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17 Abstract

18 Monitoring behaviour of grazing animals is important for the management of grazing systems. A study was 

19 run to discriminate between the main behaviours (grazing, ruminating and other activities) of sheep at 

20 pasture wearing a halter equipped with an accelerometer (BEHARUM device), and to identify the epoch 

21 setting (5, 10, 30, 60, 120, 180 and 300 s) with the best performance. The BEHARUM device includes a 

22 three-axial accelerometer sensor and a force sensor positioned under the lower jaw of the animal. The halter 

23 was fitted to eight Sarda dairy sheep that rotationally grazed either a spatial association (mixture) or a time 

24 association of berseem clover (Trifolium alexandrinum L.) and Italian ryegrass (Lolium multiflorum Lam.) 

25 for 6 hours day-1. The behaviour of the animals was also video-recorded. The raw acceleration and force data 

26 were processed for each epoch setting to create 15 variables: the mean, variance and inverse coefficient of 

27 variation (ICV; mean/standard deviation) per minute for the X-, Y-, Z-axis and force, and the resultant. 

28 Multivariate statistical techniques were used to discriminate between the three behavioural activities: 



29 canonical discriminant analysis (CDA), and discriminant analysis (DA). To validate the derived discriminant 

30 functions, a bootstrap procedure was run. To evaluate the performance of DA in discriminating between the 

31 three activities, the sensitivity, specificity, precision, accuracy and Coehn’s k coefficient were calculated, 

32 based on the error distribution in assignment. Results show that a discriminant analysis can accurately 

33 classify important behaviours such as grazing, ruminating and other activities in sheep at pasture. The 

34 prediction model has demonstrated a better performance in classifying grazing behaviour than ruminating 

35 and other activities for all epochs. The 30 s epoch length yielded the most accurate classification in terms of 

36 accuracy and Coehn’s k coefficient. Nevertheless, 60 and 120 s may increase the potential recording time 

37 without causing serious lack of accuracy. 

38

39 Keywords. Feeding behaviour; accelerometer; wireless communication technology; discriminant analysis. 

40

41 1. Introduction

42 Monitoring the behaviour of grazing ruminants is important to understand how animals meet their 

43 requirements in pastoral systems and to achieve optimal plant production, animal forage intake and 

44 performances (Carvalho, 2013). Since observing animal behaviour is a labour-intensive and difficult task, 

45 whether it is performed with direct observations or through video recordings, most research has concentrated 

46 on recognizing feeding behaviour of ruminants from animal attached sensors. A type of sensor that has 

47 recently become widespread in research studies is the tri-axial accelerometer, since it is small, inexpensive, 

48 and easy to wear (Brown et al., 2013).

49 Accelerometers have been widely used to automatically detect and classify several behaviours in cattle, e.g. 

50 oestrus detection (Ueda et al., 2011), walking (Robert et al., 2009) feeding and standing activities in a free-

51 stall barn (Arcidiacono et al., 2017), sleeping posture (Fukasawa et al., 2018) and time (Hokkanen et al., 

52 2011), and eating, ruminating and resting activities (Watanabe et al., 2008). 

53 Fewer research studies have been conducted to classify sheep behaviours than cattle behaviours. Umstätter et 

54 al., (2008) used integrated pitch and roll tilt sensors, and found that they could distinguish between two 

55 categories: active and inactive, with more than 90% accuracy. Other studies on sheep behaviour used the 

56 collar attached Actiwatch accelerometer system for classifying activity levels and detecting diurnal rhythms 



57 (Piccione et al., 2010, 2011). Other authors (Nadimi et al., 2012; Nadimi and Søgaard, 2009) used the 

58 ADXL202 accelerometer to detect grazing, lying down, standing, walking, mating and drinking in sheep 

59 with a mean accuracy of 76.2%. Alvarenga et al., (2016) successfully identified grazing and non-grazing 

60 states, with accuracies higher than 83%, in grazing sheep wearing an accelerometer under the lower jaw. 

61 More recently Giovanetti et al., (2017a), positioning a device containing an ADXL335 accelerometer sensor 

62 in the same place, were able to classify grazing, ruminating and resting behaviour of sheep at pasture with an 

63 overall accuracy of 93%. 

64 Tri-axial accelerometer based devices can acquire and store information internally, thus consuming very 

65 little battery power. However, the amount of data that can collected is limited by the size of the memory card 

66 within the device. On the other hand, data can be directly transmitted to a central receiver for subsequent 

67 processing. This practice, however, requires a high power consumption (Vázquez Diosdado et al., 2015). 

68 The sampling frequency of such devices usually ranges from 8 to 100 Hz, thus producing an enormous 

69 quantity of data, proportional to the sampling frequency, which can lead to a rapid depletion of the memory 

70 device and to high costs in terms of battery consumption caused by sending and receiving large data sets. 

71 These restrictions could be overcome by undertaking some form of preliminary processing of the 

72 accelerometer data on the device itself settling and applying to the data stream, for a given sampling 

73 frequency, an optimal aggregation window (called epoch). 

