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ABSTRACT 13 

A device based on a tri-axial accelerometer was used to measure behavioural parameters of dairy sheep at 14 

pasture. Short tests were performed in grazing conditions to collect accelerometer data simultaneously with 15 

video recordings of sheep behavioural activities (grazing, ruminating and resting). The raw acceleration data 16 

was processed to create 12 variables: mean, variance and inverse coefficient of variation (ICV; 17 

mean/standard deviation) for the X-, Y- and Z-axis and the resultant at 1-min intervals. A database inclusive 18 

of the 12 acceleration variables and the three behavioural activities detected for each minute was then 19 

created. Three multivariate statistical techniques were used to discriminate the behavioural activities using 20 

the acceleration data: stepwise discriminant analysis (SDA), canonical discriminant analysis (CDA), and 21 

discriminant analysis (DA). Based on the acceleration variables selected by SDA, the subsequent CDA 22 

significantly discriminated the three behaviours by extracting two canonical functions. The first canonical 23 

function (CAN1) discriminated the grazing activity from the resting and ruminating, whereas the second 24 

(CAN2) differentiated the grazing from the ruminating behaviour. After bootstrap resampling, the DA 25 

correctly assigned 93.0% of minutes to behavioural activities. Stepwise regression analysis was used to 26 

estimate the bite frequency (total number of bites/min) using a subset of acceleration data that contained only 27 
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minutes in which sheep were grazing. In this case, 15 variables were tested and out of them, only one was 28 

selected, the sum of X-axis value per minute (SX), which explained 65 % of the total variation of the bite 29 

frequency.  30 

 31 

Keywords. Feeding behaviour, accelerometer, wireless communication technology, discriminant analysis.  32 

 33 

 34 

INTRODUCTION   35 

Grazing, ruminating and resting are the main daily activities of ruminants and play a key role in regulating 36 

their forage intake. Monitoring these three activities is important to take management decisions in grazing 37 

systems. According to Hodgson (1982), daily herbage intake of grazing animals is equal to (bites/unit time) 38 

× (intake/bite) × (grazing time). The rate of biting (bites/unit time), i.e. the severing of herbage during the act 39 

of grazing, together with the bite mass (intake/bite), represents the intake rate (fresh or dry matter /unit of 40 

time). The mean rate of biting over 24 h may be calculated from total bites divided by total grazing time 41 

(Penning and Rutter, 2004). The total number of bites as well as the behavioural activities of the animals at 42 

pasture can be estimated by either direct observation or using automatic recording systems.  43 

The direct and continuous observation of behavioural activities is labour intensive and time consuming 44 

(Ungar and Rutter, 2006). Automatic grazing jaw-movement recorders set up around the muzzle of animals 45 

based on electric resistance (Penning 1983; Rutter et al. 1997) or a pressure (Nydegger et al., 2011; Zehner et 46 

al., 2012; Ruuska et al., 2016) have been used in discriminating between grazing and ruminating in cattle and 47 

sheep with good accuracy. Sound recording has been also identified as a good method for analysing the 48 

ingestive jaw movements of grazing ruminants (Laca et al., 1992; Delagarde et al., 1999). The method, using 49 

an inward-facing microphone, allows to accurately assess bite rate and, more recently, to distinguish among 50 

bites, chews and ruminating jaw movement, as well as combined chew-bites (Laca and Wallis De Vries, 51 

2000; Galli et al., 2006; Ungar and Rutter, 2006). Other systems based on electromyography provide 52 

estimates of feeding behaviour by positioning electrodes closely attached to the masticatory muscle of the 53 

masseter during jaw movement and measuring electrical potential oscillation in dairy cows (Büchel and 54 

