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ActiveDynamic Stereo Vision 
Enrico Grosso and Massimo Tistarelli 

Abstract-Visual navigation is a challenging issue in automated 
robot control. In many robot applications, like object manipula- 
tion in hazardous environments or autonomous locomotion, it is 
necessary to automatically detect and avoid obstacles while plan- 
ning a safe trajectory. In this context the detection of corridors of 
free space along the robot trajectory is a very important capabil- 
ity which requires nontrivial visual processing. In m t  cases it is 
possible to take advantage of the active control of the cameras. 

In this paper we propose a cooperative schema in which mo- 
tion and stereo vision are used to infer scene structure and de- 
termine free space areas. Binocular disparity, computed on sev- 
eral stereo images over time, is combined with optical flow from 
the same sequence to obtain a relative-depth map of the scene. 
Both the time-to-impact and depth scaled by the distance of the 
camera from the fixation point in space are considered as good, 
relative measurements which are based on the viewer, but cen- 
tered on the environment. 

The need for calibrated parameters is considerably reduced by 
using an active control strategy. The cameras track a point in 
space independently of the robot motion and the full rotation of 
the head, which includes the unknown robot motion, is derived 
from binocular image data. 

The feasibility of the approach in real robotic applications is 
demonstrated by several experiments performed on real image 
data acquired from an autonomous vehicle and a prototype cam- 
era head. 

Index Terms-Active vision, dynamic vision, time-to-impact, 
stereo vision, motion analysis, navigation. 

I. INTRODUCTION 

robot with “intelligent” behavior must be capable of A coping with unprecise situations. However, this capabil- 
ity not always imply very sophisticated high-level reasoning 
capabilities. For example, collecting soda cans in an unpre- 
dictable indoor environment and putting them in a predefined 
place is a kind of intelligent task which has been demonstrated 
to be solvable by means of basic sensory capabilities coordi- 
nated by reflex-type (or insect-like) behaviors [l], [2]. Even 
though more sophisticated visual and reasoning processes can 
be envisaged, still many other, even complex operations can be 
performed relying on reflexes to visual stimuli [3], [4]. 

One of the most interesting and useful aspects of the active 
vision paradigm is the use of motion (and in general the ability 
of the observer to act and interact with the environment) to 
guide confinuous image data acquisition to enrich the meas- 
urements of the scene. Overall, this implies an increase in the 
amount of incoming data which, in.turn, may require an ap- 
propriate data-reduction strategy (for example limiting the 
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frequency content of the image sequence with appropriate 
transformations like the log-polar mapping [W. On the other 
hand, this strategy can enormously simplify the computational 
schema underlying a given visual task or measurement. In the 
last years several examples have been presented, where active 
movements can induce more information and allow simpler 
computational schema to be adopted 161, [71, 181, 191, [lo]. 
This is very important wishing to design working systems, 
where simpler processes allow the implementation of real-time 
systems, which can perform several measurements over time. 

In this paper we face the problem of “visual navigation”. 
The main goal is to perform task-driven measurements of the 
scene, detecting corridors of free space along which the robot 
can safely navigate. The proposed schema combines optical 
flow and binocular disparity, computed on several image pairs 
over time. 

In the past the problem of fusing motion and stereo in a 
mutually useful way has been faced by different researchers. 
Some of them integrated the measurements obtained from ste- 
reo techniques repeated over time according to the relative 
uncertainty, building a consistent representation of the envi- 
ronment [ l l ] ,  [12], [13], [14]. Ahuja and Abbott [15] used 
exploratory fixations to apply several modalities like stereo, 
focus and vergence to recover the object structure and disam- 
biguate occlusions. With the same purpose, Grosso et al. [16] 
integrated depth measurements derived from both stereo dis- 
parity and optical flow. In [17] a simple stereo technique, ap- 
plied to a single image scan-line, is used to determine the focus 
of expansion relative to the horizon and control the heading of 
a robot vehicle. It is interesting to note that the low complexity 
of this technique allows to continuously repeat the measure- 
ments over time, improving the motion control. In general, it is 
possible to make a distinction between the approaches where 
the results of stereo and motion analysis are considered sepa- 
rately and the rather different approach based upon more inte- 
grated relations. Within this group falls the work reported in 
[18], [19] where the temporal derivative of disparity is ex- 
ploited, and the dynamic stereo approach [20], [21] considered 
in this paper. 

