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Parkinson’s disease is a neurodegenerative disorder characterized by progressive loss

of dopaminergic neurons of the substantia nigra pars compacta with a reduction of

dopamine concentration in the striatum. The complex interaction between genetic and

environmental factors seems to play a role in determining susceptibility to PD and may

explain the heterogeneity observed in clinical presentations. The exact etiology is not

yet clear, but different possible causes have been identified. Inflammation has been

increasingly studied as part of the pathophysiology of neurodegenerative diseases,

corroborating the hypothesis that the immune system may be the nexus between

environmental and genetic factors, and the abnormal immune function can lead to

disease. In this reviewwe report the different aspects of inflammation and immune system

in Parkinson’s disease, with particular interest in the possible role played by immune

dysfunctions in PD, with focus on autoimmunity and processes involving infectious

agents as a trigger and alpha-synuclein protein (α-syn).

Keywords: Parkinson’s disease, neurodegenerative disease, neuroinflammation, immune system,

alpha-synuclein, autoimmunity, microglia activation, autoantibodies

INTRODUCTION

Parkinson’s disease (PD) is a common disorder of the central nervous system (CNS) which
determines postural instability, bradykinesia, resting tremor and muscle rigidity. The reduction
of dopamine concentration in the striatum is related to the progressive death of neurons located
on the substantia nigra pars compacta (SNpc) (1). Although many theories attempted to explain
the causes of neuronal death in this region and to identify possible triggers, the exact PD etiology
remains unknown. A growing body of evidence indicates that the nervous and immune systems
act in synergy and maintain extensive communication (2–5). This interplay seems to underlie
neuroinflammation which, apart from PD, is a constant feature of numerous neurodegenerative
diseases such as Alzheimer’s disease, dementia with Lewy bodies, amyotrophic lateral sclerosis,
frontotemporal dementia or Huntington’s disease (6) and may have multiple causes, including
deficient regulation of immune responses associated with age advancement, infectious agents
(bacteria or viruses), exotoxins (e.g., pesticides or MPTP), or deposition of insoluble protein fibrils
(e.g., alpha-synuclein). In light of hypotheses seeing inflammation as the basis of neurodegenerative
processes, dysfunction of the immune systems adds to the list of other PD contributors linking
genetic mutations and environmental factors (Figure 1).

In this review, we aim at analyzing different aspects of inflammation and the immune system
in PD providing a brief summary about the general characteristics of inflammatory responses with
focus on a potential role of alpha-synuclein (α-syn), then moving forward to the analysis of innate
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immunity through an overview of microglial activity, and finally
describing roles of the adaptive cell-mediated immunity in the
disease. In addition, the hypothesis of PD as an autoimmune
dysfunction is also discussed.

INFLAMMATION IN PD

Already in 1988 McGeer’s research team suggested that
inflammation could be the first pathogenic mechanism of PD
(7). At the same time, it has been observed that the use
of non-steroidal anti-inflammatory drugs (NSAID) decreases
the risk of PD, and this could be considered as a proof
of inflammogenic characteristics of the disease (8). While
neuronal death has been described as evidence of the ongoing
CNS inflammation (9), several scientific reports documented
microglial activation, cytokine production and the presence
of autoantibodies univocally indicating inflammatory processes
in PD (10–13). In vitro assays employing a dopaminergic
neuron model showed some membrane proteins to be targeted
by antibodies present in CFS of affected patients (14). A
research performed on post-mortem excised brains revealed
higher concentrations of cytokines and proapototic proteins
in the striatum and cerebrospinal fluid (CSF) of PD patients
compared to levels found in healthy controls, pointing at
inflammation as a constant element of the disease (15). Through
a further immunohistological study, McGeer et al. discovered
several alterations in striatal microglial cells of patients with
PD that appeared to be activated by an increased synthesis
of proinflammatory cytokines (16). Nonetheless, it remains to
be explained whether inflammation represents the first cause
determining neurodegeneration or if it results from a selective
damage process and cell degeneration.

