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Cross-diffusion-driven hydrodynamic instabilities in a double-layer system: general

classification and nonlinear simulations.

M.A. Budroni
Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy∗

(Dated: October 28, 2015)

Cross-diffusion, whereby a flux of a given species entrains the diffusive transport of another species,
can trigger buoyancy-driven hydrodynamic instabilities at the interface of initially stable stratifica-
tions. Starting from a simple 3-component case, we introduce a theoretical framework to classify
cross-diffusion-induced hydrodynamic phenomena in two-layers stratifications under the action of
the gravitational field. A cross-diffusion-convection (CDC) model is derived by coupling the fickian
diffusion formalism to Stokes equations. In order to isolate the effect of cross-diffusion in the convec-
tive destabilization of a double-layer system, we impose a starting concentration jump of one species
in the bottom layer while the other one is homogeneously distributed over the spatial domain. This
initial configuration avoids the concurrence of classic Rayleigh-Taylor and differential-diffusion con-
vective instabilities. We show that we can selectively activate the cross-diffusion feedback by which
the heterogeneously distributed species influences the diffusive transport of the other species. We
identify two types of hydrodynamic modes (the negative cross-diffusion-driven convection, NCC,
and the positive cross-diffusion-driven convection, PCC) corresponding to the sign of this opera-
tional cross-diffusion term. The study of the space-time density profiles along the gravitational axis
allows to obtain analytical conditions for the onset of convection only in terms of two important pa-
rameters: the dominating cross-diffusivity and the buoyancy ratio, giving the relative contribution
of the two species to the global density. The general classification of the NCC and PCC scenarios
in such parameter space is supported by numerical simulations of the fully nonlinear CDC prob-
lem. The resulting convective patterns compare favorably with recent experimental results found in
microemulsion systems.

PACS numbers: 47.20.Bp,47.20.Ma

I. INTRODUCTION

Diffusion plays a primary role in self-organization.
When coupled to linear or nonlinear reactions, dif-
fusive transport yields an impressive variety of pat-
terns, ranging from fractal trees driven by diffusion-
limited-aggregation (DLA) [1] to stationary (Turing
patterns[2, 3], Liesengang bands [4]) and travelling struc-
tures (chemical fronts [5, 6] and waves [6–9]). Firstly
theorized in a seminal work by Alan Turing [2], the
reaction-diffusion (RD) paradigm has been successfully
used to describe emergent phenomena in biological and
ecological systems [10], and thoroughly investigated by
means of relatively simple model systems such as the
well-known Belousov-Zhabotinsky (BZ) [11, 12] and the
chlorite-iodide-malonic acid (CIMA) reactions [13].
In the gravitational field, diffusion can also trigger
convective patterns in initially stable stratifications
where a less dense solution is layered on top of a denser
miscible solution [14–16]. Here, differential diffusion
induces the interfacial destabilization of a double-layer
system either when the component of lower layer
diffuses faster than the upper one, or vice versa. The
former mechanism, describing a Double-Diffusive (DD)
instability, is well-known in oceanography where salty
warmer water overlies cold fresh water and salt fingering
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can occur because of the lower diffusion rate of the salt
with respect to the heat [17]. By contrast, when the
faster component is set on top, convective instability
develops in time because the upper species, by diffusing
downwards faster than the lower solute moves upwards,
creates a density depletion area above the starting
interface and an accumulation below it. The resulting
convective structures, symmetrically positioned above
and below the interface, are typical example of a Double-
Layer-Convection (DLC) instability [15, 16, 18, 19].

Currently, one active frontier in pattern formation
research concerns the study of novel structures, so-
called chemo-hydrodynamic patterns [20], arising from
the interplay among diffusion, chemical kinetics and
convection. Regarding double-layer configurations in
vertically oriented reactors, it has been shown that
reactive processes can severely modify the dynamics of
the hydrodynamic patterns, switching from a symmetric
fingering growth of non-reactive cases to non-symmetric
fingering if a rather simple A + B → C reaction is at play
[21–24]. Vertically growing [25] and laterally traveling
fingers [26] have been found in systems involving more
complex autocatalytic or oscillatory kinetics localized at
the interface between the two layered reactants pools.
In this context the competition between thermal- and
solutal-related changes of density produced in-situ by the
reactive process must be taken into account [27, 28] to
explain composite structures which can be obtained with
many active systems [29–37]. The antagonism among



2

different contributions to convective flows induced by a
reaction is also responsible for complex dynamics such
as spatio-temporal oscillations [38, 39], segmentation
scenarios [40] and transition to chemical chaos [41–43] in
autocatalytic fronts and waves propagating in vertically
oriented reactors.

