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Abstract 29 

This study presents results from a major grassland model intercomparison exercise, and 30 

highlights the main challenges faced in the implementation of a multi-model ensemble 31 

prediction system in grasslands. Nine, independently developed simulation models linking 32 

climate, soil, vegetation and management to grassland biogeochemical cycles and production 33 

were compared in a simulation of soil water content (SWC) and soil temperature (ST) in the 34 

topsoil, and of biomass production. The results were assessed against SWC and ST data from 35 

five observational grassland sites representing a range of conditions - Grillenburg in 36 

Germany, Laqueuille in France with both extensive and intensive management, Monte 37 

Bondone in Italy and Oensingen in Switzerland - and against yield measurements from the 38 

same sites and other experimental grassland sites in Europe and Israel. We present a 39 

comparison of model estimates from individual models to the multi-model ensemble 40 

(represented by multi-model median: MMM). With calibration (seven out of nine models), the 41 

performances were acceptable for weekly-aggregated ST (R2 >0.7 with individual models and 42 

>0.8-0.9 with MMM), but less satisfactory with SWC (R2 <0.6 with individual models and 43 

<~0.5 with MMM) and biomass (R2 <~0.3 with both individual models and MMM). With 44 

individual models, maximum biases of about -5 °C for ST, -0.3 m3 m-3 for SWC and 360 g 45 

DM m-2 for yield, as well as negative modelling efficiencies and some high relative root mean 46 

square errors indicate low model performance, especially for biomass. We also found 47 

substantial discrepancies across different models, indicating considerable uncertainties 48 

regarding the simulation of grassland processes. The multi-model approach allowed for 49 

improved performance, but further progress is strongly needed in the way models represent 50 

processes in managed grassland systems. 51 

 52 

Keywords: biomass, grasslands, modelling, multi-model ensemble, soil processes 53 

54 
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1. Introduction 55 

Grasslands are widespread vegetation types worldwide (about 40.5% of the Earth’s 56 

landmass; Suttie et al., 2005), covering a large proportion of the European continent (67 57 

million ha in the EU-27 that is 40% of agricultural land, 15% of total area, 85% of which 58 

being occupied by permanent grasslands, Peeters, 2012; Peyraud, 2013). Pastoral lands 59 

contribute to agricultural production and ecosystem services, including the provisioning of 60 

forage and, hence, of milk and meat (Huyghe, 2008). In addition, permanent grasslands are 61 

often hotspots of biodiversity (Marriott et al., 2004), which contributes to the temporal 62 

stability of their services. 63 

Considering the role played by grasslands in maintaining food production, grassland 64 

biomass yield is an important agro-technical indicator to evaluate the economic viability of 65 

grassland-based milk and meat production systems as compared to concentrate feeding (e.g. 66 

Schader et al., 2013). In a climate-change context, for instance, adaptation of grasslands to 67 

climate change necessarily includes minimizing fluctuations in biomass produced (Collins, 68 

1995). Considering the viability of grassland-based systems depending on their ability to 69 

produce meat from forage harvested on-farm, it is critical to examine the dynamics of 70 

grassland biomass production, where management plays a role by influencing the temporal 71 

forage availability and the interactions between herd and grassland. 72 

Grassland ecosystem models have become important tools for extrapolating local 73 

observations and testing hypotheses on grassland ecosystem functioning (Chang et al., 2013; 74 

Graux et al., 2013; Vital et al., 2013; Ma et al., 2015). Under the auspices of the FACCE 75 

MACSUR knowledge hub (http://macsur.eu), a model intercomparison was conducted using 76 

datasets from an observational and experimental network of nine multi-year flux and 77 

production sites spread across Europe (France, Italy, Germany, Switzerland, The Netherlands, 78 

and United Kingdom) and Israel, and engaging a modelling community using a suite of 79 

http://macsur.eu/
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different models to understand grassland functioning. In particular, the collected datasets of 80 

meteorological data, C, energy and water fluxes were used to drive and evaluate the 81 

performance of nine grassland models.  82 

The identified models are an inventory of modelling approaches made available through 83 

the MACSUR consortium and applied worldwide. Grassland-specific approaches were used 84 

together with other approaches, mainly conceived to simulate crops and plant functional 85 

