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Highlights 

 
 

LCA highlights linkage between crop yield, management, and environmental sphere. 

Irrigated (rainfed) annual crops are more damaging than the respective perennials. 

Except for irrigation, fertilizers had the largest environmental effect in all crops. 

Environmental burdens increase more proportionally than yield in all energy crops. 

Results identify no winning crop as environmental burdens depend on site specificity. 
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Abstract 

 

Biomass production helps address the worldwide energy demand. However, some controversial 

issues have been identified such as the possible conflict between the goal of increasing 

vegetable biomass and food production and the need to limit environmental impacts. In 

Mediterranean region, where the supply of some natural resources appears significantly limited 

(e.g., water) and the competition for land is higher than it was in the past, the objective of 

evaluating environmental burdens at a regional scale represents an important issue, especially 

if the assessment considers the farmer scope of increasing productivity. 

Using a Life Cycle Assessment (LCA) “from cradle to field gate” approach, this paper aims to 
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evaluate land-based environmental sustainability related to four energy crop options. We 

carried out a LCA differentiating between annual and perennial species and between irrigated 

(giant reed and sorghum) and rainfed crops (cardoon and milk thistle) to determine their 

performances and impacts within the same context. The findings suggest that irrigated crops 

generate larger impacts on the environment than rainfed species and that annual crops (both 

irrigated and rainfed) are more damaging than the respective perennial crops. The damages were 

expressed in Ecopoints, where one Ecopoint corresponds to one thousandth of the annual 

overall environmental burden of an average European inhabitant. Ecopoints for sorghum, giant 

reed, milk thistle and cardoon are equal to 361, 288, 146, and 138, respectively. Except for 

irrigation, fertilizers were found to be the input with the largest effect, accounting for 37% (giant 

reed) to 75% (cardoon) of the environmental burden on the system. The results do not suggest 

the presence of a winning crop option - i.e., a crop that shows the best environmental 

performances everywhere and in all categories - since regional environmental burdens are 

simultaneously related to different factors (e.g., land allocation, crop productivity, and degree 

of practice intensification) that drive farmer choice. Finally, following a dynamic and 

innovative perspective, we evaluated the trade-off between productivity and environmental 

burden for each crop simulating an increasing product variation. We found that environmental 

burdens would increase more proportionally than crop yields done. Especially the latter finding 

provides interesting suggestions on energy cropping system integration within agricultural 

planning under stressed natural resource conditions. 

 
 

Keywords: life cycle assessment, biomass production, agricultural management cropping 

system, rainfed crop, irrigated crop. 

 
 

1. Introduction 
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Biomass energy supply is greatly interwoven with the controversial dilemma among food, 

energy and the environment (Tillman et al., 2009) that in turn has remarkable repercussions in 

terms of land availability and biomass potential (Thrän et al., 2010; Harvey and Pilgrim, 2011; 

Popp et al., 2014). Biomass production triggers competition for natural resource use - especially 

for land and water – assuming its strategic relevance to farmers and policy makers in a given 

territory (Johansson, 2013; Bonsch et al., 2016; Robledo-Abad et al., 2016; Rosillo-Calle, 

2016). For example, a crucial issue is identifying what type of lands should be used for energy 

crops to mitigate the food-energy-environment controversy and, as a consequence, improve the 

sustainability of biomass production (Allen et al., 2014; Lewis and Kelly, 2014; Mehmood et 

al., 2017). Indeed, a sustainable land-use choice for energy crop cultivation may involve both 

agricultural land-use intensification and the exploitation of underutilized agricultural lands 

(Miyake et al., 2012). Furthermore, the use of these lands does not necessarily imply 

environmental benefits because energy crop cultivation might require natural resource 

overexploitation to obtain satisfactory productivity (Dauber et al., 2012). More generally, the 

nature of the land being used (e.g., marginal or highly productive land), the degree of resource 

use (e.g., intensive or extensive cultivation), the temporal horizon of land use (e.g., annual or 

perennial crops), and the type of cropping system adopted become triggers that influence farmer 

choice and drive the magnitude of environmental consequences at a regional scale (Dale et al., 

2011). 

In Mediterranean region, energy cropping systems have also been planned as alternatives to 

food production on lands typically covered by food/feed crops, thus avoiding the risk of 

additional lands being abandoned in some cases (Ledda et al., 2013; Cocco et al., 2014). Indeed, 

certain lands have been abandoned owing to the economic crisis that affected valuable food 

production, but these areas are far from being unproductive. On the other hand, energy 

crops have also been introduced on lands unsuitable for food production (e.g. marginal and 
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degraded lands) precisely because these biomass crops are able to grow under stress conditions 

(Allen et al., 2014). In these cases, the “food versus fuel” might be a false dilemma because 

energy crops are not a conflicting factor (Strapasson et al., 2017) whereas, vice-versa, 

introduction of these crops can worsen this controversial issue where biomass energy occupy 

lands characterized by high food productivity (Miyake et al., 2015). This dilemma should not 

be considered an issue merely restricted by the land competition, since land is an extremely 

dynamic and multifunctional resource, the use of which is strongly affected by a set of 

complicated interactions (Tomei and Helliwell, 2016). 

