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Abstract

Several pattern recognition and classification techniques
have been applied to the biometrics domain. Among them,
an interesting technique is the Scale Invariant Feature
Transform (SIFT), originally devised for object recognition.
Even if SIFT features have emerged as a very powerful im-
age descriptors, their employment in face analysis context
has never been systematically investigated.

This paper investigates the application of the SIFT ap-
proach in the context of face authentication. In order to de-
termine the real potential and applicability of the method,
different matching schemes are proposed and tested using
the BANCA database and protocol, showing promising re-
sults.

1. Introduction

Face recognition is possibly one of the first cognitive
processes used by humans to recognize familiar people.
Even though other sensorial cues are also adopted, like
speech, gait and at birth even odor, the ability to recognize
known faces is present already at birth. This and other is-
sues make face recognition a very interesting an challenging
research area in biometrics and computer vision.

Face recognition is certainly a complex problem, but
essentially can be reduced to a pattern classification task.
Many pattern recognition techniques have been applied and
others have been developed ad hoc [22]. In the case of face
analysis an additional complexity is due to several features
of faces which are not common to other pattern recognition
problems:

• the curse of dimensionality (at least one 2D image
must be processed) is worsen by the variability of the
pattern to be classified.

• The face is not a rigid object and it is continuously
subject to non-rigid deformations.

• What makes faces different is also what they have in
common, for example two eyes and a mouth.

• Even though a face is generally processed as a two-
dimensional object, it is not, most ambiguities arise
and some hypotheses fail because of the 3D structure
of the face and its motion in space.

Due to these facts, the analysis of human faces is in-
herently an ill-posed problem [2]. For this reason, dif-
ferent techniques have been applied to constrain the pat-
tern matching and classification processes. Among them,
it is worth citing all methods based on the reduction of the
face-space dimensionality by means of different optimiza-
tion processes, such as the Principal Component Analy-
sis (PDA), Linear Discriminant Analysis (LDA), Fisher
Discriminant Analysis (FDA) and Independent Component
Analysis (ICA) [17]. Other techniques are based on con-
straining and modeling the appearance of the face on the
image, both as shape and texture information. Several meth-
ods have been based on the extraction and classification of
salient facial features by means of multi-scale filtering with
Gabor kernels [20, 4, 21, 9]. Along this direction, the tech-
niques based on the estimation and progressive warping of
a ”morphable face model” explicitly derive a constrained
mapping between the 3D face and its two-dimensional ap-
pearance on the image [16].

Recently, the Scale Invariant Feature Transform (SIFT)
has emerged as a cut edge methodology in general object
recognition as well as for other machine vision applications
[13, 11, 12, 10, 5]. One of the interesting features of the
SIFT approach is the capability to capture the main gray-
level features of an object’s view by means of local patterns
extracted from a scale-space decomposition of the image.
In this respect, the SIFT approach is similar to the Local
Binary Patterns method [21, 9], with the difference of pro-
ducing a view-invariant representation of the extracted 2D
patterns.

Despite the wide applicability and potential of this tech-
nique, for the classification of 2D images, it was never ap-
plied to face recognition/authentication, at least to the best
of our knowledge. In this paper a first attempt to apply
the SIFT for face classification is reported. The basic SIFT
scheme is tested on a standard face database [1] with three
different matching techniques.
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In general, the a-priori knowledge of the geometry of the
object to be recognize, can be successfully used to improve
the recognition performances in both accuracy and speed
[8, 15]. For this reason, the core SIFT algorithm has been
adapted to the classification of face images according to
three different schemes. In the proposed solutions the ex-
tracted features are selected and grouped according to the
face geometry, driven by the knowledge of the position of
few facial landmarks (typically the mouth and the eyes).

From the obtained results it is evident that the classifica-
tion is more accurate when the information about the face
geometry is used to drive the selection of the features. In
this view, the real potential and applicability of this tech-
nique for face recognition is investigated.

2. Scale Invariant Feature Transform

In the 2004 David Lowe presented a method to extract
distinctive invariant features from images [13]. He named
them Scale Invariant Feature Transform (SIFT). This par-
ticular type of features are invariant to image scale and ro-
tation, and are shown to provide robust matching across a
a substantial range of affine distortion, change in 3D view-
point, addition of noise, and change in illumination.