Sundrum, 2014).  55 
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Recently the use of tri-axial accelerometers, sometimes coupled with GPS sensors (Wark et al., 2007), has 56 

been implemented to monitor cattle behaviour, discriminating among different activities of cows at pasture 57 

such as lying, standing, resting and grazing (Seo et al., 2006 cited by Watanabe et al., 2008), or walking, 58 

drinking and hay intake (Scheibe and Gromann, 2006). Moreover, accelerometers attached to animals allow 59 

the measurement of animal energy expenditure (Halsey et al., 2008; Miwa et al., 2015), travel speed (Bidder 60 

et al., 2012), activity and feeding behaviour (Robert et al., 2009; Moreau et al., 2009; Watanabe et al., 2008). 61 

The most common sampling frequencies used in studies with accelerometer based sensors were 10, 16 and 62 

32 Hz, depending on the frequency of the movement being classified. These instruments usually incorporate 63 

a microprocessor and a memory to store data until the device is retrieved. However some sensors can 64 

incorporate wireless communication technologies, (ZigBee, Bluetooth, Wibree and WiFi), and are commonly 65 

used in sensor network based research works (Aqeel-ur-Rehman et al. 2014). Recorded data can be then 66 

processed to, for example, select threshold values that distinguish the behavioural activities (Moreau et al., 67 

2009) or develop a quadratic discriminant analysis of transformed variables that automatically classify 68 

different behaviours (Watanabe et al., 2008). Other statistical methods such as the classification tree, k-69 

means classifier, multiple-model adaptive estimation approaches, and multilayer perceptron (MLP)-based 70 

artificial neural network (ANN) have been also tested (Schwager et al., 2007; Nadimi and Søgaard, 2009; 71 

Nadimi et al., 2012).  72 

Despite the growing literature concerning the use of accelerometers in classifying behavioural activities in 73 

grazing ruminants, only few references reported the application of this type of sensors to identify and classify 74 

jaw movements i.e. bites (Chambers et al., 1981; Umemura, 2013; Oudshoorn and Jørgensen, 2013). The 75 

accurate prediction of the number of grazing bites is of great interest to estimate intake in grazing animals 76 

but it remains a challenging goal under field conditions. Automatic bite counts was proposed by Chambers et 77 

al. (1981) in cattle and sheep to distinguish between the ripping of grass and other jaw movements. This 78 

equipment, which combined a micro-switch, an accelerometer and a mercury-switch to detect jaw 79 

movements, head movements and head state (up and down) respectively, showed little difference both in 80 

cattle and sheep in the agreement between direct observation and bitemeter estimates of the number of 81 

grazing bites. Some progress has recently been achieved by Umemura (2013) that found that  pedometer 82 

values (counts), obtained by attaching the equipment to the neck collar as a pendulum, are well related to the 83 
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number of visually observed grazing bites in cattle, even though the determination coefficients may vary 84 

from 0.79 to 0.90. Finally, Oudshoorn and Jørgensen (2013) used a 3-axis accelerometer to record cow bites 85 

and found that the Z-axis had periodic content consistent with the manual bite markings. Their results were 86 

encouraging since the bite frequency automatically recorded was not statistically different from the manual 87 

count.  88 

The objectives of this study were: to statistically discriminate the feeding behaviour of sheep into three 89 

different classes (i.e. grazing, ruminating and resting) using an X-Bee tri-axial accelerometer based sensor 90 

and to estimate the bite frequency (number of bites per min of grazing) on the basis of acceleration variables.  91 

 92 

 93 

MATERIALS AND METHODS 94 

 95 

Experimental site and animal management 96 

The study was conducted at Bonassai experimental farm of the agricultural research agency of Sardinia 97 

(AGRIS Sardegna), located in the NW of Sardinia, Italy (40° 40' 16.215" N,  8° 22' 0.392" E, 32 m a.s.l.).  98 

The animal protocol below described was in compliance with the EU regulation on animal welfare and all 99 

measurements were taken by personnel previously trained and authorized by the institutional authorities 100 

managing ethical issues both at Agris Sardegna and the University of Sassari.  101 