types. The primary goal of this study is to synthesize and compare the participating grassland 86 

models to assess current understanding of soil processes (soil temperature and soil water 87 

content, which are fundamental drivers of ecosystem-scale processes) and 88 

aboveground/harvested biomass (which is the output of major significance in agricultural 89 

production) in Europe and Israel. To achieve this goal, model evaluation against actual 90 

measurements was performed before and after model calibration. To the best of authors’ 91 

knowledge, this is the first model intercomparison performed specifically on permanent 92 

grasslands. The present study, focused on grassland sites across Europe and a neighbour 93 

country (Israel), extends preliminary analyses (Ma et al., 2014; Sándor et al., 2015), and 94 

parallels other initiatives on the comparison of grassland models worldwide, such as the 95 

Agricultural Model Intercomparison and Improvement Project (AgMIP, Rosenzweig et al., 96 

2013) and other international projects (Soussana et al., 2015). 97 

The present grassland model intercomparison tries to answer five fundamental questions in 98 

a multi-site, multi-model framework: (1) are the main drivers of grassland processes 99 

represented well by state-of-the-art grassland models?, (2) what is the skill of the studied 100 

models considering the different processes?, (3) can calibration improve the models in terms 101 

of quality of simulation of different processes?, (4) can the ensemble of model results be used 102 

to estimate soil properties and grassland biomass in the study sites?, and (5) what 103 

uncertainties are associated with the different models, and how can uncertainty be quantified 104 
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in a multi-model framework? In addition, areas are identified where structural changes in 105 

models may be needed to improve performances and decrease uncertainty of process 106 

representation. 107 

 108 

2. Material and methods 109 

2.1. Study sites 110 

The nine long-term grassland sites used for the modelling exercise (Table 1) cover a broad 111 

range of geographic and climatic conditions (Fig. 1; see also Fig. A and Table A1 in the 112 

Supplementary material) as well as a variety of management practices (Table A2 in the 113 

Supplementary material). 114 

 115 

Fig. 1. Geographic location (left) and classification (right) of grassland sites (black squares: 116 

grassland sites equipped with eddy covariance system; green circles: other grassland sites) 117 

with respect to De Martonne-Gottmann aridity index (De Martonne, 1942) and heat wave 118 

days frequency. 119 
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Table 1. List of permanent grassland sites. 121 

Site Latitude Longitude 
Elevation 

(m a.s.l.) 

Years of 

available data 
Notes Source 

Laqueuille 

(LAQ1, 

LAQ2), 

France 

45° 38’ N 02° 44′ E 1040 2004-2010 

Flux-tower grazed site, 

either intensively (LAQ1) 

or extensively (LAQ2) 

managed. 

Klumpp et 

al. (2011) 

Oensingen 

(OEN), 

Switzerland 

47° 17′ N 07° 44′ E 450 2002-2008 

Flux-tower mowed site, 

established on a ley-arable 

rotation. 

Ammann et 

al. (2007) 

Monte 

Bondone 

(MBO), 

Italy 

46° 00′ N 11° 02′ E 1500 2003-2010 

Flux tower Alpine hay 

meadow with occasional 

grazing in late autumn.  

Wohlfahrt et 

al. (2008) 

Grillenburg 

(GRI), 

Germany 

50° 57° N 13° 30’ E 380 2004-2008 
Flux-tower mowed, 

extensively managed site. 

Prescher et 

al. (2010) 

Kempten 

(KEM1, 

KEM2), 

Germany 

47° 43° N 10° 20’ E 730 2004-2009 

Experimental sward with 

different levels of N and 

cutting management 

(KEM1: four cuts per 

year; KEM2: two cuts per 

year). 

Schröpel 

and 

Diepolder 

(2003) 

Lelystad 

(LEL), 

The 

Netherlands 

52° 30’ N 05° 28’ E -4 1994-1998 
Experimental sward with 

N management options. 

Schils and 

Snijders 

(2004) 

Matta 

(MAT), 

Israel 

31° 42’ N 35° 03’ E 620 2007-2011 

Dwarf shrubland in 

association with 

herbaceous annual species. 

Golodets et 

al. (2013) 

Rothamsted 

(ROT1; 

ROT2), 

United 

Kingdom 

51° 48° N 00° 21’ E 128 1981-2011 

Experimental sward with 

alternative N management 

options (ROT1: N-NH4; 

ROT2: N-NO3). 

