL (mfr. STMicroelectronics), memory (S70FL01GS,mfr. Infineon; up to 13 h of data
logging), microcontroller STM32L433 (mfr. STMicroelectronics, ARM

®
Cortex®-M4 32-bit architecture), range sensor VL6180X sensor (mfr.

STMicroelectronics).
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camera Vicon T10). A total of eight reflective markers were used:
two markers on each foot (heel and toe), and four markers placed on
a rigid cluster used as support for the lower back magneto-IMU
(Figure 2). For each marker acquisition, a quality control procedure
was followed to estimate random and systematic errors of the
different stereophotogrammetric systems as described in (Della
Croce and Cappozzo, 2000; Scott et al., 2021). The
stereophotogrammetric and the INDIP systems, both acquiring at
100 Hz, were synchronized using an additional INDIP magneto-
IMU as external trigger, connected to the stereophotogrammetric
system viaUSB cable. To this end, the clock of each INDIPmagneto-
IMU, including the one adopted as external trigger, was set on the
same timestamp before each experimental session.

2.4 Experimental protocol

The experimental protocol for the validation comprised eight
different motor tasks for a total of eleven trials with an increasing
level of complexity (Scott et al., 2022). These included simulated
daily activities test and seven structured walking tests: Timed-Up
and Go, straight walk at comfortable, slow, and fast speed (each
repeated twice), L-test, Surface test, and Hallway test. The simulated
daily activities test is the most complex and challenging task and was

used to capture various daily activities expected in the real-world
simulated in a lab environment (i.e., setting the table for dinner,
sitting down for a short break, clearing the table etc.). The INDIP
was also used during 2.5-h real-world acquisitions to test the
usability of the system and the consistency of the extracted
DMOs values with those found in literature. In this case, all
participants were asked to continue with their daily routine,
including some recommended activities such as: walking outside;
walking along an inclined path; walking up and down stairs; moving
from one room to another, etc. Further details about the
experimental protocol can be found in (Mazzà et al., 2021; Scott
et al., 2022).

Before any experimental session, each magneto-IMU underwent
a preliminary 60 s short static spot-check to compute the gyroscope
bias and verify that all the sensors (i.e., accelerometer, gyroscope)
were working properly (Picerno, Cereatti, and Cappozzo, 2011).
Quality of the PIs signals was checked by applying a direct finger
pressure on each sensing unit separately.

2.5 Participants

The validation experiments involved two groups of healthy
participants—young adults (HYA) and older adults (HOA)—and

FIGURE 2
(A) Picture of INDIP system hardware. (B) Foot positioning, example on right foot (INDIP and stereophotogrammetric system markers). (C) Lower
back positioning (INDIP and stereophotogrammetric system markers).
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five cohorts of patients with different diseases that impact mobility (PD,
MS, COPD, CHF, PFF), totaling 128 participants (Table 1). All
participants provided written informed consent before participating
to the study (Ethics approval for the HYA: University of Sheffield
Research Ethics Committee, Application number 029143; Ethics
approvals for HOA and the cohorts of patients are reported in
(Scott et al., 2022).

For the lab-based validation, each participant was equipped with
the INDIP system and the reflective markers for the
stereophotogrammetric system as depicted in Figure 2. For the
real-world acquisitions, each participant was equipped with the
INDIP system only. In addition, the HYA participating in the
real-world experiment (n = 11/20) were asked to fill out a
questionnaire regarding the INDIP system usability (Comfort
Rating Scale, see Appendix B for more details). Patients were not
asked to fill out the questionnaire since this was not the principal
aim of the validation study.

2.6 Data cleaning, quality check, and
processing

Data acquired with the INDIP system, both in laboratory and
real-world acquisitions, underwent a quality check procedure and
were discarded in case of technical issues associated with 1) partial
data loss or synchronization failure due to trigger functioning or to
timestamp setting procedure, and/or 2) deteriorated PI data quality.
Moreover, stereophotogrammetric recordings were checked in case
of gaps longer than 0.5 s due to occlusions (trials with gaps). In
particular, trials with gaps were double checked to verify if the

identification of the number of strides based on the
stereophotogrammetric system was affected by the presence of
gaps, in which case they were definitively discarded. Further
details are reported in the Results section.

A pre-processing procedure was applied to refine the data
synchronization among the INDIP IMUs and the
stereophotogrammetric system over each data recording to
prevent potential inaccuracy in the sample frequency or
differences in clock stability. In particular, the recordings of the
three mounted INDIP IMUs (started via Bluetooth at the beginning
of each trial) were cut and interpolated using a common time vector
provided by the external trigger with a synchronization error
of ±10 ms (±1 frame).

2.7 INDIP algorithms for DMOs estimation

The estimation of the relevant spatial-temporal parameters from
INDIP data consisted of the following steps, reported as a workflow
in Figure 3:

• Static/dynamic activity periods recognition: this step was
performed to identify dynamic activity intervals potentially
including walking. The participant was considered “active” if
the standard deviation of the total acceleration of both lower
back and at least one foot were above thresholds, empirically
chosen (0.7 and 2.1 m/s2, respectively) (Lyons et al., 2005;
Hickey et al., 2016).

• Initial contact (IC) and final contact (FC) events detection:
temporal events were detected separately using the

TABLE 1 Cohorts descriptors and clinical parameters of the patient groups.

Parameters

Cohort Participants
recruited n)

Gender
(M/F)

Age (years,
mean ± STD)

Height (m,
mean ± STD)

Body mass (kg,
mean ± STD)

Walking aid users
(n, general
use, lab)

Clinical scale

HYA 20 11/9 29.4 ± 9.4 1.74 ± 0.09 70.2 ± 10.1 — —

HOA 20 11/9 71.7 ± 5.8 1.66 ± 0.10 75.1 ± 11.8 1, 0 —

PD 20 16/4 69.8 ± 7.2 1.73 ± 0.07 78.2 ± 14.4 6, 1 UPDRS III* (mean ±
STD, 28.4 ± 13.6)

H&Y Scale* (I n = 4,
II n = 11, III n = 5)

MS 20 11/9 48.7 ± 9.7 1.71 ± 0.13 84.0 ± 22.9 5, 3 EDSS* (mean ±
STD, 3.5 ± 1.7)

COPD 17 9/8 69.4 ± 9.1 1.69 ± 0.07 73.7 ± 14.2 1, 0 CAT* (mean ± STD,
16.6 ± 8.9)

FEV1* (mean ± STD,
1.6 ± 0.6)

CHF 12 8/4 69.1 ± 11.7 1.74 ± 0.10 84.5 ± 16.8 4, 4 KCCQ* (mean ±
STD 80.5 ± 20.2)

PFF 19 8/11 80.0 ± 8.5 1.69 ± 0.08 68.4 ± 16.0 13, 6 SPPB* (mean ±
STD, 6.2 ± 3.9)

* CAT, COPD assessment test; EDSS, expanded disability status scale; FEV1, forced expiratory volume; H&Y, hoehn and yahr scale; KCCQ, kansas city cardiomyopathy questionnaire; MDS-

UPDRS, Movement Disorder Society-sponsored Unified Parkinson’s Disease Rating Scale; SPPB, short physical performance battery.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Salis et al. 10.3389/fbioe.2023.1143248

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1143248


information obtained from PIs signals and from magneto-
IMUs on the subject’s feet. The PI-method is based on the
identification of activation/deactivation clusters of PI sensing
elements belonging to the same neighborhood under the
hypothesis that, when an IC or FC occurs, the sensing
elements referring to the same anatomical region of the
foot are activated or deactivated, respectively. A detailed
description of the method is provided in (Salis et al.,
2021a). The algorithm used to detect gait events from IMU
signals is a modified version, adapted for foot mounted IMUs,
of that proposed by Trojaniello and colleagues for shank
positioning, which exploits invariant kinematic constraints
to optimize the IC and FC search (Trojaniello et al., 2014).

