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1. Rewetting peaty soils, formerly drained for agricultural purposes, can contribute to increase 9 

the diversity of species in these ecosystems 10 

2. The combined use of remote sensing and vegetation field surveys provides a snapshot at any 11 

given time of the surface colonized by the different plant communities and their 12 

development 13 

3. Phragmites australis and Myriophyllum aquaticum can take up remarkable quantities of 14 

nitrogen and phosphorus from eutrophicated environment 15 
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Abstract 16 

A pilot experimental field combining rewetting of reclaimed peaty soils and water phyto-treatment 17 

was set up in the Massaciuccoli Lake basin (Tuscany, Italy) to reduce the water eutrophication and 18 

peat degradation caused by almost a century of drainage-based agricultural use.  19 

In this paper, we investigated the restoration process occurring consequently to the conversion of a 20 

drained area in a natural wetland system (NWS) (the partial top soil removal, the realization of a 21 

perimeter levee to contain the waters, the rewetting with the drainage waters coming from the of 22 

surrounding cultivated areas) and the capability of the spontaneous vegetation to catch nutrients 23 

acting as a vegetation filter.  24 

To follow the restoration process over time (2012-2016), we used a mixed approach merging 25 

phytosociological surveys with ortophotos taken by an Unmanned Aerial Vehicle (UAV). During 26 

the last year of observation (2016), we performed destructive sampling on the most widespread 27 

plant communities in the area (Phragmites australis and Myriophyllum aquaticum community) to 28 

quantify the biomass production and the uptake of nitrogen and phosphorus. 29 

Stands of Phragmites australis (Cav.) Trin. ex Steud. yielded more than Myriophyllum aquaticum 30 

(Vell.) Verdc. (4.94 kg m
-2

 vs 1.08 kg m
-2

). M. aquaticum showed higher nutrient contents  31 

(2.04% of N and 0.35% of P), however P. australis was able to take up more nutrients within the 32 

NWS because of its larger cover and productivity. 33 

In the perspective of maximizing the plant development and consequently the amount of nutrients 34 

extracted from treated waters, the authors suggest 4-5 year-long-harvesting turns, better occurring in 35 

spring-summer. 36 

 

Keywords: 37 

Phragmites, Myriophyllum, phyto-treatment, UAV, wetland vegetation  38 
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1. Introduction 39 

Peatlands drainage and their following exploitation have severely compromised their ecological and 40 

biological status worldwide, because of the changes in the land use produced by agriculture, 41 

forestry and urbanization (Grootjans et al., 2012). We can estimate that nowadays less than 20% of 42 

the original, pristine wetland areas still remain (Verhoeven, 2014). 43 

By altering groundwater patterns and compositions, extensive peatland drainage has determined 44 

significant changes on the physics and chemistry of peats, leading to: i) acceleration of organic-45 

matter oxidation (Oleszczuk et al., 2008), with a consequent increase in greenhouse gases (GHG) 46 

emissions into the atmosphere of up to 25 t CO2 equivalent ha
−1

y
−1

 (Wichtmann and Wichmann, 47 

2011; Couwenberg et al., 2011); (ii) enhancement of mineralization and nitrification of organic N 48 

due to higher oxygen availability and consequent increase of NO3
−
 concentrations in porewater 49 

(Tiemeyer et al., 2007) and (iii) mineralization of organic P compounds and increase of absorbed 50 

and Fe-bound P pools (Zak et al., 2004). The continual recurrence of these phenomena has 51 

negatively affected the status of peatlands, lowering the soil level (subsidence), increasing nutrient 52 

availability and loads delivered to receiving water bodies (eutrophication) and decreasing 53 

ecosystem biodiversity and functionality (loss of resilience) (Smolders et al., 2006; Pistocchi et al., 54 

2012; Lamers et al., 2015). 55 

Moreover, these deeply drained areas are becoming unsuitable for modern agricultural production 56 

requirements (Pfadenhauer and Grootjans, 1999) and almost inaccessible for the ordinary machines 57 

used in agriculture. 58 

From a merely biodiversity perspective, peatlands are unique, complex ecosystems of global 59 

importance, since they contain many species found only or mainly in peatlands thanks to the water 60 

regime of these areas (Tanneberger and Wichtmann, 2011). 61 
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For all these above-mentioned factors considered, stopping the peatland drainage and planning the 62 

consecutive management represent an environmental priority to face.  63 

From literature, we can derive that there are different reasons leading to the change by moving from 64 

the traditional drainage-based management of peatlands: stimulating the restoration of land portion 65 

deteriorated from prolonged drainage (e.g. restoring) or recovery of the agricultural productivity of 66 

the areas (e.g. paludiculture). 67 

Regardless the aims behind the restoration, we can assume that to achieve the rehabilitation of at 68 

least some of the functions supplied by these ecosystems, two main conditions have to be met i) 69 

rewetting (e.g. constructing dams or filling in drainage ditches) and ii) reduction of trophic status 70 