In the unproductive lands, crops that require a low amount of inputs are cultivated, or the inputs 

applied should be increased to achieve profitable energy crop production (Fernando et al., 2015; 

Schmidt et al., 2015; Bosco et al., 2016). In the fertile lands, cultivation is generally practised 

more intensively and hardly concurs in exploitation of natural resources, such as water, in 

primis, especially in a climate change context (Dono et al., 2013a; 2013b). However, 

intensification of input use and adoption of new techniques may still have negative 

environmental consequences (Don et al., 2012). At the same time, increasing productivity might 

contrast with the needs of safeguarding biodiversity and natural resources and of mitigating 

climate change (Bagley et al., 2014; Immerzeel, et al., 2014). Furthermore, water scarcity and 

other stress-related conditions suggest that a choice regarding energy cropping systems should 

consider both (controversial) outcomes of achieving optimal productivity and minimizing 

environmental burdens. 

Using a Life Cycle Assessment (LCA) approach, this study aimed to assess the environmental 

burdens related to the agronomic management of different energy crops in a Mediterranean 

region to support cropping system choices and agricultural land-use planning. Specifically, 

the objectives were to (i) compare perennial vs annual crops and irrigated vs rainfed crops in 

terms of their environmental implications; (ii) identify the main hot spots among adopted 
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agronomic practices that might be responsible for environmental impacts and, as such, might 

provide useful information to better address choices for farmers and policy makers; and (iii) 

analyse environmental burdens considering the trade-off with crop productivity considering a 

dynamic production perspective. With regard to the latter, we consider the needs of achieving 

satisfactory productivity levels and of limiting natural resources exploitation setting up different 

agronomic scenarios characterized by increasing use of certain technical inputs and yield 

obtained by each crop. 

In the light of this perspective, this study is one of the first attempts at examining the 

environmental burdens related to progressive increase of product - simulating a yield increase 

by a unit (tonne) from time to time and considering three alternative scenarios to the status 

quo - in each energy crop considered in terms of farming and land choices in a complex context, 

such as the Mediterranean region. 

The LCA analysis was focused on sorghum (Sorghum vulgare Pers.), giant reed (Arundo donax 

L.), milk thistle (Silybum marianum (L.) Gaertn) and cardoon (Cynara cardunculus L. var. 

altilis D.C.) cultivation in Sardinia (Italy), and they are representative crops of relevant 

agricultural systems in the Mediterranean area. Indeed, Sardinia can be considered a suitable 

territory for crop residual biomass energetic exploitation (De Menna et al., 2016) or energy 

cropping system development owing to the occurrence of land abandonment and conversion 

of arable land into grasslands even in areas served by irrigation infrastructures (Solinas et al., 

2015). 

 
 

2. Materials and methods 

 

The LCA approach is a comparative scientific method that identifies and quantifies 

environmental and health damage that arise from the emissions produced and resources 

exhausted throughout the entire life cycle of a given product (European Commission, 2010). 
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In this study, the life cycle procedure was performed based on the International Standards 

Organization (ISO) guidelines (ISO, 2006a, b) using SimaPro 8.0.3.14 software (Goedkoop et 

al., 2013a, b). 

The need to LCA standards was based on a growing awareness that LCA is considered a useful 

methodological in individuating environmental issues into the standardized framework (ISO 

14001) of environmental management systems (Ryding, 1999; Pryshlakivsky and Searcy, 

2013). 

Specifically, the main standards for LCA are ISO 14040 and ISO 14044. The former describes 

the basic information and the framework that should characterized a correct LCA, the latter is 

focused on requirements necessary for perform each LCA phases (Goal and Scope, Definition, 

Inventory Analysis, Impact Assessment and Interpretation) providing guidelines to support its 

implementation (ISO, 2006a, b). 

These standards emphasise the iterative approach within and between LCA phases (i.e. each 

step use results of the others) and it permits a satisfactory level of comprehensiveness, 

transparency, and consistency of the obtained results (Finkbeiner et al., 2006; Heijungs et al., 

2010). Although the ISO criteria provide a common language about used terms and key 

methodological requirements (Finkbeiner, 2014), they show also a limited meaning or even 

failed in case of scientific basis and/or data and formulas are not provided (Heijungs et al., 

2010). 

SimaPro is one of the most software tool worldwide used to implement effectively a LCA of a 

product or service, developed by PRé Consultants, in the Netherlands (Pieragostini et al., 2012). 

It enables to model a product system by user-friendly and flexible interface that retraces the 

standardized LCA phases (Colangelo et al., 2018). Basically, the software offers opportunity 

for analyzing complex life cycles calculating a product system in a transparent 

way and identifying the hotspots in all aspects of supply chain (Starostka-Patyk, 2015). Using 
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a highly efficient algorithm, SimaPro is able to deal with thousands of processes in a unique 

calculation into a matrix inversion (Ciroth, 2012). It is also characterized by the availability of 

various databases and the opportunity to combine this information through different assessment 

methodologies in line with the product system modeling implemented in the user interface 

(Herrmann and Moltesen, 2015). 

2.1 Functional unit and system boundaries 

 

In this study, the functional unit is the cultivated land (one hectare of land) which was chosen 

to maintain agricultural production while reducing land-use intensity to minimize 

environmental burdens per area and per unit of time (Nemecek et al., 2011, 2015). Consistent 

with this goal, this functional unit enables to highlight the environmental implications of 

biomass energy crops at farm and land scales. Indeed, set-up production inputs and agricultural 

land allocation - that together might be the cause and effect of environmental burdens - play a 

strategic role in the choices of farmers and thus policy maker decisions that often are land-

based, such as the conversion of traditional food/feed cropping systems to partial or complete 

biomass systems (Solinas et al., 2015). However, cropping system planning is affected by 

policy guidance at a land scale that in turn should also be developed considering the 

environmental sustainability of energy crop cultivation to minimize natural resource 

exploitation and to support farmers in maximizing their biomass yields. Using land as 

functional unit can also enable the identification of a trade-off between environmental burdens 

and productivity that arise from one hectare of land, which might be an added value that 

enhances overall land management. 