Developing a sensory system for autonomous navigation 
(considered as a possible application of the approach pre- 
sented in this paper), the integration of multiple visual modali- 
ties can be the key to overcome some common problems: 

Calibration. Many vision algorithms rely on the knowl- 
edge of some well calibrated parameters relative to the 
camera-robot system [22]. In this paper stereo disparity 
and optical flow are used to avoid the explicit calibration 
of external parameters. In particular, this method pre- 
vents the drawbacks of earlier techniques like the use of 
the baseline length and the need for the knowledge of the 
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robot’s motion. Moreover, by exploiting “active behav- 
iors” it is possible to rely on self-calibration techniques 
which reduce the number of required parameters [23], 
[24]. This methodology is applied to determine the focal 
length of the cameras, which is required by the stereo 
algorithm. 
Accuracy. Even though accuracy can be improved by a 
statistical integration of independent measurements [25], 
[12], it has been shown [26] that accurate estimates are 
not necessary for navigation purposes. For this reason 
this topic is not explicitly addressed in this paper, but the 
analysis is focussed on the robustness of the measure- 
ments which is crucial for safe vehicle control. 
Robustness. Mainly for safety reasons the vision system 
must be very robust with respect to “noise,” either elec- 
tronic, due to the sensors, or dynamic, due to inaccurate 
motion of the vehicle. Moreover, the result of the visual 
processing must be error-free, even at the cost of “false 
alarms.” Algorithmic robustness can be certainly im- 
proved by providing independent estimates of the same 
quantity, like those obtained from different visual mo- 
dalities, and a method to combine them. Moreover, ro- 
bustness and numerical stability can be also achieved by 
adopting a cooperative schema in which different visual 
cues contribute to the estimation of scene structure. In 
this paper we show that, computing the time-to-impact 
from the temporal evolution of disparity, the error in the 
final estimate does not depend on differential measure- 
ments (which are notoriously not very robust), which is 
the case computing the time-to-impact directly from opti- 
cal flow. 
Metrics. It is still not well understood which is the best 
metric to use representing the environment. Standard 
metrics, like inches or centimeters, are not well suited 
because they require an additional calibration to relate 
them to the image-derived data and to the motion control. 
On the other hand, if an active interaction with the envi- 
ronment is engaged [7], [6], metrics which are intrinsic to 
the observer, are certainly best suited to guide the robot’s 
behavior [lo], [9], [27]. In this paper the time-to-impact 
is computed, a viewer-based metric among the most use- 
ful for navigation. Other viewer-based metrics are also 
addressed like the depth scaled by the inter-ocular base- 
line, or by the distance from a reference point in space 
[ioi, 191. 

In this paper, binocular disparity, computed for each image 
pair over time, and monocular optical flow are combined, via 
simple relations’, to obtain a 2YiD representation of the scene, 
suitable for visual navigation, which is either in terms of time- 
to-impact or relative-depth. The knowledge of the baseline 
length and the robot motion are not needed. The time-to- 
impact is computed avoiding the estimation of the Focus of 
Expansion from optical flow, while stereo reconstruction is 
used to compute the full rotation of the head-eye system in 

1. Defining simple computational schemes is rather important to develop a 
real-time vision system. This is also true if YOU wish to r e m t  the same meas- 

~ 

urements over time to exploit temporal consistency. the angle offsets.  his operation is perfom& off-line. 
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space. Image-derived quantities are used except for the focal 
length and vergence angles of the cameras which are actively 
controlled during the robot motion, and are measured directly 
on the motor axes by optical encoders.2 

U. STEREO VISION AND DYNAMIC VISUAL PROCESSING 

The dynamic stereo approach is based on two fundamental 
building blocks: stereo and motion analysis. The algorithms 
and notations relative to these modalities are briefly presented 
in the following sections. 

A. Stereo Vision 
The stereo vision algorithm uses a coarse to fine approach 

to perform a regional correlation. The resulting disparity map 
states the correspondence of the points in the left and right 
image. We skip over a detailed description of the stereo algo- 
rithm (see, for instance, [16]); instead, starting from the 
knowledge of the related disparity, we will concentrate on the 
computation of relative depth. 

L 
B I 

Fig. 1. Schematic representation of the stereo coordinate system. On the left 
the configuration in space is shown-the y axes of the cameras and of the 
stereo coordinate system are parallel and orthogonal to the plane defined by 
the two optical axes. On the right, the projection of the point P, = (X, Y, Z) on 
the plane Y = 0 (the point P) is shown. 

Fig. 1 shows the considered configuration: let P be the pro- 
jection on the stereo plane (the plane defined by the two opti- 
cal axes) of a point P, in space. We define the Kfunction as: 

where a and P are the vergence angles, y = arctan(%) and 

6 = arctan(+) define the position of two corresponding points 

on the image planes, x, = xl + D (D is the known disparity), F, 
and F, are the focal lengths of the left and right camera meas- 
ured in pixels. It is easy to prove that the depth Z referred to 
the stereo coordinate system is: 

where B is the baseline length. From the knowledge of the 
vergence angles a, p, and the angular disparities x 6, (2) pro- 

2. Measuring the vergence angles by optical encoders requires calibrating 
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vides a depth measure with respect to the interocuk baseline. 
As expected, the distance from the fixation point OK depends 
only on the vergence angles a and p; in fact: 

A. I .  Calibration 
The computation of the &a, p, 5 s) function poses two 

relevant issues: The former is related to the calibration of the 
intrinsic parameters of the cameras (in our case limited to the 
focal lengths), the latter concerns the estimation of the angular 
offsets for the vergence angles a and p measured on the en- 
coders of the motors. 