To date, most of the studies on chemo-hydrodynamic
instabilities have focused on systems where the influence
of cross-diffusive motions, i.e. fluxes induced in a given
species by the presence of concentration gradients in
the another ones [44], can be neglected. Much less
conventional is the study of chemo-physical processes
in which cross-diffusion terms feature a dominating
role. The dramatic effect of this contribution has been
proved in non-reactive and reactive spatially distributed
systems, both theoretically [45–52] and experimentally
[49].
Nonetheless, cross-diffusion can also trigger an al-
ternative path to buoyancy-driven convection in
initially stable stratifications. The first example of
such a mechanism was shown in a ternary system
(polyvinylpyrrolidone(PVP)-dextran-H2O) [53], where
an aqueous solution of dextran was placed above a
denser aqueous solution of equimolar dextran containing
PVP. Starting from this buoyantly stable stratification,
the diffusion of PVP from the lower solution to the
upper one generates a co-flux of dextran and, by means
of this cross-diffusion feedback, causes the local inversion
of the density profile around the initial interface with
the consequent appearance of fingered patterns. This
specific hydrodynamic scenario has been successively
characterized and understood by means of further exper-
imental investigations [54–57] and instability conditions
were finally rationalized within a diffusion-convection
modeling [58].
Recently [59], we have extended the array of possible
experimental systems where cross-diffusion-driven con-
vection can occur to the non-reactive AOT (sodium
bis(2-ethylhexyl)sulfosuccinate Aerosol OT) microemul-
sions (AOT-ME). Microemulsions are liquid mixtures of
an organic component (more often termed oil), water
and surfactant. Under the percolation threshold, ME
appear at the nano-scale as dispersed spherical or
elongated droplets where the surfactant constitutes a
sort of membrane with the hydrophobic part oriented
to the outer organic phase and the hydrophilic heads in
contact with the inner aqueous phase segregated into
the droplet.
We studied experimentally convective fingering growing
symmetrically across the interface between two identical
stratified AOT-ME in a Hele-Shaw cell [60]. The insta-
bility is promoted by a salt (NaBrO3) added to the lower
denser solution and free to diffuse towards the upper less
dense layer. This generates a positive co-flux of both
water and AOT and, in turn, produces a non-monotonic
density distribution along the gravitational field. The
resulting convective scenario is similar to that observed

with the PVP-dextran-H2O system. Recently, we have
shown that a similar but simplified version of the ME
experiments with a 3-component system (H2O-AOT
in octane) [60] is sufficient to explore an even richer
spectrum of convective modes reminiscent of both DD or
DLC hydrodynamic instabilities by changing the initial
composition of the MEs along the gravitational axis.
Dispersed media such as ME, often characterized by
large cross-diffusion terms due to excluded volume
effects, are widely used to approach pattern formation
in combination with the BZ system [61–68] and the cou-
pling between cross-diffusion-driven convection and such
reactive processes promises to be an unparalleled source
for a new generation of chemo-hydrodynamic patterns.
In order to pave the way towards this unexplored world,
a robust and simplifying theory to the problem in the
absence of any reaction is primarily needed.

The goal of this paper is to provide such a theoret-
ical framework starting from the simplest 3-component
case (2 solutes and 1 solvent). A dimensionless model
which couples the fickian diffusion with Stokes equations
is used to describe cross-diffusion-driven hydrodynamic
phenomena in the case of a double-layer initial config-
uration with a concentration jump in one of the solute
across the two-layer contact line, while the other solute
is set homogeneously over the whole spatial domain. The
resulting density profile, featuring a less dense on top of
a denser solution, is initially stable and allows to isolate
cross-diffusive effects in the convective destabilization.
We show that our starting conditions can activate selec-
tively specific elements of the cross-diffusion matrix, fur-
ther reducing the complexity of the system description.
Following a standard technique [15], analytic solutions to
the pure cross-diffusion problem are used to reconstruct
the space-time evolution of the density profiles along the
gravitational field, by which the onset and the topology of
convective patterns can be predicted. The analysis of the
density profile morphology leads to a parametric classifi-
cation of possible scenarios based on the sign of the cross-
diffusion terms and on the relative contribution of the
two species to the global density. The two types of cross-
diffusion-driven hydrodynamic modes identified through
the analytical procedure are reproduced and character-
ized by the numerical integration of the nonlinear CDC
equations.