74 Optimizing the epoch setting, without compromising classification accuracy, could imply a number of 

75 advantages. Short epoch settings could increase the labour involved in processing data, deplete the memory 

76 device, decrease the battery duration and may also cause erroneous attribution activities during processing. 

77 Actually, if an epoch shorter than the period of time an activity occurs is used, the number of false positive 

78 classifications for dynamic activities could increase probably due to transitioning between different activities 

79 or body shifts during static activities (Robert et al., 2009). Conversely, optimized longer epoch settings 

80 might reduce the memory depletion and increase the battery duration without compromising the performance 

81 of the sensor. Nielsen, (2013) distinguished grazing from non-grazing behaviour with a 3D activity sensor 

82 that correctly classified the behaviours of dairy cows with a relatively high accuracy when the epoch was set 

83 at 5 s, 5 or 10 minutes. Other authors, as Vázquez Diosdado et al., (2015), while classifying lying, standing 

84 and feeding behaviours in dairy cows, reported a small increase in the decision-tree classification algorithm 



85 performance at the largest window size of 10 minutes if compared with 1 and 5 minutes epoch settings. In 

86 the present research, a customized tri-axial accelerometer based sensor, able to either store data in a micro 

87 SD card or send them to a remote computer, was used.  In the future perspective of data pre-processing in the 

88 device itself, determining the optimum device settings before field application is crucial, because they could 

89 impact on monitoring system accuracy as well as on the effective battery and memory life. 

90 The objectives of this study were: 1) to develop an algorithm based on the multivariate statistical analysis to 

91 discriminate the main behaviours (grazing, ruminating and other activities) of sheep at pasture equipped with 

92 a customized tri-axial accelerometer based sensor named BEHARUM; 2) to determine the performance of 

93 the algorithm in terms of accuracy, sensitivity, specificity, precision and Coehn’s k coefficient, at different 

94 epoch settings (5, 10, 30, 60, 120, 180 and 300 s); and 3) to select the epoch that optimizes the system 

95 accuracy of the device.

96

97 2. Materials and methods

98 2.1 Experimental site and animal management

99 The study was conducted at Bonassai experimental farm of the agricultural research agency of Sardinia 

100 (AGRIS Sardegna), located in the NW of Sardinia, Italy (40° 40' 16.215" N, 8° 22' 0.392" E, 32 m a.s.l).

101 The animal protocol below described was in compliance with the EU regulation on animal welfare and all 

102 measurements were taken by personnel previously trained and authorized by the institutional authorities 

103 managing ethical issues both at Agris Sardegna and the University of Sassari. 

104 The study is part of an experiment conducted in spring 2016, from 1 March to 9 May, with 48 mature 

105 lactating Sarda dairy sheep that rotationally grazed berseem clover (Trifolium alexandrinum L.) and Italian 

106 ryegrass (Lolium multiflorum Lam.) for 6 hours day-1. Two grazing treatments were used: a mixture of 

107 berseem clover and Italian ryegrass, and two monocultures (berseem clover and ryegrass) grazed in 

108 succession. In the latter case, the sheep grazed the first 3 hours on the clover and the last 3 hours on the 

109 ryegrass. The ewes were machine milked twice daily at 0700 hours and 1500 hours. During milkings, they 

110 were individually fed in the milking parlour with commercial concentrate (500 g ewe-1 day) split into two 

111 meals. In the remaining daytime, the animals were kept indoors and group-fed 500 g ewe-1 of ryegrass hay 

112 and 300 g ewe-1 of alfalfa hay in separate troughs. On four occasions (test days) during the experiment, eight 



113 ewes (four per treatment), with an age of 3.1±1.6 years (mean ± standard deviation), live weight of 41.3±2.8 

114 kg, lactation stage of 73±6 days in milk and milk yield of 2062±362 g ewe-1 day-1, were used. On each test 

115 day, after the morning milking, the ewes were carried on a trailer to the experimental plots and equipped 

116 with the BEHARUM device before the six hours of access to pasture. At the end of the grazing session, the 

117 BEHARUM devices were removed from the animals. 

118

119 2.2 Description of the BEHARUM device and feeding behaviour recording

120 The BEHARUM device includes a halter equipped with a three-axial accelerometer sensor and a force sensor 

121 positioned under the lower jaw of the animal. Animal head and jaw movements are detected through 

122 accelerations measured in the X (longitudinal), Y (horizontal) and Z (vertical) axes (Figure 1) and force 

123 exerted by the opening jaw. 

124 The sensors, inserted in a micro-electromechanical compact system (MEMS) with on-board peripherals, 

125 sample raw accelerations and force at a frequency of 62.5 Hz, and convert them, through an analogue-to-

126 digital converter with a resolution of 8 bits, in digital levels ranging from 0 to 255. Then the microcontroller 

127 selects three converted values per second per axis (Giovanetti et al., 2017a) and force sensor. The converted 

128 data could be sent (LoRa wireless system) to a nearby computer receiver equipped with an antenna or to a 

129 remote computer through a local server using the GSM services, as well as recorded in a micro secure digital 

130 (SD) card inserted in the MEMS.



131

132

133 Figure 1. BEHARUM halter with accelerometer and force sensor inserted in a micro-electromechanical 

134 compact system (MEMS) positioned under the jaw. 