Each event obtained from the PIs was associated with the closest
event obtained from the feet magneto-IMUs within a tolerance
interval of ±0.25 s. An event detected by both magneto-IMUs and
PIs, or by the PIs only, was considered as a true event, and the value

obtained from the PIs was assigned. The events detected by the feet
magneto-IMUs only were included after verifying that the time
interval identified between IC and FC corresponded to a stance
phase. This was done by applying additional checks based on two
detectors typically used for Zero velocity update technique (ZUPT)
(Skog et al., 2010): 1) A threshold on the Angular Rate Energy
detector signal (0.5 normalized unit). If the values of the angular rate
energy were below the threshold for less than 100 ms, the
corresponding IC and FC were discarded; 2) A threshold on the
Moving Variance detector signal (0.005 normalized unit). If the
values of the variance were below the threshold for less than 100 ms,
the corresponding IC and FC were discarded.

• Strides identification: based on the detected temporal gait
events, right and left strides were defined as the interval
between two consecutive ICs of the same foot.

• Spatial variables estimation: stride velocity and displacement
were computed from the linear acceleration recorded by feet

FIGURE 3
Workflow that shows the principal steps of INDIP algorithm.
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magneto-IMUs. First, a Madgwick filter was applied to obtain
an accurate orientation estimate for each foot magneto-
IMU (Madgwick, Harrison, and Vaidyanathan, 2011).
This filter was chosen for its simplicity, as it requires
the tuning of only one parameter (Caruso et al., 2020;
Caruso et al., 2021b), and low computational burden
(Caruso et al., 2021a). The parameter value was
optimized by minimizing the error obtained on stride
length estimates (Rossanigo et al., 2021). The drift
associated to the acceleration signal was then reduced
taking advantage of the cyclic nature of gait. ZUPT was
applied, specifically using the Angular Rate Energy
detector to identify the integration intervals, under the
hypothesis that foot velocity is negligible during the mid-
stance phase (Skog et al., 2010; Skog, Nilsson, and Peter,
2010; Peruzzi, Croce, and Cereatti, 2011). Finally, velocity
and displacement were obtained with a direct and reverse
integration approach (Zok, Mazzà, and Della Croce, 2004;
Trojaniello et al., 2014). In particular, the procedure
reported in (Trojaniello et al., 2014), well described in
(Zok, Mazzà, and Della Croce, 2004), was adapted to feet
positioning, according to what described in (Rossanigo
et al., 2021), by exploiting the information obtained from
ZUPT to: 1) define each integration instant as the time
point in the middle of the corresponding ZUPT interval;
2) correct the velocity estimation in correspondence of the
ZUPT intervals before integrating to obtain the
displacement.

• Strides selection: based on temporal and spatial variables, a
selection of right and left strides was performed by applying
thresholds on specific stride relevant parameters agreed within
the Mobilise-D consortium, including minimum (≥0.2 s) and
maximum duration (≤3 s), and minimum length (≥0.15 m).
Finally, for each selected stride, measures of the inter-leg
distance obtained from the distance sensors were used as a
further verification element of the correct stride identification
procedure (Bertuletti et al., 2018).

• Definition of Walking Bouts: each walking bout was defined
starting from the identification of left and right stride
sequences separately. Two consecutive ipsilateral strides
separated by a time interval lower than 3 s (short break)
were considered as belonging to the same stride sequence.
Left and right stride sequences were then combined to

obtain the walking bouts, according to the matching of
the corresponding time sequences. Initial and terminal
phases of gait were discarded by removing the first and
last stride of each walking bout, since the first and last IC
are part of the transition from the previous and following
activity, respectively. At this point, eligible walking bouts
were selected according to the number of strides they
included (minimum two left and two right strides)
(Mazzà et al., 2021). An example of walking bout is
shown in Figure 4.

• Calculation of Digital Mobility Outcomes (DMOs): a complete
set of primary and secondary DMOs were computed for each
walking bout (Mazzà et al., 2021). For practical reasons, only a
selected DMOs subset is reported:
o Walking bout duration (WB duration, s), walking bout
length (WB length, m), and number of strides, all being
informative of the general walking bout characteristics.

o Cadence (steps/min), being associated with the reliability of
ICs identification, and computed as follows:

Cadence �
∑#strides

j�1
60

Stride Durationj
( )
#strides

× 2 (1)

o Average stance duration (s) at walking bout level, associated
with the reliability of both FCs and ICs identification (swing
duration was not reported as it provides similar information).

o Average stride length (m) at walking bout level, being
associated with the capability of accurately estimating
displacement.

o Walking speed (m/s), informative of the correct estimate of
both ICs and displacement, computed as:

Walking speed � ∑#strides
j�1

Stride Lengthj
Stride Durationj

(2)

2.8 Description of the
stereophotogrammetry algorithms for
DMOs estimation

For the stereophotogrammetry-based method, relevant DMOs
were quantified from pelvic and foot marker trajectories according
to the method proposed by (Bonci et al., 2022). Briefly, foot

FIGURE 4
Example of a generic walking bout which includes straight walking, curvilinear walking, non-strides portions and short breaks.
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trajectories were initially gap-filled only for gaps shorter than 0.5 s
and all marker trajectories were filtered using a zero-lag fourth
order Butterworth filter (cut-off frequency 7 Hz). As a first
approximation, ICs and FCs estimates were chosen in
correspondence of the instants of local maxima and minima
displacements of the heel and toe markers from the pelvis,
respectively. The latter estimates were then refined based on the
3D marker velocities, as detailed in (Bonci et al., 2022). Stride
length and speed were measured from the heel marker trajectories
between two subsequent ICs of the same foot. Strides and walking
bouts were then selected following the same criteria adopted for
the INDIP. The quality check procedure followed on the different
stereophotogrammetric systems led to systematic errors among the
different sites <2.5 mm (Scott et al., 2021).

2.9 Statistical analysis

The validation was performed by comparing the results from the
INDIP with those provided by the stereophotogrammetric system. The
analysis was conducted by aggregating the DMOs values, computed for
each walking bout, at cohort level and considering the seven structured
tests and the simulated daily activities separately, being the latter the
only test that included activities which are different from gait (Scott
et al., 2022). It is important to note that, while for the seven structured
tests it was expected to detect a single walking bout for each trial, for the
simulated daily activities test, a single trial can lead to one or more
walking bouts. Only the walking bouts detected by both the systems
have been included in the analysis (99% for both structured tests and
simulated daily activities).

For example, let us consider a specific cohort composed by N
subjects, and let suppose that subject i performs several trials
corresponding to a number of walking bouts equal to mi. The
total number of walking bouts for the considered cohort is then

M � ∑
N

i�1
mi

For each DMO, mean and standard deviation values were
computed for both stereophotogrammetric and INDIP systems
over the M observations equal to the total number of walking
bout detected for a given population (DMOSP; DMOINDIP).

In addition, for each DMO, errors (Ej) and relative errors (E%j)
for the jth walking bout were computed as:

Ej � DMOINDIP,j −DMOSP,j (3)

E%j � DMOINDIP,j −DMOSP,j

DMOSP,j
× 100 (4)

where DMOINDIP,j and DMOSP,j are the DMO values obtained
from the INDIP system and the stereophotogrammetric system,
respectively, for the jth walking bout with j = 1: M.

As the temporal variables are indirectly derived from
stereophotogrammetric system, it is important to note that the
values of Ej and E%j computed for the temporal DMOs should
be regarded as differences between the two systems rather than
actual errors.

A normality test (Shapiro-Wilk test) was used to determine, for
each cohort and all the relevant DMOs, if errors were normally
distributed (Mishra et al., 2019). As the large majority of errors
showed a non-normal distribution, median value, median absolute
value, and interquartile range value of the errors were computed
over theMwalking bouts detected for the relevant cohort to describe
INDIP performance in terms of bias, accuracy, and precision
(Walther and Moore, 2005), together with mean value and mean
absolute value to allow the comparison with previous studies.

Finally, for each DMO and cohort, the absolute agreement
between the two systems was tested using Intraclass Correlation
Coefficients (ICC2,1: two-way random effects model, absolute-
agreement, 95% confidence intervals (Koo and Li, 2016))
computed using SPSS Software, Version 28.0.1.1. Values
lower than 0.5, between 0.5 and 0.75, between 0.75 and 0.9,
and larger than 0.90 were indicative of poor, moderate, good,
and excellent agreement, respectively (Koo and Li, 2016). A
statistical power analysis was performed in Stata 16.1 as
described in (Scott et al., 2022) to determine the minimum
number of walking bouts needed for the validation, according to
the desired ICC and the confidence interval values. The values
obtained for a confidence interval width of 0.1 were: 401 (ICC ≥
0.7), 295 (ICC ≥ 0.75), 200 (ICC ≥ 0.8), 119 (ICC ≥ 0.85), 56
(ICC ≥ 0.9) and 16 (ICC ≥ 0.95) walking bouts.