II. CDC MODEL

Consider a two dimensional vertical slab of width LX

and height LZ in a (X,Z) reference frame, where the
gravitational acceleration ḡ = (0,−g) is oriented down-
wards along the Z axis. The solution T of density ρT ,
containing the solute h with the initial concentration CT

h,0

and the solute j with concentration CT
j,0 is placed on

top of the solution B, with concentration CB
h,0 = CT

h,0,
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CB
j,0 > CT

j,0 and density ρB > ρT (see sketch in Fig.1). In
other words, the species h is homogeneously distributed
over the spatial domain, while species j features a con-
centration jump downwards the gravitational axis.

FIG. 1: (Color online) Sketch of the two-dimensional
stratification used to approach cross-diffusion-driven
convection. The initial distribution of the solutes

determines a step function density profile.

The resulting double-layer stratification is stable to
classic Rayleigh-Taylor or buoyancy-driven instabilities
due to differential diffusion mechanisms, such as double-
diffusion or double-layer-convection instabilities, and
thus it is perfect to isolate the sole effect of cross-diffusion
on the system stability. Upon contact, the two miscible
solutions, initially separated by a horizontal planar inter-
face at LZ/2, start mixing by diffusion without inducing
any thermal effect. The flux of each species is affected by
concentration gradients in the other one as described by
fickian equations where the cross-diffusive terms of the
diffusion matrix D are taken into account explicitly.
In order to analyze the effect of cross-diffusion in the on-
set of natural convection, diffusion equations are coupled
to Stokes equations as:

∂tCj + (V · ∇)Cj = Djj∇2Cj +Djh∇2Ch, (1)

∂tCh + (V · ∇)Ch = Dhj∇2Cj +Dhh∇2Ch, (2)

∇P = µ∇2
V − ρ(Cj , Ch)g 1z, (3)

∇ ·V = 0 . (4)

where the velocity field is governed by density changes
according to the state equation:

ρ̃(Cj , Ch) = ρT
(

1 + αj(Cj − CT
j,0) + αh(Ch − CT

h,0)
)

(5)

This expansion relies on the assumption that species
concentration slightly changes with respect to the initial
composition of the reference top solution with density
ρT and we can then admit a linear dependence of the
global density ρ̃ upon the solute concentration. In eq.
(5), αj =

1

ρT

∂ρ̃
∂Cj

and αh = 1

ρT

∂ρ̃
∂Ch

are the solutal expan-

sion coefficients of the species j and h, respectively. In
our framework, we consider the main coefficients (Djj ,

Dhh) and the cross-diffusivity terms (Djh, Dhj) relating
the influence of the diffusive motion of the solute h to j
(and vice versa) as constants and independent from the
local species concentration [49, 60].
Hydrodynamic equations are derived in the Boussinesq
approximation, assuming the incompressibility of the
fluid and that density changes only affect the gravita-
tional term ḡρ̃ in eq. (3). V = (U, V ) is the velocity
field, µ is the dynamic viscosity and P is the pressure.
The model is reduced to a dimensionless form by in-
troducing a characteristic system space scale L0. The
time and the velocity scales are then derived as t0 =
L2
0/Djj and v0 = L0/t0, while we use p0 = µ/t0

and ∆Cj,0 =(CB
j,0 − CT

j,0) as the pressure and con-
centration references, respectively. Moreover, we de-
fine the dimensionless density as ρ(cj , ch, z) = (ρ̃ −
ρT )/(ρTαj∆Cj,0). The introduction of the scaled vari-
ables {τ = t/t0, (x, z) = (X,Z)/L0, (cj , ch) = (Cj −
CT

j,0, Ch − CT
h,0)/∆Cj,0, v = V/v0, p = P/p0} leads to

the following dimensionless equations:

∂τ cj + (v · ∇)cj = ∇2cj + δjh∇2ch, (6)

∂τ ch + (v · ∇)ch = δhj∇2cj + δhh∇2ch, (7)

∇p = ∇2
v −Rch + cj 1z, (8)

∇ · v = 0, (9)

where the dimensionless parameter δhh = Dhh/Djj

is the ratio between the main molecular diffusion co-
efficient of solute h to that of j. Similarly, (δjh,
δhj)=(Djh,Dhj)/Djj . The buoyancy ratio