This current study was conducted from the 28th of 2013 to the 6th of February 2014 over 6 weeks. Three non-102 

lactating adult Sarda ewes were used in the study with an age of 2.60.6 years (meanstandard deviation) 103 

and live weight of 46.01.0 kg. Two animals were used as “focal animal” to monitor the feeding behaviour, 104 

the third was used as companion animal. 105 

The ewes were kept in a stall and fed ryegrass hay and commercial concentrate in the first three days of each 106 

experimental week. Then, for the subsequent three days, they were accustomed to graze from 0900 to 1600h 107 

one of the experimental plots previously established with monocultures of the following forage species: 108 

alfalfa (Medicago sativa L., week 1), Italian ryegrass (Lolium multiflorum Lam., week 2, 3), sulla 109 

(Hedysarum coronarium L., week 4, 5) and chicory (Cichorium intybus L., week 6). These forages were 110 

chosen because they are widespread in Mediterranean sheep production systems and stimulate a wide range 111 
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of behavioural responses, which have been already explored in micro-sward studies by our laboratory 112 

(Giovanetti et al., 2011). The seventh day of each week (test day), the feeding behaviour of the ewes was 113 

monitored when they were allocated from 0900 to 1600h to a 20 x 20 m observation arena, fenced within 114 

each experimental plot using sheep electric net.  115 

 116 

Accelerometer device and feeding behaviour recording 117 

On each test day, one experimental sheep at a time was fitted with a halter equipped with a tri-axial 118 

accelerometer sensor, positioned under the lower jaw of the sheep. This device detects the animal’s 119 

movements by measuring the accelerations on the X (longitudinal), Y (horizontal) and Z (vertical) axis 120 

(Figure 1). 121 

The sensor is inserted in a micro-electromechanical compact system (MEMS) with on-board peripherals. The 122 

central part of the system is an 8-bit high performance microcontroller. It also features integrated modules 123 

such as programmers connector, piezoelectric film element, wireless XBee that can transmit up to 1.5 km. 124 

The power supply of the system is guarantee by a Lithium-Polymer (Li-Po) battery, connected via on-board 125 

battery connector. The acceleration sensor used was the ADXL335 (Analog Devices, One Technology Way, 126 

P.O. Box 9106, Norwood, MA 02062-9106, USA), a complete tri-axial accelerometer with signal 127 

conditioned voltage output. It records both dynamic accelerations, related to changes in the movements of 128 

the sheep and static accelerations (–9.8 m s–2), caused by earth’s gravity. The microcontroller samples raw 129 

acceleration data at a frequency of 62.5 Hz and encodes the data, through an analogue-to-digital converter 130 

with a resolution of 8 bits, into levels ranging from 0 to 255. Then, the microcontroller selects the first three 131 

peaks of accelerations per second and axis. In motionless circumstances, the microcontroller is programmed 132 

to return values equal to zero (static accelerations) for the three axes. Acceleration data were sent by a 133 

wireless XBee system to a nearby computer equipped with an antenna. A software package (DAS Client, 134 

Electronic System), installed on the computer, activates or deactivates the accelerometer device and manages 135 

data acquisition.  136 

The feeding behaviour of sheep were video recorded during accelerometer deployment by fixed camera 137 

(Sanyo Xacti VPC-TH1, Sanyo Electric Co., Ltd. OSAKA, Japan). Video and accelerometer recordings were 138 

split into 30-45 min sub-periods during the time on the plots in order to re-align the camera or substitute its 139 
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memory card. During these recording breaks, the halter with the accelerometer was rotated between the two 140 

experimental sheep. The internal clock of the camera was synchronised with the internal clock of the 141 

computer. This ensured both the camera and accelerometer were synchronized in time to allow accurate 142 

annotation of the accelerometer data after behavioural recordings were made. 143 

 144 

Preliminary data processing  145 

A file including the three acceleration values for each axis and one of the three behavioural activities 146 

(grazing, ruminating, and resting) per second, based on the recorded videos, was created. Behaviour 147 

activities were classified according to Gibb (1998). Grazing activity included the act of searching for food 148 

while walking with the head down without evidence of biting, or standing still with the head down while 149 

biting and chewing either with the head down or the head up. Ruminating activity included regurgitation, 150 

chewing and swallowing of bolus, in lying or standing position. Resting activity included all other activities, 151 

basically lying down or standing without rumination, and travelling.  152 

The mean (MX, MY, MZ), variance (VX, VY, VZ) and inverse coefficient of variation (ICVX, ICVY, 153 