135

136 A software package (DAS Client, Electronic System), installed on the computer, activates or deactivates the 

137 BEHARUM device and manages data acquisition. In this experiment, we adopted the recording of 

138 acceleration and force data on micro SD card.

139 On each test day through the 6 hours of access to pasture, the feeding behaviour of sheep equipped with the 

140 BEHARUM were video recorded, one at time, during accelerometer deployment by fixed camera (Sanyo 

141 Xacti VPC-TH1, Sanyo Electric Co., Ltd. OSAKA, Japan). Video recordings of each animal lasted 20-25 

142 minutes. The internal clock of the camera was synchronised with the internal clock of the computer. This 

143 ensured both the camera and accelerometer were synchronized in time to allow accurate annotation of the 

144 accelerometer data after behavioural recordings were made. 

145

146 2.3 Preliminary data processing



147 On the basis of the recorded videos, a file including the three acceleration values for each axis, the force 

148 values and one of the three behavioural activities (grazing, ruminating, and other activities) per second was 

149 created, for a total of 69975 seconds dataset. Behaviour activities were classified according to Gibb (1998). 

150 Grazing activity included the act of searching for food while walking with the head down without evidence 

151 of biting, or standing still with the head down while biting and chewing either with the head down or the 

152 head up. Ruminating activity included regurgitation, chewing and swallowing of bolus, in lying or standing 

153 position. Other activities included all the activities not taken into account in grazing and ruminating, e.g. 

154 lying down or standing without rumination, and travelling etc.. Mean (MX, MY, MZ, MF), variance (VX, 

155 VY, VZ, VF), inverse coefficient of variation (i.e. mean/standard deviation, ICVX, ICVY, ICVZ, ICVF), of 

156 acceleration data for each axis and force data, as well as the resultant mean (MRES), variance (VRES) and 

157 ICV (ICVRES) values of the three axis and force (Watanabe et al., 2008), were calculated for the following 

158 epoch settings: 5 s, 10 s, 30 s, 60 s, 120 s, 180 s, 300 s.

159 Video recordings were coded manually assigning to each epoch the prevailing behaviour; that is to say 

160 grazing, ruminating or other activities. We considered as prevailing the behaviour with the highest 

161 percentage among the three activities performed by the animal within epoch setting. Overall, the percentage 

162 of the prevailing behaviour ranged from 50 to 100%. For that reason, we established three classes of 

163 prevalence: 50-75%, 76-99% and 100%. Afterwards we counted, for each epoch setting, how many times the 

164 prevailing behaviours were included in one of the three classes and we expressed the values obtained as a 

165 percentage of the total. For each epoch setting, data were arranged in a multivariate manner with seventeen 

166 columns including the epoch, the prevailing activity and the fifteen acceleration and force variables (MX, 

167 MY, MZ, MF, VX, VY, VZ, VF, ICVX, ICVY, ICVZ, ICVF, MRES, VRES, ICVRES). Eventually, we 

168 obtained seven datasets, one for each epoch setting under study.

169

170 2.4 Data processing

171 An exploratory analysis of each dataset was conducted using a one-way ANOVA model to test the effect of 

172 behavioural activities (grazing, ruminating and other activities) on all fifteen accelerometer and force 

173 variables.



174 The seven datasets were then submitted to two multivariate statistical techniques to discriminate between the 

175 three behavioural activities: canonical discriminant analysis (CDA), and discriminant analysis (DA). All 

176 statistical analyses were performed by using the SAS software (SAS Inst. Inc., Cary, NC). CDA was used to 

177 test the ability of the variables involved (the fifteen accelerations and force variables) in discriminating 

178 between groups (grazing, ruminating and other activities) (Mardia et al., 2000). In general, if d indicates the 

179 number of groups, the CDA derives d−1 linear equations, called canonical functions (CAN) that are used to 

180 predict the group to which an object belongs. The structure of a CAN is: 

181 CAN = c1X1 + c2X2 + ........ + cnXn 

182 where ci are the canonical coefficient (CC) and Xi are the values of the n involved variables. CCs indicate the 

183 partial contribution of each original variable in composing the CAN. In consequence, the higher the absolute 

184 value of a CC, the higher the weight of the corresponding variable in composing the CAN. In the present 

185 research, d was equal to 3 (the three behaviours) and, in consequence, two CANs were obtained.  

186 The distance between groups was evaluated by using the Mahalanobis’ distance, whereas the effective 

187 groups’ separation was tested by using the corresponding Hotelling's T-square test (De Maesschalck et al., 

188 2000). DA was then used to classify epochs into one of the three behaviours (Mardia et al., 2000).