R =
αh

αj

(10)

quantifies the relative contribution of the initially ho-
mogeneous species to the density with respect to species
j, featuring the initial concentration jump. More in de-
tail, R measures how a change in h concentration can
modify the density as compared to the same variation of
j concentration. This parameter is conveniently used for
expressing the dimensionless density ρ as described be-
low in sec. III. Here R is assumed as a positive quantity
(i.e. the solution density increases upon the increment of
solute concentrations).
The equation system (6–9) can be written in the (ω−ψ)
form by taking the curl of both sides of eq. (8). The
term ∇p is eliminated and, by defining the vorticity

ω = ∇ × v and the stream function, ψ, through the
relations (u = ∂zψ, v = −∂xψ), the Cross-Diffusion-
Convection (CDC) model reads
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∂cj
∂τ

+

(

∂ψ

∂z

∂cj
∂x

− ∂ψ

∂x

∂cj
∂z

)

= ∇2cj + δjh∇2ch, (11)

∂ch
∂τ

+

(

∂ψ

∂z

∂ch
∂x

− ∂ψ

∂x

∂ch
∂z

)

= δhj∇2cj + δhh∇2ch,(12)

∇2ω = R
∂ch
∂x

+
∂cj
∂x

, (13)

∂2ψ

∂x2
+
∂2ψ

∂z2
= −ω , (14)

The problem is closed through the initial conditions

∀ x : (cj , ch, ψ) = (1, 0, 0) for z ≤ z0

(cj , ch, ψ) = (0, 0, 0) for z > z0 (15)

By following the above procedure, the model can be
straightforwardly extended to a n-component system and
specialized to different cases on the basis of which solute
features the initial concentration jump while the others
are homogeneously distributed along the spatial domain.

III. DENSITY-PROFILE-BASED

CLASSIFICATION OF THE INSTABILITY

SCENARIOS

The double-layer initial condition represents a key
specificity of the cross-diffusion problem under study.
Before the onset of an instability, we can assume that
the flow is at rest and the concentration profiles of the
species do not vary along the x direction. The initial
evolution of the concentration fields can be thus followed
along the vertical coordinate z and described by means
of the cross-diffusion equations (i.e. 11-12 with ψ = 0).
The information about the cross-diffusion effect on the
dynamics is embedded in the matrix δ.
Due to the sharp initial gradient imposed to the con-
centration profile cj(z, 0), the cross-diffusion term δhj
dominates the initial part of the dynamics while the
other off-diagonal cross-diffusivity, δjh, plays a negligible
role.
We can then isolate two different cross-diffusion paths
depending upon the influence of the species featuring
the concentration jump on the initially homogeneously
distributed species, as controlled by the sign of the
cross-diffusion coefficient δhj . If δhj is positive, the
diffusion of species j from the bottom to the upper
layer in response to the initial concentration gradient
generates a co-flux in h (Fig.2.a) and, as a result, the
initially flat concentration profile ch(z, τ) develops a
non-monotonic shape with a local maximum and a
minimum symmetrically located above and below the
initial interface, respectively. By contrast, the propa-
gation of solute j towards the upper layer triggers a
counter-flux in h if δhj is negative. In the concentration
profile ch(z, τ) this produces a local depletion area in the

upper layer and an accumulation just below the initial
interface z0 = LZ/(2L0) (Fig.2.b). We clearly observe
an inversion in the morphology of the concentration
profiles when switching from a positive to a negative δhj
and the relative intensity of the concentration extrema
developing in time along ch(z, τ) reflects the magnitude
of δhj itself.

FIG. 2: (Color online) Typical spatio-temporal
evolution of the dimensionless concentration profiles
cj(z, τ) and ch(z, τ) when (a) δhj > 0 (4.70) or (b)
δhj < 0 (-0.01). In each panel black lines describe the
initial distribution of the species, while red and blue
profiles depict progressively the spatial concentrations

at successive times.

