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ABSTRACT

Object recognition has regained a high level of attention in recent years, with the application of deep
convolutional neural networks to classification tasks. However, the problem of recognising objects for
which a limited number of images is available is still open. In this paper, we propose a view-based
object recognition method which can deal with objects represented by a few images. To build a model
of the object, salient points are extracted from the images and a persistence value is defined for each
point and updated as new images are added. The model that describes the object is refined on the basis
of points persistence, where points with high persistence have priority over low persistency ones. The
method is validated on a collected a dataset of objects of cultural interest. Recognition rates reach
86.4% at rank one.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Object recognition is the subject of a new sprout of inter-
est in Computer Vision and Artificial Intelligence. As dis-
cussed in the survey by Han and Vasconcelos (2014), recent
advances in computational neuroscience have been often en-
coded in novel object recognition/detection models, such as the
HMAX of Riesenhuber and Poggio (1999); Serre et al. (2007);
Mutch and Lowe (2008), the convolutional networks of Pinto
et al. (2008), Jarrett et al. (2009) and a number of deep learning
models (Hinton et al. (2006); Krizhevsky et al. (2012)). These
models outperform other detection algorithms in tasks like lo-
cating cars or pedestrians in an image, and even humans in clas-
sifying objects into fine-grained categories. However, they suf-
fer from major drawbacks that make a completely unsupervised
solution out of reach. As stated in Weber et al. (2000), three
main problems arise: - Which objects are to be recognized and
where do they appear in the training images? - Which object
parts are distinctive and stable? - What are the parameters of
the global geometry or shape and of the appearance of the in-
dividual parts that best describe the training data? While vari-
ations in position (of the object in the image) and viewpoint
(of the observer) are dealt with very well by CNNs (van Noord
and Postma (2017)), size variations pose a particular challenge
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(Xu et al. (2014)). Moreover, while in the initial layers of the
CNN the visual features usually correspond to oriented edges or
color transitions, in deep layers they are typically more complex
and the extraction of features from the deep structure may not
be appropriate in order to identify stable parts or representing
shapes. Another drowback is the requirement of a large number
of templates (image examples) and computational resources for
training. While computational requirements are sometimes met
by graphic processing units (GPUs), DSPs, or other silicon ar-
chitectures, it is often necessary to describe an object (or a class
of objects) from a very limited number of images. In this case
the performance of deep learning and CNNs drastically drops,
and the methods are of no use.

To also deal with objects for which we do not have a suffi-
cient number of images for training, we look amongst earlier
approaches to object recognition, and in particular, at view-
based approaches, which represent an object as a collection of
2D views, sometimes called “aspects” or “characteristic” views
(Koenderink and van Doorn (1979)). The advantage of this
kind of approach is that it does neither require constructing a
3D model of an object nor making 3D inferences from 2D fea-
tures (infering the depth from 2D features). View-based models
can be generated both starting from features (Pope and Lowe
(1993)) or images (Murase and Nayar (1995)). Nevertheless,
the lack of abstraction from raw image data to the model means
that the model essentially defines a set of specific object in-
stances; therefore, these approaches pay the price of high sensi-
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tivity to lighting conditions, perspective transformations (trans-
lation, rotation, depth), occlusions etc.

In feature generated view-based model, the choice of 2D fea-
tures plays a crucial role. Indeed, in order to perform tasks of
visual recognition or indexing, salient points should be related
to objects and space-variant transformations should be taken
into account. This approach has been investigated by various
researchers. For example Lindeberg (1993) has based this se-
lection process on a quantitative analysis of gray-level blobs
in scale space (thus trying to identify points that maintain at
different scales similar relevance), Wiskott et al. (1997) pro-
posed the use of Gabor wavelet jets to extract salient image fea-
tures and the creation of grid-like planar graphs that (if coarsely
aligned in scale and image rotation) can be compared by elastic
graph matching techniques. Siddiqi et al. (1999) extended this
approach to multiple scales introducing saliency map graphs
(SMG). This representation turned out to be highly invariant
to translation, rotation and scaling, and of practical use for oc-
cluded object recognition.