For this study, a “from cradle to field gate” approach was adopted to emphasize the 

environmental implications of agricultural practices applied only to biomass energy crop 

cultivation. Therefore, the LCA analysis neglected product transport operations and stopped 

at product harvesting; the evaluation does not pertain to activities beyond the edge of the 
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field. Given that all considered crops were completely devoted to biomass production, no 

allocation of impacts was necessary in this evaluation. 

2.2 Inventory 

 

Agricultural practices typically carried out by local farmers for each energy crop were 

considered in the data collection for the LCA. The main production inputs generally 

encompassing fertilizers, pesticides, seeds and machinery were included in the system 

boundaries defined in the LCA analysis along with agricultural production (Audsley et al., 

2003; Mourad et al., 2007; Nemecek et al., 2014) (Fig. 1). 

 
 

Figure 1 

 

 

Because the data were not exhaustive, they were integrated with secondary data (i.e., the 

upstream and downstream processes of crop cultivation) derived from international databases, 

primarily the Ecoinvent 3 database. Since its first version, the purpose of Ecoinvent database 

has mainly been to provide a set of life cycle inventory data - concerning inter alia several 

processes related to agriculture and renewable energy systems - in order to support evaluation 

of environmental and socio-economic impacts owed to a product or a service (Frischknecht et 

al., 2005). The quality and robustness of data included in Ecoinvent play an essential role in a 

LCA study (Pascual-Gonzalez et al. 2016). Indeed, consistent and coherent of each dataset is 

a basic requirement to facilitate the implementation of LCA analysis and to strengthen 

reliability and consensus of results (Frischknecht et al., 2007). For the reasons set out above, 

all data undergo a peer review process to ensure their quality and reliability before being 

included in the Ecoinvent database (Pascual-Gonzalez et al. 2016). 

The structure of the Ecoinvent 3 database is characterized by the basic building blocks (life 
 

cycle inventory datasets), namely both the individual unit processes of human activities and 



60 

61 

62 

63 

64 

65 

 

3 

3 

10 

32 

201 
1 
2 202 
3 
4 

5 203 
6 

7 204 
8 

9 
205 

11 

12 206 
13 
14 207 
15 
16 

17 208 
18 
19 209 
20 
21 

22 210 
23 
24 211 
25 
26 

27 212 

28 

29 213 
30 
31 

214 

33 

34 215 
35 
36 216 
37 
38 

39 217 
40 
41 218 
42 

43 
44 219 
45 
46 

47 220 

48 

49 221 
50 

51 

52 222 
53 
54 223 
55 
56 

their exchanges with the environment (Weidema et al., 2013). This database enables to show 

two relevant aspects with respect to a certain process: i) all exchanges, namely inputs, co- 

products and emissions in a single overview; ii) aggregation of life cycle inventory datasets or 

life cycle impact assessment outputs through applying of system modeling, namely connecting 

and allocating the unit processes in the basis of a specific set of rules (Wernet et al., 2016). The 

availability of unit process and data not only limited to Europe, but also from other geographical 

regions entails an enhanced modeling of global supply chains and a more realistic impacts 

assessment (Steubing et al., 2016; Wernet et al., 2016). 

In this study, Ecoinvent 3 database was used in order to include in the evaluation processes 

regarding technical inputs production (e.g. fertilizers, pesticides, seeds and seedlings) and 

implementation of mechanical operations such as tillage, sowing, crop maintenance (e.g. 

fertilization, weeding and irrigation) and harvesting. The data regard consumption of natural 

resources, raw material, fuels, and electricity, heat production and emissions of chemicals to 

environment. 

Direct field measurements were carried out through long-term field trials on different crop 

management systems (irrigated and rainfed) situated at two sites in Sardinia representative of 

local agricultural practices and yield performances of the considered energy crops under 

Mediterranean agro-climatic conditions (Table 1). 

In the LCA analysis, the main field emissions (NO- , NH3, N2O and NO) were considered based 

on mineral fertilizer typology and were expressed as a percentage of the total amount of fertilizer 

applied and the emission factors reported in technical and scientific literature. 

Specifically, NO- emissions from urea were computed according to Díez-López et al. (2008) 

 
and Wu et al. (2007), who analysed the effects of nitrate leaching from urea with and without 

 
- 

57 224 58 



60 

61 

62 

63 

64 

65 

 

a nitrification inhibitor. The estimation of NO3 losses from ammonium nitrate was considered 
59 225 based on Cameron et al. (2013), who provided a quantification of NO3

- leaching under arable 
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systems. Ammonia volatilization loss was computed following the European Monitoring and 

Evaluation Programme (EMEP) emission factors (Hutchison et al., 2016). The N2O and NO 

emissions were estimated according to the Product Category Rules (PCR) approach for arable 

crops (EPD, 2016). 

 

 
Table 1 

 

 

 
Losses of phosphorous were not reported since they were considered negligible in the observed 

sites. Pesticide emissions were included in the LCA analysis according to the approach in 

Margni et al. (2002) and Schmidt Rivera et al. (2017), which is based on the behaviour of 

pesticides in the air and their transfer between the soil and surface or ground waters, to evaluate 

the toxic impacts on human health and ecosystems. 

2.3 Life cycle impact assessment 

 

Environmental burdens were evaluated by the ReCiPe method, which is the most developed 

method according to the literature and the European Commission (Mota et al., 2015). 