ICVZ) i.e. mean/standard deviation of acceleration data for each axis and per min as well as the resultant 154 

mean (MRES), variance (VRES) and ICV (ICVRES) values of the three axis, per min, were then calculated 155 

according to Watanabe et al. (2008).  156 

The video-recorded behaviour of the animals was classified, at 1-min intervals, into one of the three 157 

prevailing activities in each minute between grazing, ruminating and resting, therefore the final dataset 158 

consisted of the three activities combined with the twelve variables concerning acceleration.  159 

A subset of data that contained only minutes in which sheep were grazing was extracted from the final 160 

dataset and the number of bites per minute, counted from video recorded files, was added. Three other 161 

variables, the sum of the acceleration values per each axis and per min (SX, SY, SZ), were included to the 162 

subset that, at the end, contained 15 accelerometer variables.   163 

 164 

Statistical analysis 165 

An exploratory analysis of the final database was conducted using a one-way ANOVA model to test the 166 

effect of behavioral classes (three levels: grazing, ruminating and resting) on each single accelerometer 167 
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variable. The Bonferroni correction was adopted to control the multiple testing error rate. Three multivariate 168 

statistical techniques were used to discriminate the three behavioural activities: stepwise discriminant 169 

analysis (SDA), canonical discriminant analysis (CDA), and discriminant analysis (DA). All statistical 170 

analyses were performed by using the SAS software (SAS Institute Inc, 2014). 171 

 172 

Twelve variables concerning accelerations (MX, MY, MZ, VX, VY, VZ, ICVX, ICVY, ICVZ, MRES, 173 

VRES, ICVRES) and one categorical variable containing the three activities (grazing, ruminating, resting) 174 

were used in the analysis. The SDA was exploited to select variables that better discriminated groups. This 175 

step was crucial to avoid over-fitting problems when new activities are going to be assigned to one of the 176 

three behaviors. Moreover, considering that the battery duration depends on the amount of data transmitted 177 

or stored, the selection of a reduced set of variables, able to correctly discriminate groups, could partially 178 

solve the battery charge problem. 179 

The ability of selected variables in discriminating groups was tested by using CDA (Mardia et al., 2000). In 180 

general, if k indicates the number of groups, the CDA derives k-1 linear equations, called canonical functions 181 

(CAN) that are used to predict the group to which an object belongs. The structure of a CAN is:  182 

nn XcXcXc  ........CAN 2211  183 

where ci are the canonical coefficients (CC) and Xi are the scores of the n involved variables. CCs indicate 184 

the partial contribution of each original variable in composing the CAN. In consequence, the higher the 185 

absolute value of a CC, the higher the weight of the corresponding variable in composing the CAN. The 186 

distance between groups evaluated by using the Mahalanobis’ distance, whereas the effective groups’ 187 

separation was tested by using the corresponding Hotelling’s T-square test (De Maesschalck et al., 2000).  188 

DA was then exploited to classify objects into one of the involved groups. In practice, the canonical 189 

functions are applied to each object thus producing a discriminant score. An object is assigned to a particular 190 

group if its discriminant score is lower than the cutoff value obtained by calculating the weighted mean 191 

distance among group centroids (Mardia et al. 2000).  192 

To validate the derived discriminant functions, the complete dataset was randomly divided into training and 193 

validation dataset in the proportion of four to one. This partition of the dataset was iterated 5,000 times by 194 
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using a bootstrap procedure (Efron, 1979). At each run, DA was applied to the training dataset to predict 195 

behaviors in the validation dataset and errors in assignment were recorded. 196 

To evaluate the performance of DA for discriminating the three behaviour activities, the sensitivity, 197 

specificity, precision and accuracy were calculated, based on the error distribution in assignment, using the 198 

following equations:  199 

Sensitivity = TP/(TP + FN) 200 

Specificity = TN/(TN+FP) 201 

Precision = TP/(TP+FP) 202 

Accuracy = (TP+TN)/(TP+TN+FP+FN) 203 

Where TP, TN, FP and FN are true positive, true negative, false positive and false negative counts 204 

respectively.  205 

The K coefficient was calculated (Fleiss, 1981) to evaluate the agreement between observed and model 206 

predicted corrected for agreement that would be expected by chance, both for each behavior and overall. The 207 