3 Results

3.1 Sensor noise characterization

The boxplot distributions of the accelerometer STD, gyroscope
STD, and gyroscope bias instability computed over the 72 IMUs
included in the above-described characterization procedure are
shown in Figure 5.

3.2 The INDIP performance in laboratory

Across the 128 participants recorded in the laboratory
experiments, the majority were able to complete the full protocol
(100% for HYA and COPD, 95% for HOA, PD and MS, 92% for
CHF and 68% for PFF). Four participants were excluded from the
analysis due to technical issues in the acquisitions linked to data loss
or synchronization failure (1 MS, 1 CHF, 2 PFF). In addition, data
from five participants were discarded due to different technical
problems which affected PI data quality (1 PD, 2 MS, 1 CHF, 1 PFF).
In the laboratory gait assessment, data obtained from 119/
128 participants (completion percentages: 100% HYA and
COPD, 95% HOA and PD, 94% MS, 90% CHF, 69% PFF) were
included in the analysis.

Among the 119 subjects considered, 44 had at least one trial with
a gap in a foot marker trajectory longer than 0.5 s. As a result,
129 trials, out of the total 1,132 trials recorded, required further
quality checks prior to inclusion in the analysis. This additional
quality check led to 79 of the 129 trials with gaps being discarded
from the structured tests (27 HOA, 2 PD, 5 MS, 1 COPD, 14 CHF,
30 PFF) and 4 trials from the simulated daily activities (2 HOA,
1 MS, 1 PFF). Overall, 963 walking bouts were analyzed for the
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structured tasks for a total of 12,749 strides, and 431 walking bouts
for the simulated daily activities test including 3,684 strides
(Table 2).

The results obtained from the comparison of INDIP and
stereophotogrammetric systems are reported in Table 3 for the
structured tests and in Table 4 for the simulated daily activities
test. For each cohort and relevant DMO, descriptive statistics (M
and STD) of the relevant DMOs values as estimated by INDIP
and stereophotogrammetric system values are reported along
with the agreement between distributions (ICC values). In
addition, the following metrics were reported: mean error,

mean absolute error and relative percentage values (ME, MAE,
ME%, and MAE%); median error, median absolute error and
relative percentage values (MDE, MDAE, MDE%, and MDAE%);
interquartile range error and relative percentage value (IQRE and
IQRE%).

3.2.1 Results from the structured tests
An excellent absolute agreement (ICC >0.95) was observed for

the structured tests results in all cohorts and DMOs (Table 3).
Moreover, the sample size resulted to be adequate in all cases.
Considering the results obtained from all the cohorts, the

FIGURE 5
The boxplot distributions of the accelerometer and gyroscope STD and the gyroscope bias computed over 72 INDIP. STD: standard deviation.

TABLE 2 Number of Analyzed walking bouts and strides in laboratory (Structured and simulated daily activities tests) and real-world (2.5-h).

Cohort Laboratory Real-world

Structured tests SDA* test

WBs* (n) Strides (n) WBs* (n) Strides (n) WBs* (n) Strides (n)

HYA 189 2072 98 801 470 64,406

HOA 135 1,663 71 483 1,197 43,661

PD 157 2,219 67 593 557 26,812

MS 154 2084 49 494 484 16,493

COPD 135 1826 84 645 1,035 22,127

CHF 73 939 27 235 605 25,283

PFF 120 1946 35 433 531 15,273

TOTAL 963 12,749 431 3,684 4,879 213,945

*Abbreviations reported in the table: SDA, simulated daily activities; WBs, walking bouts.
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TABLE 3 Comparison between INDIP and stereophotogrammetric system for the relevant DMOs (structured tests).

DMO Cohort M ± STD *
(INDIP)

M ± STD *
(SP)*

ME (ME
%) *

MDE (MDE
%) *

IQRE
(IQRE%)*

MAE (MAE
%) *

MDAE
(MDAE%) *

ICC2,1
*

WB* duration (s) HYA 7.16 ± 5.40 7.28 ± 5.41 −0.09
(−1.88%)

−0.03
(−0.52%)

0.06 (1.65%) 0.12 (2.39%) 0.03 (0.61%) 0.999

HOA 7.95 ± 5.63 7.91 ± 5.63 −0.13
(−2.22%)

−0.03
(−0.41%)

0.09 (2.60%) 0.20 (3.09%) 0.04 (0.70%) 0.998

PD 10.08 ± 7.60 10.29 ± 7.67 −0.07
(−0.91%)

−0.02
(−0.25%)

0.08 (1.42%) 0.26 (3.22%) 0.04 (0.51%) 0.998

MS 9.80 ± 7.77 10.01 ± 7.83 −0.07
(−0.71%)

−0.01
(−0.11%)

0.08 (1.25%) 0.24 (2.82%) 0.03 (0.46%) 0.998

COPD 8.93 ± 6.94 8.79 ± 6.88 −0.03
(−0.47%)

−0.01
(−0.10%)

0.06 (1.23%) 0.21 (2.92%) 0.03 (0.63%) 0.998

CHF 9.16 ± 7.48 9.19 ± 7.35 −0.08
(−1.11%)

−0.03
(−0.42%)

0.07 (1.62%) 0.16 (1.89%) 0.05 (0.75%) 0.999

PFF 11.58 ± 9.32 11.45 ± 8.96 0.13 (3.29%) −0.02
(−0.33%)

0.10 (1.54%) 0.39 (4.35%) 0.05 (0.87%) 0.954

WB* length (m) HYA 7.66 ± 5.56 7.48 ± 5.45 0.02 (0.19%) 0.05 (1.11%) 0.21 (2.78%) 0.22 (3.37%) 0.14 (2.18%) 0.998

HOA 7.35 ± 5.41 7.11 ± 5.46 −0.06
(−0.44%)

0.03 (0.43%) 0.22 (4.79%) 0.24 (4.16%) 0.11 (2.50%) 0.998

PD 7.37 ± 5.36 6.99 ± 5.21 0.00 (0.22%) 0.01 (0.20%) 0.29 (5.11%) 0.23 (3.96%) 0.15 (2.44%) 0.998

MS 7.11 ± 5.28 7.04 ± 5.32 −0.03
(−0.26%)

0.01 (0.10%) 0.26 (4.79%) 0.25 (4.01%) 0.13 (2.46%) 0.997

COPD 8.03 ± 6.39 7.90 ± 6.29 −0.01
(−0.45%)

0.01 (0.29%) 0.21 (3.61%) 0.21 (3.08%) 0.11 (1.80%) 0.999

CHF 7.09 ± 5.18 6.70 ± 4.06 −0.04
(−0.30%)

0.02 (0.53%) 0.24 (4.48%) 0.20 (3.02%) 0.11 (2.25%) 0.997

PFF 6.53 ± 4.74 5.56 ± 3.60 0.01 (1.05%) 0.01 (0.11%) 0.21 (4.17%) 0.29 (5.33%) 0.09 (1.89%) 0.975

Strides number HYA 10.93 ± 8.97 11.04 ± 8.98 −0.08
(0.91%)

0.00 (0.00%) 0.00 (0.00%) 0.15 (1.64%) 0.00 (0.00%) 0.999

HOA 12.42 ± 9.92 12.27 ± 9.86 −0.13
(−1.66%)

0.00 (0.00%) 0.00 (0.00%) 0.35 (3.03%) 0.00 (0.00%) 0.997

PD 14.13 ± 11.68 14.53 ± 11.95 −0.17
(−0.88%)

0.00 (0.00%) 0.00 (0.00%) 0.41 (3.24%) 0.00 (0.00%) 0.998

MS 13.38 ± 11.16 13.77 ± 11.31 −0.06
(−0.37%)

0.00 (0.00%) 0.00 (0.00%) 0.37 (3.10%) 0.00 (0.00%) 0.998

COPD 13.53 ± 11.47 13.26 ± 11.37 −0.01
(0.01%)