(e.g. by mean of the top soil removal) (Van Dijk et al., 2007; Klimkowska et al., 2010 a,b; Zak et 71 

al., 2014). 72 

Both are not without side effects. Raising water level and flooding organic soils can lower the soil 73 

nutrient availability (mainly released as ammonium), but can at the same time boost phosphorus 74 

mobilization (Lamers et al., 2002; Meissner et al., 2008; Zak et al., 2004). 75 

Top soil removal, i.e. the removal of the upper and most degraded peat layers responsible of the 76 

higher mobilization of phosphorous during the rewetting phase (Zak and Gelbrecht, 2007; Zak et 77 

al., 2017) causes the removal of the reproductive organs of plant species (seeds, stolons, rhizomes, 78 

etc.) (Leps, 1999) delaying the time of re-naturation. 79 

The case study reported in the present paper is linked to a project realized in Tuscany (IT), which 80 

compares three different management strategies aimed to combine the peatland rewetting and the 81 

water phyto-treating action.  82 

In this paper, we focused on the Natural Wetland System (NWS). The first objective was to follow 83 

the restoration process after rewetting of lowlands to evaluate the dynamics driven by the re-84 

established vegetation. According to literature, the ecological restoration perspective is highly 85 

dependent on the zero-point condition before starting the restoration process (Klimkowska et al., 86 

2010b). Indeed, while  Tanneberger and Wichtmann (2011) report that top soil removal in 87 
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combination with rewetting can lead to  the restoration of soft-water pools and small sedge marshes 88 

within 5 years, Poschlod (1992) shows that in the case of peatland severely used for peat extraction 89 

mostly monospecific stands of non-peat-forming species could develop even for 20 years after the 90 

rewetting.  Joosten (1995) even reports that in the cases of severe anthropogenic impact on the 91 

environment, it is not possible to observe any change within a human time perspective. 92 

The second important research goal was to evaluate the capability of the NWS to work as phyto-93 

treatment system thanks to the capability of plants to take up nutrients from waters proportionally to 94 

the biomass production and nutrient contents in the vegetative tissues. 95 

2. Material and Methods 96 

2.1 Site description 97 

The study was carried out over 5 years (2011-2016) in Vecchiano, about 10 km from Pisa, Italy 98 

(43° 49’ 59.5’’N; 10° 19’ 50.7’’) in the Migliarino, San Rossore, Massaciuccoli Natural Park, 99 

within a 15 ha experimental area (Fig.1a,b). 100 

This site was used to compare the efficiency of three different strategies in treating the eutrophic 101 

drainage water coming from a cultivated sub-watershed within the reclamation district around the 102 

Massaciuccoli Lake. In this area, phosphorous has been recognized as the primary cause of the 103 

eutrophication and the losses of this nutrient from cultivated fields (dissolved + particulate 104 

fractions) are estimated in 2-4 kg ha
-1

y
-1

 (Pensabene et al., 1997; Bonari et al., 2013). 105 

The NWS was set up as natural rewetted area with a surface area of 2.7 ha and surrounded by small 106 

embankments built with the top soil (~ 10 cm) removed long the area’s borders. Natural elevation 107 

changes within the NWS helped in creating zones with a different bottom height in order to promote 108 

the colonization from a large variety of plant species. 109 

The soils of this experimental area has been classified as Histosol according to the USDA system 110 

and as Rheic Histosol according to the FAO system (Pellegrino et al., 2015). 111 
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The climate is classified as Mediterranean (Csa) according to Köppen-Geiger climate classification 112 

map (Kottek et al., 2006). Summers are dry and hot, while rainfall is mainly concentrated in autumn 113 

and spring (mean annual rainfall = 910 mm) and mean air temperature at 2 m ranges from 6.6 °C to 114 

21.8 °C (mean= 14.6). Mean monthly temperatures and rainfall for 2011-2016 were recorded at a 115 

weather station closed to the experimental site, located in Metato (San Giuliano T., 5 m a.s.l., 116 

611370 E UTM, 4847363 N UTM ). 117 

The water level within the NWS was registered daily from December 2013 to August 2016. From 118 

January 2013 to November 2013, the system was not equipped with a diver (CTD-Diver produced 119 

by Schlumberger) for the water level measurement, thus manual measurements were performed 120 

every 15 days (Tab.1).  121 

The analyses of treated waters confirmed their eutrophic status with average annual total nitrogen 122 

content ranging from 7.14 mg/L to 8.13 mg/L, the average annual total phosphorus content ranging 123 

from 0.24 to 1.07 mg/L. About the soluble forms, the average annual Soluble Reactive Phosphorus 124 

(SRP) ranged between 0.15 and 0.22 mg/L, while the average annual nitrates content varied from 125 

1.41 to 3.23 mg/L. 126 

2.2 Trial setup and vegetation analyses 127 

The construction works lasted two years (2011 and 2012) and in January 2013 the phyto-treatment 128 

system started to operate. The NWS’s vegetation was periodically monitored from April 2013 up to 129 

July 2016. Every year, in spring-summer, vegetation development and phytocenotic diversity were 130 

surveyed using the Braun-Blanquet method (Braun-Blanquet, 1979). 30 Relevés were performed on 131 

surfaces varying from 4 to 100 m
2
 depending on the typology of the plant community. The used 132 

nomenclature of the plants accords to Pignatti (1982) and Conti et al. (2005).  133 