Silvertown 

et al. (2006) 

Sassari 

(SAS), 

Italy 

40° 39’ N 08° 21’ E 68 1983-1988 

Mediterranean grassland 

dominated by annual self-

seeding species. 

Cavallero et 

al. (1992) 

 122 

 Four of the study sites (Laqueuille, Monte Bondone, Grillenburg, Oensingen) are 123 

equipped with an eddy covariance system to determine the net ecosystem exchange (NEE) of 124 

CO2 and automated weather stations for hourly weather reports. They are essentially old semi-125 

natural grasslands including vegetation types representative of the zone (with the exception of 126 

OEN, which was established in 2001). The flux-tower sites are the most data-rich grasslands 127 

in Europe, covering a variety of components of grassland ecosystem, including gross primary 128 

production (GPP), that is an estimate of the plant production of organic compounds from 129 

atmospheric CO2, and ecosystem respiration (RECO), the latter playing an important role to 130 
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estimate global C balances of terrestrial ecosystems (by definition NEE = RECO - GPP, with 131 

positive values indicating the system is a source of C, and negative values indicating that the 132 

system takes up C from the atmosphere). The flux-tower sites also record actual 133 

evapotranspiration, soil temperature (top 0.1 m) and soil water content (top 0.1 m). The eddy 134 

covariance system consists of a fast response 3D sonic anemometer coupled with fast CO2-135 

H2O analysers measuring fluxes of CO2, latent and sensible heat, and momentum fluxes at a 136 

30-min time step. The basic data used in this study are at daily resolution to fit the temporal 137 

resolution of models. They are the result of a filtering process, quality check and gap filling 138 

according to European flux database guidelines (Aubinet et al., 2012). Data are also available 139 

on the standing aboveground biomass at given dates. Biomass was measured destructively at 140 

given dates in all the study sites (at ground level at Laqueuille, at site-specific canopy heights 141 

as part of regular mowing in the other sites). 142 

Other grassland sites (Kempten, Lelystad, Matta, Rothamsted, Sassari) are from 143 

experimental research, with focus on forage production under a range of conditions, and for 144 

which weather inputs are available on a daily time step. These sites provide forage yields, i.e. 145 

the amount of dry matter biomass that is removed from the field at each cutting event that 146 

corresponds to removal of C and nitrogen (N) from these grassland systems. Each of these 147 

sites offer the possibility to model different grassland systems while expanding geographical 148 

coverage and the variety of management options tested. 149 

 150 

2.2. Models description 151 

The first phase of the study was to identify a wide selection of grassland models to be able 152 

to represent processes controlling energy, water and C cycle dynamics. The selection phase 153 

allowed identifying nine models in which processes are represented with different levels of 154 

detail. Whereas some models are empirically based with relatively simple relationships 155 
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between driver variables and fluxes, others are more complex, simulating the coupled C, 156 

nutrient, and water cycles (process-based models). Models also differ in their representation 157 

of soil properties, vegetation type, farming practices, and environmental forcing, as well as 158 

the initialization of C pools. 159 

Here we divide the models into three categories based on their feature sets. Three models - 160 

AnnuGrow, PaSim and SPACSYS - were specifically developed to simulate grasslands. Three 161 

models - EPIC, STICS and ARMOSA - were originally developed to simulate annual crops 162 

and include options for grassland systems. Other three models - Biome-BGC MuSo, CARAIB 163 

and LPJmL - that simulate different vegetation (or biome) types, including grasslands, were 164 

also included in the exercise. Supplementary material contains a brief description of the 165 

models and a synoptic table (Table B1) of the main processes implemented. The types of 166 

outputs generated by the models are in Table B2 (Supplementary material). The model results 167 

are presented anonymously in the paper, as the identification of models providing a specific 168 

performance is out of scope. 169 

 170 

2.3. Simulation study design 171 

Model simulations were carried out independently by the modelling groups (which 172 

included developers, expert users or end-users) using their own infrastructure and technical 173 

background, as harmonizing the calibration techniques was out of scope of the 174 

intercomparison. Models were evaluated with data from the study sites before and after 175 

calibration.  176 

For the uncalibrated (blind) simulations, the models were run at each site using the 177 

available data of weather, soil and management, with no parameter adjustment. After the 178 

blind simulations were completed, additional plant and soil information from a sub-set of 179 

flux-tower site data was supplied to each modelling group, i.e. the first half of the whole 180 
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series of available data or the first half plus one in the case of an uneven number of years 181 