0.00 (0.00%) 0.00 (0.00%) 0.30 (2.86%) 0.00 (0.00%) 0.998

CHF 12.74 ± 10.80 12.64 ± 10.55 −0.02
(−0.59%)

0.00 (0.00%) 0.00 (0.00%) 0.25 (1.55%) 0.00 (0.00%) 0.998

PFF 16.22 ± 13.80 16.15 ± 13.70 0.07 (2.71%) 0.00 (0.00%) 0.00 (0.00%) 1.00 (7.56%) 0.00 (0.00%) 0.970

Cadence
(steps/min)

HYA 104.51 ± 18.04 103.45 ± 17.38 1.01 (0.92%) 0.30 (0.32%) 0.90 (0.87%) 1.21 (1.10%) 0.46 (0.46%) 0.990

HOA 103.04 ± 17.36 102.50 ± 17.11 0.59 (0.58%) 0.23 (0.23%) 0.89 (0.85%) 0.96 (0.95%) 0.41 (0.38%) 0.995

PD 93.64 ± 16.78 93.27 ± 16.66 0.36 (0.41%) 0.11 (0.10%) 0.76 (0.79%) 0.74 (0.80%) 0.27 (0.28%) 0.995

MS 93.40 ± 18.48 93.55 ± 18.31 0.48 (0.69%) 0.08 (0.10%) 0.70 (0.78%) 0.89 (1.10%) 0.32 (0.33%) 0.994

COPD 99.13 ± 18.03 98.96 ± 17.59 0.27 (0.26%) 0.10 (0.10%) 0.59 (0.61%) 0.53 (0.53%) 0.29 (0.29%) 0.998

CHF 95.60 ± 17.14 94.43 ± 17.04 0.60 (0.61%) 0.22 (0.24%) 1.03 (1.20%) 1.19 (1.24%) 0.61 (0.59%) 0.992

PFF 96.89 ± 19.53 96.52 ± 19.29 0.36 (0.33%) 0.34 (0.37%) 1.00 (1.02%) 0.91 (0.98%) 0.49 (0.52%) 0.998

(Continued on following page)
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structured tests showed, for all the DMOs, anMDE% between −1.0%
and 1.3% andME% between −2.22% and 3.29%. The absolute errors
were very limited for all cohorts and DMOs, with MDAE values
consistently lower than MAE values (MDAE: WB duration ≤0.05 s,
WB length ≤0.14 m, average stance duration ≤0.03 s, average stride
length ≤0.02 m, walking speed ≤0.02 m/s and cadence ≤0.61 steps/
min;MAE: WB duration ≤0.39 s,WB length ≤0.29 m, average stance
duration ≤0.04 s, average stride length ≤0.03 m, walking
speed ≤0.02 m/s and cadence ≤1.21 steps/min).

In terms of percentage errors, we foundMDAE% values <1% for
WB duration and cadence, ≤2.1% for average stride length and
walking speed, <3% for WB length and average stance duration.
Stride number MDAE% observed are equal to zero in every case, as
proof of a correct walking bout detection. The MAE% values
were <5% across DMOs and cohorts except for slightly larger
errors on stride numbers in PFF cohorts (7.6%, slowest cohort).

3.2.2 Results from the simulated daily activities test
Regarding this test, the same metrics are extracted for all the

cohorts and DMOs (Table 4). The absolute agreement was excellent
(ICC >0.90) in all the cohorts for WB length, average stride length,
and walking speed, while it was between excellent and good for the
remaining DMOs, except for few cases in which a moderate
reliability, with ICC values ≥0.69, was observed (COPD, CHF for
cadence and HOA, MS, and CHF for average stance duration,
respectively). The sample size was adequate in all cohorts for WB
length and walking speed, while analyses for some DMOs-cohorts
combinations were under-powered (HOA and PFF for WB
duration; PFF for stride number; HOA, PD, COPD, and CHF for
cadence; HOA, MS, COPD, CHF, and PFF for average stance
duration).

Strides number shows a zero bias for all cohorts (ME
between −0.45 and 0.34), while the MDAE are between 0 (CHF,

TABLE 3 (Continued) Comparison between INDIP and stereophotogrammetric system for the relevant DMOs (structured tests).

DMO Cohort M ± STD *
(INDIP)

M ± STD *
(SP)*

ME (ME
%) *

MDE (MDE
%) *

IQRE
(IQRE%)*

MAE (MAE
%) *

MDAE
(MDAE%) *

ICC2,1
*

Average Stride
Length (m)

HYA 1.33 ± 0.17 1.32 ± 0.17 0.00 (0.29%) 0.01 (0.46%) 0.03 (2.19%) 0.03 (1.94%) 0.02 (1.73%) 0.980

HOA 1.12 ± 0.16 1.13 ± 0.17 0.00 (0.19%) 0.00 (0.19%) 0.03 (2.97%) 0.03 (2.35%) 0.02 (1.44%) 0.968

PD 1.04 ± 0.23 1.03 ± 0.23 0.01 (0.75%) 0.01 (0.92%) 0.04 (3.91%) 0.03 (2.58%) 0.02 (2.10%) 0.989

MS 1.06 ± 0.22 1.06 ± 0.22 0.01 (1.09%) 0.01 (0.70%) 0.04 (3.75%) 0.03 (2.98%) 0.02 (1.96%) 0.978

COPD 1.13 ± 0.15 1.13 ± 0.15 0.00 (0.08%) 0.01 (0.50%) 0.03 (3.09%) 0.02 (2.04%) 0.02 (1.49%) 0.986

CHF 1.12 ± 0.26 1.12 ± 0.25 0.00 (0.02%) 0.00 (−0.04%) 0.04 (4.10%) 0.03 (2.46%) 0.02 (2.15%) 0.990

PFF 0.88 ± 0.32 0.87 ± 0.32 0.00 (1.22%) 0.00 (0.27%) 0.03 (3.28%) 0.02 (3.85%) 0.01 (1.67%) 0.993

Walking Speed
(m/s)

HYA 1.17 ± 0.30 1.15 ± 0.30 0.01 (1.22%) 0.01 (1.24%) 0.02 (2.07%) 0.02 (2.23%) 0.02 (1.82%) 0.993

HOA 0.97 ± 0.25 0.97 ± 0.25 0.01 (0.95%) 0.01 (0.66%) 0.03 (3.27%) 0.02 (2.34%) 0.01 (1.62%) 0.989

PD 0.82 ± 0.30 0.81 ± 0.29 0.01 (1.16%) 0.01 (1.19%) 0.03 (3.83%) 0.02 (2.67%) 0.02 (2.16%) 0.996

MS 0.84 ± 0.29 0.84 ± 0.28 0.00 (0.31%) 0.01 (0.94%) 0.03 (3.47%) 0.02 (2.91%) 0.02 (2.07%) 0.994

COPD 0.94 ± 0.25 0.94 ± 0.26 0.00 (0.30%) 0.01 (0.78%) 0.03 (2.87%) 0.02 (2.09%) 0.01 (1.64%) 0.992

CHF 0.92 ± 0.34 0.90 ± 0.33 0.01 (0.67%) 0.00 (0.37%) 0.04 (4.18%) 0.02 (2.44%) 0.02 (2.01%) 0.996

PFF 0.73 ± 0.35 0.72 ± 0.35 0.01 (1.57%) 0.00 (0.59%) 0.02 (3.39%) 0.02 (3.71%) 0.01 (1.74%) 0.996

Average Stance
Duration (s)

HYA 0.78 ± 0.16 0.78 ± 0.17 0.00
(−0.02%)

0.00 (0.12%) 0.02 (2.38%) 0.02 (2.29%) 0.02 (2.02%) 0.990

HOA 0.81 ± 0.16 0.80 ± 0.17 0.01 (1.30%) 0.01 (0.79%) 0.03 (3.88%) 0.02 (3.16%) 0.01 (2.05%) 0.978

PD 0.89 ± 0.20 0.90 ± 0.21 −0.01
(−0.55%)

0.00 (−0.24%) 0.04 (4.15%) 0.03 (2.79%) 0.02 (2.28%) 0.984

MS 0.91 ± 0.26 0.92 ± 0.27 −0.01
(1.64%)