Building on view based models with a focus on the selection
of 2D features, we propose the construction of a model based
on salient points that persist throughout the views. The model
is constructed iteratively, starting with the selection of salient
points from a view and building up as more views are added to
it. Salient points are extracted using SIFT descriptors on each
single view and a persistency value is assigned to each point
and it is updated each time a new image goes into the model.
After all images are processed, the model is refined based on
persistency values: points with high persistency are kept in the
model, while those with low persistency are discarded. Objects
are therefore represented by models made of persistent SIFT
points. A sigle image of the object, or another model made up
of images, can then be compared to the model for matching.
The novelty of the proposed method resides in the construction
of an incremental model that retains significant points, invariant
to scale-space transformations, from different views, so a higher
level of abstraction is reached, as some of the 3-dimensional na-
ture of the object is retained. As we will see, the models prove
to be robust enough for object recognition tasks. The method
is validated on a database of cultural heritage objects, mostly
made up of images collected from the web. A baseline exper-
iment was also carried out using deep CNN trained on Ima-
geNet, without any subsequent fine tuning due to the scarcity
of images per object in the used dataset. The remaining of the
paper is organized as follows: in section 2 related works that
make use of SIFT descriptors for object recongnition or traking
are summarized; in section 3 the construction of the model is
detailed and in section 4 the experiments carried out to validate
the method are illustrated.

2. Related work

Several works in literature have proven the efficacy of SIFT
descriptors for object recognition (Lowe (2001)), face recog-
nition (Cadoni et al. (2016)) and object tracking (Zhou et al.
(2009)). In particular, the method we propose has some analo-
gies with the one in Lowe (2001) where a model of an object is

generated starting from a number of images of the object. The
starting model consists, as in our work, of the SIFT points of the
first image. The model is then compared to the next input im-
age. If there are enough correspondences, the SIFT points co-
ordinates are transformed so that model and image SIFT points
all belong to the same coordinate system and their relative posi-
tion is used to discard false correspondences. The model is then
updated with the image SIFT that did not match with any SIFT
of the model, while the ones that have close correspondences in
the model are discarded. So in Lowe (2001) the model is en-
riched with several different SIFT points from different images,
while in our proposed method we look for SIFT persistence
which we think leads to highly meaningful key-points.

A similar key-point persistence is explored in Sabatta (2008),
where a topological mapping is built for autonomous robot ap-
plications. SIFT points are extracted from panoramic images
of the ambient around a robot, and a dynamic array of SIFT
points is used to build a topological map of the ambient. The
localization of the robot is obtained by comparing SIFT points
extracted in real time with those of the ambient.

Another relevant work is that by Liu et al. (2011), in which a
SIFT Flow is defined similarly to an optical flow with the dif-
ference that in the SIFT flow the matching is done on the SIFT
calculated on each pixel, rather than on the pixels themselves.
Although in this work no model accretion is considered, we
would like to highlight the parallel between SIFT flow and per-
sistence as the latest has the effect of tracking highly relevant
points.

3. Model construction and matching

In this section the construction of the model of an object is
illustrated. The model is first generated from the available im-
ages and is then refined on the basis of the persistence of the
salient points selected from each image.

3.1. Model generation

The model of an object can be generated from a variable
number of images, starting from one. So assume we have
I1, . . . , In images, with n ≥ 1, of an object O. From each image
Ik, k = 1, . . . , n, we extract the SIFT points using the method
by Lowe (2004). Let us denote by S k = {sk1, . . . , skik } the set of
SIFT key-points extracted from image Ik. For each SIFT point
sk j of image Ik, j = 1, . . . , ik, the 128 entries descriptor vector
vk j is calculated using the method in Lowe (2004), so we get a
set Vk = {vk1, . . . , vkik } of descriptor vectors that are in a one to
one correspondence with the the SIFT points in the set S k. For
each SIFT point sk j, we also initialise the persistence value ρk j