K values were judged according to criteria of Landis and Koch (1977). 208 

The subset of data containing only grazing behaviour was analysed by regressing the video recorded rate of 209 

biting (number of bites per minute) on the acceleration variables (MX, MY, MZ, VX, VY, VZ, ICVX, 210 

ICVY, ICVZ, MRES, VRES, ICVRES, SX, SY, SZ) by using a stepwise model to select the best variables 211 

subset to predict the number of bites. 212 

 213 

 214 

RESULTS  215 

Since the variation of each variable was great, especially for maximum values, data were edited by using as 216 

threshold values the mean of each variable plus two standard deviations. After correction, the final dataset 217 

contained 675 minutes.  218 

The ANOVA model applied to all variables is displayed in Table 1. Apart from VZ and VRES, for which 219 

ruminating and resting were similar, the three activities were significantly different. The highest values were 220 

obtained for grazing followed by ruminating and resting.  221 

 222 
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Discrimination of behaviour activities 223 

SDA applied to the entire dataset selected seven (Table 2) among the twelve original variables. The 224 

subsequent CDA significantly discriminated the three behaviours (Hotelling’s test P < 0.0001) by extracting 225 

two canonical functions. The variance explained by CAN1 and CAN2 was 0.68 and 0.32, respectively. 226 

Canonical coefficient (CC) values, reported in Table 2, show that both in CAN1 and CAN2, the greatest CCs 227 

were for VRES and VZ. 228 

Figure 2 shows that canonical functions can separate the three behavioural activities. CAN1 discriminates the 229 

grazing activity from the resting and ruminating ones, whereas CAN2 differentiates the resting from the 230 

ruminating behaviour. In particular, the lowest Mahalanobis’ distance was obtained between ruminating and 231 

resting (183), whereas greater distances were obtained for grazing and ruminating (324) and grazing and 232 

resting (311).  233 

After the bootstrap resampling, the DA correctly assigned 93% of minutes to behavioural activities. Errors in 234 

assignment, specificity, sensitivity, precision and accuracy of DA for discriminating the sheep behavior 235 

activities and K coefficient of agreement between observed and predicted values are displayed in Table 3. 236 

The overall accuracy in DA assignment of minutes to the three behaviors was 93%. The precision was 95% 237 

for grazing, 94% for resting and 89% for ruminating. The activity with the highest sensitivity (96%), 238 

specificity (97%) and accuracy (96%) of classification was grazing. Ruminating and grazing were predicted 239 

with the same specificity (97%). About 10% of rumination was misclassified as resting since these two 240 

activities are similar for some of the variables considered in the DA (VRES and VZ). Resting activity 241 

reported lower specificity (95%) and accuracy values (94%) than grazing and ruminating. 242 

 243 

Prediction of rate of biting 244 

Stepwise regression selected only SX and this explained 65 % of the total variation for rate of biting. The 245 

intercept was not significantly different from zero (P = 0.66) but the slope (0.06) was highly significantly 246 

different from zero (P < 0.001). 247 

 248 

 249 

DISCUSSION 250 
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 251 

Discrimination of behaviour activities  252 

Under the conditions of this experiment, all accelerometer variables had the highest value when the sheep 253 

were grazing, the lowest while resting, being the rumination response intermediate (Table 1). Actually when 254 

the sheep is grazing, all axes are involved in detecting different dynamic movements with a strong 255 

preponderance of vertical axis (Z). Grazing activity is a complex process. The sheep while walking or 256 

standing lower and raise its head to search the herbage, gathers and manipulate the herbage with their lips, 257 

grips it between its incisors and severe it from the sward (biting) often with a jerk of the head (vertical 258 

movement). The herbage severed is then chewed, formed into a bolus and finally swallowed (Penning and 259 