−0.01
(−0.92%)

0.04 (4.16%) 0.03 (3.30%) 0.02 (2.20%) 0.975

COPD 0.83 ± 0.16 0.84 ± 0.16 −0.01
(−1.00%)

−0.01
(−0.63%)

0.03 (4.17%) 0.02 (2.36%) 0.01 (1.84%) 0.986

CHF 0.87 ± 0.20 0.89 ± 0.20 −0.01
(−1.76%)

−0.01
(−0.89%)

0.04 (4.24%) 0.03 (3.32%) 0.02 (2.21%) 0.976

PFF 0.89 ± 0.26 0.90 ± 0.27 −0.01
(−1.48%)

−0.01
(−0.95%)

0.05 (5.81%) 0.04 (4.06%) 0.03 (2.93%) 0.975

*Abbreviations reported in the table: M ± STD: mean ± standard deviation; ME (ME%): mean error (mean percentage error); MDE (MDE%), median error (median percentage error); IQRE

(IQRE%), interquartile range error (interquartile range percentage error); MAE (MAE%), mean absolute error (mean absolute percentage error); MDAE (MDAE%), median absolute error

(median absolute percentage error); ICC2,1, intraclass correlation coefficient, SP, stereophotogrammetric; WB, walking bout.
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TABLE 4 Comparison between INDIP and stereophotogrammetric system for the relevant DMOs (simulated daily activities test).

DMO Cohort M ± STD *
(INDIP)

M ± STD
* (SP)

ME (ME
%) *

MDE (MDE
%) *

IQRE (IQRE
%) *

MAE (MAE
%) *

MDAE
(MDAE%) *

ICC2,1
*

WB* duration (s) HYA 7.83 ± 2.72 7.93 ± 2.71 −0.09
(−1.88%)

−0.03
(−0.52%)

0.72 (9.76%) 0.52 (6.49%) 0.22 (3.28%) 0.980

HOA 6.00 ± 1.36 5.91 ± 1.36 −0.13
(−2.22%)

−0.03
(−0.41%)

0.78 (15.92%) 0.80 (14.73%) 0.41 (6.51%) 0.861

PD 8.34 ± 3.46 8.68 ± 3.68 −0.07
(−0.91%)

−0.02
(−0.25%)

1.08 (13.23%) 0.89 (10.41%) 0.70 (7.54%) 0.963

MS 9.20 ± 2.59 9.26 ± 2.68 −0.07
(−0.71%)

−0.01
(−0.11%)

1.39 (18.00%) 1.02 (12.56%) 0.69 (9.20%) 0.943

COPD 6.94 ± 1.29 6.73 ± 1.22 −0.03
(−0.47%)

−0.01
(−0.10%)

1.18 (14.87%) 0.87 (13.24%) 0.08 (1.93%) 0.894

CHF 10.62 ± 3.95 11.10 ± 4.33 −0.08
(−1.11%)

−0.03
(−0.42%)

0.13 (2.06%) 0.80 (6.64%) 0.06 (1.03%) 0.952

PFF 10.60 ± 2.78 10.05 ± 2.73 0.13 (3.29%) −0.02
(−0.33%)

1.44 (13.87%) 1.48 (20.03%) 0.66 (6.56%) 0.762

WB* length (m/s) HYA 4.64 ± 1.35 4.30 ± 1.55 0.02 (0.19%) 0.05 (1.11%) 0.32 (8.49%) 0.26 (7.84%) 0.16 (4.21%) 0.970

HOA 3.03 ± 0.54 3.18 ± 0.65 −0.06
(−0.44%)

0.03 (0.43%) 0.41 (14.38%) 0.33 (14.73%) 0.20 (5.94%) 0.938

PD 3.59 ± 1.29 4.07 ± 2.03 0.00 (0.22%) 0.01 (0.20%) 0.56 (16.13%) 0.34 (10.46%) 0.24 (7.77%) 0.974

MS 4.76 ± 1.53 4.03 ± 0.95 −0.03
(−0.26%)

0.01 (0.10%) 0.43 (17.84%) 0.30 (10.94%) 0.28 (7.41%) 0.981

COPD 3.48 ± 1.14 3.39 ± 1.21 −0.01
(−0.45%)

0.01 (0.29%) 0.27 (8.42%) 0.19 (9.36%) 0.09 (3.75%) 0.980

CHF 4.52 ± 1.64 4.22 ± 1.02 −0.04
(−0.30%)

0.02 (0.53%) 0.17 (6.79%) 0.19 (5.43%) 0.09 (2.65%) 0.981

PFF 4.09 ± 1.78 3.63 ± 1.05 0.01 (1.05%) 0.01 (0.11%) 0.26 (8.82%) 0.34 (12.01%) 0.25 (6.82%) 0.944

Strides number HYA 8.91 ± 3.25 9.09 ± 3.27 −0.08
(0.91%)

0.00 (0.00%) 1.00 (14.83%) 0.79 (8.62%) 1.00 (7.14%) 0.965

HOA 7.12 ± 1.75 6.95 ± 1.89 −0.13
(−1.66%)

0.00 (0.00%) 1.00 (20.00%) 0.98 (15.20%) 1.00 (12.50%) 0.888

PD 8.89 ± 3.78 9.08 ± 4.06 −0.17
(−0.88%)

0.00 (0.00%) 1.00 (13.29%) 0.97 (11.70%) 1.00 (9.76%) 0.962

MS 11.14 ± 3.67 11.34 ± 3.57 −0.06
(−0.37%)

0.00 (0.00%) 2.00 (20.20%) 1.27 (11.80%) 1.00 (11.11%) 0.961

COPD 7.87 ± 2.10 7.57 ± 2.19 −0.01
(0.01%)

0.00 (0.00%) 2.00 (20.00%) 1.07 (15.72%) 1.00 (9.09%) 0.912

CHF 10.81 ± 3.80 11.32 ± 4.12 −0.02
(−0.59%)

0.00 (0.00%) 1.00 (11.11%) 0.73 (6.42%) 0.00 (0.00%) 0.968

PFF 12.53 ± 4.02 11.91 ± 3.02 0.07 (2.71%) 0.00 (0.00%) 3.50 (35.00%) 2.34 (23.68%) 2.00 (17.64%) 0.815

Cadence
(steps/min)

HYA 86.50 ± 9.94 85.27 ± 8.97 1.01 (0.92%) 0.30 (0.32%) 3.09 (3.74%) 2.72 (3.45%) 1.07 (1.39%) 0.929

HOA 93.99 ± 8.97 91.64 ± 7.58 0.59 (0.58%) 0.23 (0.23%) 5.04 (5.92%) 4.36 (4.97%) 2.78 (2.62%) 0.867

PD 83.40 ± 8.09 82.41 ± 10.18 0.36 (0.41%) 0.11 (0.10%) 3.35 (4.33%) 4.02 (4.61%) 2.14 (2.72%) 0.871

MS 89.26 ± 8.38 87.63 ± 8.79 0.48 (0.69%) 0.08 (0.10%) 4.43 (5.01%) 3.14 (3.77%) 2.19 (2.45%) 0.902

COPD 89.07 ± 9.54 86.32 ± 9.55 0.27 (0.26%) 0.10 (0.10%) 5.31 (6.29%) 4.87 (6.28%) 2.15 (2.42%) 0.733

CHF 85.83 ± 11.23 82.27 ± 6.02 0.60 (0.61%) 0.22 (0.24%) 2.59 (2.74%) 3.26 (4.26%) 1.13 (1.37%) 0.740

PFF 87.81 ± 10.31 88.50 ± 10.41 0.36 (0.33%) 0.34 (0.37%) 4.20 (4.32%) 3.63 (4.17%) 1.83 (2.39%) 0.918

(Continued on following page)
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MAE 0.73) and 2 (PFF, MAE 2.34) across cohorts, with MDAE%
ranging from 0% (CHF, MAE% 6.42%) to 17.64% (PFF, MAE%
23.68%). Due to the differences in strides number, also the MDAE
and MAE obtained for the other DMOs were in general moderately
higher with respect to those obtained for the structured tests. For
instance, MDAE for walking speed ranged between 0.02 m/s and
0.03 m/s (MAE between 0.03 m/s and 0.05 m/s), while MDAE%
ranged between 3.2% and 7.1% (MAE between 6.6% and 11.21%).