A multivariate analysis procedure using syntax software (Podani, 2001) was carried out for data in 134 

vegetation surveys. The matrix of 48 species x 18 surveys was analysed according to UPGMA 135 

cluster algorithm analysis, applying the coefficient of similarity of Bray-Curtis. During the 136 

monitoring period, NWS aerial photos were taken every summer by using a drone (Iris +, 3D 137 
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Robotics) flying at 25 m of height and equipped with a camera (gopro hero 3 +, 12 Megapixel). To 138 

remove distortion and correct the image back to a rectilinear lens projection and to make photo 139 

mosaic, software Adobe Photoshop CC and Agistoft PhotoScan Professional Edition were used, 140 

respectively.  141 

At the given altitude, the obtrained resolution was 1.75630 cm/pixel. Each orthomosaic has been 142 

created by composing 340 pictures, with a resulting reprojection error varying between 0.81 pixels 143 

to 8.43 pixels, with an average error equal to 2.47435 pixels. 144 

Aero photos were imported in GIS environment using Map Info ® 10.1 for geo-referencing and 145 

mapping, with an undetectable georeferenced error. 146 

The images were interpreted by assigning, manually, each digitized area to a specific 147 

phytosociological community (Fig.2).   148 

In July 2016, we performed a destructive sampling campaign aimed at the determination of the 149 

biomass production and nutrient concentration of the plant species grown within the NWS. The 150 

sampling plots were chosen on the basis of the vegetation map assembled after the flight of June 151 

2016. For each mono-specific population with a coverage of nearly 100%, we identified some 152 

representative plots to use for the sample collection. In particular, we identified 7 homogenous 153 

sampling areas for Phragmites australis (Cav.) Trin. ex Steud. and 3 for Myriophyllum aquaticum 154 

(Vell) Verd.(Fig. 2). Within each of these areas, we took 3 samples using a metal frame with an 155 

inner area of 1 m
2
. The biomass of P. australis was harvested above the water surface level, while 156 

in the case of M. aquaticum we took both the aerial and submerged parts (emergent shoots, stolons 157 

and submersed shoots), that is almost the whole plant biomass (Sytsma and Anderson, 1993). All 158 

sampling was done from a boat to minimize disturbance of the ecosystem. 159 

For the determination of dry mass, samples were dried at 60 °C until reaching constant weight. To 160 

determine the composition of biomass, samples were finely milled with a Fritsch Pulverisette 14. 161 

Nitrogen and Carbon concentration were measured with a CHNS Analyzer (Vario EL III - 162 

Elementar Analysessysteme Hanau Germany) through gas chromatography after dry combustion at 163 
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1150 °C (DIN EN 15104, 2010; DIN EN 14961-1, 2010). Phosphorus concentration was 164 

determined through photometrical  determination (Murphy and Riley, 1962) after acidic digestion in 165 

a microwave digestion (EPA method n. 3052).   166 

To validate the laboratory methods, a standard biomass of P. australis (Netherlands, BIMEP 412) 167 

was used (WEPAL, 2011). 168 

The estimate of biomass production of the tested area (2.7 ha) was based on an upscaling process of 169 

the data collected at plot level. For both most represented mono-specific plant populations (P. 170 

australis and M. aquaticum, separately), we verified whether the mean production of each sampled 171 

areas were statistically different. Data were processed using the F-test in one-way ANOVA (version 172 

9.1; SAS Institute Inc., Cary, NC, USA), with the homogeneous sub-areas as factors (groups) each 173 

of them replicated three times by using an elementary sampling area of about 1 m
2
. Two of the main 174 

assumptions of ANOVA (normal distribution and homogeneity of variance) were verified in this 175 

regard. The Duncan honest significant difference test was used for post-hoc means comparison at 176 

the 0.05 p-level only when the differences among factors used to be significant. 177 

Then, each statistically different value of biomass production per unit area was multiplied by the 178 

respective cover surface, so to obtain the contribution of two species to the total plant biomass 179 

production of NWS. The other cover types were not considered because they were either non-180 

productive (uncovered area), or too little extended (Typha latipholia), or several species mixed (wet 181 

meadow). 182 

The N, P and C concentration of P. australis and M. aquaticum were transformed in arcsine to fulfil 183 

the assumptions of ANOVA and processed as described above. 184 

Nutrient uptake (kg ha
−1

) was calculated as the product of nutrient concentration (nitrogen, 185 

phosphorus) and dry biomass weight. 186 

3. Results 187 

3.1 Flora and vegetation 188 
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The multivariate analysis on the data of the  most representative phytosociological relevès (n.18) 189 

led to the identification of four plant communities: 1- Phragmites australis community, 2- 190 

Myriophillum aquaticum community, 3- Typha latifolia community, 4- wet meadows (Tab. 2, Fig. 191 

3). 192 

Floristic traits and physiognomic aspects confirmed the equipollence between the surveyed 193 

vegetation and the phytocoenosis widely spread on the neighbouring Massaciuccoli Lake (Bertacchi 194 

et al., 2015) and on the lacustrine areas of Tuscany, as well as described by Tomei et al., (1997).  195 