By exploiting "active behaviors" it is possible to rely on 
self-calibration techniques which reduce the number of re- 
quired parameters [23], [24]. Moreover, qualitative estimates 
of relative depth, like the time-to-impact, do not require the 
precise calibration of intrinsic parameters of the cameras. In 
fact, for navigation purposes it is not necessary to define a 
metric representation of the environment, but an approximate 
measurement of the dangerous and safe areas within the visual 
field always suffices. 

In order to estimate the focal length of the cameras, we use 
a simple, active process: The cameras fixate on a first point in 
space, then they are moved to fixate a second point. The rota- 
tion of the camera, measured on the optical encoder, required 
to change the fixation point, is related to the displacement of 
the projections of the points on the image plane. Referring to 
Fig. 2, we obtain: 

(4) 
X tan@=- 
F '  

where 0 is the rotation of one of the two cameras measured on 
the motor encoder and x is the displacement of the considered 
point on the image plane. 

Concerning the calibration of the angle offsets, it can be 
performed off-line by applying standard calibration techniques 
[28], [29]. In this paper we have not addressed this topic ex- 
plicitly, but we have compensated the angular offsets of the 
encoders by measuring manually the vergence angles off-line 
and then resetting the origin of the encoders counts. 

Rg. 2. M o ~ n g  the fixation from point P I  to Pz results in two rotations a and 
uh, measured by the motor encoders. 

B. Motion, Optical Flow, and Time-to-Impact 
The ability to quickly detect obstacles and evaluate the time 

to be elapsed before a collision (time-to-impact) is of vital 
importance for animates. This fact has been demonstrated by 
several studies on the behavior of animals [30] or humans per- 
forming specific tasks [31]. The time-to-impact can be com- 
puted from the optical flow which is extracted from monocular 
image sequences acquired during ego-motion. The optical flow 
is computed by solving an over-determined system of linear 
equations in the unknown terms (U, v) = v [32], [33], [34], 
[351,[361, [371: 

(5 )  
d d 

- I = O  dr ; -W=ij, d f  

where I represents the image intensity of the point (x ,  y) at 
time f. The instantaneous velocity for each image point can be 
computed by solving the linear system (5) [37]. 

The image velocity can be described as a function of the 
camera parameters and split into two terms depending on the 
rotational and translational components of camera velocity 
respectively. The rotational part of the flow field can be 
computed from proprioceptive data (e.g. the camera rotation) 
and the focal length. Once the global optic flow is com- 
puted, e is determined by subtracting qr from 3 .  From the 
translational optical flow, the time-to-impact can be computed: 

where Ai is the distance of the considered point (xi, yi), on the 
image plane, from the Focus of Expansion (FOE). The posi- 
tion of the FOE on the image plane can be determined by 
computing the pseudo intersection of the set of straight lines, 
obtained by elongating the optical flow vectors. 

In general, the estimation of the FOE, is critical. In fact, the 
spread error in the least squares solution of the FOE increases 
as the distance of the intersection from the image center in- 
creases, because small angular errors in the velocity vectors 
shift the position of the computed intersection. This is the case 
when the camera moves along a direction considerably differ- 
ent from the direction of the optical axis. 

We will show how the estimation of the FOE can be 
avoided by using stereo disparity. 

III. ACTIVE STEREO AND MOTION CONTROL 

The measurement of the time-to-impact from stereo se- 
quences can be faced by analyzing the temporal evolution of 
the image stream. 

We consider the stereo system as sketched in Fig. 3. In this 
case, even though estimates fiom stereo and motion are expressed 
using the same metric, they are not homogeneous because they are 
related to different reference frames. In the case of stereo, depth is 
referred to an axis orthogonal to the baseline (it defines the stereo 
camera geometry), while motion depth is measured along a direc- 
tion parallel to the optical axis of one (left or right) camera. The 
relation between the two reference hmes is defined by: 
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where a is the vergence angle of the left camera, FZ is the focal 
length of the left camera measured in pixels, and x is the hori- 
zontal coordinate of the considered point on the image plane 
(see Fig. 3). We choose to adopt the stereo reference frame, 
because it is symmetric with respect to the cameras. In the re- 
mainder of the paper all symbols referring to the motion refer- 
ence frame will be denoted by the superscript m (like '"2 and 
"T) while those referred to the symmetric stereo reference 
frame will be left without any further lettering (like Z and T). 