3.3 The INDIP real-world outcomes

The same participants were also involved in a 2.5-h
unsupervised recording (except for the HYA for which we
have a subset of 11/20 subjects) for a total of 119 participants.
The duration of the acquisition reached the expected value in

most of the cases (89%, the remaining 11% had a recording
duration between 27 and 123 min). Five participants were
excluded due to technical issues in the acquisitions (1 PD,
1 MS, 3 PFF), while 18 participants were discarded due to
different technical problems which affected PI data quality
during the recordings (3 HOA, 4 PD, 5 MS, 1 CHF, 5 PFF)
(see Paragraph 2.6). Results on the real-world acquisitions are
hence computed on 96/119 participants (81%). For the real-world
experiments, 4,879 walking bouts were analyzed including
213,945 strides (Table 2).

Table 5 includes the characteristics (min, max and
interquartile range values) of the walking bouts detected with
the INDIP system in terms of WB duration, WB length and
strides number for each cohort. Figure 6 shows the boxplots
obtained for a subset of DMOs (cadence, average stride length
and walking speed) for each group of participants. Results from

TABLE 4 (Continued) Comparison between INDIP and stereophotogrammetric system for the relevant DMOs (simulated daily activities test).

DMO Cohort M ± STD *
(INDIP)

M ± STD
* (SP)

ME (ME
%) *

MDE (MDE
%) *

IQRE (IQRE
%) *

MAE (MAE
%) *

MDAE
(MDAE%) *

ICC2,1
*

Average Stride
Length (m)

HYA 0.99 ± 0.14 0.97 ± 0.14 0.00 (0.29%) 0.01 (0.46%) 0.06 (7.25%) 0.05 (7.20%) 0.04 (3.77%) 0.965

HOA 0.83 ± 0.17 0.80 ± 0.11 0.00 (0.19%) 0.00 (0.19%) 0.09 (12.34%) 0.06 (9.96%) 0.04 (5.50%) 0.939

PD 0.74 ± 0.13 0.72 ± 0.16 0.01 (0.75%) 0.01 (0.92%) 0.05 (8.07%) 0.05 (8.77%) 0.04 (5.71%) 0.963

MS 0.81 ± 0.16 0.79 ± 0.13 0.01 (1.09%) 0.01 (0.70%) 0.09 (11.83%) 0.06 (7.88%) 0.04 (6.01%) 0.934

COPD 0.82 ± 0.11 0.82 ± 0.12 0.00 (0.08%) 0.01 (0.50%) 0.05 (8.82%) 0.04 (6.99%) 0.03 (3.73%) 0.981

CHF 0.80 ± 0.14 0.81 ± 0.13 0.00 (0.02%) 0.00 (−0.04%) 0.04 (6.51%) 0.05 (7.17%) 0.02 (2.21%) 0.927

PFF 0.63 ± 0.12 0.62 ± 0.11 0.00 (1.22%) 0.00 (0.27%) 0.09 (16.07%) 0.05 (8.95%) 0.05 (8.89%) 0.939

Walking Speed
(m/s)

HYA 0.73 ± 0.16 0.71 ± 0.16 0.01 (1.22%) 0.01 (1.24%) 0.05 (10.86%) 0.04 (8.24%) 0.03 (4.94%) 0.978

HOA 0.66 ± 0.18 0.63 ± 0.11 0.01 (0.95%) 0.01 (0.66%) 0.06 (13.32%) 0.05 (11.21%) 0.03 (6.82%) 0.942

PD 0.52 ± 0.13 0.51 ± 0.11 0.01 (1.16%) 0.01 (1.19%) 0.03 (8.38%) 0.03 (8.31%) 0.02 (5.20%) 0.975

MS 0.61 ± 0.15 0.58 ± 0.13 0.00 (0.31%) 0.01 (0.94%) 0.08 (12.70%) 0.05 (9.14%) 0.03 (7.03%) 0.944

COPD 0.61 ± 0.10 0.60 ± 0.10 0.00 (0.30%) 0.01 (0.78%) 0.04 (8.91%) 0.03 (8.23%) 0.02 (3.33%) 0.983

CHF 0.58 ± 0.08 0.57 ± 0.10 0.01 (0.67%) 0.00 (0.37%) 0.05 (10.08%) 0.03 (6.60%) 0.02 (3.20%) 0.973

PFF 0.46 ± 0.08 0.46 ± 0.07 0.01 (1.57%) 0.00 (0.59%) 0.06 (13.75%) 0.04 (8.91%) 0.03 (7.10%) 0.939

Average Stance
Duration (s)

HYA 1.04 ± 0.11 1.08 ± 0.14 0.00
(−0.02%)

0.00 (0.12%) 0.09 (6.94%) 0.07 (6.61%) 0.05 (5.10%) 0.860

HOA 0.97 ± 0.12 0.98 ± 0.12 0.01 (1.30%) 0.01 (0.79%) 0.12 (12.13%) 0.10 (9.72%) 0.06 (6.06%) 0.737

PD 1.07 ± 0.12 1.09 ± 0.12 −0.01
(−0.55%)

0.00 (−0.24%) 0.11 (9.76%) 0.07 (5.96%) 0.05 (4.18%) 0.911

MS 1.00 ± 0.14 1.05 ± 0.15 −0.01
(1.64%)

−0.01
(−0.92%)

0.11 (10.62%) 0.08 (7.81%) 0.06 (5.48%) 0.716

COPD 1.03 ± 0.09 1.07 ± 0.09 −0.01
(−1.00%)

−0.01
(−0.63%)

0.07 (6.39%) 0.07 (6.44%) 0.03 (3.82%) 0.828

CHF 1.10 ± 0.22 1.21 ± 0.35 −0.01
(−1.76%)

−0.01
(−0.89%)

0.06 (6.08%) 0.11 (7.65%) 0.03 (3.15%) 0.690

PFF 1.01 ± 0.14 1.03 ± 0.15 −0.01
(−1.48%)

−0.01
(−0.95%)

0.11 (11.79%) 0.08 (8.13%) 0.05 (5.75%) 0.854

*Abbreviations reported in the table: M ± STD: mean ± standard deviation; ME (ME%), mean error (mean percentage error); MDE (MDE%), median error (median percentage error); IQRE

(IQRE%), interquartile range error (interquartile range percentage error); MAE (MAE%), mean absolute error (mean absolute percentage error); MDAE (MDAE%), median absolute error

(median absolute percentage error); ICC2,1, intraclass correlation coefficient; SP, stereophotogrammetric; WB, walking bout.
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the usability questionnaires filled by the 11 HYA are reported in
Appendix B.

4 Discussion

In this study, we presented and validated the INDIP, a multi-
sensor wearable system specifically conceived for gait assessment
under ecologically valid conditions. The system was deployed
within the Mobilise-D project (Mobilise-D 2019) for assessing
the technical validity of the DMOs estimated based on a single-
device attached to the lower trunk for long-term daily-life
mobility assessment (Mazzà et al., 2021; Micó-amigo et al.,
2022; Scott et al., 2022).

4.1 INDIP hardware and algorithms

To ensure transparency, reproducibility and replicability, a
thorough description of INDIP system hardware have been
provided. Moreover, each of the state-of-the-art algorithms included
in the INDIP computational pipeline has been previously described,
validated under standard and controlled conditions (Trojaniello et al.,
2014; Bertoli et al., 2018; Bertuletti et al., 2019), and specifically

optimized for gait assessment. It is important to highlight that, to
compute the DMOs according to the definition and the minimum
requirements for strides and walking bouts (as agreed within the
Mobilise-D consortium (Kluge et al., 2021)), it is necessary to
perform a stride-by stride resolution gait analysis, independently of
the DMOs aggregation level (e.g., across walking bout, across subjects,
across cohort). Temporal gait events were directly measured from the
foot-ground contacts detected using 16 force-resistive sensors
integrated in the PIs, applying a clustering approach for increasing
robustness to noise (Salis et al., 2021a). Similarly, spatial parameters
were determined based on the double integration of accelerometric
signals recorded by the IMUs attached to the feet, which may benefit
from gravity removal and zero-velocity update techniques for noise
reduction during walking (Sabatini, 2005; Skog et al., 2010; Rebula et al.,
2013; Trojaniello et al., 2014).