The first three communities are referable to Phragmition communis Koch 1926.  The serial stage 196 

still in progress of wet meadow (which has been surveyed only from June 2014), did not allow us to 197 

reach a reliable assignment. 198 

3.2 Photointerpretation and vegetation mapping 199 

The ortophotos taken from the drone and re-organized one next to the other to recompose the whole 200 

area, allowed us to draw the development dynamics of the four above-cited plant communities over 201 

time (Fig.4). 202 

The implementation of the reconstructed photographic mosaic in GIS and the processing of digital 203 

data provided useful information about the fluctuations of the spatial pattern for the identified plant 204 

communities (Fig. 5). 205 

In Figure 5, the trends from 2012 to 2016 are reported. The area covered by T. latifolia was the 206 

lowest and almost stable in time (average 0.03 ha), while the area covered by wet meadow was, on 207 

average, the largest even if with wide fluctuations among the years (2.30 ha in 2013, 0.60 ha in 208 

2014, 0.02 ha in 2015 and 0.16 ha in 2016). The M. aquaticum pointed out a significant increase of 209 

the covered surface between 2013 and 2015 (from 0.04 ha to 0.70 ha), whereas it has been more 210 

than halved in the last year (0.34 ha). The development of the P. australis showed the shortest 211 

variations over time, increasing from 0.60 to 0.96 ha in the 2013-2015 period and drawing a little 212 

contraction in 2016 (0.78 ha). 213 

http://www.prodromo-vegetazione-italia.org/scheda/phragmition-communis/791
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Overall, the total area covered by vegetation decreased from 2.24 ha in 2013, to 1.82 ha in 2014, to 214 

1.68 ha in 2015 up to 1.30 ha in 2016. 215 

3.3 Biomass production and nutrients uptakes 216 

The execution of the Saphiro-Wilk and Bartlett tests confirmed that the biomass production data 217 

were normally distributed (W = 0.967 and W = 963 for P. Australis and M. aquaticum, 218 

respectively) and their variances were homogeneous (p > χ
2
 = 0.465 and p > χ

2
 = 0.295 for P. 219 

Australis and M. aquaticum, respectively). Then we proceeded rightly to ANOVA analysis (Table 220 

3, Table 4). 221 

P. australis growth was statistically homogeneous within the NWS’ embankments and we did not 222 

find significant differences among the identified sub-areas. The overall mean production was equal 223 

to 4.94 ± 1.67 (standard deviation) kg m
-2

 d. m. (dry matter) and the values from the different sub-224 

areas ranged from 3.15 kg m
-2

 d. m. (sub-area 4) to 6.44 kg m
-2

 d. m. (sub-area n.9). 225 

M. aquaticum was less productive than P. australis with a mean production of 1.05 ± 0.35 (s.d.) kg 226 

m
-2 

d. m. (weighted on the surface of each sub-areas). The sub-area 7 (1.43 kg m
-2

 d.m.) was 227 

significantly more productive than the other two (sub-areas 6 and 10) that were statistically 228 

equivalent between them (0.80 and 0.91 kg m
-2

 d. m., respectively). 229 

To estimate the biomass production within the NWS, we calculated the product of the mean 230 

production by the value of the corresponding area. Thus, we used the overall sample mean and the 231 

total surface occupied by P. australis, whereas we used the means of the sub-area 7 and the sub-232 

areas 6 and 10 multiplied by the respective surface values, in the in the case of M. aquaticum. 233 

Summing up the biomass production from each homogenous area as described above, we obtained a 234 

total biomass production of 38.54 tons d. m. for P. australis and of 3.56 tons d.m. for M. aquaticum 235 

deriving from an occupied surface equal to 0.78 ha and 0.34 ha, respectively. 236 

About macronutrient content in biomass, there was not a significant difference in the nitrogen and 237 

phosphorous concentrations among the different sub-areas for both species. 238 
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In P. australis, the detected values ranged between 1.55% and 2.03% for nitrogen and between 239 

0.14% and 0.19% for phosphorous, whereas in M. aquaticum the nutrients concentrations were 240 

higher varying from 1.88 to 2.20% for nitrogen and from 0.30 to 0.44% for phosphorous. 241 

The largest differences between the two species were observed on the phosphorous concentration 242 

whose mean concentration was equal to 0.17% ± 0.04 (s.d.) in P. australis and 0.35% ± 0.09 (s.d.) 243 

in M. aquaticum. The mean concentrations of the two species were quite close in the case of 244 

nitrogen, although M. aquaticum showed again the higher values with 2.04% ± 0.29 (s.d.) against 245 

1.79% ± 0.21 (s.d.) of P. australis. 246 

The nutrients taken up per unit area were equal to 882 kg ha
-1

 of N and 84 kg ha
-1

 of P for P. 247 

australis and 220 kg ha
-1

 of N and 38 kg ha
-1

 of P for M. aquaticum. From these data, we can derive 248 

that the total nitrogen taken up from the spontaneous vegetation growing within the NWS was 761 249 

kg, of which 688 kg taken up from P. australis (90%) and the remaining 73 kg taken up from M. 250 

aquaticum (10%). 251 

About phosphorus, P. australis contributed to take up 65 kg (83% of the total) while M. aquaticum 252 

to 13 kg (17% of the total). 253 

4. Discussion 254 

4.1Vegetation response to rewetting 255 

From six years of observation, we can derive that the water level rising was successful in fostering 256 

the development of hydro-hygrophilous species (Tab.2). Moreover, the species found were equal to 257 

with those of the lacustrine ecosystems nearby in the Lake. 258 

A critical phenomenon was the significant development of M. aquaticum. This exotic species of 259 