189 To validate the derived discriminant functions, each dataset was randomly divided into training and 

190 validation dataset in the proportion of 4:1. This partition of the dataset was iterated 5000 times by using a 

191 bootstrap procedure (Efron, 1979). At each run, DA was applied to the training dataset to predict behaviours 

192 in the validation dataset and errors in assignment were recorded. To evaluate the performance of DA in 

193 discriminating between the three activities, the sensitivity, specificity, precision and accuracy were 

194 calculated, based on the error distribution in assignment, using the following equations: 

195 Sensitivity = TP/(TP+FN); 

196 Specificity = TN/(TN+FP);

197 Precision = TP/(TP+FP); 

198 Accuracy = (TP+TN)/(TP+TN+ FP+ FN)

199 Where TP, TN, FP and FN are true positive, true negative, false positive and false negative counts 

200 respectively. The Coehn’s k coefficient was calculated  (Fleiss, 1981) to evaluate the agreement between 



201 observed and model predicted corrected for agreement that would be expected by chance, both for each 

202 behaviour and overall. The k values were judged according to the criteria of Landis and Koch (1977). 

203

204 3. Results

205 Overall, the distribution of the three behaviours in the datasets is on average 50% grazing, 30% ruminating 

206 and 20% other activities.

207 The results of the ANOVA showed that the behaviour activities affected significantly all variables in each 

208 epoch apart from ICVX in the 300 s dataset (Table 1). Some variables (MY, VY, MRES and VRES) were 

209 always significantly different between the behaviours in all epochs. The same results can be observed for 

210 MX, MF and VF with the exception of 300 s, where only grazing was different from the other two 

211 behaviours. Differences between the three activities were also found in other variables but only in some 

212 epoch (Table 1). In all the other cases, only one behaviour was different from the other two. 

213

214 3.1 Discrimination between behaviour activities

215 Regarding the allocation of prevailing behavioural activity (expressed as percentage of the total), the overall 

216 trend was an increment in the low and medium classes of prevalence (50-75% and 76-99%) coupled 

217 obviously with a reduction in the highest class (100%), passing from 5 s to 300 s epoch set (Table 2). 

218 Actually, the percentage of the prevailing behaviour included in the 100% class decreased from 98.8%, in 5 

219 s, to 60.2% in 300 s. 

220 In developing multivariate techniques, the MRES variable was discarded from the analysis because it made 

221 the (co)variance matrix singular due to linear dependencies with other variables. The CDA significantly 

222 discriminated between the three behaviours (Hotelling's test P < 0.0001) by extracting two canonical 

223 functions for each epoch set. The variation λ1 accounted for CAN1, ranged among epochs between 0.78 and 

224 0.93 whether the variation λ2 explained by CAN2 ranged between 0.08 and 0.22 (Table 3). 

225 The lowest value of error in assignment, after the bootstrap resampling, was obtained in the 30 s epoch 

226 whereas the highest value was at the 300 s epoch (Figure 2).

227 VRES and MZ showed the highest canonical coefficient values in CAN1 in nearly all the epochs with the 

228 exception of 5 s and 180 s, which recorded biggest values in VRES and MY and MZ and VZ respectively 



229 (Table 3). The highest canonical coefficient in CAN2 was found in VRES in all the epochs. In all time epoch 

230 settings canonical functions separated the three behavioural activities (P < 0.001, Figure 3). In particular, 

231 CAN1 discriminates the grazing activity from the other activities. Ruminating is an intermediate process, and 

232 this is confirmed by the Mahalanobis’ distances (Table 4). In fact, the highest values were observed between 

233 grazing and other activities with the only exception of 300 s where it is slightly higher than the distance 

234 between grazing and ruminating. 

235

236 3.2 Performance of the discriminant analysis model 

237 The performances of the DA model, displayed in Table 5, show that the sensitivity of the model to predict 

238 grazing was the highest in the 60 s epoch set and the specificity in the 120 s epoch set. When the model was 

239 used to predict the rumination, the specificity reached the maximum value in the 30 s setting whereas the 

240 sensitivity in the 120 s epoch setting. The 30 s epoch length was the best to predict other activities, both in 

241 terms of sensitivity and specificity. The highest precision of the models to predict grazing was recorded in 

242 the 120 s set while the highest accuracy was obtained in 30- and 60 s, the k value being 0.9 in 30-, 60-, 120- 

243 and 180 s. Ruminating and other activities behaviours were predicted with the highest precision and accuracy 

244 in the 30 s epoch with a k value of 0.8 and 0.7, respectively. 

245 The overall accuracy values of the prediction models were similar in the range between 10 s and 120 s 

246 epochs, peaking in the 30 s epoch. The Coehn’s k coefficient reached a plateau value (0.8) in the 10-, 30-, 

247 60- and 120 s epochs. 

248

249 4. Discussions

250 4.1 Discrimination between behaviour activities

251 In this study a multivariate statistical algorithm was developed, by using tri-axial acceleration data obtained 

252 from an under lower jaw mounted sensor, to classify grazing, ruminating and other activities of dairy sheep. 

253 The CDA successfully distinguished the different behaviours, although the CAN1 vs CAN2 scatter plots 

254 (Figure 3) showed different levels of separation according to the time epoch length. This fact could be due to 



255 the variation (λ1) explained by CAN1 that reached higher values in 30-, 60-,  and 120 s than in the other time 

256 epochs (Table 3), whereas CAN2 was not able to separate behaviours (Figure 3). 