to zero, and save all these values in a set Pk = {ρk1, . . . , ρkik }. So
each image Ik is converted into a triplet of sets Ĩk = {S k,Vk, Pk}

containing the SIFT points, their descriptor vectors and their
persistence values. After converting all images, one of them is
taken at random to initialize the model, for simplicity of no-
tation we can assume it to be the first image Ĩ1. At this first
step the model is defined as M1 = {S M1,VM1, PM1} = Ĩ1, with
S M1 = S 1, VM1 = V1, PM1 = P1. If n = 1 and the only image is
denoted by I, then the model is simply M = Ĩ = {S M ,VM , PM}.
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Fig. 1. Scheme of the model construction from a set of images

If n > 1, a second image is selected at random amongst the Ĩ j,
let us assume it to be Ĩ2. The model M1 is updated on the basis
of the matches between the SIFT points of the model M1 and
those of Ĩ2. Let us see how. Each descriptor vector of the set
V2 is compared to all vectors of the set V1 using the method in
Lowe (2004). Given a vector v2l ∈ V2, there are two possible
outcomes:

1 v2l is not matched to any vectors in V1. In this case, the
point s2l, together with its descriptor vector v2l are added
to the model, so that now s2l ∈ S 1 and v2l ∈ V1, while its
persistence is inizialized to 0 (ρ2l = 0).

2 v2l is matched to a vector v1m of the set V1. We then say that
the SIFT points s2l and s1m are corresponding (or match-
ing) points. The point s1m is kept in the model and its per-
sistence value is updated to one, ρ1m = 1, while the point
s2l is discarded.

The reason why we do not include the matching SIFT points
of Ĩ2 resides in our guiding philosophy: we are aiming to rely,
whenever possible, on points that are persistent, that can be
identified in several images. By using the stringent thresholds
as in Lowe (2004) to compare descriptor vectors, two corre-
sponding points can be considered equivalent, more precisely,
we can think of them as belonging to the same class and choose
a representative of the class, which, for ease of algorithm im-
plementation, we take as the point that was already contained in
the model, together with its descriptor vector (in this case s1m

and v1m, respectively). In this way we keep track of persistence
with the advantage that we have just one point to compare in
successive steps, rather than all the class members.

After comparing all descriptor vectors of V2 to those in
V1, the model M1 deriving from the first image is updated to

M2 = {S M2,VM2, PM2} according to the actions described in
the previous points, so the set S M2 contains S M1 plus the SIFT
points of V2 that had no a correspondence in S M1, the set VM2
contains VM1 plus the descriptor vectors of the points added to
S M1, and the set PM2 has the updated persistence values rela-
tive to the points of S M1 plus the persistence values (initialized
to zero) of the newly added points. The model is updated in
the same way up to the last image In, and the final output is
Mn = {S Mn,VMn, PMn}.

3.2. Model refinement

The number of SIFT points contained in the model Mn, i.e.
the cardinality of the set S Mn, cannot be established a priory,
since, other than on the number of images, it depends on vari-
ous factors such as how the images are related (e.g. if and how
they overlap), their quality etc. In any case, the number of SIFT
points will, on average, increases with the number of input im-
ages. We therefore need to ensure that the final model is of a
manageable size while containing the most relevant informa-
tion, but there is also another reason to remove SIFT points that
are not particularly significant. Indeed, suppose we are com-
paring a SIFT point of a probe image to those of a model which
actually contains the same SIFT point, and the best match is the
one between those two points. The more SIFT points the model
has, the more are the chances that the difference between the er-
rors of the first and the second best match is so little that the best
match is not considered to be robust and it is therefore dropped
(see Lowe (2004) for more details on the threshold for com-
paring SIFT descriptors). To overcome these difficulties, we
propose to refine the model on the basis of persistence: points
with higher persistence will have priority over those of lower
persistence, so if a model has a sufficient number of points with
high persistence, we will use them to describe it, discarding
the ones with lower persistence. On the other side, if a model
contains only points with low persistence, which can happen
when the images that generated the model are taken from dis-
tant viewpoints, or the object has great curvature variations so
that even a modest change of viewpoint can cause occlusions
etc., all points are preserved. In practice, we set two thresholds,
θ1 and θ2 so that if a model has at least θ1 SIFT points with
persistence ρ ≥ 1, up to θ2 points with highest persistence are
selected, and all the other points are discarded. On the other
hand, if a model has a number of SIFT points with ρ ≥ 1 that is
less than θ1, no point is discarded, and the model remains un-
changed. Various thresholds were tested on a training dataset as
described in section 4.2, and the best ones proved to be θ1 = 20
and θ2 = 100, so that is what we set for the experiments we
carried out.