South American origin, is considered invasive in Italy and can pose a threat to other hydrophitic 260 

indigenous communities (Lastrucci et al., 2005). In our case, the species was already present in the 261 

Massaciuccoli Lake area and was subsequently penetrated the NWS system. 262 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

About the vegetation, it was evident the predominance of the hygrophylous phytocoenosis, which 263 

showed a quick renaturation process, as evidenced by the wide surface covered by the different 264 

plant communities. 265 

The spatial distribution of the vegetation species within the area showed the prevalence of the T. 266 

latifolia on the borders or in the strips surrounding the central nucleus of NWS system colonized by 267 

the P. australis population because of its higher competitive ability as reported by many authors 268 

(Findlay et al., 2002; Meyerson et al., 2002), especially under eutrophic conditions  269 

The presence of a permanent water layer (30-35 cm) upon the buttom could justify the large 270 

distribution of P.australis and M. aquaticum within the NWS system. These species can prevail for 271 

long time and limit the development of other plants, which are not helophytes or are not provided 272 

with aerenchyma. 273 

 This behavior seemed to be proved by the  wet meadows development that was largely widespread 274 

at the beginning of the re-naturation process (1.60 ha in 2013 and 0.60 ha in 2014) up to disappear 275 

almost completely in 2015 (0.02 ha). The partial recovery made in 2016 (0.16 ha) was to be related 276 

only with the temporarily drying up of some portions of the NWS (mostly occurred nearby the 277 

borders) that determined the regression of P. australis and M. aquaticum communities. 278 

After an initial increase, the stabilization of the communities of P. australis and M. aquaticum, 279 

occurred in 2016, can be considered the result of their different ecological requirements, specific 280 

competitiveness and environmental conditions. Indeed P. australis is a rhizomatous helophyte, that 281 

needs to keep the overwintering buds under water but, for a part of the year, prefers to be in almost 282 

dry condition. In our case, the permanent flooding may have favored the hydrophytes as M. 283 

aquaticum, which spread in almost all the free spaces.  284 

Although the situation monitored in 2016 is far from stable and  we can expect continuous 285 

variations in the area covered by P. australis and M. aquaticum, it is reasonable to suppose that 286 

these will remain the two most important mono-specific plant populations within the NWS. Only 287 

the occurrence of no-ordinary disturbances (e.g. harvest, drought, fire) will be able to modify 288 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

significantly the current vegetation cover to favor the development of others plant association types 289 

such as wet meadows or T. latifolia. 290 

4.2 Photointerpretation and vegetation mapping 291 

The mixed investigation method proposed, based on the merging of field surveys and remote 292 

sensing data, was particularly useful for the identification of the vegetation dynamics following a 293 

renaturation process. It seemed to be promising since it permitted the integration of methods acting 294 

on different scale (Klančnik et al., 2015) by combining the accuracy of a field level survey 295 

(repeatability and the detectability) with the capability of remote sensing to extend the monitoring 296 

over huge areas (Stroh and Hughes, 2010). Moreover, the proposed method was rather simple to use 297 

and it did not require the purchase of expensive devices or sophisticated skills in computer science 298 

or drones management. 299 

4.3 Biomass production and nutrients uptakes 300 

The high productivity of Phragmites australis (4.94 kg m
-2

 d.m.) was the effect of a series of 301 

favorable conditions such as abundant water, high incident radiation, favorable growth 302 

temperatures, highly nutrient availability and the sampling time choice (coincident with the highest 303 

biomass productivity) as it is also confirmed by several studies conducted in unlimited nutrients 304 

availability. 305 

For example, Hocking (1989) registered 9.89 kg m
-2

 d. m. at the peak of productivity in a nutrient-306 

enriched swamp in inland Australia. Gopal and Sharma (1982) reported production ranging from 307 

7.50 to 9.30 kg m
-2

 d. m. in nutrient enriched wetlands in India, while more recently Eid et al., 308 

(2010) showed a production of about 5.40 kg m
-2

 d. m. in Egypt (Burullus Lake), data which are 309 

quite similar to our average production. 310 

In conditions of limited nutrient availability, the production of  P. australis are definitely lower as 311 

reported in literature: Aseada et al. (2002) up to 1.03 kg m
-2

 d. m. in Austria; Karunaratne et al. 312 

(2003) 1.98 kg m
-2

 d. m. in Japan and Aseada et al. (2006) 0.69 kg m
-2

 d. m. in Japan. 313 
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Also for Myriophyllum aquaticum, mentioned in literature as parrot feather, many studies confirmed 314 

a positive correlation between relative growth rate and nutrient availability (Hussner et al., 2008). 315 