Anthropogenic pollutants account for a significant part of
neurotoxic agents. It’s enough to think about 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) as the most striking example
followed by certain pesticides released to the environment.
MPTP, which may be accidentally produced during the
manufacture of the analgesic opioid drug desmethylprodine
(MPPP), causes irreversible neuronal damage and parkinsonian
syndromes. Autopsies executed on subjects previously exposed
to MPTP showed the activation of microglia persisting for even
16 years (17). These results provided a further evidence that
an initial neuronal damage may lead to a neuroinflammatory
process and have been confirmed by studies conducted on animal
models, several of which demonstrated the ability of MPTP
(18), rotenone insecticide (19, 20), and 6-hydroxydopamine (6-
OHDA) (21) to activate microglial cells. In the same way, death
of dopaminergic neurons has been observed both in vitro and
in vivo after stimulation of microglia with lipopolysaccharides
(LPS) (22–27).

ALPHA-SYNUCLEIN AND
NEUROINFLAMMATION IN PD

A-syn is a soluble protein highly conserved among vertebrates,
with α-helical lipid-binding motif common to all synucleins.

FIGURE 1 | Autoimmune dysfunction in the etiology of Parkinson’s disease

(PD). The etiology of PD is multifactorial. It has been hypothesized that

inflammation may underly the neurodegenerative process, with the immune

system playing a key role. Viral infections are plausible triggers able to

stimulate the immune system in genetically susceptible individuals inducing

reactions that lead to autoimmune responses.

Even though the physiological role of α-syn is not well
understood, it is known to carry out crucial functions in
synaptic plasticity (28) and in the release of neurotransmitters
and synaptic vesicles (29, 30), thereby in regulating synaptic
transmission through the stabilization of the SNARE protein
complex, whose assembly and disassembly is essential for
a correct membrane fusion on neuron terminals (30, 31).
Consequently, α-syn is a key protein in the pathogenesis of PD.
Although the scientific literature provides countless studies often
yielding promising results, the reasons behind the accumulation
of α-syn along with its causal role in neurodegeneration are still
unresolved. However, it is ascertained that a higher expression
of wild-type protein leads to formation of α-syn inclusions in
neurons followed by cellular damage (32, 33).

According to post-mortem histological examinations of
PD patients, alteration and aggregation of α-syn have been
suggested to occur as an epiphenomenon probably mediated
by other conditions, such as neuroinflammation (34). It has
also been hypothesized that secreted extracellular α-syn can
immediately activate glial cells and subsequently induce neuronal
inflammation. Glial cells are able to capture and degrade α-
syn masses in an effective way similar to neurons (35). The
activation of microglia could encourage the production of
some protective molecules including brain-derived neurotrophic
factor (BDNF) but also proinflammatory cytokines, reactive
oxygen and nitrogen species (36) which favor the progression
of this neurodegenerative disease. In a study on murine
models, Harms et al. observed the recruitment of peripheral
innate immune cells such as monocytes and macrophage
induced by injection of α-syn fibrils into the SNpc (37).
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Additionally, the authors found that the activation of MHC-
II is as a primary step preceding the neurodegenerative
process. Wild type α-syn is prone to post-translational nitrate
modifications which enhance its propensity to aggregate (38).
Moreover, nitrated α-syn, not recognized as a self-protein,
can indirectly stimulate the maturation of harmful subsets
of T helper lymphocytes capable of eliciting profound neural
damages (39).

The maintenance of a perfect balance in the homeostasis of
extracellular α-syn is essential for the wellbeing of the brain.
Recently, a possible role of α-syn as a natural antimicrobial
peptide (AMP) has been outlined. AMPs belong to an ancient
family of proteins able to generate oligomers and fibrils
similar to α-syn and constitute the first line of defense against
pathogens acting as potent broad-spectrum antibiotics and
immunomodulators (40). The expression of AMPs has not been
confined to the brain but detected also in other tissues where
the intervention of the adaptive immune system is limited (41).
However, when dysregulated, the protective action of AMPs may
lead to various toxic effects (42, 43). Some authors highlighted
that α-syn exhibits antibacterial activity against Escherichia coli
and Staphylococcus aureus, antifungal activity against pathogenic
strains such as Aspergillus flavus, Aspergillus fumigatus and
Rhizoctonia solani, and antiviral activity against West Nile Virus
(WNV) (44, 45).