They are well localized in both the spatial and frequency
domains, reducing the probability of disruption by occlu-
sion, clutter, or noise. Large numbers of features can be
extracted from typical images with efficient algorithms. A
typical image of size 500x500 pixels will give rise to about
2000 stable features (although this number depends on both
image content and choices of various parameters). In ad-
dition, the features are highly distinctive, which allows a
single feature to be correctly matched with high probability
against a large database of features, providing a basis for ob-
ject and scene recognition. The cost of extracting these fea-
tures is minimized by taking a cascade filtering approach,
in which the more expensive operations are applied only at
locations that pass an initial test. Following are the major
stages of computation used to generate the set of image fea-
tures:

1. Scale-space extrema detection The first stage of com-
putation searches over all scales and image locations.
It is implemented efficiently by using a difference-of-
Gaussian function to identify potential interest points
that are invariant to scale and orientation. Given a
Gaussian-blurred image,

L(x, y, σ) = G(x, y, σ) ∗ I(x, y)

where I(x, y) is the given image and

G(x, y, σ) =
1

2πσ2
e−

x2+y2

σ2

Figure 1. The blurred images at different scales, and the computa-
tion of the difference-of-Gaussian images (from [13]).

Figure 2. Local extrema detection, the pixel marked with a x is
compared against its 26 neighbors in a 3 x 3 x 3 neighborhood that
spans adjacent DoG images (from [13]).

to efficiently detect stable keypoint locations in scale
space, the method proposed in [11] could be used.
It makes use of the scale-space extrema in the
difference-of-Gaussian function convolved with the
image, D(x,y,), which can be computed from the dif-
ference of two nearby scales separated by a constant
multiplicative factor k:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ) − L(x, y, σ)

Interest points (called keypoints in the SIFT frame-
work) are identified as local maxima or minima of the
DoG images across scales. Each pixel in the DoG
images is compared to its 8 neighbors at the same
scale, plus the 9 corresponding neighbors at neighbor-
ing scales. If the pixel is a local maximum or mini-
mum, it is selected as a candidate keypoint.
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2. Accurate keypoint localization: At each candidate
location, a detailed model is fit to determine location
and scale. Keypoints are selected based on measures
of their stability.

Once a keypoint candidate has been found by compar-
ing a pixel to its neighbors, the next step is to perform
a detailed fit to the nearby data for location, scale, and
ratio of principal curvatures. This information allows
points to be rejected when having low contrast (and
therefore be sensitive to noise) or are poorly localized
along an edge.

3. Orientation assignment: One or more orientations
are assigned to each keypoint location based on local
image gradient directions. To determine the keypoint
orientation, a gradient orientation histogram is com-
puted in the neighborhood of the keypoint (using the
Gaussian image at the closest scale to the keypoint’s
scale). The contribution of each neighboring pixel is
weighted by the gradient magnitude and a Gaussian
window with a σ that is 1.5 times the scale of the key-
point. Peaks in the histogram correspond to dominant
orientations. A separate keypoint is created for the di-
rection corresponding to the histogram maximum, and
any other direction within 80% of the maximum value.
All the properties of the keypoint are measured relative
to the keypoint orientation, this provides invariance to
rotation.

4. Keypoint descriptor: The local image gradients are
measured at the selected scale in the region around
each keypoint. These are transformed into a represen-
tation that allows for significant levels of local shape
distortion and change in illumination. Once a keypoint
orientation has been selected, the feature descriptor is
computed as a set of orientation histograms on 4 × 4
pixel neighborhoods. The orientation histograms are
relative to the keypoint orientation, the orientation data
comes from the Gaussian image closest in scale to the
keypoint’s scale. Just like before, the contribution of
each pixel is weighted by the gradient magnitude, and
by a Gaussian with σ 1.5 times the scale of the key-
point. Histograms contain 8 bins each, and each de-
scriptor contains an array of 4 histograms around the
keypoint. This leads to a SIFT feature vector with
4 × 4 × 8 = 128 elements. This vector is normalized
to enhance invariance to changes in illumination. In
this way the descriptor is invariant to affine changes in
illumination.

Some examples of the application of the SIFT algorithm to
face images (database BANCA [1]) are shown in Fig. 3
and 4. In particular in the former three images of the same
subject are displayed, showing that common features are

Figure 3. Example of images with extracted sift. The images rep-
resent the same subject in different pose. The black dot indicate
some common stable SIFT for all three images

present (see for example the black dots): there is a possibil-
ity of matching corresponding features. The latter images
represent three different subjects: in this case SIFT features
are very different.

3. Matching strategies

To authenticate a face, the SIFT features computed in the
test image should be matched with the SIFT features of the
template. In this section different matching methodologies
are investigated. They are different from the Lowe’s method
[13], in the sense that they are simpler and more related to
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Figure 4. Example of images with extracted sift. The images rep-
resent different subjects. The SIFT are very different.

the problem we are addressing. Moreover the methodol-
ogy proposed in [13] is devoted to recognition rather than
authentication (recognition implies finding the best match,
solved in [13] using a modified Hough Transform).

In each matching strategy the starting point is repre-
sented by two sets of features, computed on the testing and
on the template images. As explained in Section 2, each fea-
ture is composed by four parts: the locus (location in which
the feature has been found), the scale, the orientation and
the descriptor. This last is a vector of 128 values. For sim-
plicity, given a keypoint ki, let’s call F (ki), L(ki), S(ki)
and O(ki) its feature descriptor, its location, its scale and
its orientation, respectively.