However the average yield we registered (1.08 kg m
-2

 d. m.) was lower than that reported by 316 

Shybayama (1988) (2.80 kg m
-2

 d. m., assuming a fresh weight/dry weight ratio equal to 0.21) or by 317 

Monteiro and Moreira (1990) (about 4.60 kg m
-2

 d. m.), whereas are comparable with that 318 

registered by Sytsma and Anderson (1993) for a Californian experiment (about 1 kg m
-2

 d. m.). 319 

These considerations, matched with the results of ANOVA, suggested that P. australis found 320 

favorable condition for its grown everywhere within the NWSs area, whereas M. aquaticum was 321 

penalized in some sub-areas and it could not reach a full productivity level. At this regard, we can 322 

speculate that the lower production of sub-areas 6 and 10 were due to the higher shading produced 323 

by P. australis, which colonized the nearest sub-areas.  324 

In consideration of the phyto-treatment purpose attributed to the restoration process, the capability 325 

of the plants of taking up nutrients from waters and storing them in their tissues can play an 326 

important role in determining the efficacy of this option. This feature is extremely important for 327 

phosphorus, for which the plant accumulation and subsequent harvesting can represent an effective 328 

way to cut down the nutrient loads in the treated waters. Differently, the role played by plants in 329 

nitrogen removal is less reliable in consideration of the losses of N through a gaseous phase 330 

(Vymazal, 2007). 331 

In our study, the mean amount of nutrients removed were high for P. australis (882 kg N ha
-1

 and 332 

84 kg P ha
-1

) and although lower, as well remarkable also for M. aquaticum (~220 kg N ha
-1

 and 333 

~38 kg P ha
-1

). 334 

These quantities can be considered not so significative if compared with the nutrient loads which 335 

are delivered each year to the NWS (~ 1700 kg N ha
-1

 y
-1

 and ~ 130 kg P ha
-1 

y
-1

, by considering 336 

365 days of working per year, data not published), but there are some considerations that can 337 

deepen the real contribution of the plants in the nutrient abatement through the NWS. 338 
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The first point concerns the development cycle of P. australis under natural growing conditions. 339 

Since no harvests were foreseen, inevitably a portion of nutrients up taken by plants was in the litter 340 

and residues fallen during fall-winter period. Indeed, as reported in literature (Graneli, 1984), leaves 341 

losses in P.australis contribute to reduce the total plant biomass of 28% (from summer to winter). 342 

This value was also confirmed by  results published by Giannini et al. (2016, 2017). 343 

Although the fate of these nutrients is uncertain, it is presumable that they remain immobilized 344 

within the organic compounds for long time because of the anoxic condition that the plant residues 345 

found on the NWS’s bottom when they are not undergone to a chemical-physical stabilization 346 

through peat-forming process. Thus, we should add to the amount of nutrient removed by NWS 347 

plants also the nutrients that has been taken up in the previous years and translocated in the plant 348 

portions left on the NWS bottom. 349 

In our case study, harvesting during summer 2016 would have meant the removal of the yearly 350 

biomass produced by the reedbed during the 4
th

 growing season while the previous annual 351 

productions were lying under the water layer. A gross quantification of the biomass produced 352 

during the previous 3 years can be tried multiplying the area covered by P. australis by the mean 353 

productivity registered during summer 2016, from which we estimate about 120 tons of dry biomass 354 

produced and not harvestable.  355 

If this biomass presented the same average nutrient concentration detected in the biomass sampled 356 

in 2016, we could estimate about 2 tons of nitrogen and 200 kg of phosphorus taken up by the plant 357 

and largely fated to likely stabilization processes. 358 

About M. aquaticum,  Wersal and Madsen (2011) reported the strict connection existing between 359 

biomass production and nutrient availability, in particular the biomass is greater with at a high N/P 360 

ratio, which was also our case (N/P = 10). The negative relationship between yield and P 361 

concentration according to Wersal and Madsen (2011) could be explained with an increased 362 

competition for light and nutrients with algae. 363 
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In our case study, M. aquaticum registered a very high nutrients concentration per unit of dry 364 

biomass, which made it competitive with P. australis in term of nutrient uptake although the 365 

biomass production was definitely lower. 366 

We can estimate a previous productivity of about 11 tons of dry biomass produced and not 367 

harvested, containing about 230 kg of total nitrogen and 40 kg of total phosphorus.  368 

Comparing the overall estimated production on four-year perspective with the nutrient loads, we 369 

could access that the phyto-treatment capability of the ‘plant system’ raised up to 15% for total 370 

nitrogen and 20% for total phosphorus. 371 

From a management perspective of NWS, an important point is related to the option of vegetation 372 

harvesting and thus, the effect that harvest time/cycle could have on the life span of the stands, on 373 

their productivity and their capability to take up nutrients. From the comparison with P. australis 374 

cultivated within the paludiculture system (PCS) (Giannini et al., 2017), we can derive some 375 

considerations. Indeed, while in NWS P. australis was unmanaged, in PCS was harvested every 376 

summer. This choice determined yield levels very different between the two systems. The 377 

production of 2016 was equal to 2.63 kg m
-2

 d.m. for the PCS (unpublished data) versus 4.94 kg m
-2

 378 

d.m. for the NWS. Many authors reported a depressive effect of the summer harvest on P. australis, 379 

since the beds have not yet translocated all resources to rhizomes to guarantee a vigorous re-sprout 380 

in the next vegetative season (Graneli, 1990; Thompson and Shay, 1985). Moreover, recurrent 381 

mowing in flooded areas may amplify the negative effects of an early cut on productivity due to 382 

impaired convective ventilation and hypoxia on the basal part of the reed stands (Rolletschek et al., 383 