The alterations of bidirectional signaling within the gut-
brain axis has been intensely studied in the context of the
CNS inflammation involving microbial agents. Recently, Proteus
mirabilis commonly overrepresented in the gut microbiota of
PD mouse models has been shown to significantly induce motor
deficits, to selectively cause dopaminergic neuronal damage and
inflammation in substantia nigra and striatum, and to stimulate
α-syn aggregation in the brains and colons of PD mice (46). The
degree of acute and chronic inflammation in the intestinal wall
has been positively correlated with the expression of α-syn in the
enteric neurites of the upper gastrointestinal tract in pediatric
patients (47).

The role of viral infections in diverging signaling pathways
which regulate the establishment of innate immunity, such as
those including proinflammatory molecules and DNA sensing,
has been long hypothesized in PD pathogenesis. Herpes simplex
virus 1 (HSV-1) encodes a ubiquitin-specific protease (UL36USP)
which subverts type I IFN-mediated signaling, in particular
IFN-β-induced signaling, independently from its deubiquitinase
(DUB) activity (48). HSV-1 UL24 has the ability to inhibit the
activation of IFN-β and interleukin-6 (IL-6) promoters mediated
by cyclic GMP-AMP synthase (cGAS)—a newly identified
foreign DNA sensor, and the interferon-stimulatory DNA-
mediated IFN-β and IL-6 production during HSV-1 infection.
Moreover, UL24 was shown to selectively block nuclear factor
κB (NF-κB) without altering IFN-regulatory factor 3 promoter
activation (49).

Chronic neuroinflammation flanked by production of
cytokines probably doesn’t represent the initiating event of PD
but, if lasting, this phenomenon could lead to disease progression
through the involvement of microglia and astrocytes. It has been
observed that cytokines such as TNF and IFN-γ have a high

affinity to dopaminergic neurons (50, 51). In the CNS, these
cytokines are mostly produced by microglia that could induce
dopaminergic neurons with higher sensitivity (52). Several
studies confirmed that PD patients display higher concentrations
of TGF-β, IL-1β, IL-6, IFN-γ, and IL-1 in their CSF and
striatum than the healthy controls (51, 53, 54). Similarly, a direct
correlation between the raised levels of peripheral inflammatory
cytokines and the degree of disability has been observed (55).
According to a genetic screening for polymorphisms of DNA
encoding proinflammatory cytokines such as IL-6, iNOS,
IL-1β, and IL-1α (as shown in Figure 2), elevated quantities
of these molecular mediators increase the risk of developing
PD (56, 57). Schröder et al. (58) in their work reported
increased levels of IL-2, IL-6, and TNFα and of the monocyte
chemoattractant protein 1 (MCP-1) in the CSF of the PD patients
whereas no differences were found in sera, confirming previous
work (59).

INNATE IMMUNITY IN PD: MICROGLIA
ACTIVATION

Microglial cells are the principal actors of innate immunity in the
CNS responsible for the protection and restoration of neurons
(60). They can be activated by various external or internal
insults such as neuronal dysfunction, trauma or certain toxin.
Also, a wide range of molecules including viral or bacterial
proteins, α-syn, cytokines and antibodies are able to induce
the activation of microglia (61). Consequently, microglial cells
produce different molecular mediators (e.g., reactive oxygen
species, prostanoids and cytokines) with chemotactic and
immunomodulatory functions. One of them is tumor necrosis
factor (TNF) which in PD plays important roles contributing
to the regulation of synaptic plasticity (62–64). PD brains are
characterized by the presence of HLA-DR+ microglial cells and
raised levels of CD68, an activation marker for microglia and
macrophages, having a direct relation with α-syn aggregations
and the duration of disease (7, 65). Moreover, an increased
expression of MHC-II molecules in microglial cells has been
observed in chronic neuroinflammation but not in the CNS
of healthy subjects (66). Individuals with single nucleotide
polymorphism (SNPs) at MCH-II locus are prone to develop PD,
which indirectly proves the importance of adaptive immunity in
these patients (67).

Microglia can be activated by numerous factors such
as α-syn aggregates, neuromelanin, MMP-3, fibrinogen or
environmental LPS toxins, MPTP, pesticides (rotenone,
paraquat), proteasome and heavy metals, leading ultimately to
neuroinflammation, and destruction of dopaminergic neurons
(68). Studies employing positron emission tomography (PET)
confirmed this phenomenon to occur in PD (7, 61, 69).