The model after refinement is simply called M, where M =

{S M ,VM , PM} with S M ⊆ S Mn, VM ⊆ VMn and PM ⊆ PMn.
The whole process of the model construction is described in
figure 1: the first image I1 generates the first model M1, which
is updated with the SIFT from the second image and so on, up
to the last image In. The resulting model Mn is refined to obtain
the final model M.
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3.3. Image model comparison

Given an object O, the generated model MO represents the
object and will be used to recognise it. Let IP be an image of
the object that we assume was not given as input for the gener-
ation of the object model. The image can readily be compared
to the model by comparing all SIFT points of the image to all
SIFT points of the model, always using the threshold as in Lowe
(2004). The number of SIFT correspondences is taken as simi-
larity measure.

4. Experimental validation

4.1. Datasets description

To validate the proposed method, we collected two datasets:
one is the the test dataset made of 55 objects of cultural or artis-
tic value and the other is a smaller training dataset of 15 cultural
objects. For the test set, the images of 42 of the 55 objects were
downloaded from the web from various websites, so they were
likely taken with different acquisition devices and, even within
images of the same object, we can find a great variety of sizes
(from 50KB to 4MB), resolutions and time spans between ac-
quisitions, which can vary from a few minutes up to several
years. All these factors can have an effect on the looks of the
objects. For instance, in a long time span a building facade
might have been cleaned/restored, while meteorological condi-
tions such as snow can visibly alter a monument. Even the dif-
ferent times of day at which images are taken add complexity
both for outdoor objects and for indoor ones, as the SIFT points
detection is not robust to great light incidence differences when
object have a variable curvature. To include some controlled
object images into the test database, we acquired 6 objects with
a Nikon D90 digital camera on a tripod, placing the objects on
a rotating plate, and acquiring an image for every plate rotation
of 10◦ starting from 0circ and up to 360◦. Five other objects
were acquired using an iPhone 7 mobile phone, keeping the
object fixed and moving the phone around it while taking pic-
tures. Two videos of two objects were also taken, again turning
the phone around the objects, and a selection of video frames
has been used to build the models of the objects.

For the training dataset, all images were downloaded from
the web.

In table 1 we can see the composition of the two datasets
according to object classes (or object typology):

1. Interiors: the set includes frescos over architectural struc-
tures such as ceiling (Sistine Chapel by Michelangelo) or
walls (Last Supper by Leonardo), so they can have large
curvature variations or they can be planar.

2. Monuments: the set includes outdoor monuments such as
churches (Pisa Cathedral, San Vigilio etc) or monuments
such as Petra, the Parthenon etc.

3. Small-medium objects: includes cultural objects such as
statuettes (such as the Venus of Willendorf), terracotta or
ceramic vases, ship models and so on.

4. Paintings: includes paintings and altarpieces (Botticelli’s
Venus, Miro etc). Due to their planar nature they are the
easiest objects to be recognised.

Fig. 2. Histogram of number of images that generate the models

5. Statues: includes mainly marble statues (Moses and David
by Michelangelo, Love and Psyche by Canova) and some
bronze ones (Dancer by Degas). They are amongst the
most difficult object to recognise because of their uniform
texture and variable curvature, so SIFT can easily locate
different points under light changes, and even if they are
able to locate the same point in different images, the de-
scriptor vectors will likely be too different for them to
match.

The number of images per object in the test set is variable
(from 3 to 40) and the total number of images is 593, while in
the train set there are 9 images for each object for a total of 135
images.