Essentially, this method is the follow-up to the methodology for the trade-off between the 

midpoint level approach of CML2 baseline 2000 and the endpoint level analysis of Eco- 

indicator 99 one. Indeed, the first method evaluates the total amount of substance-equivalents 

released or resource-equivalents exhausted that are related to some impact categories. The latter 

analysis assesses the potential damage to specific areas of protection, namely, Human Health 

(HH), Ecosystem Diversity (ED) (i.e., loss of biodiversity) and Resource Availability (RA) (i.e., 

abiotic resources depletion) (Goedkoop et al., 2013c). Specifically, the life cycle impact 

assessment (LCIA) of a certain product can be implemented on the basis of two methodological 

approaches, namely the midpoint and the endpoint that provide environmental 

indicators at different levels (European Commission, 2011). The midpoint are considered as a 
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point on the cause-effect chain between stressors and endpoints; in contrast, the latter are 

physical elements which society establish as worthy of protection (e.g. such as human health, 

ecosystem, and natural resources) (Bare and Gloria, 2008). On the basis of above, the main 

purpose of ReCiPe is to harmonized the existing midpoint and endpoint approaches to make 

easier the choice of the LCIA method (Goedkoop et al., 2013c). Basically, the strength of this 

method is its ability to connect the midpoint and the endpoint levels converting the former into 

the latter through a set of endpoint characterization factors (Dong and Ng, 2014). The 

aggregation of eighteen impact categories - reported in Table 2 - into only the three damage 

categories mentioned above, facilitates results interpretation to the detriment of their 

uncertainty. This method is also entails normalization (i.e. the relative magnitude of each impact 

categories) and weighting (i.e. the relevance attributed to each damage categories) phase. 

ReCiPe enables to express outputs through a single score that can be obtained by the 

aggregation of results arisen from weighting phase (Itsubo, 2015). This analysis used a single 

score ranking, “Ecopoints” (1 Ecopoint = one thousandth of the annual overall environmental 

burden of an average European inhabitant) (PRéConsultants, 2000). 

 
 

Table 2 

 

 

Each estimated environmental burden was expressed in annual equivalents. Scores for perennial 

crops were calculated considering their lifetime average impacts (Fazio and Monti, 2011). 

2.4 Uncertainty analysis of LCA results 

 

A Monte Carlo analysis was performed to evaluate the uncertainty of the LCA outcomes. The 

analysis was also implemented to test possible significant differences in terms of Ecopoints per 

land unit when comparing the environmental burdens of each biomass energy crop. 
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SimaPro 8.0.3.14 software was employed to run the Monte Carlo simulation (Goedkoop et al., 

2013a,b). It was used at a 95% confidence interval, and 1000 reiterations were performed. 

The analysis was performed comparing all considered crops. 

 
 

3. Results 

 

Two different sets of findings were calculated to provide detailed information on the 

environmental burdens caused by cultivation of the studied annual and perennial energy crops. 

The first group consists of all impact categories at a midpoint level, which is the total amount 

of substance-equivalent released or resource-equivalent consumed. Both measures are classified 

into the environmental themes to which they potentially contribute (Supplementary Material). 

The latter group identifies the potential environmental damages derived from the emissions and 

resources depletion at the endpoint level, namely, certain vulnerable targets (e.g., human health, 

ecosystems and natural resources). 

3.1 Damage categories assessment 

 

The estimated single score for the endpoint assessment, expressed in Ecopoints, is reported in 

Fig. 2. HH was the most affected damage category for each crop, with a contribution ranging 

from 52% to 58%. The next most affected categories were ED and RA, which did not exceed 

27% and 22%, respectively. 

 
 

Figure 2 

 

 

The findings at the endpoint level were consistent with the impact category analysis reported 

in Figs. S1 and S2. Indeed, human toxicity and ecosystem quality were the most affected 

environmental factors, although high emission levels impacting the ecological and human 
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toxicity categories do not necessarily mean high levels of damage. The overall environmental 

burden related to one hectare of sorghum corresponded to 361 Ecopoints (i.e., the impact 

equivalent to 0.36 EU inhabitants). Among the energy crops, relative to the sorghum 

performance, the incidence of giant reed was 80% (288 Ecopoints) followed by milk thistle 

(146 Ecopoints equal to 41%) and cardoon (138 Ecopoints equal to 38%).These results were 

due to the implementation of some agricultural operations and input use, mainly irrigation and 

fertilizers, and they were consistent with the impact category analysis (Fig. 3). These results 

showed incidence of agricultural practices and production inputs on environmental burdens for 

the considered crops. All crops were most affected by fertilizers that ranged from 37% to 75%, 

although irrigation had the highest effect on the giant reed (50%). Among the rainfed crops, the 

factor with the second largest impact was tillage (16%) for milk thistle and harvesting (19%) 

for cardoon. Tillage operations for milk thistle showed a contribution 4 times greater than 

tillage for cardoon. 

 
 

Figure 3 

 

 

An additional analysis focused on an environmental damage assessment with respect to a 

marginal product variation in each crop through the development of four different scenarios. 