The activation of microglia and astrocytes by viruses has been
shown to involve DNA-dependent activator of IFN regulatory
factor (DAI) which specifically acts as an intracellular sensor for
DNA viruses. DAI and its effector molecules are constitutively
expressed in microgl cells and astrocytes with upregulation
following viral challenge. In a DAI knockdown murine model,
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FIGURE 2 | Mechanisms summarizing the involvement of inflammatory and immune processes in Parkinson’s disease (PD). Once activated, microglial cells produce

cytokines able to recruit macrophages and monocytes from peripheral compartments to the CNS, leading to altered peripheral immunity and various inflammatory

processes within the CNS in PD patients. A possible mechanism of action giving rise to autoimmunity involves the reactivation of latent HSV-1 on infected sensory

neurons and production of antibodies targeting alpha-synuclein (α-syn) fragments homologous to viral proteins. It is plausible that α-syn acting as an AMP becomes

dysregulated during recurring infections with its consequent accumulation in the CNS.

the release and production of neurotoxic mediators by HSV-1
challenged microglia and astrocytes was significantly attenuated.
These findings suggest that DAI-mediated pathways may be

crucial in the mechanisms of innate immunity activated against
potentially lethal inflammation associated with neurotropic DNA
virus infection (70).
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ADAPTIVE IMMUNITY: ACTIVATION OF
CELL-MEDIATED AND HUMORAL
IMMUNITY IN PD

The adaptive immune system shows specific responses against
foreign antigens activating different T or B lymphocytes (71).
The surveillance of homeostasis in the CNS is guaranteed by
naïve and memory T cells (72, 73). T cell infiltration has been
discovered in post-mortem brain sections of PD patients (74).
The analysis of T cell subsets in peripheral blood mononuclear
cells (PBMC) of affected patients showed altered immune
responses and a decrease in the overall number of lymphocytes,
but not in their frequency (75, 76). What is more, PD presents
a particular immunological profile unseen in other neurological
diseases (OND), where increased numbers of memory T cells and
a reduced quantity of naïve T cells have been registered (77). As
well, low CD4+:CD8+ ratio and a shift to more IFN-γ− vs. IL-4-
producing T cells have suggested the presence of cytotoxic T cell
responses in PD patients (Figure 2) (75, 76, 78).

While a few specific proteins such as β-fibrinogen and
transaldolase have been identified as possible biomarkers within
T cells (79), it has been recorded that CD8+ subsets of PD
subjects express Vβ8 receptors at lower frequency than healthy
people (80). Moreover, several pathogenic alterations have been
found in peripheral blood lymphocytes (PBL) of PD patients,
for instance the presence of gaps in the DNA structure of
lymphocytes and oxidation in purine b, high level of apoptosis,
Cu/Zn superoxide dismutase activity, and the presence of
micronuclei (81, 82). Interestingly, DNAdamage has significantly
declined after treatment with levodopa (83). Research on the
overexpression of human α-syn through a recombinant adeno-
associated virus vector serotype 2 (AVV2-SYN) system in SNpc
of a murine model showed the infiltration of B and T cells
alongside the activation of microglia suggesting that α-syn can
recall the cells of adaptive immunity and stimulate inflammation
(84). Recently, an important reduction in the number of T and
B lymphocytes in mice knocked out for α-syn compared to
wild type animals has been observed (85). A multiparameter
flow cytometry analysis in patients with PD revealed a strong
phenotypical shift of intrathecal monocytes and an elevated
percentage of activated T lymphocytes coupled with an increase
of proinflammatory cytokines in the CFS of PD patients (58).

Recently, Sulzer et al. (86) published a seminal work
reporting selected peptides derived from two regions of α-syn
which were highly recognized by specific T cell sets in PD
patients. This response was predominantly mediated by IL-4 or
IFNγ-producing CD4+ T cells, with likely contributions from
CD8+/IFNγ producing T cells. Moreover, both α-syn epitopes
originating from the natural processing of extracellular native α-
syn present in blood and the fibrilized α-syn associated with PD
triggered T cell responses. These epitopes were displayed by two
MHC class II beta chain alleles, DRB5∗01:01 and DRB1∗15:01,
associated with PD and by others not specific to PD (α-syn
is not endogenously expressed by MHC class II expressing
cells). The authors concluded that around 40% of the PD
patients displayed immune responses to α-syn epitopes which

may reflect varying trends in disease progression or impact from
environmental factors.