The train set was partitioned into a gallery set, consisting of
6 images per object and was used to generate the model, and a
probe set, consisting of 3 images per object. The test set was
partitioned in a similar way: when available, 4 images were
set aside for the probe set (only for three objects, namely three
vases, there were less than 5 images in total and so less than
four were selected as probe), giving 206 probe images in total,
and the remaining images (in variable number per object) were
assigned to the gallery set, for the generation of the models.

In table 2 we can see a selection of the collected images of
four objects, rescaled if their size was grater than 640×480. As
it can be seen from the first two rows, images of large interior el-
ements such as Cappella degli Scrovegni (first row) and of large
outdoor monuments such as the Cathedral of Pisa (second row),
tend to be quite distorted due to the use of wide angle camera
lenses. This clearly adds difficulty to the recognition process.
Images of both objects were downloaded from the web and are
different in size and resolution, as are the images of the statue
of Moses in the third row. All three objects were acquired at
different time of day (possibly on different days or even years),
as it can be seen from the different light incidences or meteo
conditions. The Lateen sail in the third row was acquired with
a mobile phone camera, and it is the only object in figure whose
images are taken by the same camera. The images in the col-
umn “Probe image” were used as probe for each one of the
objects, and were compared to the models generated using the
images of the objects in the first column. Notice that for the
Lateen sail and the Pisa Cathedral, some additional images to
the ones shown in figure were used to generate the model.

As mentioned earlier, each model can be generated by n ≥ 1
images. In the collected dataset, the 55 objects do not have the
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Table 1. Datasets partition according to object classes.
Interiors Monuments Small-medium Paintings Statues Total

objects
N. of objects in test set 5 11 21∗ 12 6 55
N. of objects in train set 3 3 3 3 3 15

∗ of which 6 taken in a controlled setting

Selection of images used for model generation Probe image

Table 2. A selection of images of four objects of the collected dataset. For each row, the last image was used as probe, the remaining to construct the object
model. First row: Cappella degli Scrovegni. Second row: Pisa Cathedral. Third row: Statue of Moses by Leonardo. Fourth row: Lateen Sail.

same number of images. To see how the number of images is
distributed across the objects, in figure 2 is the histogram of
the number of images available for each of object. We can see
that for 6 objects, the model was generated from a single image,
while the majority of models was generated from 6 images. The
tail of the distribution is relative to the objects acquired on the
rotating plate.

4.2. Experimental protocol
The first experiment was carried out on the train set to estab-

lish the thresholds θ1 and θ2. First, the models were generated
using the images in the gallery set (6 per object). Two values
were selected for the threshold θ1, 10 and 20, while for each of
these two values, θ2 was set to 50, 100, 150 and 200. The rea-
son behind the choice of the values of θ1 to test was that when
there are less than 10 SIFT points in the model with persistence
ρ ≥ 1, it is reasonable to consider all SIFT points, while val-
ues of θ1 greater than 20 led to a small interval between θ1 and
θ2. θ2 was tested up to 200 to limit the number of total SIFT

points in the final model. For each couple of values (θ1, θ2),
with θ1 = 10, 20 and θ2 = 50, 100, 150, 200, a test was per-
formed in the following way. From each image of the probe
set the SIFT were extracted and compared (see section 3.3) to
all models in the gallery, refined using the thresholds (θ1, θ2).
The pair of thresholds that maximised the recognition rate was
(θ1 = 20, θ2 = 100). Using the established thresholds, the
proposed methodology was validated on the test set. First, the
models of the 55 objects were generated using the images in the
gallery set, and refined using the thresholds (θ1 = 20, θ2 = 100).
Then each image of the probe set was compared to all models
and the match was chosen to be the model with the maximum
number of SIFT correspondences.