2000). 384 

Despite the large nutrient availability, we can derive that the adoption of the PCS’ harvest strategy 385 

could determine in NWS a reduction of the growth potential of the reedbed especially in the first 386 

years of growing when the crop stand does not have a well-established underground reserve organs 387 

yet. After this phase, the annual cutting could increase the P. australis growth not only because the 388 
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removal of dead culms favors the light interception by the new culms but also because the leaves, 389 

which are the organs photosynthetically active, are already completely lost (Graneli, 1989). 390 

Thus, to maximize the phyto-treatment potential of the NWS, the best solution to adopt has can be a 391 

well-balanced harvest strategy by mowing P. australis every two years during summertime, after an 392 

initial phase of 4-5 unharvested years. In this way, we can favor the plant settlement without 393 

reducing significantly the reedbed life span (Gusewell et al., 2000).  394 

In addition, the phyto-treatment ability of M. aquaticum is significantly enhanced by frequent 395 

harvesting (at least annually) (Nuttall, 1985) and we can partially repeat the considerations already 396 

expressed for P. australis. 397 

However, this type of management can alter the renaturation process and preclude the possibility 398 

for the NWS to reach the climax conditions. Moreover, it is not to neglect that the deposit of the 399 

dead plant residue onto the NWS bottom can contribute to the formation of new peat and so 400 

reversing the actual trend of subsidence (Gessner, 2000; Domish et al., 2006) that constitutes a 401 

severe constraint for the agricultural use of the reclaimed area (Silvestri et al., 2017). 402 

5. Conclusions and implication for wetland management 403 

The conversion of drained peatlands to natural wetland resulted, under our experimental conditions, 404 

an operation quite easy and short to implement. Just few years after the flooding and the partial top 405 

soil removal, the restoration process seemed to be well underway as proved by the development of 406 

some floristic association typical of the surrounding palustrine areas. This fact confirmed that the 407 

status of peatlands was not as degraded as to prevent the spontaneous vegetation recolonization of 408 

the rewetted areas. 409 

Although our experimental area (NWS) was not so widespread to be considered representative of 410 

the whole Massaciuccoli Lake catchment, was reasonable suppose that the main plant communities 411 

and associations able to colonize rewetted peatlands are those identified within the experimental 412 

area and that our results can be considered reliable for upscaling use.  413 
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In our experimental conditions, characterized by a large availability of nutrients and water 414 

Phragmites australis showed a remarkable biomass productivity and nutrients taken up. Although 415 

M. aquaticum had lower performances, we have to consider, for both species, the contribution 416 

derived from the nutrient portion within the biomass yearly fallen on the bottom of the system 417 

To increase furthermore the nutrient abatement capability of NWS, we can act optimise the harvest 418 

strategy. Indeed, the annual harvesting can increase the amount of nutrients removed from the 419 

system thanks to removal of harvested annual production. At same time, frequent cutting can 420 

penalize the plant growth during the initial phases, limit the peat forming process, make trouble in 421 

the management of the harvest operations (necessity of draining area or use of machines able to 422 

work in flooded conditions) and cause disturbance to the biota. 423 

For this reason, the management of NWS has to find a compromise able to meet different needs 424 

(multifunctional management).  425 
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Figure captions 436 

Fig.1 (a) Aerial view of the Massaciuccoli Lake catchment (Tuscany, IT) and (b) zooming on the 437 

experimental area. 438 
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Fig.2 Aerial picture of the Natural Wetland System (NWS) with the location of the homogenous 439 

units identified for sampling. Areas n. 1, 2, 3, 4, 5, 8 and 9 are of P. australis (with sampling areas 440 

marked in orange )while areas n. 6, 7 and 10 are of M. aquaticum (with sampling areas marked in 441 

red). 442 

Fig.3 Dendrogram resulting from the cluster analysis of the relevèsperformed during the 443 

observation period. The numbers reported are referred to the relevès listed in Tab.2. 444 

Fig.4 The diachronic mosaic of the vegetation succession of the NWS from 2012 to 2016. On left 445 

hand, the reconstruction from the ortophotos; on right hand, the sketch reporting the surface covered 446 

by each community year by year. The analysis reported is referred only to summer flights.  447 

Fig. 5 Fluctuation of the cover values reached by different communities from 2013 to 2016. 448 

 

Table captions 449 

Tab.1 Mean water table levels for the different seasons over the years of observation. The reported 450 

values (h in mm) were measured relative to the weir at the outlet of the system.* is used to report 451 

period with water flow interruption for operation activities. 452 

Tab.2 Table of the most  representative phytosociological relevés   (PH Phragmites australis  453 

community (Phragmitetum australis (Gams 1927) Schmale 1939); TY Typha latifolia community; 454 

MY Myriophyllum aquaticum community; WM Wet Meadows  455 

(Surveys n. 2,6,8,25,26,31,32 were performed in June 2014; n. 10, 12,27,28,29,33,34 were 456 

performed in June 2015; n. 13, 14,30,35 were performed in June 2016) (note: for index values, refer 457 

to the literature). 458 

Tab.3 Results of ANOVA on the P. australis parameters. Within each factor, means in the same 459 

column followed by different letters are significantly different at p < 0.05 (Duncan test). 460 