Humoral immunity plays an important role in the
etiopathogenesis of PD and many other neurodegenerative
diseases. Given a reduction in the number of B cells as a
frequent condition in PD patients (75, 87), it has been suggested
that the proliferation of lymphocytes might be influenced by
levodopa treatment, however some studies did not confirm
such a correlation (76, 78). On the other hand, PD patients
bear elevated levels of antibodies against dopamine (DA)
neurons in comparison to healthy subjects (14, 88) while further
investigations showed higher concentrations of antibodies
targeting several peptides of α-syn and their homologs derived
from HSV-1. It has been hypothesized that, in genetically
predisposed individuals, previous HSV-1 infections may induce
the production of autoantibodies through the molecular
mimicry mechanism (13). Neurohistological studies disclosed
the presence of immunoglobulins near dopaminergic neurons
in the brains of patients with PD (89) which indicates a
possible interaction between microglia and B lymphocytes.
Finally, research on mouse models transfected with AVV-α-syn
vector showed a significant deposition of IgG in the midbrain,
suggesting humoral immunity to exert a remarkable function in
the process of neurodegeneration in PD (84).

AUTOIMMUNITY IN PD

Environmental agents and the exposure to vectors (people,
animals) may increase the risk of developing PD through
transmission of viral infections or bacterial toxins. A case-control
study conducted on a large number of PD patients proved
a strong association between the disease and previous severe
influenza, whereas an inverse association was observed regarding
childhood infections, in particular red measles. Furthermore,
an occupational exposure to domesticated animals increased
the risk of PD (90). Viral infections most likely are not the
primary cause but may act as triggers inducing the attack by
the immune system against the CNS, dopaminergic neurons in
particular. Numerous infectious agents are able to overcome
the blood-brain barrier (BBB) and elicit inflammatory processes
of the brain parenchyma, such as encephalitis. It is currently
known that HSV-1 is one of the etiological agents responsible for
sporadic viral encephalitis that often brings to neurological deficit
in surviving patients. In murine models, HSV-1 determined
a persistent viral lithic gene expression in ependyma during
latency determining a chronic inflammatory response that the
memory T cells were unable to counteract (91). Other studies
in rodents showed that the H5N1 avian influenza virus passed
the BBB inducing neurological signs, while a viral infection
determined phosphorylation and aggregation of α-syn along
with a substantial loss of dopaminergic neurons (92). An
analogous study underlines that the highly pathogenic CA/09
H1N1 subtype was able to undermine microglial activation even
without reaching the CNS (93). It is therefore conceivable that
infectious agents do not act directly causing neuronal damage
but, through secondary mechanisms such as the activation of the
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immune system trigger reactions leading to typical PD lesions.
Other authors documented that people infected with hepatitis C
virus (HCV) had a 30% greater likelihood of developing PD than
healthy subjects (94). Similarly, a possible association between
herpes simplex virus type 1 (HSV-1) infections and PD as higher
antibody titers against HSV-1 were observed in the serum of
PD patients but not in negative controls (95–97). This trend has
been further confirmed through studies employing the micro-
indirect hemagglutination (IHA) technique (98), however no
increased production of antibodies against HSV-1 was observed
in the CSF of PD when compared to controls (97, 98). The
hypothesis that some viral triggers are related to the occurrence of
CNS disorders such as Alzheimer’s disease (AD) or PD has been
further confirmed by investigations conducted in vivo (99, 100)
and in vitro (101). The authors demonstrated that in cultured
mouse cortical neurons, HSV-1 infection reduced the expression
of synaptic proteins along with synaptic transmission through
activation of glycogen synthase kinase (GSK)-3 and intracellular
accumulation of amyloid beta protein (Aβ) determining synaptic
dysfunctions which underlies cognitive impairment in AD. The
above-mentioned findings have paved the way for a new branch
of research aimed at unraveling the role of autoimmunity in
PD and its implication in the loss of dopaminergic neurons
typical to this pathology. Many efforts have been made in
defining the extent to which autoimmunity is triggered by
environmental variables, e.g., infective agents, metals, or other
sources of inflammation. Cebrian and co-authors reported that
human catecholaminergic substantia nigra and locus coeruleus
neurons express MHC-I, therefore they may present antigens in
response to exogenous agents and be particularly susceptible to T
cell-mediated cytotoxic attack (102).