257 The Mahalanobis’ distance was greater between grazing and other activities than that between grazing and 

258 ruminating in all epochs with the exception of the 300 s epoch. This is probably related to the low prevalence 

259 in this dataset, with only 60.2% of records classified in the highest class (100%, Table 2). As a consequence, 

260 the contribution of the “non prevailing activities” (i.e. the complement to the prevailing activity) within 

261 records, was higher in this case than in the other epoch sets. This indicates that increasing the aggregation 

262 time window for calculation of the means, variances and ICV from 120 s to 300 s probably flattened data 

263 distributions and limited the ability to discriminate between different behaviours such as other activities and 

264 rumination. In fact, the results of the ANOVA on the effect of behavioural activities (Table 1) show that 

265 increasing the aggregation time window (the epoch length) increases the number of variables that show at 

266 least two behavioural classes to be not significantly different. In 5 s epoch set, for example, among the 

267 fourteen variables under scrutiny, only three variables (ICVRES, ICVZ and ICVY) had, at least, two values 

268 undifferentiated between behaviours, while in 10 and 30 s epochs the variables with this response were four 

269 (ICV, ICVY, ICVZ and ICVF) and so on for the other epochs. These results highlight the limits of the 

270 ANOVA, which analyzes each variable individually, in separating the three behaviours. In consequence, the 

271 adoption of a multivariate approach, that conversely uses a set of variables to separate and assign new 

272 observations to groups, is fully justified. 

273 VRES and MZ, showing the highest standardized canonical coefficients for CAN1 (Table 3), are the most 

274 important features for behavioural classification in all epoch settings. Therefore, grazing activity, that 

275 includes various dynamic movements such as biting, chewing and head shaking while lowering the head, can 

276 be differentiated from other behaviours by VRES that measures the total amount of variance of the 

277 acceleration signal through three dimensions, and by MZ that, in turn, represents the mean of head/jaw 

278 vertical accelerations.  

279 In  CAN2, which explained a very low part of the total variation  (0.08 < λ2 < 0.22), VRES showed the 

280 highest standardized canonical coefficient at all epochs, in agreement with what reported by Giovanetti et al., 

281 (2017a) who used BEHARUM device to monitor the feeding behaviour of dairy sheep, using a 60 s time 



282 epoch. The importance of these variables in discriminating sheep behaviours was also reported by Barwick et 

283 al., (2018).

284 Conversely, Watanabe et al., (2008), who studied behaviour in grazing cattle, found the highest discriminant 

285 scores using the means and ICV as explanatory variables. González et al., (2015), with a tri-axial 

286 accelerometer attached on a collar around the neck of steers, were able to separate cattle foraging behaviour 

287 from other activities, at 10 s epoch, using the X-axis mean which corresponds to our MZ variable. Umstätter 

288 et al., (2008) found similar results (epoch settings 30 s), with pitch features (head up and down), our Z-axis, 

289 as the most important factor for behavioural classification for sheep wearing a collar equipped with a sensor. 

290 Alvarenga et al., (2016), conversely, reported that the most important feature was the means of the X-axis 

291 (forward/backward acceleration) to capture head position and level of activity related to grazing for different 

292 epoch settings (3-, 5- and 10 s). The reason of this inconsistency is unclear but may possibly be related to the 

293 different methods of accelerometer deployment, or to the different number of behavioural activities 

294 considered as well as to the different classification criteria. Moreover, some sources of signal variation may 

295 arise from differences in physical structure of animals affecting sensor orientation. 

296 To the best of our knowledge, we did not find any result on the use of force sensor in animal behaviour 

297 studies. This sensor, that measures the force exerted by the opening jaw movements during feeding related 

298 activities, showed the highest MF and VF values when the animals performed dynamic movements (i.e. 

299 grazing and ruminating). Although the canonical coefficients of force variables were low, their contribution 

300 to the discrimination of the three behaviours has been revealed important.

301

302 4.2 Performance of the discriminant analysis model 

303 The performance of the model changed according to the predicted behaviour (Table 5). In fact, the grazing 

304 activity showed best performance, in terms of sensitivity and precision, than the other two activities for 

305 almost all the epoch set, thus confirming the results of other studies (Giovanetti et al., 2017a; Nadimi et al., 

306 2012). This is probably due to the higher correct true positive classification of grazing than ruminating and 

307 other activities, indicating that the classifier had problems predicting positive cases correctly in the last  two 

308 classes that became most easily confused with other behaviours. 



309 Specificity in other activities (i.e. the true negative rate) resulted higher than in ruminating and grazing for all 

310 epochs. Accuracy also was higher in other activities for almost all epochs, except for 180 and 300 s where it 

311 reached the highest value in grazing activity. The unequal number of observations for the different activities 

312 could partially explain the above modelling performance. In fact, other activities did not exceed 20% in the 

313 whole our dataset. Therefore, sensitivity and precision are probably more informative than accuracy and 

314 specificity in order to summarize performance results.