The different methodologies could employ all or only a
part of the whole information included in the SIFT feature.

3.1. Minimum pair distance

This methodology is the simplest one: computing the
distance between all pairs of keypoint descriptors in the two
images and use as matching score the minimum distance.
More formally, given two images Itest and Itemp, repre-
senting the testing and the template images, respectively,
two set of features are computed:

• K(Itest) = {kItest
1 , kItest

2 ...kItest

M }

• K(Itemp) = {kItemp

1 , k
Itemp

2 ...k
Itemp

N }
The matching score DMPD(Itest, Itemp) (Minimum Pair
Distance) is computed as

DMPD(Itest, Itemp) = min
i,j

(d(F (kItest
i ), F (kItemp

j )))

where d(F (ki), F (kj)) is a distance between descriptors.
In this paper the simple Euclidean Distance has been inves-
tigated, even if more complicated ones could be employed
(for example Correlation — see [19]).

This simple scheme does not employ neither the location
nor the scale and orientation information: it represents a
real base-line system. The main idea under this method is
that there is one point of the face which contains a very
distinctive feature of the subject, which could be found in
the testing image.

3.2. Matching eyes and mouth

This second method takes into account the fact that most
part of the face information is located around the eyes and
the mouth [3, 18, 14]. Once the position of these landmarks
is determined, a matching strategy can be driven to consider
only SIFT features belonging to such image areas, neglect-
ing other less informative points.

Different techniques have been proposed for determin-
ing the position of eyes and mouth (see for example [6]
and the references therein): here we assume that such posi-
tions are known. Given an image I , two sub images are ex-
tracted: one located around the eyes and one located around
the mouth, called Ieyes and Imouth, respectively. Then the
matching is performed in a pair-wise manner, that is eyes
with eyes and mouth with mouth. Finally the two distances
are averaged. More formally:

DEM (Itest, Itemp) =
1
2
DMPD(Ieyes

test , Ieyes
temp) +

+
1
2
DMPD(Imouth

test , Imouth
temp )
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3.3. Matching on a regular grid

The first methodology does not take into consideration
the location of the features: this represents a problem, since
the two keypoints corresponding to the minimum distance
could be not related to the same face part. In other words
all parts of the face could be matched with all others, which
is not realistic. This fact is alleviated in the second method-
ology, since only eyes and mouth are considered. Neverthe-
less also in this case features located on the right eye could
be matched with features located on the left one. There-
fore, if the images are more or less registered, a location-
dependent matching could be performed. Registration is a
particularly important problem in face authentication and
recognition, and should be solved. Nevertheless it is com-
pletely a different problem from recognition / authentica-
tion, and should be solved before applying matching tech-
niques. In fact, in all the recent databases (such as BANCA
[1]) the positions of the eyes are given in order to permit the
pre-registration of the images: only the matching methodol-
ogy is analyzed. In this paper we assume already registered
images.

The matching methodology presented in this paragraph
subdivides the images in different sub-images, using a reg-
ular grid with overlapping. The matching between two im-
ages is then performed by computing distances between all
pairs of corresponding sub-images, and finally averaging
them. More formally, the two images are subdivided in a
set of partially overlapped sub-images, called I1...IT . After
a preliminary experimental evaluation (not shown here) we
found that sub-images of dimensions 1/4 and 1/2 of width
and height, respectively, represent a good compromise be-
tween accuracy of localization and possibility of recovering
from registration errors. The overlapping was set to 25%.

Finally, the matching score DRG(Itest, Itemp) (Regular
Grid) is computed as the average between the matching
scores computed on the pairs of images, namely:

DRG(Itest, Itemp) =
1
T

T∑

t=1

(DMPD(It
test, I

t
temp))

4. Experimental evaluation

The following face authentication experiments were car-
ried out on the BANCA database [1]—a multimodal data-
base, containing both face and voice. The part used for
face authentication is composed by 52 subjects (26 female
and 26 male) For each subject, 12 different sessions were
recorded under different conditions (4 controlled, 4 de-
graded and 4 adverse). For each session, 5 images were
extracted, and used for training and for client and impostor
testing.

In the BANCA protocol, 7 different experimental con-
figurations have been defined, of increasing difficulty. In

our experiment we used the Matched Controlled (MC) pro-
tocol, where the images gathered from the first session are
used for training, whereas for testing images from second,
third, and fourth sessions are employed. In this case we
used registered images, that is images for which landmarks
positions are known: this permit to register the images and
concentrate only on recognition results. In particular, in the
preprocessing phase, all the images were processed using
a simple geometric normalization, followed by histogram
equalization. In the geometric normalization, the face was
mapped to the 210 pixel high by 200 pixel wide output im-
age. The mapping used an affine transform—only transla-
tion, rotation and scaling. The image was transformed such
that the manually annotated eye positions were mapped to
points 25% in from the edges and 35% down from the top of
the output image. The histogram equalization was carried
out using a standard approach [7].