The fact that only δhj is initially at play greatly simpli-
fies the analytical approach to our cross-diffusion prob-
lem. As a matter of fact, the exact solutions to the con-
centration profiles, which present the general form [47]

cj(z, τ) = AjjGj +AjhGh (16)

ch(z, τ) = AhjGj +AhhGh (17)

(where the function G for the i-th species reads Gi =
1

2
erfc

(

(z − z0)/
√

(4σit)
)

, σi are the eigenvalues of the

matrix δ, are obtained by substituting Gi in eq. (17) and
by taking into account the initial conditions Ahj+Ahh =
0 at z = z0 ∀ t), reduce to
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cj(z, τ) =
1

2
erfc

(

(z − z0)√
4τ

)

(18)

ch(z, τ) =
−δhj

2(δhh − 1)
erfc

(

(z − z0)√
4τ

)

+

δhj
2(δhh − 1)

erfc

(

(z − z0)√
4δhhτ

)

(19)

since in the limit case δjh = 0, σj and σh coincide with
δjj and δhh, respectively, and the constants Ajj = 1,
Ajh = 0, Ahj = −δhj/(δhh − 1) and Ahh = −Ahj .

The concentration profiles cj(z, τ) and ch(z, τ) consti-
tute the basis set to reconstruct the evolution of the di-
mensionless density profiles according to the dimension-
less state equation (corresponding to eq. (5) for the di-
mensional problem)

ρ(z, τ) = cj(z, τ) +Rch(z, τ) (20)

i.e.

ρ(z, τ) =

(

1

2(δhh − 1)

)

×
[

(δhh − 1− δhjR) erfc

(

(z − z0)√
4τ

)

+ δhjR erfc

(

(z − z0)√
4δhhτ

)]

.

(21)

Equation (20) implies that if the relative contribu-
tion of species h to the global density (measured by
R) is large enough, the non-monotonic concentration
profile which characterizes this species impacts the
morphology of the dimensionless density distribution
along the gravitational axis. Due to buoyancy forces,
non-monotonic density profiles can be responsible for the
convective destabilization of a double-layer system as a
local maximum of ρ(z, τ) indicates a buoyantly unstable
situation in which denser fluid locally overlies a less
dense medium. By isolating the parametric constraints
which determine the development of extrema points
along ρ(z, τ) and by analyzing its shape, we can predict
the emergence and the qualitative topology of convective
patterns [15, 23, 24, 59, 69].

More specifically, by studying where the gradient of
ρ(z)

∂ρz(z, τ) =

(

1√
4πτ (δhh − 1)

)

×
[

(1 + δhjR− δhh) exp

(

− (z − z0)
2

4τ

)

−
(

δhjR√
δhh

)

exp

(

− (z − z0)
2

4δhhτ

)]

(22)

FIG. 3: Classification of cross-diffusion-driven scenarios
in the (δhj , R) parameter space on the basis of the
dimensionless density profiles. The symmetric

hyperbolic curves describe the instability threshold
relating R to δhj . The shadowed area identifies the
domain where the system is buoyantly stable as the

related density profile increases monotonically
downwards the gravitational axis. PPC and NCC

scenarios occur in the domain of positive and negative
δhj, respectively.

is locally zero, we obtain that ρ(z, τ) presents symmet-
ric extrema with respect to z = z0 when z satisfies

(z − z0)
2 =

4 δhhτ

(1− δhh)
ln

(

δhjR

(1 + δhjR− δhh)
√
δhh

)

.(23)

A non-monotonic density profile characterized by a lo-
cal maximum overlying a minimum across z0 (also a sig-
nature of a DD-type instability [15]), develops if the den-
sity gradient at the interface ∂ρz(z)|z=z0 is positive; vice
versa a DLC-type density profile [15] (with a reversed ρ
shape with respect to the DD-type case) is expected if
∂ρz(z)|z=z0 is negative.
By taking into account the sign of ∂ρz(z)|z=z0 and the
existence of the logarithm in eq. (23), we find that a
non-monotonic density profile across z0 generally occurs
when

R >

√
δhh(1 +

√
δhh)

|δhj |
. (24)

Thanks to eq. (24), the possible instability scenar-
ios can be classified in the reduced parameter space (δhj ,
R). As illustrated in Fig.3, this shows three main regions.
Under the hyperbolic curves relating R to the operational
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cross-diffusivity, δhj , (shadowed area in Fig.3), the sys-
tem is buoyantly stable to a cross-diffusion-driven hydro-
dynamic instability. In this region the dimensionless den-
sity profile describing the system increases monotonically
downwards z. The regions where non-monotonic density
profiles can develop, and thus cross-diffusion can trig-
ger a hydrodynamic instability, extend above the black
curve. The sign of δhj discriminates the domains where
Positive Cross-Diffusion-Driven Convection, PCC sce-
narios (δhj > 1) or Negative Cross-diffusion-driven Con-
vection, NCC scenarios (δhj < 1) are to be expected.
The instability threshold R = f(δhj) is clearly symmet-
ric with respect to the ordinate axis, δhj = 0. The
curves describing the system marginal stability shift to
lower values of R when decreasing δhh, indicating that a
high main-diffusivity of the initially homogeneously dis-
tributed species plays a stabilizing effect in the onset of
cross-diffusion-driven convection.