315 Grazing behaviour was predicted in 5 s epoch dataset with higher sensitivity (88.1% vs 84.3%) but lower 

316 specificity (86.9% vs 97.3%) and precision (86.9% vs 92.9%) than in the work by Alvarenga et al., (2016) 

317 on Merino ewes. The precision in the current study resulted anyway higher than that found by Marais et al., 

318 (2014) using a 5.12 s epoch, which was c.a. 66%. The 10 s epoch length, conversely, showed higher 

319 sensitivity (94.7% vs 91.7%) and precision (91.9% vs 89.8%) but lower specificity (90.8% vs 96.2%) in 

320 comparison with data by Alvarenga et al., (2016). Barwick et al., (2018) with the same epoch setting of 10 s 

321 found different performances in discriminating sheep grazing behaviour according to deployment position 

322 (ear, collar, leg). They actually reported the best performance in ear deployment that produced better results 

323 than our study, apart from sensitivity (92.0 vs 94.7%). Rodriguez et al. (2017), in an experiment with sheep, 

324 dividing their dataset in epochs of 14 s, reported performance similar to our 10 s epoch for grazing behaviour 

325 recognition. They actually found a sensitivity of 91.3%, a precision of 90.9%, a specificity of 91.9% and an 

326 accuracy of 91.6%. Moreau et al., (2009), even if in a study conducted with grazing goats wearing the 

327 Hobo® G Pendant Data Logger, reported a true recognition rate of eating behaviour (grazing or browsing) 

328 similar to our results for 5 (89% vs 87% respectively) and 10 s (91% vs 92% respectively). 

329 We encountered some difficulties in comparing the performance of the BEHARUM device for epochs larger 

330 than 20 s with the literature, since few papers regarding the use of accelerometer sensor in small ruminants 

331 have been published. Moreover, a comparison of results obtained in sheep with those obtained with large 

332 animals could not be appropriate. This assumption is supported by the results observed in a study conducted 

333 with the BEHARUM device placed under the jaw of cattle at pasture. Giovanetti et al., (2017b), using the 

334 same device (BEHARUM), time epoch setting and statistical data analysis as in the present experiment, 

335 found that overall accuracy of 5, 10 and 30 s epochs in sheep showed higher values than those reported in 



336 cattle (79.4%, 86.4% and 89.7%, vs 77.5%, 82.2% and 88.8% in sheep and cattle, respectively). This was 

337 probably due to the better capability of the model, for those epochs, to predict grazing activity in sheep than 

338 cattle. 

339 In the present experiment, the performance of the model was explored in relation to the choice of the best 

340 epoch setting. If we consider the overall model performance in discriminating the three behaviours, the best 

341 overall accuracy and k coefficient was found at 30 s epoch setting (Figure 1, Table 5) and the worst 

342 performances at the smallest (5 s) and biggest epoch setting (300 s). In sheep, contrarily to what happens in 

343 cattle (Giovanetti et al., 2017b; Vázquez Diosdado et al., 2015), when epoch setting is above 30 s, increasing 

344 the time epoch length, decreases the correct classification of behaviour. Our findings of the ANOVA analysis 

345 (Table 1) indicate that this could be probably related to the lack of significant differences of behaviours for 

346 many variables within the longer time frames, as in the case of 120 s, 180 s and 300 s epoch settings. 

347 Looking towards the 60 s epoch we can observe a slightly lower overall accuracy (88.9% vs 93.0%) and 

348 Coehn’s k coefficient (0.8 vs 0.9) than those found by Giovanetti et al., (2017a) and this may be due to the 

349 bigger and more varied dataset utilized in this paper than in the previous study. As a matter of fact, in the 

350 present research sheep grazed mixed grass and legume pastures whereas, in the work by Giovanetti et al., 

351 (2017a), animals were fed on pasture monocultures only.  

352 Despite this slight decrease of the model performance in this study, the 60 s and 120 s epochs cannot be 

353 discarded a priori, because they actually show a good k coefficient (0.8 for both) as well as accuracy, which 

354 values are 88.9% and 87.6% respectively. In this current study, the overall k value indicates substantially 

355 greater classification agreement than that would be expected to occur by chance, thus indicating that the 

356 classification success of our model could be considered reasonable for most of the epochs. 

357 Therefore, if the user’s aim is to get from BEHARUM device applied to sheep the best performance of 

358 classification during short grazing periods (say one day or less), the 30 s epoch should be chosen. 

359 Alternatively, if the user’s goal is mostly practical, i.e. to record good quality data for a longer periods (days 

360 or weeks) then 60 and 120 s epochs should be chosen, with the aim to save battery energy, allowing for a 

361 longer recording time. 

362



363 5. Conclusions

364 Our results showed that the discriminant analysis of data from an under lower jaw tri-axial accelerometer can 

365 accurately classify important behaviours such as grazing and ruminating in sheep at pasture. The prediction 

366 model performed better in classifying grazing behaviour than ruminating and other activities for all epochs. 

367 The 30 s epoch length yields the most accurate classification in terms of accuracy (89.7%) and Coehn’s k 

368 coefficient (0.8). Nevertheless, 60 and 120 s, may increase the potential recording time without causing 

369 serious lack of accuracy, and could be adopted for most practical purposes for monitoring sheep behaviour in 

370 extensive conditions. 

371
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460 Table 1. The effect of the behavioural activities recorded in grazing sheep on the mean (M), variance (V) and inverse coefficient of variation (ICV) of 

461 acceleration values per minute along the X, Y, Z-axis, force (F) and the resultant.