In order to get indicative results, the testing images are
divided into two groups, G1 and G2, of 26 subjects each.
The error rate was computed using the following procedure
[1]:

• perform the experiment on G1, getting G1 scores

• perform the experiment on G2, getting G2 scores

• compute the ROC curve using G1 scores, determine
the Prior Equal Error Rate and the corresponding
threshold θG1

• use the threshold θG1 to compute False Accep-
tance Rate (FARG2(θG1)) and False Rejection Rate
(FRRG2(θG1)) on the G2 scores

• compute the Weighted Error Rate (WER(R)) on G2 by
determining

WER(R) =
FRRG2(θG1) + R · FARG2(θG1)

1 + R

for R= 0.1, 1 and 10

• compute WER(R) on G1 by a dual approach

The parameter R indicates the cost ratio between false ac-
ceptance and false rejection.

The SIFT features have been computed with Lowe’s
code1. Both the three matching methodologies have been
tested: accuracies of authentication are proposed in Table
1 and 2. In particular, Prior Equal Error Rates for G1 and
G2 are presented in Table 1 (the corresponding ROC curves
are shown in Fig. 5), whereas Weighted Error Rates are
proposed in Table 2, for three different values of R.

From the tables and the figures it is evident that taking
into account the context information is beneficial: when

1Available at http://www.cs.ubc.ca/ lowe/keypoints/.
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MPD EM RG
Prior EER on G1 17.15% 15.38% 11.31%
Prior EER on G2 8.69% 6.38% 3.85%
Average 12.92% 10.88% 7.58%

Table 1. Prior EER on G1 and G2 for the three methods: ’MPD’
stands for Minimum Pair Distance, ’EM’ for Eyes and Mouth,
’RG’ for Regular Grid.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(False Positive)

1 
−

 P
(F

al
se

 N
eg

at
iv

e)

MPD
RG
EM

(G1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(False Positive)

1 
−

 P
(F

al
se

 N
eg

at
iv

e)

MPD
RG
EM

(G2)

Figure 5. ROC curves for G1 and G2: ’MPD’ stands for Minimum
Pair Distance, ’EM’ for Eyes and Mouth, ’RG’ for Regular Grid.

comparing corresponding parts of the face a significant im-
provement is obtained. In particular an improvement is
gathered when concentrating the comparison only on mouth
and eyes. Moreover, the best result is obtained with the
Regular Grid methodology, that is when comparing corre-
sponding parts. From these results emerges the crucial role
played by the localization information in the matching.

MPD EM RG
WER (R=0.1) on G1 22.56% 20.55% 15.97%
WER (R=0.1) on G2 7.40% 4.42% 3.04%
WER (R=1) on G1 17.95% 14.94% 10.51%
WER (R=1) on G2 9.52% 8.14% 6.35%
WER (R=10) on G1 13.33% 9.32% 5.06%
WER (R=10) on G2 11.64% 11.86% 9.65%

Table 2. Different WER for the three methodologies: ’MPD’
stands for Minimum Pair Distance, ’EM’ for Eyes and Mouth,
’RG’ for Regular Grid.

5. Conclusions

In this paper the use of SIFT features in the context of
face authentication has been investigated. Three different
matching techniques have been proposed, namely:

• computing the distance between all pairs of keypoint
descriptors in the two images and use as matching
score the minimum distance.

• Use only SIFT features belonging to the areas around
the eyes and mouth.

• The matching is performed considering the SIFT fea-
tures located along a regular grid and matching over-
lapping patches.

The three techniques have been tested on the G1 and G2
image sets from the BANCA database. From the experi-
ment carried out, the matching performed along a regular
grid outperforms the other two methods, while the mini-
mum pair distance gives the poorest results. Even though
the obtained scores do not match the best face classifier
tested on this database, still they confirm the applicability
of the SIFT features in this context. It is worth noting that
no accurate normalization of the illumination and shape has
been performed.

From a first application of the SIFT features it appears
that the feature matching process must be driven to cope
for the peculiarities of the face shape and variability. On
the other hand, the SIFT algorithm itself should be further
analyzed and adapted to be fully tailored to the face shape
and texture. This is a first attempt toward this direction,
but more sophisticated matching techniques and the appli-
cation of proper feature classifiers will be investigated in
the future. In order to better understand the real potentiality
of the method we will compare it with other methods (e.g.
PCA or LDA). Another problem to be investigated in the fu-
ture is the possibility of using SIFT to solve the registration
problem.
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