The baseline scenario (BS) involved the traditional agronomic practices that were generally 

used for every crop in Sardinia and that were also considered in this study. The other three 

alternative scenarios (AS1, AS2 and AS3) assumed increases in yield equalling one, two and 

three tonnes, respectively, modifying N input doses for the analysed crops given an equal use 

of all the other production inputs. In other terms, productivity increase was handled as 

progressive increase in yields (from time to time): if n is the yield in BS, then the yield in 

AS1, AS2, and AS3 is equal to n + 1t, n + 2t, n + 3t, respectively. Specifically, the N quantity 



59 

60 

61 

62 

63 

64 

65 

 

10 

32 

49 

326 
1 
2 327 
3 
4 

5 328 
6 

7 329 
8 
9 

330 

11 

12 331 
13 
14 332 
15 
16 

17 333 
18 
19 334 
20 
21 

22 335 
23 
24 336 
25 
26 

27 337 

28 

29 338 
30 
31 

339 

33 

34 340 
35 
36 341 
37 
38 

39 342 
40 
41 343 
42 
43 

44 344 
45 

46 345 
47 
48 

346 

50 

51 347 
52 
53 348 
54 
55 

56 349 
57 

58 350 

increment of AS1 was hypothesized based on experimental measurements that represented the 

BSs of each crop. AS2 was developed by raising the N dose of AS1 by 50%, which in turn 

increased by 75% and was used for setting up AS3 (Table 3). 

 
 

Table 3 

 

 

Setting up of the scenarios allows us to dispose of a measure reflecting the trade-off between 

productivity increase and environmental burdens into a dynamic perspective (progressive 

increase of marginal yield). 

All crops showed increasing damage values in terms of Ecopoints moving from BS to ASs (Fig. 

4). The overall environmental burden was raised more than proportionally with respect to each 

considered additional production level. The cardoon had the worst performances followed by 

milk thistle since their increased rates were higher than the irrigated crops. This finding might 

be explained considering the incidence of fertilizers that - as reported in Fig. 3 - was greater for 

the rainfed crops than the other crops where irrigation had the most relevance. Since the unitary 

product variation was considered modifying only for N-input dose, it is likely that the variation 

in fertilizers affected the rainfed crop more than irrigated crops, therefore causing a relevant 

Ecopoints variation. Specifically, the environmental burden of cardoon and milk thistle 

increased by 32% and by 16%, respectively, concerning an additional one tonne production. 

 
 

Figure 4 

 
 

The increase rate of cardoon and milk thistle continued to increase moving from AS2 to AS3 

(46% for cardoon and 30% for milk thistle). The performances of the giant reed and sorghum 



59 

60 

61 

62 

63 

64 

65 

 

10 

32 

49 

351 
1 
2 352 
3 
4 

5 353 
6 

7 354 
8 

9 
355 

11 

12 356 
13 
14 357 
15 
16 

17 358 
18 
19 359 
20 
21 

22 360 
23 
24 361 
25 
26 

27 362 

28 

29 363 
30 
31 

364 

33 

34 365 
35 
36 366 
37 
38 

39 367 
40 
41 368 
42 
43 

44 369 
45 

46 370 
47 
48 

371 

50 

51 372 
52 
53 373 
54 
55 

56 374 
57 

58 375 

were lower than the previous species although their environmental damages sustained the 

previous upward trend. Indeed, the giant reed caused incremental damage equal to 7% for the 

additional one tonne produced, and it increased 16% going from AS2 to AS3. The same values 

were shown for sorghum in terms of the transition from BS to AS1 and from AS2 to AS3 (7% 

and 15%, respectively). Among the damage categories, for all crops, HH and ED showed a 

slight increase more than proportionally with respect to the RA category that therefore 

decreased its incidence through each AS. The HH and ED performances might be due to the 

increase in the N-input doses, which were used less by crops moving from BS to the different 

ASs. The unexploited N-input part might be a pollution source, which might harm ED and 

HH in the short and long run, respectively, whereas it might affect the RA less. 

3.2 Uncertainty analysis results 

 

To evaluate the uncertainty of the LCA outcomes, a Monte Carlo analysis was performed by 

pair-to-pair comparison between each crop in terms of Ecopoints per land unit. The analysis 

showed that sorghum, namely the most damaging crop, was significantly higher (by α = 0.10) 

compared to each of the others except for giant reed. In contrast, milk thistle revealed significant 

difference only related to sorghum. Hence, it could not be considered a winning crop option 

because probability of expecting milk thistle to be the least environmental damaging was not 

significant. As regards the single damage categories, the Monte Carlo analysis highlighted that 

the RA category showed highly significant differences by each comparison except for cardoon 

vs milk thistle. The differences detected in ED were mostly significant except for comparisons 

between the irrigated crops (i.e sorghum vs giant reed) and the rainfed ones (i.e. cardoon vs 

milk thistle). Finally, no comparisons showed significant differences in the HH category. 

 
 

4. Discussion 
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A LCA was applied in this study in order to evaluate environmental burdens of four energy 

crops in a Mediterranean region. We analysed irrigated and rainfed crop systems characterized 

by both annual and perennial crops in order to perform an environmental evaluation on the basis 

of different needs in terms of natural resources and land use. Furthermore, a trade-off between 

environmental burdens and crop yield was carried out in order to assess the variation of 

environmental burdens on the basis of possible increase of productivity. The main key findings 

suggest that LCA analysis detected no winning crop option - i.e., a crop that shows the best 

environmental performances everywhere and in all categories - even though sorghum and 

cardoon are the most and the less impacting crop on environment, respectively. Then we found 

that environmental burdens tend to increase more proportionally than production level. 

Furthermore, the hot spots owed to agricultural management detected by LCA application are 

discussed in order to underline their main implications on natural resources exploitation from 

each crop and on energy crop systems planning. 