MX VX ICVX MY VY ICVY MZ VZ ICVZ MRES VRES ICVRES MF VF ICVF
Grazing 48.3a 3493a 1.2c 71.7a 6821a 1.0b 33.4a 1581c 1.3b 50.6a 3987a 0.8b 48.9a 2098a 1.3c

Ruminating 17.7b 753b 1.4b 45.7b 4644b 1.2b 29.2b 2965a 1.3b 29.6b 3083b 0.8b 25.9b 1095b 1.7b5 s
Other activities 7.0c 353c 4.4a 14.0c 1588c 4.5a 19.4c 2345b 3.8a 11.8c 1429c 1.5a 6.8c 271c 7.7a

P< 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Grazing 47.8a 3545a 1.0b 70.9a 6868a 0.9b 33.4a 1640c 1.1b 50.2a 3978a 0.8b 48.8a 2095a 1.2b

Ruminating 15.8b 624b 1.1b 44.6b 4763b 0.9b 28.7b 3226a 0.9b 28.4b 3109b 0.6c 24.6b 1078b 0.5c10 s
Other activities 4.5c 198c 3.1a 10.6c 1359c 3.3a 18.2c 2592b 2.7a 9.2c 1311c 1.1a 3.6c 126c 4.4a

P< 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Grazing 47.6a 3625a 0.8b 70.6a 6977a 0.9b 33.4a 1695c 0.9b 50.0a 4004a 0.8a 48.5a 2101a 1.2b

Ruminating 15.9b 675b 0.9b 44.5b 5066b 0.8b 28.6b 3458a 0.8b 28.4b 3178b 0.6c 24.5b 1146b 0.8b30 s
Other activities 4.4c 205c 1.8a 10.4c 1431c 1.9a 18.1c 2788b 1.7a 9.1c 1327c 0.7b 3.5c 137c 2.2a

P< 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Grazing 47.3a 3645a 0.8b 70.2a 7004a 0.9b 33.2a 1697b 0.8b 49.7a 3996a 0.8a 48.1a 2090a 1.1a

Ruminating 15.9b 693b 0.9b 44.6b 5177b 0.8b 28.7b 3594a 0.7c 28.4b 3212b 0.5b 24.6b 1167b 0.8b60 s
Other activities 5.3c 284c 1.5a 11.7c 1590c 1.3a 18.5c 2939a 1.2a 10.1c 1415c 0.5b 4.8c 221c 1.1a

P< 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Grazing 46.7a 3630a 0.8b 69.9a 7051a 0.8ab 33.1a 1745b 0.8a 49.3a 4004a 0.01b 47.5a 2094a 1.1a

Ruminating 16.4b 762b 0.8b 44.0b 5180b 0.7b 29.1b 3722a 0.6b 28.5b 3217b 0.01b 24.7b 1181b 0.8b120 s
Other activities 6.2c 356b 1.2a 13.8c 1865c 1.0a 18.2c 2875a 0.8a 11.1c 1499c 0.3a 6.2c 283c 0.9b

P< 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Grazing 46.2a 3624a 0.8b 69.2a 7017a 0.8a 33.0a 1781b 0.8a 48.9a 3993a 0.8a 47.4a 2096a 1.1a

Ruminating 16.4b 785b 0.8b 43.2b 5103b 0.7b 28.6a 3707a 0.6b 28.2b 3152b 0.5b 24.5b 1172b 0.8b180 s
Other activities 8.9c 568b 0.9a 18.9c 2484c 0.6b 20.0b 3013a 0.7ab 14.0c 1783c 0.4c 8.2c 382c 0.7b

P< 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

300 s Grazing 44.3a 3457a 0.8 68.2a 7084a 0.8a 32.5a 1862b 0.8a 47.5a 3940a 0.8a 44.8a 1964a 1.1a



Ruminating 17b 887b 0.7 43.8b 5216b 0.7b 26.7b 3467a 0.5b 28.1b 3116b 0.5b 24.9b 1229b 0.8b

Other activities 14.5b 1119b 0.8 22.6c 2673c 0.6b 24.2b 3253a 0.6b 18.5c 2172c 0.4c 16.8b 878b 0.7b

P< 0.01 0.01 ns 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
462 Means followed by different letters differ significantly at P < 0.05.



463 Table 2.  Allocation (expressed as percentage of the total) of the prevailing behavioural activity in the three 

464 classes of percentage considered for each epoch setting.

Epoch 50-75% 75-99% 100% n

5 s 0.6 0.7 98.8 13995

10 s 1.8 1.0 97.4 6992

30 s 3.5 3.3 93.3 2334

60 s 4.5 6.6 88.3 1167

120 s 5.6 13.7 80.2 585

180 s 7.9 19.2 72.6 390

300 s 11.9 26.3 60.2 233

465
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467 Figure 2. Distribution of errors in assignment of DA after bootstrap procedure among epoch settings
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469 Figure 3. Plot of canonical variables (CAN 1, CAN 2) generated from discriminant analysis for 
470 different time epoch settings (5 s, 10 s, 30 s, 60 s, 120 s, 180 s, 300 s). ▲blue = other activities, 
471 ■ brown =ruminating, ♦ green =grazing.