(Table 1). The information provided were daily time series of GPP, RECO, soil water content, 182 

soil temperature, and actual evapotranspiration (some groups only used a subset of 183 

observations for calibration). For the same output variables, calibrated simulation results were 184 

evaluated against observations from the validation sub-set of years. Biomass data were not 185 

used for calibration and held back for validation purpose.  186 

It was requested that each modelling group adjusts model parameters (especially 187 

vegetation parameters) to improve the simulations based on the observed data, using whatever 188 

techniques they normally use, and documenting the changes. Summary of the model 189 

parameters that were considered for calibration is presented in Table C of the Supplementary 190 

material. 191 

Seven groups completed the full assessment of that step. Simulation results from the blind 192 

tests over the calibration time period were compared with the measured data over the same 193 

period. For both tests, model outputs including biomass (measured at given dates in all the 194 

sites), soil temperature and soil water content at 0.1 m depth (both measured continuously on 195 

a daily basis at flux sites) were compared against observed values, since other output variables 196 

were not common to all the models. The agreement between simulation and observations was 197 

evaluated by the inspection of time series graphs and, numerically, through a set of 198 

performance metrics (Table D in Supplementary material). 199 

Performance metrics were calculated for four time series: uncalibrated (U1, U2), calibrated 200 

(C) and validated (V) years. U1 and C refer to the first half of the whole series of available 201 

data (or the first half plus one in the case of an uneven number of years) which was used for 202 

calibration, while U2 and V refer to the years which were excluded from calibration. Possible 203 

improvement of model performance due to calibration was evaluated using the metrics from 204 

the U2 and V years. This logic was used because validation implies that model performance is 205 
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assessed with calibration-independent data. Thus, possible improvement of model 206 

performance can be most clearly judged by comparing error measures from U2 and V. Multi-207 

site mean (i.e. average data from all sites) error statistics were analysed to quantify the overall 208 

effect of model calibration on the simulated processes. 209 

 210 

2.4. Uncertainty assessment 211 

We assessed the models in terms of quality of simulations, by first focussing on the 212 

quantification of model errors with statistical indicators, and then using these errors to assess 213 

the uncertainty of the individual models in comparison with the multi-model ensemble. The 214 

modelling groups provided deterministic model simulation results according to the protocol 215 

established, which means that one run was provided for one site. It also means that the spread 216 

of model results due to parameter uncertainty was not specifically addressed as it would have 217 

dramatically increased the model output database used within the study. As uncertainty cannot 218 

be associated to any of individual simulations, we focussed on model residuals to quantify 219 

uncertainty. Residuals (simulation-measurement differences) were used in a standardized 220 

form (divided by standard deviation) to estimate variability for the individual models, and for 221 

the multi-model ensemble. Here we tried to assess whether the multi-model error has smaller 222 

variability than the individual models or not. The spread (maximum minus minimum) of 223 

simulation results (uncertainty with the ensemble spread) was also standardized (divided by 224 

standard deviation) to obtain a metric comparable with the standardized residuals of each 225 

model. Given the internal logic of biophysical and biogeochemical grassland models, errors in 226 

the estimation of internal processes propagate to the estimation of biomass and related output. 227 

Thus, we also quantified the relationship between standardized model residuals of ST, SWC 228 

and biomass, based on the calibrated simulations. ST and SWC residuals were calculated by 229 

averaging the residuals of two weeks preceding biomass sampling events. Moreover, we 230 



11 

 

quantified the relationship between the residuals and mean maximum temperature and 231 

precipitation sum values of the preceding two weeks relative to the biomass sampling. 232 