4.1 Hot spots influencing environmental crop performance 

 

Some clarifications need to be made in terms of describing the nature of the findings. The strong 

and various interactions occurring among site specific factors (i.e., edaphic and climatic 

conditions, agro-techniques, resource availability and crop lifespan) did not enable us to obtain 

a unique crop performance in terms of environmental sustainability. In other terms, it was hard 

to identify a winning crop option from the environmental point of view. However, this 

prerogative is common to other LCA applications aimed at comparing environmental burdens 

among more energy crops since different studies detected that no crop showed the best (or the 

worst) in all environment categories under consideration (Fazio and Monti, 2011; González-

García et al., 2013; Cocco et al., 2014; Solinas et al. 2015; Parajuli et al., 2017). On 

the other hand, the LCA approach has limitations that might affect the accuracy of the results 
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(Curran, 2013). It mainly depends on the lack of a well-defined procedure to encompass and 

estimate important site-specific factors (e.g., land-use change, carbon stock and soil quality) 

closely related to both agricultural management and environmental performance of cropping 

systems in the LCA analysis (Garrigues et al., 2012; Goglio et al., 2015; Nitschelm et al., 2016). 

It is a given that biomass production is considerably affected by natural resource availability, 

which in turn is limited by both overexploitation and climate change effects (Speirs et al., 2015). 

Specifically, this statement is even more applicable with respect to the Mediterranean region as 

it is already characterized by a shortage of natural resources (Allen et al., 2013). Our study 

underlined the key role of irrigation for the giant reed and sorghum and the relevance of 

fertilizer use with respect to both rainfed and irrigated crops in terms of environmental burdens 

as is the case for progressive unitary product variation. These results suggested that the 

environmental performance of the giant reed might be enhanced by reducing nitrogen 

fertilization or by less intensive use of irrigation. Similar findings were detected by Fernando 

et al. (2018), although they highlighted that the possible reduction in N inputs might jeopardize 

crop yield and that the high impact in terms of water depletion is due to the water needs of the 

giant reed. However, as reported by Cosentino et al. (2014), the giant reed showed a high 

production level by enhancing its water-use efficiency with stressed irrigation treatments. 

Indeed, the deep root system of the giant reed enables water uptake from the deeper and moist 

soil layers and thus helps the plant to tolerate drought occurrence. In the same study on 

fertilization, it was found that N input might be reduced guaranteeing the achievement of a 

proper biomass production level because of a nitrogen-use efficiency improvement. 

Furthermore, the giant reed rhizome can accumulate nutrients and remobilize them to support 

the growing phase (Nassi o Di Nasso et al., 2013). Hence, giant reed might be a suitable crop 

for tackling water scarcity and extreme soil conditions (e.g., salinity and 

nutrient availability) that generally characterize the Mediterranean region, specifically its 
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marginal lands (Fagnano et al., 2015; Alexopoulou et al., 2015). However, as reported by Bosco 

et al. (2016), the environmental performance of the giant reed cultivated in marginal soil was 

worse than cultivation in fertile soil; although in both cases, the environmental burdens might 

be enhanced by acting on N fertilization management. 

The greater negative environmental performance of sorghum than that of the giant reed was 

basically due to its higher input requirements. The trade-off between biomass production and 

the environmental performance of sorghum appeared remarkable. On the one hand, the annual 

crop seems to be inherently adequate for intensive cropping systems. On the other hand, the 

achievement of a good yield requires high input management, which is the main cause of the 

considerable environmental burden. However, this annual irrigated crop was able to provide 

higher biomass production than the perennial crop with the available water supply being equal. 

The greater productivity of sorghum than that of the giant reed might be due to a more efficient 

use of intercepted photosynthetically active radiation. Specifically, the radiation-use efficiency 

for giant reed showed high values for only limited period throughout the growing crop cycle, 

whereas the same parameter for sorghum did not show much variation (Ceotto et al., 2013). 

Furthermore, water scarcity could be responsible for a reduction in efficiency in the conversion 

of intercepted radiation by biomass, especially in the Mediterranean area (Garofalo et al., 2011). 

However, sorghum is capable of attaining high biomass yields in well- drained and fertile soils, 

but it was found to also be productive under soil water deficit conditions (Cosentino et al., 

2012a; Garofalo and Rinaldi, 2013; Sawargaonkar et al., 2013). Depending on genotype, this 

crop is well suited to drought and stress conditions such as water deficit stress, it is versatile to 

soil properties, and it also shows salinity and alkalinity tolerance (Vasilakoglou et al., 2011; 

Zegada-Lizarazu and Monti, 2012; Regassa and Mortmann, 2014). Sorghum also has an 

efficient N use response, implying the possibility of 



59 

60 

61 

62 

63 

64 

65 

 

10 

32 

49 

450 
1 
2 451 
3 
4 

5 452 
6 

7 453 
8 

9 
454 

11 

12 455 
13 
14 456 
15 
16 

17 457 
18 
19 458 
20 
21 

22 459 
23 
24 460 
25 
26 

27 461 

28 

29 462 
30 
31 

463 

33 

34 464 
35 
36 465 
37 
38 

39 466 
40 
41 467 
42 
43 

44 468 
45 

46 469 
47 
48 

470 

50 

51 471 
52 
53 472 
54 
55 

56 473 
57 

58 474 

limiting N fertilizer use without jeopardizing biomass production (Cosentino et al., 2012a; 

Amaducci et al., 2016) and minimizing the environmental load (Calviño and Messing, 2012). 

Some studies have emphasized that water and soil stress conditions and low or moderate input 

management do not substantially affect cardoon and milk thistle capacity in terms of biomass 

and bioenergy production (Gominho et al., 2011; Mauromicale et al., 2014; Afshar et al., 

2015; Andrzejewska et al.; 2015). The yield differences are consistent with the results 

reported for Sardinia by Sulas et al. (2008) and Ledda et al. (2013), who highlighted that the 

lifespan of annual species might enable a high flexibility degree compared to perennial 

species in terms of being included in traditional cropping systems and in underutilized lands. 