Fig.3. Schematic representation of the stereo reference frames with their 
orientation. 

From the results presented in the previous sections we can 
write for a generic point Pi = (Xi, Yi) on the image plane: 

where B is the inter-ocular baseline, W, is the velocity of the 
camera along the Z axis in the stereo reference frame, '"Ti rep- 
resents the time-to-impact measured in the motion reference 
frame, and Ti is the time-to-impact referred to the symmetric, 
stereo reference frame. In a general case, to compute the abso- 
lute distance Zi, either from the time-to-impact or disparity, it 
is necessary to determine W, or +. The first parameter requires 
to measure the translational velocity of the cameras, while the 
inter-ocular baseline should be calibrated. In order to obtain a 
common relative-depth estimate, we first consider two differ- 
ent expressions derived from (8). 

The first equation represents the time-to-impact with respect to 
the motion reference frame, while the second equation repre- 
sents a generic relative measure of the depth of a point (xi, y i )  
with respect to a second point (XI, yI).  The first expression in 
(9) can be applied to a generic image point (xi, yj) relative to 
the left camera to compute the ratio %: 

Because of '"I;. at the denominator, this expression applies if the 
time-to-impact is not null. It is possible to obtain a better estimate 
of 3 by averaging the expression (10) over all the image points. 

Substituting now (10) in (9): 

These two equations are the first important result. In particular the 
second equation directly relates the relativedepth to the timeto- 
impact and stereo disparity (i.e., the * function). In general, 
pointwise ratios like (1 1) are not robust. Therefore, to reduce the 
effects of measurement errors, it is necessary to integrate meas- 
urements over a neighborhood of the considered point. 

(timet2) j 

Fig. 4. Diagram showing the rotation of the stereo system during motion. 

As already noted [20], [21], the critical factor in (10) and 
(1 1) is the computation of the time-to-impact which usually 
requires the estimation of the FOE position. To avoid this 
measurement it is necessary to exploit also the temporal evo- 
lution of disparity. The problem is not trivial because, consid- 
ering different instants of time, the stereo reference frame 
changes its position and orientation while the rotational com- 
ponent of motion deeply affects the depth measurements per- 
formed by means of (11). Theoretically, it is possible to re- 
cover the rotational motion of the stereo cameras from visual 
information only, but the formulation is far too complex to 
allow a closed form solution [38], [28], [39]. In other words, 
even knowing the pan and tilt angles of the cameras, it is gen- 
erally impossible to compute the efective rotation of the ste- 
reo system in space. 

A first attempt to solve this problem has been presented in [21], 
where a solution was given based on two main assumptions: 

1) The cameras were actively controlled to track a point in 

2) The stereo rig was kept parallel to the ground plane dur- 

In the remainder of the paper a more general solution is pre- 
sented, where the cameras are allowed to rotate about the x 
axis, parallel to the ground plane, and about the y axis, per- 
pendicular to the ground plane. This added capability is very 
important because it allows the binocular head to direct the 
gaze everywhere in space. 

space during the robot motion, 

ing the motion of the vehicle. 
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A. Estimation of Camera Rotation 
The motion of the stereo system between two different time 

instants tl and t2 can be expressed as a generic roto-translation: 

(12) 

where 'I; = ('X, 'Y, 'Z) and 2@ = (2X,  2Y, 2Z) are the coor- 
dinates of the same point in space measured at time tl and tz, R 
is the rotation matrix, and '?. = (2T', 2Ty, 2Tz) is the transla- 
tion vector. Therefore, to compute the 3D motion in the gen- 
eral case, it is necessary to solve a linear system with 12 un- 
knowns (which can be reduced to six, including three rota- 
tional angles and three translational displacements), and at 
least three different points are needed [28], [40]. 

As we are interested in recovering the rotational motion 
only, it is possible to avoid the computation of the translational 
vector .?. by subtracting the expressions for four different 
points in space. Considering four points Pa, Pb, Pc, and Pd at 
two time instants tl and t2, we obtain: 

2F = R . 'I; + 2F 

'Fa - '8 = R * ('Fa - '8) ; i = b, C, d,  (13) 

which is a linear system of nine equations in nine unknowns. 
Let us consider the general case, defined by (12), and sup- 

pose that the stereo reference frame rotates during motion 
around two different axes: the absolute vertical axis, perpen- 
dicular to the ground plane, and the x axis, parallel to the 
ground plane.3 The rotation matrix R can be written as the 
composition of three elementary rotations: 

'I; = RX($'). R,(8). Rx($o). 'I; + 'F, (14) 

where h is the rotation angle between the y axis of the stereo 
system and the absolute vertical, and $ = h + is the effec- 
tive rotation around the x axis. The angle 0 is the only real 
unknown in our case: h and are measured from the motor 
encoders, but 8 can not be measured because it is related to the 
rotation of the robot carrying the stereo system and not of the 
cameras. Computing explicitly the matrix R we obtain: 