 233 

3. Results 234 

3.1. Analysis of individual model performance 235 

Performance of the individual models is discussed according to the simulated output of 236 

interest. In order to assess the utility of using multi-model ensemble for the simulation of 237 

grassland functioning, performance of the multi-model simulation range and median is also 238 

assessed against measurement data. We used median instead of mean values in order to 239 

reduce the impact of outliers in the multi-model ensemble construction. For easier 240 

interpretation, weekly-aggregated data were used to quantify the overall measurement-model 241 

agreement (Supplementary material, section 3, provides additional information in daily and 242 

monthly resolutions). The identities of models were kept anonymous by using model codes 243 

from 1 to 9 (the order of models being not identical with the one used in Table B2, 244 

Supplementary material). 245 

 246 

3.1.1. Evaluation of soil temperature (ST) estimates (flux sites) 247 

Fig. 2 shows the range of model results (represented by the shaded area) and the multi-248 

model median (MMM hereinafter) together with the measured values at weekly resolution 249 

(see also Figs. B and C of Supplementary material with daily and monthly time resolutions, 250 

respectively). 251 

 252 

253 
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Fig. 2. Comparison of weekly averaged simulated and measured soil temperature (ST) at the 254 

flux sites (ID as in Table 1). The shaded area represents the range of estimations provided by 255 

the individual models while solid line shows the multi-model median (MMM). Open circles 256 

show the weekly averaged measured values. The dashed vertical line divides the measurement 257 

period into calibration and validation time series. 258 

 259 

The figure suggests that the range of model results decreased drastically after calibration. 260 

However, it is worth noting that the upper bound in Fig. 2 (left) (almost constant ST around 261 
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28 °C) is caused by model 8 only, which did not provide results for the calibrated simulations. 262 

The rest of the models provided ST values in a more realistic fashion (not shown here). 263 

Scatterplots with weekly resolution (Figs. D-H in Supplementary material) show the 264 

improvements obtained with calibration, with a similar pattern across flux sites. Appendix 1 265 

shows the statistical assessment of the model results for GRI and LAQ1, Grillenburg and 266 

Laqueuille being the driest and the wettest of the flux sites investigated, respectively (see 267 

other sites in Tables E-G of Supplementary material with weekly resolution). 268 

Overall, calibration improved the quality of the ST simulation in terms of explained 269 

variance though the improvement is only marginal in some cases. In general, model 270 

performance was similar for calibration and validation periods for the seven models that 271 

provided both blind and calibrated results. 272 

 273 

3.1.2. Evaluation of soil water content (SWC) estimates (flux sites) 274 

Fig. 3 shows the comparison of measured and simulated SWC at weekly aggregation, for 275 

all five flux measurement sites (see Figs. I and J with daily and monthly time resolutions, 276 

respectively, in Supplementary material). The grey area provides information on the range of 277 

model results (nine models for the blind tests, seven of them for the calibrated tests), and the 278 

black line represents the MMM. 279 

 280 

281 
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Fig. 3. Comparison of weekly averaged simulated and measured soil water content (SWC) at 282 

the flux sites (ID as in Table 1). The shaded area represents the range of estimations provided 283 

by the individual models while solid line shows the multi-model median (MMM). Open 284 

circles show the weekly averaged measured values. The dashed vertical line divides the 285 

measurement period into calibration and validation time series. 286 

 287 

 288 
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Blind simulation results indicate that some of the models gave unrealistically high and/or 289 

low SWC values. Given the soil texture at the sites, saturated SWC was not expected to 290 

stretch beyond ~0.52 m3 m-3 at any of the sites (as estimated by the SOILarium software from 291 

pedotransfer functions; Wösten et al., 1999; Fodor and Rajkai, 2011). The range of 292 

uncalibrated results had unrealistically high values of SWC. This was true at each site, but 293 

especially at GRI, characterized by the lowest clay and highest silt contents (Table 1). The 294 

lowest expected SWC (wilting point) is around 0.3 m3 m-3 at OEN and about 0.10-0.16 m3 m-3 295 

at the other sites. Though the actual SWC can drop well below the wilting point in the upper 296 

soil layer, the lower boundary of SWC around zero at each site is not realistic considering that 297 

the flux sites are relatively wet. Comparison of uncalibrated and calibrated SWC shows that 298 

model parameter adjustment clearly improved the performance of the models (Fig. 3 right). 299 

The models mostly provided data within the expected SWC range, with no values beyond 300 

levels of SWC. The most prominent improvement was at GRI. At both LAQ1 and LAQ2, 301 

calibration introduced positive biases in some years (where uncalibrated biases were low). 302 