However, the shortness of the life cycle of milk thistle is not a constraint for achieving higher 

productivity than cardoon, although the capital requirement for cardoon is greater than that for 

milk thistle. Nutrient availability was the main factor responsible for the environmental 

performances of both rainfed crops. Nevertheless, cardoon has promising biomass and energy 

yields, specifically with low and medium fertilization levels beyond which it did not show 

productivity variation in some cases (Ierna et al., 2012). Furthermore, cardoon roots can use 

nutrients from deep soil layers and enrich the topsoil as root residue biomass (Francaviglia et 

al., 2016). However, milk thistle is a competitive crop that tends to occupy the soil by 

removing other species through shading or competition for nutrients and water resources 

(Berner et al., 2002; Khan et al., 2009). Nonetheless, milk thistle showed a low to moderate 

demand for nutrients because of its capacity to adapt to poor quality soils (Karkanis et al., 

2011). 

Leaving aside the specific incidence of technical inputs and agricultural operations required for 

each considered crop, we found that environmental burdens are sensitively high. This result 

suggests that energy crops in the Mediterranean area should not be handled as 

complementary to food crops and not necessarily be cultivated on underutilized lands. 
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4.2 Implications on farming systems 

 

Biomass production from dedicated energy crops is expected to play a strategic role as 

bioenergy sources into the future (Krasuska et al., 2010; Cosentino et al., 2012b). Hence, an 

increase in biomass per unit of land will be necessary to satisfy energy and food demands and 

to mitigate climate change (Bentsen and Felby, 2012). This fact implies that energy cropping 

systems are capital intensive, and we built LCA inventories considering this perspective. 

However, we found that environmental burdens are substantial, and they might dramatically 

increase the number of farmers who have to obtain higher yields than the yields they generally 

achieve. Our findings emphasize the absolute necessity of contextualizing the choice of energy 

crops, specifically in terms of cropping systems and land allocation. Well- defined spatio-

temporal boundaries and well-contextualized data should be deemed a key step to better 

understanding both complicated interactions and the mutual effects that might occur among 

food security, bioenergy and resource management (Kline et al., 2017). However, some energy 

crops showed a capacity for adaptation in terms of resources and land availability; thus, 

choosing suitable agricultural management and species should be site specific to maximize 

yields and minimize inputs and land-use competition (Zegada-Lizarazu et al., 2010; Kline et 

al., 2017). Hence, a bioenergy production system should be set up considering site specificity 

to optimize agricultural management and land-use efficiency and to safeguard natural resources 

and the traditional farming system (Zegada-Lizarazu et al., 2013). Moreover, rational strategies 

aimed at guaranteeing sustainability from a long-term perspective should be based on 

combining the use of biomass produced by more areas following a cropping system approach. 

Potentially, this strategy would enable biomass to be obtained from both fertile and marginal 

lands, reducing the risk of competition in land use between energy and food/feed crops - 

mainly typical of fertile lands - and at the same time 

optimizing the possibility to achieve high income production (Bosco et al., 2016). 
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Furthermore, the introduction or adoption of energy crops within cropping system planning and 

land allocation raises different issues for which farmers and policy makers - the latter called to 

support sustainability of the sector overcoming the main bottlenecks that affect it - cannot 

disregard. It must be emphasized, however, that LCA is not a predictive tool for the middle to 

long term; thus, the results are suitable for policy makers to use for only short-term decisions 

(Arodudu, 2017). First, the practice of irrigated energy crops can reduce the amount of land 

used even though they result in higher environmental burdens. Given that land allocation is one 

of the main variables that affect a farmer’s choice, higher costs and environmental burdens 

related to irrigated crops might be overcome by the higher efficiency in land use (or in water 

use). Basically, a more efficient use of land and technical inputs in the disposability of farmers 

might both reduce costs and environmental burdens due to reduction of wastes, irrigation water 

in primis. 

Second, the irrigated (rainfed) annual energy crop was found to have a greater impact from an 

environmental point of view than that of the irrigated (rainfed) perennial crop. However, a 

farmer’s behaviour might be more influenced by the perspective of the time of investment. 

Specifically, the introduction of an annual crop might be based on a short-term decision that 

does not necessarily force the farmer to abandon own cropping system planning. In contrast, 

the adoption of perennial energy crops obligates a switch from a given (food/feed) cropping 

system to another (energy) system. This long-term perspective suggests some policy 

implications such as perennial energy crop cultivation in abandoned lands. 

Finally, we found that environmental burdens increase more proportionally than yield in all 

considered crops. In our opinion, this important issue represents a novel contribution into the 

scientific debate arisen from this study because it basically provides a measure of the trade-off 

between the controversial needs of achieving satisfactory yields and of guaranteeing 

application of eco-friendly agricultural practices (given a technological horizon). 



59 

60 

61 

62 

63 

64 

65 

 

10 

32 

49 

525 
1 
2 526 
3 
4 

5 527 
6 

7 528 
8 

9 
529 

11 

12 530 
13 
14 531 
15 
16 

17 532 
18 
19 533 
20 
21 

22 534 
23 
24 535 
25 
26 

27 536 
28 

29 537 
30 
31 

538 

33 

34 539 
35 
36 540 
37 
38 

39 541 
40 
41 542 
42 
43 

44 543 
45 

46 544 
47 
48 

545 

50 

51 546 
52 
53 547 
54 
55 

56 548 
57 

58 549 

The linkage between a possible increase in energy crop yield and environmental burdens might 

play a crucial role with respect to crop system planning and land allocation. Additional research 

might provide a measure of how much biomass production could increase given a certain level 

of burden. For example, it might be a helpful tool for assessing the maximum quantity of 

produced biomass in the presence of a given threshold in terms of the environmental burdens 

produced, especially considering the possibility that normative constraints might be introduced 

into Mediterranean agriculture in the future. 