IV. NONLINEAR SIMULATIONS

In order to complement the results obtained from the
density-profile-based classification, we perform nonlinear
simulations of the equation system (11–14). This allows
us to determine the onset time of the instability, to follow
the dynamics by which fingering nucleates and grows and
to characterize the modes which dominate the convective
patterns.

A. Numerical details

Equations (11–14) are solved by using the Alternating
Direction Implicit Method (ADI)[70], using a squared
spatial domain Lx = Lz = 200, and equal meshing
for space integration along the horizontal and vertical
spatial directions (hx = hz = 0.5). We apply no-flux
boundary conditions for the concentration field of
the chemical species at the four solid boundaries of
the two-dimensional reactor while no-slip boundary
conditions, required at rigid walls for the flow, apply to
the stream function. Simulations are run using the time
step ht = 1 × 10−3, which was tested to give convergent
solutions. The problem is finally defined by the initial
conditions (15). According to the previous discussion
in sec. III (Fig.3), positive and negative values of δhj
should be used in order to simulate a PCC and a NCC
hydrodynamic scenario, respectively. As illustrative
examples we consider values of the δhj with the same
order of magnitude characterizing cross-diffusion terms
in microemulsion systems recently studied as model sys-
tems to approach cross-diffusion-driven hydrodynamic
instabilities experimentally [60]. We then analyze the
system dynamics for different values of the buoyancy
ratio R for which condition (24) is satisfied. We also
checked that no instability develops for values of the
stable region of the parameter space (δhj , R).

B. Results

Let us fist give an overview on the phenomenology of
the two possible instabilities. In the upper panel of Fig.4
we show the dynamical destabilization of the two-layer
interface due to a PCC mechanism while in the lower
panel is illustrated a typical NCC scenario. The two ar-
rays of snapshots follow the spatio-temporal evolution of
the instability by mapping the vorticity ω(x, z, τ) over
the simulation spatial domain. In both cases, the un-
stable area starts from the border of the spatial domain
where a numerical perturbation can break the symmetry
and extends along the horizontal direction. As convective
fingers form, they grow vertically along the gravitational
axis but they also undergo a slow drifting towards the
side where the instability nucleates, progressively merg-
ing with pre-existing fingers. This is due to the delayed
formation of new fingers which experience the effect of
residual flows.

FIG. 4: Typical spatio-temporal evolution of a PCC
(upper panel) and a NCC (lower panel) instability. The
PCC scenario is obtained with δhj = 4 and R = 0.5

while the NCC scenario with δhj = −0.01 and R = 100.
Each sequence of snapshots maps the vorticity ω(x, z, τ)
over the simulation spatial domain. The amplitude of
ω(x, z, τ) in the plots ranges between -10 (dark areas)

and 10 (bright areas).

The PCC scenario is induced by the positive cross-
diffusion term δhj . As previously shown in Fig.2.a,
solute j diffuses form the bottom to the upper layer
due to the initial gradient and triggers a non-monotonic
distribution ch(z, τ) featuring a local density maximum
over a minimum downwards z, symmetrically located
around z0. If the buoyancy ratio R meets the require-
ment of eq.(24), a non-monotonic density profile with
the morphology shown in the positive domain of Fig.3
can take place. In the presence of the gravitational field,
this induces a hydrodynamic instability reminiscent of a
DD scenario [15], which symmetrically develops towards
the upper and the lower layer.
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The NCC-type convective pattern is determined by a
negative cross-diffusion coefficient δhj . Here the motion
of solute j develops the non-monotonic concentration
profile ch(z, τ) shown in Fig.2.b. As a consequence,
a density profiles with the shape described in Fig.3
for negative δhj can develop, provided that R satisfies
the instability condition of eq. (24). On the basis of
the morphology of this density profile, we can better
interpret the convective patterns shown in Fig.4 (lower
panel), with fingers localized in the top and the bottom
layer. During the development of the instability the ini-
tial interface is not deformed because of the formation of
the density maximum located below the initial interface.
On the one side, this acts as a density barrier preventing
the finger growth from the top to the bottom layer; on
the other hand, it is the source for convective fingering
in the bottom layer. The NCC scenario reminds the
typical patterns arising from a DLC instability [15].