Figs. K-O (Supplementary material) show the performance of the individual grassland 303 

models for both blind (nine models) and calibrated simulations (seven models). The results 304 

clearly show that systematic errors are present in all models. An interesting common error of 305 

the models is that the range of simulated SWC values is smaller than in reality (model 8 is 306 

exception). The scatterplots in Supplementary material also reveal that the above-mentioned 307 

wide range of model results (e.g. Figs. K1 and K2 for Oensingen) is caused by model 8 alone 308 

(in Fig. K2, the x- and y-axis ranges are smaller than in Fig. K1 because of the smaller overall 309 

range of SWC values.). The scatterplot indicate some improvement (remarkable with models 310 

5 and 6) in the simulation of SWC in terms of R2. However, model calibration was globally 311 

unable to address the systematic errors present in the blind tests. 312 
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Appendix 2 shows the performance indicators of the model results, for GRI and LAQ1, 313 

which are the driest and wettest site among the flux sites, respectively (for other sites, see 314 

Tables H-J of Supplementary material with weekly resolution). In general, high variability of 315 

changes was observed across sites for the models. Overall, none of the models under study 316 

revealed considerable improvement. SWC simulation was the most successful at GRI and 317 

OEN. At these sites, ME values up to 0.8 were obtained in some cases, with mostly negative 318 

values obtained in the other sites. It is evident that SWC representation is not satisfactory in 319 

spite of parameter adjustments. This means that all of the studied models have difficulties at 320 

the eddy covariance sites, which are all characterized by ample precipitation and lack of 321 

severe drought stress. 322 

 323 

3.1.3. Evaluation of plant biomass estimates 324 

Fig. 4a, b shows the comparison of measured and simulated biomass values for a dry and a 325 

wet site (SAS and KEM1; KEM2 is not shown) over the full measurement period (for the 326 

other sites, see Figs. P1-Q5 in the Supplementary material). 327 

The shaded area represents the full range of model results (all nine models provided data 328 

for the blind tests, but only seven of them contributed to the calibrated tests), and the black 329 

line shows the multi-model median. The figures show that simulated biomass from the blind 330 

simulations varied in a wide range at all experimental sites. In general, measured biomass was 331 

within the range that was defined by the ensemble of the models. After calibration, the range 332 

of model results decreased for all sites except for MAT. As models 8 and 9 did not provide 333 

data for the calibrated simulations, it is not clear whether this decrease is the result of the 334 

calibration or it also incorporates the smaller number of models considered. For nine sites 335 

(SAS, KEM2, LEL, ROT1, ROT2, GRI, LAQ1, LAQ2, OEN), some of the measured data 336 

were outside the range that was defined by the seven models. 337 

 338 
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Fig. 4. Comparison of simulated and measured yield biomass (harvested aboveground 339 

biomass) at (a) SAS and (b) KEM1 sites (ID as in Table 1): without calibration (top) and with 340 

calibration (bottom). The shaded area represents the range of estimations provided by the 341 

individual models while solid line shows the multi-model median (MMM). Black circles 342 

show the measured yield biomass values. 343 

 344 
 345 

 346 

 347 
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Fig. R (Supplementary material) shows the performance of the individual grassland models 348 

for the blind and the calibrated simulations, separately for the dry and wet site (SAS and 349 

KEM1, respectively; see also Figs. S1-S20 in the Supplementary material for the other sites), 350 

revealing that the performance of the grassland models is rather heterogeneous, and varies 351 

considerably between sites and models. 352 

Overall, considering all sites and models (see also Supplementary material, Figs. Q1-S20), 353 

underestimation of biomass is more common than overestimation. Data points are distributed 354 

around the 1:1 line for ~1/3 of all model-site combinations that reported results. There is no 355 

clear systematic behaviour for the models in terms of over- or underestimation with a few 356 

exceptions. After calibration the overall picture changed to some extent: underestimation 357 

decreased, and tendency to approach the 1:1 line improved slightly. Percent of model-site 358 

combinations that provided data near the 1:1 line increased to some extent. Explained 359 

variance of the models (not considering MBO, due to the limited number of data points) 360 

varied in a wide range, spanning the interval of 0.00-0.78 for the blind runs, and 0.00-0.98 for 361 

the calibrated simulations. 362 

For biomass, Appendix 3 shows the statistical evaluation of simulation performances at 363 