Rutter, 2004). Biting and chewing may be carried out simultaneously as “chew-bites” (Laca and Wallis De 260 

Vries, 2000). This activity determines horizontal, vertical movements of the head and lateral and vertical 261 

movement of the jaw.  262 

In ruminating, movements of the head and jaw are more regular related to regurgitation, chewing and 263 

swallowing of merycic boluses. This activity involves lateral and vertical movements of the jaw that are 264 

mainly revealed by the Y and Z-axis of the sensor. Resting activity, which includes sheep lying down, 265 

standing or travelling in absence of jaw activity, reports the lowest values for almost all variables in all axes 266 

with the exception of VZ and VRES values (Table 1) that are similar to ruminating probably because of a 267 

lower variability of vertical movements of the head in these two activities.  268 

 The SDA selected 7 variables (Table 2) out of the 12 original ones. In particular, all variances (VX, VY, VZ 269 

and VRES) one mean (MZ) and two ICV variables (ICVX and ICVZ) were included in the final model. 270 

Watanabe et al. (2008) in a similar experiment involving grazing cows, found that the best discrimination 271 

among the three behaviour classes (95.7% of correct assignment) was obtained by retaining 8 variables: MX, 272 

MY, MZ, MRES, ICVX, ICVY, ICVZ, ICVRES. The above cited authors suggested that mean variables 273 

were effective in detecting body posture (static acceleration) whether the ICV variables detected well both 274 

differences in body posture and movements (dynamic acceleration) for each activity.  275 

In the present experiment, means are less important than variances and ICVs in detecting activities probably 276 

because accelerations related to the head and jaw movements are more variable in sheep than in cows, 277 

particularly when grazing. This result is in agreement with Chambers at al. (1981) who reported, similar 278 
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wave forms of the accelerometer outputs during grazing in sheep and cows but with higher variability of 279 

acceleration and peak values in sheep than cows. The authors ascribed these results in part to the greater 280 

inertia of the cow’s head movement and in part to the typical cow’s head movement that involves some 281 

circular movement. In sheep, on the other hand, head movement is essentially backward and forward in the 282 

longitudinal axis of the body. Moreover, sheep make greater use of the lips in manipulating herbage that 283 

causes a greater ratio of jaw to head movements than cows. Actually cattle are able to open their mouth 284 

wider than sheep and to increase the grazed area by extending their tongue thus reaching both an higher 285 

herbage mass per bite (bite mass) and an higher herbage intake rate (g DM/min). Parsons et al. (1994) 286 

suggested that the main factor affecting intake rate was the handling time, i.e. the time required to take a bite 287 

of herbage of a given mass and to manipulate and chew that herbage before swallowing it. The higher intake 288 

rate achieved by cattle than sheep is due to a lower proportion of total jaw movements allocated to masticate 289 

herbage during grazing. This is probably related to their higher rumen retention time that allows better fiber 290 

fermentation in the rumen and requires a lower number of mastication jaw movements per bite of herbage 291 

ingested (Van Soest, 1994). It can be stated the sheep have higher handling costs than cows per unit of 292 

herbage ingested that causes a greater variability in jaw/head movements and, as a consequence, in 293 

accelerations. 294 

Although sheep have probably a different accelerometer pattern than cows while grazing, part of the higher 295 

variability of the acceleration detected in this experiment rather than in others focused on cattle (e.g. 296 

Watanabe et al., 2008) could be due to the wide range of forage monocultures tested in this experiment. In 297 

fact, these forage species are known to give different foraging responses (Giovanetti et al., 2011) and 298 

probably affect differently the movements and accelerations associated to their biting and chewing.  299 

If we look to the contribution of the X, Y and Z-axes to the discriminant function, we can observe that the Z-300 

axis (vertical body axis) is always represented with the three categories of variables (mean, variance and 301 