C. Characterization

The main features of the cross-diffusion-driven con-
vective scenarios, namely the time needed for the onset
of the fingering instability (t∗) and the dominant wave-
length (λ∗), are analyzed in Figs.5 and 6 as a function
of R, for 3 different values of δhj . The dominating
modes (and the corresponding λ∗) characterizing these
instabilities have been calculated from the Fast Fourier
Transform of the transverse profile of the vorticity along
the horizontal interface at z = z0, when the convective
patterns are fully developed along the whole x-axis.
For both classes of instability the system becomes
convectively more unstable by increasing the buoyancy
ratio which corresponds to intensifying the density
extrema along the non-monotonic profiles shown in
Fig.3. In turn, both λ∗ and t∗ decrease while increasing
R. It is worth noticing that both observables follow a
linear trend when plotted in the log-log scale, indicating
a power-law relation linking these hydrodynamic prop-
erties to the parameter R. In particular, irrespectively
of the convective scenario at play and the value of δhj,
the wavelength scales as λ∗ = Rβ with β = −0.30± 0.02
while the average exponent β = −0.70± 0.02 recurs for
the instability onset time.

The mixing length (Lm), which measures the extent
of the fingering area in the course of time, has been
also quantified on the basis of the concentration pro-
file ch(x, z, τ) transversely averaged over the x–direction:

〈ch〉(z, τ) = 1

Lx

∫ Lx

0
ch(x, z, τ) dx . The fingering area

coincides roughly with the non-monotonic area grow-
ing around z0 in 〈ch〉(z, τ). The tip (zt) and the back
(zb) of this growing non-monotonic area are respec-
tively located as the sup{z} : |〈ch〉(z, τ)| > ǫ0 and the
inf{z} : |〈ch〉(z, τ)| > ǫ0, where the concentration refer-
ence ǫ0 << 1. Lm = zt − zb defines the distance between

FIG. 5: (Color online) Analysis of the PCC convective
patterns by means of (a) the characteristic wavelength,
λ∗, and (b) the onset time, t∗, as a function of the
buoyancy ratio R. For the δhj values considered

(�=4.73; �=9.46, N=18.92), λ∗ follows a common
power-law scaling described by the exponent β ∼ −0.3.

This is also true for t∗, showing β ∼ −0.7.

these two end-points.
Fig.7.a compares the spatio-temporal evolution of zt and
zb at four different values of R, for the PCC instability;
the corresponding Lm-trends are plotted as a function
of the time in panel (b). An analogous characterization
is presented in Fig.8 for NCC scenarios. Both the PPC
and the NCC dynamics show an initial diffusive transient
where zt, zb (and, consequently, Lm) increase monotoni-
cally, scaling as the square root of the time. The length
of this induction period coincides with t∗ and, thus, de-
creases exponentially with R as shown in Figs.5 and 6.
When the system undergoes the hydrodynamic instabil-
ity, zt(τ), zb(τ) and Lm(τ) switch to a linear behavior.
The slope of Lm(τ) in the linear regime gives an aver-
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FIG. 6: (Color online) Analysis of the NCC convective
patterns by means of (a) the characteristic wavelength,
λ∗, and (b) the onset time, t∗, as a function of the
buoyancy ratio R. For the δhj values considered

(�=-0.01; �=-0.02, N=-0.04), λ∗ follows a common
power-law scaling described by the exponent β ∼ −0.3.
This is also true for t∗, showing β ∼ −0.7. Note that
the average values of β correspond to the scaling
exponents characterizing the PCC scenario.

aged value of the instability growth rate which decreases
slightly by lowering R. While the PCC scenarios ex-
hibit a highly symmetric spatio-temporal development
with regard to the initial interface (see Fig.7.a), we can
observe in Fig.8.a that the NCC growth is more enhanced
in the bottom layer, where the divergence from the diffu-
sive regime takes place earlier as compared to the upper
layer.

FIG. 7: (Color online) Spatio-temporal characterization
of PCC hydrodynamic instabilities when R equals 0.5
(blue curve), 1 (red curve), 2 (gray curve) and 3 (black
curve). In panel (a) we plot the evolution of the tip

(zt > z0) and the back (zb < z0) of the fingering area; in
panel (b) we follow as a function of the time the

corresponding mixing length, Lm.