The importance of HSV-1 infection in triggering
autoimmunity of PD has been further highlighted in connection
with the mechanism of molecular mimicry and an immunologic
cross-reactivity between HSV-1 and human α-syn leading in turn
to the destruction of dopaminergic neurons of the substantia
nigra (13). This study showed that the level of antibodies against
HSV-1 peptides in PD patients was statistically higher than in
healthy volunteers; the same trend was seen against human α-syn
peptides homologous to viral epitopes. Similarly, molecular
mimicry has been observed between a repeat region in the
C-terminal half of the latent membrane protein 1 (LMP1) of
Epstein-Barr virus (EBV) and the C-terminal region of α-syn.
The authors hypothesized that antibodies directed against LMP1
present in genetically susceptible individuals cross-react with the
homologous epitope on α-syn inducing its oligomerization (103).

A possible implication of HSV-1 in autoimmunity has
been evaluated through another study conducted using the
intracellular cytokine (ICC) method which showed that,
alongside an alteration of cell patterns, the percentages of CD3,
CD4, CD8, and CD56 lymphocytes were lower in PD patients
compared to healthy subjects (87). The same authors reported the
result of flow cytometry analysis which illustrates that human α-
syn peptides and their HSV-1 homologs could remarkably induce
the production of NK, CD4, CD8, and cells producing TNF-α
in PD patients (87). The two homologous epitopes similarly

stimulated T cell responses in a strongly correlated fashion. In
addition, the immunogenic properties of these peptides were
seen in cells secreting TNF-α which may play an important
role in the pathogenesis of PD (87). In other studies, TNF-α
exerted an effect on the plasticity of dopaminergic neurons
which are particularly susceptible to this proinflammatory
cytokine. The ligation of TNF-α with its receptors
(TNFRs) is known to cause neuronal death under certain
circumstances (62–64).

Further investigation confirmed the presence of autoimmune
processes in PD without, however, indicating the triggering
agents (86). Blood flow cytometry analysis performed in order to
see how T cells respond against different α-syn portions showed
a strong response against two specific peptides of this protein,
namely Y39 and S129, in PD patients. In parallel, a relation
between T cell responses and HLA risk alleles demonstrated that
the main responses against α-syn epitope Y39 were expressed by
four specific risk alleles. This study asserts the hypothesis that
α-syn may activate T cell responses implicated in cell-mediated
immunity, particularly autoimmunity, of PD.

A similar scenario is observed in the experimental
autoimmune encephalitis model of multiple sclerosis (MS),
as myelin proteins used to produce autoimmunity are not
endogenous toMHC class II expressing cells but are accumulated
and processed for MHC class II to be displayed by antigen
presenting cells and microglia. In other autoimmune disorders,
MHC class II response may precede MHC class I response (104).
Moreover, as in T1D which features epitopes derived from both
preproinsulin and additional proteins, it is plausible that PD-
related epitopes derived from α-syn and supplementary peptides
including molecules of infectious origin may be characterized
by sequence homology (105). T cell responses in MS and T1D
were shown to recognize self epitopes homologous to antigens
from infectious microrganisms associated with the diseases.
In MS, epitopes of EBV and Mycobacterium avium subsp.
paratuberculosis homologous to IRF5 induced both humoral and
cellular immune responses (106, 107).

It remains ambiguous whether autoimmunity is the primary
cause or a consequence of the neurodegenerative process during
progression of the disease. A substantial body of data suggest
the possibility that autoimmunity may have an important role
in the pathogenesis of PD and, if confirmed, a considerable
revolution in terms of diagnostic and therapeutic approaches
(e.g., immunotherapies and using T cells as biomarkers) should
be expected in the near future.
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