ICV). This result can be explained considering that during all monitored behaviours (namely grazing, 302 

ruminating and resting) vertical movements are always performed by the animal.  303 

CDA was then exploited to verify if, on the basis of the variables selected by the SDA, minute data came 304 

from different behaviour activities. The CAN1 versus CAN2 scatter plot (Figure 2) displayed a clear 305 

separation among the three behaviours. In particular, CAN1, which accounted for 68 % of total variability, 306 
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was able to separate grazing from the other two behaviours. This marked difference is confirmed by the 307 

ANOVA results that reported greater values in grazing activity than ruminating and resting.  To separate the 308 

ruminating from resting, the second canonical function (CAN2), which explained the remaining 32 % of 309 

variance, is needed. In both CAN1 and CAN2, the variables VRES and VZ showed the highest absolute CC 310 

values (Table 2). This result indicates that the separation of the three behaviours is mainly determined by 311 

those variables. This was an expected result because VRES combines the variances of the three axis X, Y 312 

and Z and VZ is one of the most important variable in the three activities. Furthermore, the Hotelling’s test 313 

was highly significant for all the Mahalanobis’ distances.  314 

In our experiment, we found a precision of 95% for grazing, 94% for resting and 89% for ruminating (Table 315 

3). This result is slightly lower than what found by Watanabe et al (2008) in cattle who reported 98% of 316 

correct assignment in grazing behaviour, followed by resting (92.8%) and ruminating (92.3%) activity.  317 

An important outcome of the present study is the high statistical agreement (0.89), determined with K 318 

coefficient, which represents a measure of fortuity (or not) agreement between observed and predicted by the 319 

model for each behaviour (Table 3). Among the three behaviours, grazing showed the highest agreement (K 320 

= 0.92). Considering all the performances (sensitivity, specificity, precision and accuracy) in the assignment 321 

of behavior activities (Table 3), the results of this validation exercise overall suggest that the technology 322 

developed in the present study is particularly appropriate to precisely and accurately monitor sheep grazing 323 

behavior. 324 

Moreover, despite some limitation, the results of this experiment outperform the goodness of fit of the 325 

classification of grazing behaviour reported by other authors in sheep, even when no distinction between 326 

rumination and resting was tempted. 327 

For instance, Marais et al., (2014), placing a tri-axis accelerometer device around the neck of the sheep, were 328 

able to identify different sheep behaviours with a high accuracy for standing, walking and running (95.2%, 329 

93.7% and 99.5% of correct assignment, respectively) but  grazing was misclassified as lying in 35% of 330 

cases. McLennan et al. (2015), validating an automatic recording system, was only able to distinguish 331 

between active (miscellanea including grazing, walking, standing, ruminating and standing) and inactive 332 

behaviours (lying ruminating and lying) in sheep without giving any indication of the specific activity 333 

performed by the animal. More recently, Alvarenga et al. (2016), positioning a 3-axis accelerometer under 334 
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the lower jaw of the sheep, achieved 84.3%, 97.3% and 92.9% for sensitivity, specificity and precision with 335 

K of 0.79 in classifying grazing behaviour considering a length epoch of 5 seconds. Although these authors 336 

obtained results similar to ours, they reported an overall lower accuracy (81.9% vs. 93.0%) and were unable 337 

to measure rumination activity, which is of high nutritional relevance. 338 

 339 

Prediction of rate of biting 340 

The stepwise regression, applied to the subset of the final dataset, selected only one variable, the sum of 341 

acceleration in the X-axis per minute (SX), thus confirming that the head movement during biting is mainly 342 

backward and forward in the longitudinal axis of the body. Our results confirm the difficulty, to count bites 343 

using an accelerometer in field condition, in line with the few studies available in the literature, to the best of 344 

our knowledge.  345 

The partial agreement with visual observation (65%) obtained in the regression model is probably 346 

explainable by different reasons such as: 1) the sensitivity of accelerometers could provide undesirable 347 

signals during recording sessions due to head movements not related to grazing activity; 2) the rate of biting 348 

is so high in sheep that is sometimes difficult to capture the single bite event, unless video recording is run 349 

from very close or under controlled conditions (micro-sward trials); 3) the visual bite count includes also 350 

chew-bites that probably produces acceleration signals different from those originated by bites alone. 351 