R =  

1 sin @, sin (3 -cos@o sin0 
sin@,sin0 c o ~ @ ~ c o s @ ~  -sin@,sin@,cos0 sin@,cos@, +cos@,sin@,cosO . 
cos@, sin 0 -cos@o sin@, -sin 0, cos@, cos0 -sin@, sin@, +cos@, cos@, cos0 

(15) 
[ 

Let us consider two points ijh and gk: 

2% = R 'Fh + 'F 
(16) 

by applying (13) and denoting by A'F = (A'X, A'Y, A'Z) 

obtain: 

i 'Fk = R 'Fk + 2F ' 

= 'I;), - '4 and A'I; = (A2X, A'Y, A2Z) = 21;h - 'I;' W e  

- A'ZCOS q0 sin e 
A2Z = A'Xcos$, sin8 + 

-A' Y(COS $o sin 

-A'Z(sin $o sin 

1 (17) 
+ sin $o cos cos e) + 
- cos $o cos el cos e) . 

I.=+.[ tan(a-y) * )-? 2 

(19) y = + . L . * .  cosy 
4 sin(a-y)'  

Z = + . *  1 
But, as + is a proportionality factor for the coordinates (X, Y, Z), 
then (18) does not depend on the stereo baseline +. 

If the optical axes of the cameras are maintained parallel to 
the ground plane during the robot motion (as in [21]), we 
simply obtain a = c = 0 and b = d = 1. In this case: 

A'XA~Z - A~XA'Z 
A'XA~X + A'ZA~Z' 

tane = 

As a consistency verification we can note that if the stereo 
system does not rotate during vehicle motion A'X = A2X and 
A'Z = A2Z, and 8 = 0. 

The rotation angle 8 can be used to eliminate the rotational 
effect from the depth estimate. From (14) applied to a generic 
point P: 
Z, = *z - 2 ~ z  = d'xsine - (bc + adc0Se)'y - (UC - bdcose) 'z, 

(21) 
where 2, represents the distance 'Z of the considered point 
projected along the direction of 2Z. Dividing both sides of (21) 
by + and applying the first expression in (8): 

'X 'Y 'Z *, = -dsine - (bc + adCO&)- - (UC - bdC0se)- + + + '  
(22) 

which is an expression of the * function projected on the 
translational path. Also, in this case, if the cameras do not tilt, 
we obtain simpler expressions: 

3. This is equivalent to consider a moving vehicle equipped with a stereo 
camera system where the baseline is kept parallel to the ground plane, while 
the stereo reference frame. can freely perform pan and tilt rotations. Only roll 
is not included in the allowed movements. 
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At = [[ tan(la '* - ,y) - ;)sin0 + k COSI~]. (24) 

If the baseline of the cameras does not rotate Zr = '2 and 
4 = 'K. In the remainder of the paper we will generically de- 
note as Z and K the distance Zr and the function & projected 
along the translational path. 

B. Using the Temporal Evolution of Disparity 

form velocity, we obtain: 
Considering a general motion of the stereo system with uni- 

Zi(t - At)  - Zi(t)  = W, At 

W 
+ * j ( t  - At)  - * i ( t )  = L A t ,  

where Zi and K) are the corresponding measurements, for a 
generic point (xi, yi), projected along the translational path. 
This is a very interesting expression showing that K is a linear 
function of time, but also it can be used to estimate the un- 
known parameters W, and B. Moreover, given the factor %, it 
is possible to make a prediction of the values of disparity over 
time to facilitate the matching process. If the optical flow and 
the disparity map are computed at time t, the disparity relative 
to the same point in space at the successive time instant, can be 
obtained by searching for a matching around the predicted 
disparity, which must be shifted by the velocity vector to take 
into account the motion. 

AS 3 is a constant factor for a given stereo image pair, it is 
possible to compute a robust estimate by taking the average 
over a neighborhood [20]: 

1 
& = A *  + =- A t N 2  C [ * i ( t  - A t )  - a i ( t ) ] .  (26) 

Given the optical flow i; = (U, v )  and the map of the values of 
the K function at time t - At, the value of 3Ci(t) is obtained by 
considering the image point (xi + ui, yi + vi) on the map at time 
t .  This expression reminds the temporal evolution of disparity 
formulated in [18]. The basic difference between the two ap- 
proaches is the fact that Waxman and Duncan analyzed a ste- 
reo set-up with parallel optical axes, while in this paper the 
cameras have convergent optical axes. On the other hand, the 
expression developed in [18] is related to binocular image 
flows, which are used to establish stereo correspondence, 
while in our approach a monocular optical flow is used, to- 
gether with stereo disparity, to apply (26) and then compute 
the time-to-impact. 