4.2 INDIP calibration refinement and noise
description

The quality and uniformity of the sensor data collected during
the experiments were rigorously verified. In fact, the performances
of low-cost miniaturized IMUs, commonly employed in human
movement monitoring, aren’t as stable as those of IMUs used in

TABLE 5 INDIP Outcomes for duration, total length and strides number (2.5-h real world experiments).

Cohort Min-max values* IQR* value

WB* duration (s) HY 2.79–1,442.70 46.72

HA 2.31–1,493.59 12.52

PD 2.74–1741.60 14.90

MS 2.82–814.49 15.55

COPD 2.44–638.52 11.60

CHF 2.36–1,090.32 13.76

PFF 2.59–381.21 16.77

WB* length (m) HY 0.75–2,105.02 42.47

HA 0.51–1913.74 7.28

PD 0.49–2,430.50 9.32

MS 0.62–1,225.93 8.55

COPD 0.60–699.69 6.28

CHF 0.59–1,586.70 10.74

PFF 0.76–425.96 7.71

Strides number HY 4–2,779 74

HA 4–2,450 17

PD 4–3,101 20

MS 4–1,634 20

COPD 4–1,081 15

CHF 4–1766 20

PFF 4–643 22

*Abbreviations used in the table: IQR, interquartile range; Min, minimum; Max, maximum; WB, walking bout.
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navigation applications (Nez et al., 2016). For this reason, it is good
practice—when possible—to perform appropriate quality checks,
and to eventually refine calibration parameters based on in-field
procedures proposed in the literature (Stančin and Tomažič, 2014).
In this validation study, sensor characterization and recalibration
were performed on all the 72 IMUs used by the five laboratories to
verify that each sensor had similar metrological performance and
thus facilitating the comparison of the results obtained for the
different centers. Furthermore, the description of the noise
statistics for both the accelerometers and gyroscopes deployed
enabled the setting of reference values for sensor stochastic noise,
and the elimination of those sensors which did not satisfy
metrological requirements (two IMUs with STD values
exceeding by 15% the STD maximum values found for the
accelerometers and the gyroscopes distributions–3.31 mg and
0.13 dps, respectively).

4.3 INDIP performance validation

A key aspect of this study concerns the efforts devoted to the
assessment of the INDIP system performance (Mazzà et al., 2021).
In principle, when establishing a new reference method, attention
should be paid in validating the estimated DMOs under conditions
similar to those of its intended use, that in this context are
represented by real-world mobility. However, in practice, this is

often not possible due to the lack of well-established valid gold
standard solutions for the entire set of gait metrics of interest (Del
Din et al., 2016). To overcome this paradox, we tested the INDIP
system through an experimental protocol specifically designed and
validated (Scott et al., 2022) for simulating several real-world
walking conditions in terms of: 1). Complexity and heterogeneity
of the motor tests recorded including not only straight walking but
also turnings, obstacles, different surfaces, standing and sitting on a
chair and intermittent gait due to interaction with objects of the
typical home daily life; 2). Types of target populations analyzed
(seven different cohorts including normal gait in young and older
adults, neurological disorders, orthopedic pathologies, and cardio-
respiratory disorders); 3). Broad range of walking speeds, from
0.46 m/s (PFF, simulated daily activities test) to 1.15 m/s (HYA,
structured tests) on average; 4). Technical reproducibility (multi-
centric data collection carried on five different gait analysis
laboratories).

In general, the INDIP system showed very good performance,
similar across motor tests and cohorts, supporting the robustness of
algorithm’s estimate for a large variety of gait patterns. In particular,
the results of the structured motor tests showed excellent concurrent
validity between the stereophotogrammetry and INDIP estimates,
with ICC values ranging between 0.95 and 0.99 across cohorts and
DMOs. Similarly, the accuracy was very high for all the DMOs-
cohorts combinations, with MDAE% less than 2.93% (Table 3).
Precision as represented by interquartile range values was very good

FIGURE 6
Boxplots obtained from the INDIP system for cadence, average stride length and walking speed for each cohort in the 2.5-h acquisitions.
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for all DMOs and cohorts (<5.2%) with the largest dispersion
observed for average stance duration in PFF (5.81%), which is
also the cohort with the most frequent use of walking aids (in
general, 13/19 PFF patients recruited were walking aid users,
Table 1).

As expected, slightly larger errors were observed for the
simulated daily activities test, which is characterized by multiple
shorter walking bouts separated by motor activities other than
walking (i.e., setting the table, moving chair and other objects,
etc.). On average, the WB length for this test (3–4 m) was half
that observed for the structured tests, resulting in an inevitable
increase in DMOs relative errors. For instance, a difference of a
single stride between the stereophotogrammetric system and INDIP
system led to a relative error from 7.14% to 12.50% depending on the
specific cohort analyzed. In general, concurrent validity was
excellent for all cohorts for both average stride length and
walking speed (ICC >0.94) whereas a larger variability was
observed for average stance duration and cadence (ICC values
between 0.71 and 0.93). Accuracy level was also good with
MDAE of 1-2 strides for stride number, smaller than 0.05 m for
the average stride length (MDAE% ≤ 8.89%), and smaller than
0.03 m/s for walking speed (MDAE% ≤ 7.10%) across cohorts.

As the DMOs error distributions were negatively skewed, mean
errors were higher with respect to median errors. In fact, the last
ones are less sensitive to outliers due to the asymmetry that
characterizes error distributions and the data cleaning procedure
applied. Interestingly, the INDIP system showed similar
performance across tests and cohorts. These findings support the
robustness of the algorithm’s estimate for a large variety of different
gait patterns. It should be also highlighted that the INDIP system
performance was assessed on relatively short walking bouts
(length <8 m; number of strides <16.5) which represent critical
and challenging experimental conditions compared to motor tests
including longer walking bout characterized by more regular and
predictable gait patterns (Micó-amigo et al., 2022). This is the worst-
case situation, thereby yielding the most conservative estimates.

4.4 Comparison with the literature

The choice of reporting both mean and median errors enabled a
direct comparison of the results with studies based on different metrics
(Trojaniello et al., 2014; Bertoli et al., 2018; Bonci et al., 2022; Micó-
Amigo et al., 2022). It is interesting noting that the errors associated
with the spatial-temporal parameters estimated by the INDIP were in
general larger than those reported by (Trojaniello et al., 2014) and
(Bertoli et al., 2018), from which INDIP IMU-based algorithms were
derived and refined. Although a direct errors comparison is not possible
as errors were computed at different aggregation levels (stride-level
versus walking bout level), it is possible to observe that, in Bertoli et al.
(Bertoli et al., 2018), stride length mean absolute errors were on average
2% (about 25 mm) for PD patients, compared to errors of 30 mm
(structured tests) and 50 mm (simulated daily activities test) found with
the INDIP system for the same cohort. Such differences may be
explained considering that the original methods (Trojaniello et al.,
2014; Bertoli et al., 2018) were validated on gait data recorded for 1 min
while the subject was walking on a 12-m-long straight walkway, without
including much more complex and challenging motor tests as in the

present study. These observations further support the importance of
testing the proposed methods under conditions like those usually
encountered in real world scenarios (intermittent walking including
turning, short walking bouts, breaks and higher gait variability).

In the last decades, several methods based on wearable sensors
for mobility assessment (Iosa et al., 2016) have been developed, with
a particular attention to feet/shanks IMUs approaches. However, in
most of the studies, validation was limited to straight walking,
normal gait, or to the evaluation of temporal parameters only.
For example, Gastaldi and colleagues (Gastaldi et al., 2015)
compared the results obtained from two IMUs with those of a
footswitch-based system (STEP 32 footswitches); data were collected
on one healthy subject while walking on a 12 m straight path for
three times, obtaining relative errors below 5% for cadence
computed at trial level. Also Zhou and colleagues (Zhou et al.,
2020) tested an algorithm based on two feet mounted IMUs
(Physiolog→5 IMUs, Gait Up) against an OptoGait system, using
straight walk data collected on five young healthy participants. The
stride-by-stride comparison led to root mean square errors of 0.05 m
(3%) for stride length. The results obtained with the INDIP system
under similar conditions (healthy participants for the structured
tests), showed smaller errors both for cadence (MAE% about 1%)
and average stride length (MAE 0.03 m). Jakob and colleagues
(Jakob et al., 2021) validated a wearable system (Portabiles-HCT
GaitLab-System, including two IMUs positioned inside the shoes)
on 33 PD patients during straight walk, using the
stereophotogrammetry as reference. The method performance
was evaluated in terms of ICC values and results were excellent
(0.986 for walking speed and 0.985 for stride length) but lower than
found with the INDIP system (ICC of 0.996 for walking speed and
0.989 for average stride length in PD patients during structured
tests).