V. CONCLUDING DISCUSSION

Cross-diffusion can sustain a wealth of self-organized
patterns, included convective fingering. In this paper we
have discussed a general method to induce and control
pure cross-diffusion-driven hydrodynamic instabilities
by using a double-layer 3-component system in which
a concentration jump is imposed initially to one solute
while the other is homogeneously distributed over
the spatial domain. Depending upon the sign of the
operational cross-diffusion term which ties the motion of
the initially heterogeneous species to the homogeneous
one, we can have two main scenarios. The NCC sce-
narios occur because the species free to diffuse from the
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FIG. 8: (Color online) Spatio-temporal characterization
of NCC hydrodynamic instabilities when R is fixed to
500 (blue curve), 1000 (red curve), 5000 (gray curve)

and 10000 (black curve). Like in Fig. 7, in panel (a) we
plot the temporal evolution of the tip (zt > z0) and the
back (zb < z0) of the fingering area; in panel (b) we
follow as a function of the time the corresponding

mixing length, Lm.

bottom to the upper layer induces a counter-flux in the
other species controlled by a negative cross-diffusivity
and, as a consequence, a density depletion and an
accumulation area develop above and below the initial
interface, respectively; vice versa an interface deforms
into a PCC fingering when the bottom-top diffusing
species produces a co-flux of the other species via a
positive cross-diffusivity δhj . In turn, this generates in
the course of time a local density maximum overlying
a density minimum. The NCC and PCC patterns
show strong similarities with the well-known DLC and
DD instabilities, respectively, as they are described by
isomorphic density profiles along the gravitational axis.

Note that both the NCC and the PCC scenarios can
be separately induced in the same 3-component system
provided that the two off-diagonal elements of the
diffusion matrix present opposite sign. Based on the
study of the evolution of analytical density profiles we
have parametrically isolated instability conditions and
identified the regions for the two possible convective
scenarios in a simple parameter space consisting of
the cross-diffusivity at play, δhj , and the buoyancy
ratio, R. Nonlinear simulations of our CDC model
confirm the validity this general classification and the
characterization of the main hydrodynamic properties
of cross-diffusion-driven convective patterns reveals a
power-law scaling of the instability onset time and char-
acteristic wavelength as a function of R. Interestingly,
universal scaling exponents are found in both NCC and
PCC scenarios for λ∗ (β ∼ −0.3) and t∗ (β ∼ −0.7).

The spatio-temporal evolutions and the characteris-
tics of the convective patterns obtained by numerical
solution of the CDC equations compare favorably with
experimental results recently reported for AOT-ME
systems studied in a vertically oriented Hele-Shaw cell
[59, 60]. In their simplest formulation, these experiments
involve water (solute 1) and AOT (solute 2) as the two
species giving cross-diffusive interplay while the octane
features the solvent. In the experimental conditions
considered (composition, temperature), the diffusion
matrix of this system show a cross-diffusion term δ12 (by
which the motion of the AOT influences the diffusion
of the water) large and positive, while δ21 is small and
negative [60]. In excellent agreement with the analytical
prediction and numerical simulations discussed in this
paper, the experiments show NCC scenarios when a
starting concentration jump is set in the water spatial
profile (while [AOT] is constant over the whole reactor).
To our best knowledge this is the first experimental
example of this convective mode. By contrast, PCC
patterns develop with an initial concentration jump in
the AOT (keeping homogeneous the initial distribution
of water).

Our approach can be employed to design new experi-
ments where cross-diffusion-driven convection can occur
in 3-component systems but can also be straightforwardly
extended to n-component cases. More importantly, this
is a benchmark study for future experimental investiga-
tions of systems where cross-diffusion-driven convection
is coupled with chemical reactions to yield new chemo-
hydrodynamic patterns.
Finally, understanding the mechanisms and the condi-
tions for an hydrodynamic instability is crucial to con-
trol undesired phenomena (such as fingering in oil ex-
traction [71, 72]) but also to promote rapid mixing and
optimized transport when necessary (for instance in con-
vective techniques for CO2 sequestration [24, 73]). In
this context cross-diffusion convection can be very effi-
cient and deepening its possible impact in many issues of
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applied relevance is one of the main goals of future work.
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