Finally, we cannot rule out that using raw signal analysis of accelerometer data can provide better prediction 352 

of rate of biting or total bite number than using the sum of acceleration values in the X-axis per minute, as 353 

found in cows by Andriamandroso et al., (2015) who obtained a mean error of about 5 %. 354 

 355 

 356 

CONCLUSION 357 

Accelerometers combined with wireless communication technology are useful tools to discriminate grazing, 358 

ruminating and resting behaviour activities of grazing sheep. The multivariate statistical approach allowed to 359 

reduce the number of variables that are needed to assign acceleration minutes to the appropriate behavior 360 

classes with a mean accuracy of 93% and K coefficient of 0.89. Some ruminating activities were 361 

misclassified as resting probably because the latter included walking and other non classified activities. 362 
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The sum of accelerations in the X-axis per minute provides a good proxy of the number of bites per minute. 363 

Better performances could be obtained in the future by processing data with different time epochs and 364 

possibly using raw data instead of minute-based statistical parameters. 365 

Other sensors could be added to this device in order to improve the overall classification accuracy and to 366 

effectively drive the management of pastoral resources.  367 

 368 
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Figure 1. Halter equipped with a tri-axial accelerometer sensor. 500 

Figure 2. Plot of canonical variables (CAN 1, CAN 2) generated from discriminant analysis. 501 
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Table 1. The effect of the behavioural activity classes recorded in grazing sheep on the mean (M), variance 

(V) and inverse coefficient of variation (ICV) of acceleration values per minute along the X, Y and Z-axis and 

the resultant.  

 Grazing Ruminating Resting P< 

Minutes 247 149 279  

MX 3.140.06a 1.50.07b 0.540.05c 0.0001 

MY 4.400.07a 2.740.09b 0.780.07c 0.0001 

MZ 6.950.11a 1.410.14b 0.880.10c 0.0001 

MRES 4.830.07a 1.900.09b 0.730.07c 0.0001 

VX 29.120.65a 9.120.84b 5.400.61c 0.0001 

VY 34.330.80a 17.441.04b 6.690.76c 0.0001 

VZ 113.252.93a 6.343.77b 14.572.75b 0.0001 

VRES 62.031.28a 11.421.65b 8.961.21b 0.0001 

ICVX 0.580.01a 0.540.01b 0.200.01c 0.0001 

ICVY 0.760.01a 0.670.01b 0.260.01c 0.0001 

ICVZ 0.680.01a 0.570.01b 0.220.01c 0.0001 

ICVRES 0.630.01a 0.570.01b 0.220.01c 0.0001 

Means followed by different letters differ significantly at P < 0.05. 

  



 

 

Table 2. Standardized canonical coefficients. 

Variable Can1 Can2 

MZ 4.60 -3.084 

VX 2.74 -1.72 

VY 3.15 -1.51 

VZ 12.80 -6.50 

VRES -19.07 10.53 

ICVX -0.56 1.00 

ICVZ -0.28 1.69 

 

  



 

 

Table 3. Distribution of the total error and performance in the assignment of behavior activities, predicted on 

the basis of accelerometer data. 

Observed behaviour 
Predicted behaviour 

Grazing Ruminating Resting Total 

Grazing 234 8 6 247 

Ruminating 1 133 15 149 

Resting 9 9 261 279 

Total 244 149 282 675 

Sensitivity (%) 96 89 93  

Specificity (%) 97 97 95  

Precision (%) 95 89 94  

Accuracy (%) 96 95 94 93# 

k 0.92 0.86 0.89 0.89$ 

# Overall accuracy of the discriminant analysis 

$Kappa coefficient used as overall coefficient of agreement (P < 0.001). 

 

 