472 Table 3. Variance explained (λ1, λ2) and standardized canonical coefficients at different time epoch settings.

5 s 10 s 30 s 60 s 120 s 180 s 300 s

Can1 Can2 Can1 Can2 Can1 Can2 Can1 Can2 Can1 Can2 Can1 Can2 Can1 Can2

λ1 0.88 0.91 0.93 0.93 0.93 0.88 0.78

λ2 0.12 0.08 0.07 0.07 0.07 0.12 0.22

Variables

MX 0,52 -0,15 0,48 -0,72 0.36 -1.52 0.17 -1.95 -0,07 -2,45 -0,77 -1,78 0,34 -1,96

VX 0,35 0,98 0,57 1,52 0.59 2.29 0.60 2.78 0,81 3,14 0,99 2,98 0,83 2,93

ICVX -0,05 0,23 -0,03 0,22 -0.09 0.59 -0.10 0.68 -0,05 0,52 0,02 0,72 -0,03 0,41

MY 0,95 0,57 1,29 0,55 1.15 1.03 0.82 1.61 0,86 1,66 0,62 3,28 1,44 2,66

VY 0,36 0,63 0,58 0,99 0.64 1.10 0.60 1.29 0,78 1,27 0,02 0,94 1,35 0,87

ICVY -0,08 0,30 -0,03 0,18 0.02 -0.12 0.01 -0.05 0,02 -0,19 0,03 -0,29 0,22 0,63

MZ 0,92 0,87 1,49 0,86 1.98 1.09 2.33 1.21 2,35 1,06 2,04 1,49 2,08 1,57

VZ -0,16 -0,03 -0,34 0,30 -0.87 0.37 -1.49 0.53 -1,38 0,55 -1,71 0,69 -0,58 0,41

ICVZ -0,06 0,15 -0,03 0,06 -0.02 0.07 -0.03 0.11 0,02 0,02 -0,30 1,06 0,65 1,42

VRES -1,64 -1,86 -2,41 -2,23 -2.26 -3.00 -1.82 -3.81 -2,02 -3,69 -0,82 -4,89 -3,46 -4,55

ICVRES -0,002 -0,09 -0,24 0,49 -0.14 0.26 -0.04 -0.22 -0,08 0,17 0,50 -2,05 -1,30 -3,59

MF 0,81 -0,34 0,90 -0,54 0.98 -0.76 0.92 -0.95 0,65 -1,17 0,66 -0,26 0,88 0,70

VF -0,02 0,52 0,09 0,65 0.01 0.90 -0.09 1.29 0,12 1,43 -0,16 1,26 0,06 0,88

ICVF -0,13 0,64 -0,03 0,30 -0.003 0.22 0.001 0.35 0,01 0,29 -0,05 0,20 -0,11 0,09

473



474 Table 4. Mahalanobis distance from main behavioural activities at different time epoch settings.

Ruminating Other activities

Grazing 4       10

5 s Ruminating 0 3

Other activities 0

Grazing 7      17

10 s Ruminating 0 4            

Other activities 0

Grazing 11 23

30 s Ruminating 0 5

Other activities 0

Grazing 12 24

60 s Ruminating 0 5

Other activities 0

Grazing 11 20

120 s Ruminating 0 4

Other activities 0

Grazing 10    17

180 s Ruminating 0 5

Other activities 0

Grazing 8      7

300 s Ruminating 0 4

Ti
m

e 
ep

oc
h 

se
tti

ng
s

Other activities 0
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477 Table 5. Performance of the model in the assignment of the behaviours at different time epoch settings.

sensitivity specificity precision accuracy Cohen’s k
% % % %

Grazing 5 s 88.1 86.9 86.9 87.5 0.7
10 s 94.7 90.8 91.9 92.8 0.8
30 s 94.8 93.0 94.1 94.0 0.9
60 s 95.0 92.9 94.0 94.0 0.9
120 s 92.8 94.2 95.3 93.4 0.9
180 s 91.6 92.4 93.6 91.9 0.9
300 s 88.0 89.6 91.6 88.7 0.8

Ruminating 5 s 67.9 88.8 78.4 81.0 0.7
10 s 73.5 93.9 86.8 86.7 0.8
30 s 80.4 94.7 88.1 90.0 0.8
60 s 79.8 93.9 86.3 89.4 0.8
120 s 82.2 91.6 79.9 88.9 0.7
180 s 78.3 90.2 76.9 86.7 0.7
300 s 73.5 89.5 74.1 84.9 0.6

Other activities 5 s 79.6 92.0 59.6 90.4 0.5
10 s 87.9 94.0 67.2 93.2 0.6
30 s 92.3 96.0 77.9 95.5 0.7
60 s 86.6 95.7 76.5 94.5 0.7
120 s 79.2 95.5 75.9 93.0 0.7
180 s 72.7 94.2 69.6 90.9 0.6
300 s 57.0 89.7 48.9 84.9 0.4

Overall 5 s 79.4 0.7
10 s 86.4 0.8
30 s 89.7 0.8
60 s 88.9 0.8
120 s 87.6 0.8
180 s 84.7 0.7
300 s 79.3 0.6
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