 
 

5. Conclusions 

 

The findings stress the difficulty of denoting a unique crop performance from environmental 

perspective. We found that performances vary not only according to crop and to implementation 

of irrigation (irrigated crops show higher burdens than rainfed ones), but also according to level 

of inputs supplied (e.g., relevance of fertilizers in affecting burdens) and to productivity 

(environmental burdens increase more proportionally than yield in all considered crops). Hence, 

the overall LCA results should be interpreted with caution since they might not properly 

consider the influence of edaphic, climatic conditions, crop inputs requirement and, as a 

consequence, agricultural management on environmental performances and potential biomass 

production. 

However, findings suggest that choice of energy crops would be contextualized on the basis of 

cropping systems and land allocation approaches. Theoretically, selection of crops according 

to the specific context would allow to exploit both fertile and marginal lands for producing 

biomass. This would enable to optimize agricultural management and land-use efficiency and 

safeguarding natural resources and the traditional farming. For example, environmental burdens 

related to irrigated crops might be overcome by the higher efficiency 

in land and/or water use. 
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In conclusion, more research – specifically using a LCA approach- need to be done in order to 

opportunely support farmers and makers for short-term decisions since the introduction or 

adoption of energy crops within cropping system planning and land allocation raises thorny 

issues that cannot be neglected. 
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Figure 1 
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Fig. 1 Flow chart of analysed processes. The system boundary on the land basis (black dotted 

line) included both upstream steps and typical agricultural processes (grey dotted line) for the 

considered crops. 
a: Sorghum, milk thistle and cardoon; b: Giant reed; c: Sorghum and giant reed. 
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Fig. 2 Ecopoints on land basis (1 Ecopoint = one thousandth of the annual environmental burdens 

of average European inhabitant, Ecoindicator 99). 
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Fig. 3 Incidence (%) of agricultural operations and inputs on total Ecopoints for each crop - land 

basis (ha). 
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Fig. 4 Damages categories assessment of BS and ASs for each crops in terms of Ecopoints 
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Fig. S1 Characterization on the most impacting scenario on land basis (ReCiPe method). The values 

are expressed as percentage of the most impacting scenario in each category (i.e. Sorghum = 100% 

in all the considered impact categories apart from the TA, PMF, IR, ALO, WD and MD categories 

where Giant Reed = 100%). The standardized values in kg of substance-equivalents for all impact 

categories except ALO and ULO (m2a), NLT (m2) and WD (m3) are reported on top of the histograms; 

the absolute values are referred to the impacts of the most impacting scenario. See Table 2 for 

abbreviation details. 
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Fig. S2 Normalized impacts per unit land - EU inhabitant equivalent. The histograms on the top report 

the normalized values range from 0 to 1 for all categories which are not clear in the main graph. See 

Table 2 for abbreviation details. 
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Table 1 
 
 
 
 
 

Table 1 Energy crops key characteristics 

 
 

 

Crops 
Crop cycle 

duration 

(years) 

Considered 
crop cycles 

(n.) 

Average annual 
rainfall 

(mm)* 

Average annual 
irrigation 

(mm) * 

Average annual 
yield 

(Mg·ha-1 (DM)**) 

 
 

 
 

Giant Reed 12 1 449 578 10.4 

Cardoon 5 1 631 0 8.9 

Milk Thistle 1 5 573 0 16.2 

Sorghum 1 4 127 425 25.0 

 
 

*: mean value referred to crops lifespan. **: Dry Matter. 



 

Table 2 
 
 
 
 
 

Table 2 The main impact categories based on ReCiPe method  

Impact categories Abbr. Unit-equivalent 

Climate Change CC kg CO2 eq 

Ozone Depletion OD kg CFC-11 eq 

Terrestrial Acidification TA kg SO2 eq 

Freshwater Eutrophication FE kg P eq 

Marine Eutrophication ME kg N eq 

Human Toxicity HT kg 1,4-DB eq 

Photochemical Oxidant Formation POF kg NMVOC 

Particulate Matter Formation PMF kg PM10 eq 

Terrestrial Ecotoxicity TET kg 1,4-DB eq 

Freshwater Ecotoxicity FET kg 1,4-DB eq 

Marine Ecotoxicity MET kg 1,4-DB eq 

Ionising Radiation IR kBq U235 eq 

Agricultural Land Occupation ALO m2a 

Urban Land Occupation 

Natural Land Transformation 

Water Depletion 

ULO 

NLT 

WD 

m2a 

m2 

m3 

Metal Depletion MD kg Fe eq 

Fossil Depletion FD kg oil eq 

Source: Goedkoop et al., 2013c 
  



 

Table 3 
 
 
 
 
 

Table 3 Baseline (BS) and alternative scenarios (AS) description 

 

Species/Fertilizer/Title NP BS AS1 AS2 AS3 
  N input (kg ha-1 yr-1)   

Giant Reed 

Diammonium phosphate (18-46) * 

 
5 

 
7 

 

10 
 

15 

Urea (46) 84 101 126 170 

Cardoon 
    

Urea (46) 57 96 155 258 

Milk Thistle 
    

Diammonium phosphate (18-46) 36 54 80 126 

Sorghum 
    

Diammonium phosphate (18-46) ** 36 36 36 36 

Ammonium nitrate (26) 74 94 124 177 
 

*: it is used only the first year. **: the fertilizer dose is not modified depending on the different scenarios. 
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