Recently, Romijnders and colleagues (Romijnders et al., 2021)
stressed the importance of assessing the performance of methods for
daily-life use during curved walking and dual-task conditions. With
this purpose, they proposed and validated a shank IMU-based
algorithm for gait events detection on HOA, PD patients and
stroke patients walking in three conditions (straight walk, slalom
walk, and dual task walk along an elliptical path). Very good
performances were found in terms of recall, precisions against
the stereophotogrammetric system (recall between 85% and
100%, precision 95%–100% for HOA and PD). The INDIP
system showed similar or better performance, in terms of
accuracy based on the number of detected strides (97% for HOA
and 98% for PD), across more complex motor tasks.

More recently, it has become evident that there is a need of
extending the validation during real-world conditions, comparing
IMU-based methods against pressure insoles for the estimation of
temporal parameters. For example, Storm and colleagues (Storm,
Buckley, and Mazzà, 2016) validated two algorithms, one based on
two shank IMUs and the other on onewaist IMU, using pressure insoles
as reference. Data were collected on ten healthy participants, both
indoor and outdoor, while performing straight walking and curvilinear
walking, for a total of five different tasks. Among the gait parameters
presented, also stance duration was computed, obtaining an average
absolute error around 0.04 s for the shankmethod and around 0.03 s for
the waist method across all the tasks. Another relevant work is that
proposed by Roth and colleagues (Roth et al., 2021b), in which they
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validated a pipeline based on footmounted IMUs against force sensitive
resistor pressure insoles. Their performance was evaluated using data
collected on 20 healthy participants in supervised real-world conditions
(level walking, stairs ascending and stairs descending at normal, slow
and fast speed). The authors reported mean absolute error on stance
duration about 0.02 s on level walking, 0.03 s ascending, 0.02 s
descending, comparable with those obtained from the INDIP based
method for the average stance duration in the structured tests (MAE
0.02 s for both HYA and HOA).

Some studies have proposed to use amulti-technology approach for
gait analysis (Schepers et al., 2009; Van Meulen et al., 2016; Li et al.,
2018; Refai et al., 2018; Tang et al., 2019; Duong et al., 2022), but very
few studies characterized the performance of those systems in
estimating DMOs against a ground truth reference. An interesting
but preliminary study was presented by Li and colleagues (Li et al.,
2018), who developed a multi-sensor system including three force
sensors (positioned at the heel, arch and forefoot to detect IC and
FC), an IMU and four range sensors for each foot. The study involved
four healthy male participants and the stereophotogrammetric system
was used as reference, obtaining average relative errors - computed
among all subjects and trials—of 9.34% for stride length and 5.90% for
stride velocity on straight walks (against a MAE% of 2.23% for walking
speed and 1.94% for average stride length in HYA from INDIP system).
Amulti-sensor systemwith a sensor configuration similar to the INDIP
has been recently proposed by Duong and colleagues (SportSole II)
(Duong et al., 2022). It includes two instrumented insoles, with eight
force sensitive resistor elements, each connected to an IMU attached to
the shoe. Data were collected on eleven HYA while performing a series
of different activities (including tasks with straight walk, curves and
stairs). However, the system performance was validated only for
selected gait portions (the subject walking on the instrumented
walkway during straight or curvilinear portions), and on normal
gait. Data were processed using a support vector regression (SVR)
based algorithm, obtaining a good performance (MAE% structured
session: 2.97% for stride length and 3.16% for stride velocity; MAE%
unstructured session: 3.55% for stride length and 3.59% for stride
velocity), but lower than that obtained with the INDIP for the
structured tests (MAE% 1.94% for average stride length and 2.23%
for walking speed). In general, compared to previous studies, the INDIP
method showed better or similar performances in theDMOs estimation
based on a more complex validation design—both in terms of motor
activities analyzed or motor gait impairments diversity—than what is
currently being achieved.

4.5 INDIP usability in the real-world

Consistency of INDIP outputs was tested during 2.5 h of
unsupervised acquisitions on the same participants involved in the
laboratory experiments, while acceptability of the device, wearability
and usability factors were also examined for the HYA participants
(Appendix B). Regarding the 2.5 h real-world experiments, a wider
range of WB durations was explored (from a minimum of 2.3 s to a
maximum of 1741.6 s), which leads toWB lengths ranging from 0.49 m
to 2,430.50 m. Theminimumnumber of strides (four in all cohorts) was
determined by the walking bout definition while a maximum value of
3,101 strides was observed for a PD patient. Extracted stride length
values ranged from 0.19 m to 1.8 m (for definition the minimum stride

length is 0.15 m) along with a very broad range of walking speeds from
very slow (0.1 m/s) to very fast (1.6 m/s) and cadence values ranging
from 44.69 steps/min (HOA) to 139.95 steps/min (CHF). It is
important to notice that the values obtained for this subset of
DMOs resulted to be consistent with those found in literature
(Sofuwa et al., 2005; Panizzolo et al., 2014; Thingstad et al., 2015;
Dujmovic et al., 2017; Iwakura et al., 2019). In general, during the 2.5 h
acquisition, the INDIP resulted to be well accepted and no major
technical or usability issues were declared.

4.6 Limitations and methodological choices

The findings of this study must be evaluated considering some
limitations and specific methodological choices:

• The INDIP system in its full configuration requires sensors to be
attached to the feet, shanks and lower trunk and sensor
redundancy clearly limits wearability. For this reason, the
INDIP is more suitable for a complete description of mobility
performance rather than for long-term monitoring, for which a
single-IMU solution is certainly preferable.

• The INDIP sensor redundancy was exploited for identifying gait
events and detecting strides from pressure, inertial, and distance
signals. For this study, it was decided to prioritize sensitivity to
avoidmissing events. However, stride detection specificity could be
increased by selecting only strides identified by all the three types of
sensors (i.e., gait events detected from both PI and foot mounted
IMU, and non-zero DS measure during the stride interval).

• In this study, the distance sensors have not been properly
integrated in a sensor fusion process. These sensors provide the
inter-leg distance measure as further information (Bertuletti et al.,
2018; Rossanigo et al., 2023), but the validation of this gait
parameter was out of the scope of the present study.

• The PIs used are based on a low-cost technology (force sensitive
resistor) with an expected lifetime of about 30 h, followed by an
inevitable deterioration of the performances. Therefore, when the
signal quality was no longer considered sufficient, PIs data was not
used, and the trial was discarded from the here-presented analysis.
The number of discarded acquisitions can be reduced ensuring the
proper functionality of the adopted PIs before each data
acquisition.

• The technical complexity associated to the implementation of
multi-center experimental sessions and, in particular, problems
related to the simultaneous use and synchronization of different
technologies and sensors, the collection of a large number of trials
in patients with mobility deficits and the presence of marker
visibility issues led to discard about 13% of the participants’ data.

• Further analysis on INDIP outcomes could be performed to
explore potential correlations between the results accuracy
and the use of walking aids.

5 Conclusion

This work concerned the validation of a novel multi-sensor
wearable system for digital mobility assessment in ecological
environments. Its performance was evaluated based on a various
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and complex experimental protocol specifically designed for mobility
assessment. Experiments included selected cohorts of participants with
various conditions affecting gait characteristics performing a complex
battery of motor tests designed to produce a heterogeneous and broad
range of gait patterns. Results showed overall good/excellent reliability
and high repeatability and accuracy for the DMOs analyzed across
populations, walking speeds and walking bouts. The INDIP system is
therefore a valuable candidate to collect reference standard data for the
analysis of gait in real-world conditions.
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