Combining (9) and (26) we obtain: 

not require the computation of the FOE. The value of - in 
(28) can be easily computed from the pixel position, the focal 
length of the camera and the vergence angle of the camera on 
which the optical flow has been computed: 

In summary, in order to compute the time-to-impact or relative 
depth, the following quantities need to be computed or measured: 

0 the stereo disparity field at two time instants; 
0 monocular optical flow field from an image sequence ac- 

quired from the left camera; 
0 the vergence angles of the cameras (measured from the 

optical encoders of the motors); 
0 the focal length of the cameras, or the conversion factor 

between linear and angular displacements on the image 
plane. 

C. Sensitivity Analysis in the Computation of the Time-to- 
Impact 

It is beyond the aim of this paper to perform an exhaustive error 
analysis for all the equations presented, but it is interesting to ana- 
lyze the sensitivity of (27) with respect to noise. The variation of T 
in relation to * can be expressed by differentiating (27): 

From (26) it is possible to observe that A x  is a function of 
K i ( t )  only. Therefore, computing explicitly the total derivative 
- a* - - -- and the partial derivatives of Ti, and substituting 

in (30): 
d*i N2& 

dividing both sides by r and taking the differential mi of F, 
we obtain: 

(32) 

If the value of AK is obtained using a sufficient number N of 

image points, then the term Ik.21 is negligible. Therefore, 

the relative error on the time-to-impact is equal to the relative 
error on the disparity function K. This result can be compared 
with the error in computing the time-to-impact from optical 
flow. In this case the relative error can be computed from (6): 

where V, = is the amplitude of the translational component 

The estimate (27) of the time-to-impact is very robust and does of the velocity vector $xi, yi) and Ai is the distance of the 
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F tanZ(B+6) + F "'(a-Y) 
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,_ , 
Fig. 5.  Graphs showing the relative variation of X with respect to the pixel 
coordinates and image disparity. a) Variation of the K function in relation to 
the error S x  of the image x coordinate. b) Variation of the K function in rela- 
tion to the error S F in the focal length F. c) Variation of the K function in 
relation to the relative error % in the computed image disparity D. 

considered point (xi, yi) from the FOE. By developing this ex- 
pression and taking the differential mi of Ti, we obtain: 

(34) 

where ai represents the spread error of the least squares solu- 
tion for the location of the FOE, which is obtained as the 
pseudo intersection of the directions of the optical flow vec- 
tors. Dividing both sides by T and substituting (6): 

I FD tm2(a-y) I 
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This error function is clearly bounded, because each of the 
three addenda is bounded, and also varies smoothly with the 
image coordinates and disparity. Therefore, the measurement 
of K, and from (32) also the time-to-impact, degrade grace- 
fully with increasing errors in the image variables. The behav- 
ior of the relative error in the measurement of the image dis- 
placement lq as well as the relative error in the image dis- 

parity Iq depend on the computational schema applied. On 

the other hand, the computation of requires to compute and 
differentiate the rotational component of the optical flow. In 
this paper a differential technique has been applied for the 
computation of the optical flow, because allows to estimate a 
dense and accurate flow field almost everywhere on the image 
plane, assumed the motion to be small. However, as the image 
velocity becomes close to zero, the error term grows quite 

quickly, consequently, the measurements of the time-to-impact 
from the optical flow only can be unstable and sensitive to 
high frequency noise. This is not the case for the error term l%l because rather large disparities are computed by applying 
a correlation technique. 

The first addendum in (35) represents the relative error in the 
computation of the FOE. This measurement is generally more 
robust than the local computation of the image velocity itself, 
because it is obtained by integrating several velocity estimates 
on the image plane. However, due to the sensitivity to noise of 
the velocity estimation, the accuracy in the localization of the 
FOE is poor, in particular close to the FOE, while the term && 
becomes very large, of the order of tens of pixels. Also the error 
term 131 becomes very large computing the time-to-impact 

close to the FOE. In conclusion, the time-to-impact computed 
from the optical flow only can be unstable and very sensitive to 
noise wherever the optical flow is small and, in particular, pres- 
ents a singularity in the FOE. The accuracy in the computation 
of the time-to-impact degrades quite quickly as the FOE departs 
from the image plane. On the contrary, the absolute error com- 
puting the time-to-impact from the dynamic stereo approach can 
be larger than using the optical flow only, but it is more robust 
and stable with respect to noise. 