SAS and KEM1, for the uncalibrated and calibrated models separately (other sites in Tables 364 

K-T in Supplementary material). In this case, there is no distinction between U1 and U2, and 365 

also C and V years, as yield data were not used for model calibration. Data from OEN were 366 

excluded from this analysis due to the low number of samples. High variability of changes in 367 

statistical indicators can be detected based on Table 4. Multi-site mean ME was negative for 368 

all models. There was no systematic fashion in the change of ME between the sites. In spite of 369 

the improvement of ME, the calibrated, multi-site mean ME was still negative for all models, 370 

which reflects poor model performance. The largest calibrated ME is characteristic to model 7 371 

(multi-site mean ME is -2.57). 372 
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3.2. Analysis of the ensemble approach 373 

Fig. 5 shows the MMM (or in other words, ensemble), uncalibrated and calibrated-374 

validated ST simulations compared with observed values on weekly resolution at OEN (see, 375 

for other sites, Figs. T1-T4 in Supplementary material). 376 

 377 

Fig. 5. Multi-model median (MMM) of uncalibrated (left) and calibrated-validated (right) soil 378 

temperature (ST) simulations compared with observed values with weekly resolution at OEN 379 

site (ID as in Table 1): x-y scatterplots with associated x and y histograms with estimated 380 

densities. 381 

 382 

 383 

The figures indicate that MMM ST from the blind simulations provided reliable estimates 384 

in terms of explained variance and slope of the linear regression. Explained variance varied 385 

between 91 and 97%, while the slope varied between 0.83 and 0.92 (which means small 386 

underestimation by the ensemble). Calibration did not change the overall quality of the 387 

MMM. Explained variance changed slightly with very small overall decrease, while the slope 388 

became closer to the 1:1 line in some cases. The performance indicators were calculated using 389 

the U2 and V years only. Considering ME, the MMM ST taken from the blind runs was a 390 

better predictor than 62.5% of the models. After calibration, 71% of the models gave worse 391 

ME than the MMM. Considering the explained variance, blind MMM ST was better than any 392 
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of the models, while after calibration 86% of the models provided worse performance than the 393 

ensemble median. Fig. 6 shows the comparison of the measured and the simulated MMM 394 

SWC results (separately for the uncalibrated and the calibrated-validated runs) at OEN, which 395 

is the best site in terms of MMM SWC performance (see, for other sites, Figs. U1-U4 in 396 

Supplementary material). 397 

 398 

Fig. 6. Multi-model median (MMM) of uncalibrated (left) and calibrated-validated (right) soil 399 

water content (SWC) simulations compared with observed values with weekly resolution at 400 

OEN site (ID as in Table 1): x-y scatterplots with associated x and y histograms with 401 

estimated densities). 402 

 403 

 404 

The results indicate that MMM SWC inherits the problems associated with the individual 405 

models. MMM SWC constructed from the blind simulation results shows poor performance at 406 

all sites. Low explained variance (maximum R2 ~0.4 at OEN) and departure of the data from 407 

the 1:1 line are indicators of the low reliability of simulations. The range of simulated 408 

ensemble SWC values is smaller than in reality, similarly to the results obtained with the 409 

individual models. After calibration, the quality of the MMM SWC simulations was mainly 410 

improved, though the performance of the validated and calibrated years differed markedly in 411 

some cases. Explained variance increased for all five sites, and ranged between 11% (LAQ2, 412 
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validated years) and 73% (OEN, calibrated years). The simulated MMM SWC remained 413 

confined within a relatively narrow range for all sites, which means that the intra-annual 414 

variability of SWC was not captured by the MMM. Similarly to ST, multi-site mean error 415 

statistics were calculated and compared with the multi-site mean statistical indicators of the 416 

MMM SWC (for the U2 and V years). ME of the MMM SWC was better than 78% of the 417 

models and 57% of the models for the blind and calibrated simulations, respectively. Multi-418 

site mean ME remained negative for all models in both time periods (U2 and V), which means 419 

that the mean of the observations is more useful for SWC estimation than any of the models. 420 