4.3. Experimental results
The SIFT persistence of a model is bound by the number of

images that generated it, more precisely, the maximum possi-
ble persistence of a model generated from n images is n − 1.
In general, the persistence of SIFT points depends on a variety
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Fig. 3. Histogram of SIFT persistence across object models

of factors, such as how similar the images are, e.g. in terms of
viewpoint acquisition, resolution, object appearance etc. In fig-
ure 3 we can see a histogram of the maximum persistence’s in
the models built from the gallery set. Most models have max-
imum persistence equal to 3 while the model with maximum
persistence equal to 24 is due to the fixed background in the
images acquired with the object on the rotating plate. Although
the histogram does not take into account the number of SIFT
with a given persistence, we can deduce that for at least 6 ob-
jects (the ones with maximum SIFT persistence equal to 1), all
SIFT points were considered, i.e. the refinement did not change
the original model.

To track down the locations of persistent points in images, we
generated the models of three objects using 4 images for each
model. The results are shown in figure 4 where the three mod-
els with their SIFT persistence are represented. The first image
that generated each of the models is shown twice in figure: on
the left of each pair, all SIFT found at the first step of the model
generation (so all SIFT of the first image) are visualised by red
crosses, while on the right of each image pair are visualised
only the SIFT from the first image with ρ ≥ 1, with the red
crosses representing the SIFT with ρ = 1, the green ones the
SIFT with ρ = 2 and the blue ones the SIFT with ρ = 3, which
is the maximum possible persistence for a model generated with
four images. As it can be seen, in all models, persistent SIFT
tend to be located on details that are highly distinguishable by
the human eye, and obviously significant in the scale-space rep-
resentation. Notice, for instance, how most SIFT present in
the background sky of the Duchi di Urbino first image are not
present in the second one, which means that their persistence
in the final model was zero. Furthermore, most SIFT that per-
sist in models of non flat objects (such as the Cathedral and the
Alabastron), are located on the object of interest, while almost
none of the SIFT located in the background persist. Consider-
ing persistent SIFT points of images of non flat objects taken
from different viewpoints somewhat induces a segmentation of
the object, a desirable feature that has the effect of reducing the
size of the model by removing points that are not highly signif-
icant. In the recognition experiment, the probe set contained a
total 206 images and each one of them was compared to the 55
models in gallery. In total 11330 comparisons took place. The
recognition rate at rank one was 86.34%, at rank two 90.73%
and at rank five 91.22% (see table 3).

Table 3. Test results
Rank 1 Rank 2 Rank 5

Recognition rates 86.34% 90.73% 91.22%

4.4. Deep CNN’s Baseline Experiment

On the same dataset we collected, we the convolution neu-
ral network NasNet (Zoph et al. (2017)) trained on ImageNet
(Krizhevsky et al. (2012)). The network could not be fine tuned
due to the limited number of images per object. The 1001 en-
tries vectors of each image of the same object in the gallery of
the test set (the images we used to construct the models) were
averaged to give a descriptor vector for each object. For each
probe image, the vector was generated with the network and
compared to all object vectors from the gallery. The recogni-
tion rate at rank one was 32.84%, so clearly, without fine tun-
ing, a step which would require hundreds of images per object,
the network is not able to recognise the objects.

5. Conclusions

We proposed a novel view-based object recognition method,
with salient features extracted using SIFT descriptors and char-
acterised by a persistency parameter which is used to refine the
model by giving priority to the most relevant points located in
more than one view. By taking into account the persistency
of the points, the model retains some of the 3D information of
the object, which proves to be enough to recognise ojects of
different nature, from small artefacts to large buildings, with
great variations in textures. The experiments carried out on a
collected dataset, prove the validity of the method on images
acquired with different systems, at different resolutions, and its
robustness to variation of illumination, background and occlu-
sions. Recognition rates reach 86.34% at rank one, while a
baseground experiment carried out on the same database us-
ing Deep CNN trained on Imagenet had a rank one recognition
rate of 32.84%. While the recognition paradigm was defined
as a probe image vs a model (generated from one to several
images), the process could be generalised to model vs model,
when more than one image is present as a probe, and also to
video, building the model from a selection of frames. These
aspects, together with an improvement of the refinement of the
model based on point persistency will be the subject of future
investigations.
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