PI 

IV. EXPERIMENTAL RESULTS 

A. Planar Tracking 
In the first experiment a computer-controlled mobile plat- 

form TRC Lubmute with two stereo cameras has been used. 
The cameras were arranged as to verge toward a point in 
space. A sequence of stereo images has been captured during a 
tracking motion of the cameras and keeping the stereo rig 
parallel to the ground plane. In Fig. 6 the first and last stereo 
pair, from a sequence of 11, are shown. The disparity map 
computed from the sixth stereo pair is shown in Fig. 7. The 
vehicle was moving forward about 100 mm per frame. The 
sequence has been taken inside the LIRA lab, with many ob- 
jects in the scene, at different depths. The vehicle was undergo- 

ing an almost straight trajectory with a very small steering to- 
ward left, while the cameras were fixating a stick which can be 
seen on the desk, in the foreground. The value of Ax for the sixth 
stereo pair has been computed by applying (26) at each image 
point. By taking the average of the values of Ax over all the im- 
age points, a value of 3 equal to 0.23 has been obtained. This 
value must be compared to the ground truth equal to 0.29, com- 
puted from the velocity of the vehicle, which was about 100 
millimeters per frame along the 2 axis, and the inter-ocular 
baselie which was about 335 millimeters. Due to the motion 
drift of the vehicle and the fact that the baseline has been meas- 
ured by hand, it is most likely that, also in this case, the given 
values of the velocity and baseline are slightly wrong. 

Fig. 6. First (a) and last (b) stem image pair of the sequence. 

Rg. 7. Map of the values of the Kfunction obtained from the sixth stem pair 
of the sequence. 
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Fig. 8. Optical flow relative to the sixth left image of the sequence. 

Fig. 9. Rough and smoothed histograms of the angles computed from frames 
5-6 and frames 7-8, respectively. The abscissa scale goes from -0.16 radians 
to 0.16 radians. The maxima computed in the smoothed histograms com- 
sponds to 0.00625 and 0.0075 radians, respectively. 

In this experiment the cameras were moved keeping the op- 
tical axes on a plane parallel to the ground plane, therefore 
only one rotation angle is involved during tracking. The rota- 
tion angle of the stereo baseline between two successive time 
instants has been computed by applying (20) to all the image 
points. In the noiseless case all the image points will produce 
identical estimates. In a real scene, like in this experiment, it is 
necessary to discard all the wrong angular values coming from 
errors and loss of accuracy in the computation. This is ob- 
tained by ranking the angular values on an histogram and con- 
sidering as correct the angular value corresponding to the peak 
in the histogram. In the case of objects moving within the field 
of view it should be easy to separate the different peaks corre- 
sponding to moving and still objects. In Fig. 9 two histograms 
related to frames 5-6 and 7-8, respectively, are shown. The 
computed camera rotation is 0.00625 radians, corresponding 
to about 0.36 degrees. 

In Fig. 8 the optical flow of the sixth left image of the se- 
quence is shown. From the optical flow and the values of the K 
function the map of the time-to-impact has been computed by 
applying (27). The map is shown in Fig. 10; the values of the 
time-to-impact are coded as gray levels, darker meaning lower 
time-to-impact. 

B. General Tracking 
In the first experiment the cameras were kept fixed, while 

an object was rotating on a turntable at a speed of two degrees 
per frame. The cameras were arranged as to verge toward the 
center of the turntable. In this way a tracking motion was 
simulated. In Fig. 11 the 10th and 20th stereo pair, from a se- 
quence of 24, are shown. The images are 256 x 256 pixels 
with 8 bits of resolution in intensity. 

Fig. 10. Time-to-impact computed using (27) for the sixth pair of the s e  
quence; darker regions correspond to closer objects. 

Fig. 11. Tenth (a) and 20th (b) stereo image pair of the sequence. 

The captured sequence has been used to perform two ex- 
periments: In the former we took the position of 10 relevant 
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points (like corners), directly from the original images (by 
hand using a pointing device); in the latter we computed the 
optical flow and disparity maps from two successive image 
pairs, and used the output to compute the rotational angle and 
the time-to-impact. 

For the first experiment the 10th and 20th image pairs of the 
sequence have been used, which correspond to a rotation of 
the object of 20" circa! The images are shown in Fig. 11. The 
coordinates of the points, taken by hand, were fed to (18). Us- 
ing more data than equations, we simply computed the average 
of the angles resulting by considering all the data points. Of 
course a least square method would have been more appropri- 
ate to find a better solution. The angular value obtained is 
18.6" , which must be compared to the measured rotation of 
20" . It is worth noting that, by locating the position of the 
points by hand, we introduced an error of at least one pixel in 
the localization of the points. 

In the second experiment two successive image pairs were 
used, corresponding to a rotation of two degrees circa. The 
disparity maps were computed for both image pairs and the 
optical flow for the left image of the first frame. The computed 
camera rotation (around the vertical axis) is 0.0427 radians, 
corresponding to about 2.4' . The rotation recovered from the 
optical flow and disparity with (18), has been used to correct 
the K values as from (22) and compute the time-to-impact by 
applying (27). The map in Fig. 12 codes the values of the time- 
to-impact as gray levels, darker means smaller time-to-impact 
(or an object closer to the cameras). 