Tab.4  Results of ANOVA on the M. aquaticum parameters. Within each factor, means in the same 461 

column followed by different letters are significantly different at p < 0.05 (Duncan test). 462 
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Tab.1 Mean water table levels for the different seasons over the years of observation. The reported 

values (h in mm) were measured relative to the weir (~ 25 cm above the NWS bottom level) at the 

outlet of the system.* is used to report period with water flow interruption for operation activities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean seasonal value: h (mm) 

 Winter (Dec-Feb) Spring (Mar-May) Summer (Jun-Aug) Fall (Sep-Nov) 

2013 50 55 38 65 

2014 38* 11* 45 83 

2015 76 66 76 70 

2016 94 114 84 - 
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Tab.2 Table of the most representative phytosociological relevés (PH Phragmites australis  

community (Phragmitetum australis (Gams 1927) Schmale 1939); TY Typha latifolia community; 

MY Myriophyllum aquaticum community; WM Wet Meadows  

(Surveys n. 2,6,8,25,26,31,32 were performed in June 2014; n. 10,12,27,28,29,33,34 were 

performed in June 2015; n. 13, 14,30,35 were performed in June 2016) (note: for index values, refer 

to the literature). 

 

 
survey  n° 2 6 8 10 12 13 14 25 26 27 28 29 30 31 32 33 34 35 
Surface (sq)  25 25 25 25 25 25 25 9 9 4 60 100 100 25 25 25 25 25 
Coverage (%)  100 100 100 100 100 100 100 80 80 100 80 80 100 50 70 80 100 100 
Species n°  6 3 6 6 7 5 5 4 6 3 5 5 2 10 12 11 7 10 

     PH                                     TY   MY    WM   

Phragmites australis (Cav.) Trin. 4 5 5 4 4 4 4 1 1 . . . . 1 + 2 1 2 

Calystegia sepium (L.) R.Br. + + + + + + + + + 1 . . . + + + + + 

Eupatorium cannabinum L. . . . + + + . . . . . . . . r . . r 

Stachys palustris L. . . + + + . . . . . . . . . . . . . 

Lythrum salicaria L. + . . + + . r + 1 . + + . + + 2 + r 

Typha latifolia L. . r r . . . . 3 2 4 . r + . . . . . 

Schoenoplectus tabernaemontani 
 (Gmel.) Palla 

r . . . r . . . + . . . . + r . . . 

Mentha aquatica L. . . r . . r . . . . . . . . . . . . 

Iris pseudacorus L. 1 . . + + . . . . . . . . . r . r + 

Oenanthe aquatica L. . . + . . . + . . . . . . . . . . . 

Apium nodiflorum (L.) Lag . . . . . . . . 1 + . . . . . . . . 

Myriophyllum aquaticum (Vell). Verdc. . . . . . . . . . . 5 5 5 . . . . . 

Juncus articulatus L. . . . . . . . . . . + . . . . . . . 

Lemna minor L. . . . . . . . . . . + + . . . . . . 

Echinochloa crus-galli (L.) P. Beauv. . . . . . . . . . . . . . 2 1 + 3 2 

Poa trivialis L. . . . . . . . . . . . . . + . + 1 . 

Juncus effusus L. . . . . . . . . . . . . . . . + . r 

Juncus bufonius L. . . . . . . . . . . . . . . + + . + 

Carex otrubae Podp . . . . . . . . . . . . . r r . . + 

Paspalum dilatatum Poir. . . . . . . . . . . . . . + + + . + 

Ranunculus sceleratus L. . . . . . . . . . . . . . . + + . . 

Ranunculus sardous Crantz . . . . . . . . . . . . . + + + . . 

Samolus valerandi L. . . . . . . . . . . . . . + . . . . 

Epilobium hirsutum L. . . . . . . . . . . . . . . . + + . 

 

 

 

 

 

 

 

 

 

 



Tab.3 - Results of ANOVA on the P. australis parameters. Within each factor, means in the same 

column followed by different letters are significantly different at p < 0.05 (Duncan test). 

Treatments Biomass (kg m
-2

) d.m.  N content (%) P content (%) 

Subarea 1 4.77 1.96 0.16 

Subarea 2 4.77 1.87 0.16 

Subarea 3 5.75 2.03 0.19 

Subarea 4 5.01 1.76 0.19 

Subarea 5 3.15 1.55 0.14 

Subarea 8 4.64 1.61 0.17 

Subarea 9 6.44 1.77 0.18 

 p = 0.3692 p = 0.4449 p = 0.5055 

 

 

Tab.4 - Results of ANOVA on the M. aquaticum parameters. Within each factor, means in the same 

column followed by different letters are significantly different at p < 0.05 (Duncan test). 

Treatments Biomass (kg m
-2

) d.m.  N content (%) P content (%) 

Subarea 6 0.91 b 2.20 0.44 

Subarea 7 1.43 a 1.88 0.30 

Subarea 10 0.80 b 2.05 0.30 

 p = 0.0378 p = 0.1759 p = 0.0669 

 