Fig. 12. Time-to-Impact computed using (27) for the 15th pair of the se- 
quence; darker regions correspond to closer objects. 

A different experiment was performed by processing a se- 
quence of stereo images acquired from a prototype robotic 
head, built at the LIRA-Lab. A picture and a schematic dia- 
gram of the head with the cameras is shown in Fig. 13. The 
head is composed of four independent degrees of freedom. 
The "neck" rotation and the common tilt of the two cameras is 
controlled by two DC torque motors. The independent ver- 
gence of each camera is controlled by two stepper motors. 

4. This value has been measured approximately during the image acquisi- 
tion phase. 

Fig. 13. Pim and diagram of the robotic head used to acquire the images 
used in one. experiment. 

Fig. 14. Fmt (a) and last (b) stem image pair of the sequence acquired from 
the head. 

The head was placed on a wheeled cabinet. The gaze and 
vergence of the head were automatically adjusted to compen- 
sate for the motion of the cabinet, keeping the fixation on the 
same point in space. The forward motion was a translation of 
about 7 cm per each step. At each step a pair of stereo images 
was captured, at a resolution of 256 x 256 pixels with 8 bits 
per pixel. In Fig. 14, the first and last image pair from a se- 
quence of 16 is shown. The vergence, pan and tilt angles of the 
cameras were recorded from the optical encoders of the head 
motors. It is worth noting that only the degrees of freedom 
under active control were effectively recorded, while the rota- 
tion of the cabinet was completely unknown and without pre- 
cise control. The recorded rotations were used to compute the 
effective rotation of the camera system from one frame to the 
following. The procedure adopted to compute the effective 
rotation and the time-to-impact, is the same followed in the 
previous experiment. The disparity maps were computed for 
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the sixth and seventh image pairs and the optical flow for the 
left image of the sixth frame. In Figs. 15 and 16 the computed 
map of the It function and optical flow relative to the sixth 
frame, are shown. As in the previous experiment, we computed 
the average from all the resulting angles. The obtained camera 
rotation (around the vertical axis) is 0.014 radians, correspond- 
ing to about 0.8 degrees. 

Fig. 15. Map of the values of the K function obtained from the sixth and 
seventh stereo pair of the sequence. 

Fig. 16. Optical flow relative to the sixth left image of the sequence. 

Fig. 17. Time-to-impact computed using (27) for the sixth pair of the se- 
quence; darker regions correspond to closer objects. 

The rotation recovered from the optical flow and disparity has 
been used to correct the K values and compute the time-to- 
impact. The map in Fig. 17 codes the values of the time-to- 
impact as gray levels. As it can be noticed, the time-to-impact 
map closely reflects the structure of the environment. The lamp 
on the desk, which can be hardly seen in the original images, 
appears clearly closer than the background, while the desk in the 
foreground has the lowest time-to-impact values. 

V. CONCLUSION 

In this paper we have addressed the problem of the extrac- 
tion of relevant visual information for robot operations. 

Whenever a spatial goal has to be reached, either by animals 
or robots, it is important to be able to decide the direction of 
motion. This decision is crucial in visual navigation because 
can be taken on the basis of visual information only. It is nec- 
essary to identify free space areas in the scene which can be 
safely crossed by the robot from its current position in space. 
Stereo vision and motion parallax have been considered as 
cues to identify corridors of free space. 

Redundancy is enforced by defining a cooperative schema in 
which both stereo and motion provide information to estimate a 
relative-depth map of the observed scene. In the cooperation 
process binocular disparity, computed on several image pairs 
over time, is merged with optical flows to cope for the need of 
critical parameters relative to the cameras and/or the robot. An 
important aspect is certainly the possibility of computing dy- 
namic quantities, like the time-to-impact, directly from stereo 
disparity, using the optical flow to determine the temporal evo- 
lution of disparity in the image sequence. 

One of the advantages of the proposed approach is the pos- 
sibility to compute the effective rotation of the stereo camera 
system, even in presence of unknown rotations of the moving 
vehicle. In fact, the only angular displacements which have to 
be measured, are the rotations performed by the motors of the 
head-eye system. Therefore, the system’s behavior is closely 
related to the capability of visual stabilization of a target. This 
is consistent with the need to stabilize an image in order to 
compute meaningful data relative to the environment and/or 
the. observer. In this sense the system’s activity helps for mo- 
tion and structure recovery. 

The measured parameters are closely coupled together and 
strongly depend on the behaviour of the system. In fact, not 
only the recovered rotation is necessary to compute the time- 
to-impact map, but also it is naturally referred to the imaging 
system and not to the motor system, As long as the system 
keeps tracking the same point in space, or it does not performs 
saccadic movements, successive measurements are perfectly 
coherent and can be integrated over time to enforce the robust- 
ness of the recovered rotation and time-to-impact. 
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