Fig. V (Supplementary material) shows that after calibration better estimations in yield 421 

were reached at the grassland sites other than the flux sites. In general, the MMM 422 

underestimated the expected yield at the production sites but overestimated it at the flux sites. 423 

Additionally, the observed yield was poorly represented at those sites characterized by 424 

extensive treatments (LAQ2, KEM2, ROT2). 425 

Fig. 7a, b shows the observed and the modelled ensemble (MMM) biomass data for SAS 426 

and KEM1 (Figs. W1-X5 in the Supplementary material present the results for the other 427 

situations, considering that MBO is not discussed due to the low number of data). 428 

429 
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Fig. 7. Multi-model median (MMM) of uncalibrated (left) and calibrated (right) yield biomass 430 

simulations compared with observed values at the arid SAS site (a) and the humid KEM1 site 431 

(b) (ID as in Table 1): x-y scatterplots with associated x and y histograms with estimated 432 

densities. 433 

 434 

 435 

 436 

 437 

 438 

a

b
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The figures indicate that the performance of the MMM biomass estimation changed from 439 

site to site. Interestingly, the pattern on the scatterplots is similar for the blind and calibrated 440 

ensembles, which means that parameter adjustment did not cause radical change on the 441 

overall performance of the multi-model ensemble. With a few exceptions, systematic over- or 442 

underestimation is typical. Explained variance varies considerably among sites. With respect 443 

to ME, MMM outperformed the individual models in 100% of the cases. In terms of R2, the 444 

MMM gave better explained variance than seven out of the nine models (78%) for the blind 445 

runs, while MMM outperformed five models (out of seven) for the calibrated simulations 446 

(71%). 447 

 448 

3.3. Relationship between model errors and uncertainty assessment 449 

3.3.1. Relationship between residuals 450 

Due to data availability, the analysis of the relationship between standardized residuals was 451 

restricted to four eddy covariance sites (at MBO the number of biomass data was too low). 452 

Models 1, 2, 4, 5, 6 and 7 provided all data needed to analyse the residuals in this fashion 453 

(other models reported data to only a subset of the flux sites). Fig. 8 shows the relationship 454 

between the selected variables for OEN and GRI for models 1, 2, 4 and 5. Supplementary 455 

material contains results for other sites and models (Figs. Y1-Y5). 456 

 457 

458 
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Fig. 8. Correlation between the standardized residuals of simulated yield biomass (cutting 459 

events) of models 1, 2, 4 and 5, soil water content (SWC), soil temperature (ST), maximum 460 

temperature (mean of the two weeks before cutting) and precipitation (total of the two weeks 461 

before cutting) at  GRI (a) and OEN (b) sites (ID as in Table 1). 462 

 463 

a
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 464 

 465 

The figures visualize the relationship between the selected variables as squared matrix-like 466 

configurations. The lower triangular part of the squared matrices shows the scatterplots 467 

between the specific variables defined in the main diagonal of the matrix, with the overlying 468 

spline (without inferential character). For readability, the correlation between the variables 469 

and the significance of the relationship (p value) are shown in the upper triangular part of the 470 

matrix. The figures show that at some sites (mostly at GRI and OEN) a relatively strong 471 

relationship exists between some of the residuals, and also between the environmental factors 472 

and the residuals (relationship between maximum temperature and precipitation is not 473 

informative in the present context). The existing relationship is not uniform and, in some 474 

cases, the correlation is negative between some of the residuals (e.g. relationship between 475 

b
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yield and SWC residuals at GRI for model 5). Considering that the number of available SWC 476 

residuals at GRI is low, the statistical comparison is not well justified here for SWC. 477 

In the followings, we focus mainly on GRI and OEN sites. The individual models show 478 

considerably differences in terms of relationship between the yield, the SWC and the ST 479 

standardized residuals. High positive correlation was established between the yield and SWC 480 

residuals for models 1, 2 and 4, whilst models 5 and 6 had a strong negative correlation at 481 

Grillenburg, which is the northern flux site (Fig. 8 a and Fig. Y1 in Supplementary material). 482 

Similarly, positive correlation characterizes the relationship between yield and SWC residuals 483 

at OEN, but the relationship is weaker than at the GRI site (Fig. 8b and Fig. Y1 in 484 

Supplementary material). We found a general negative correlation between the yield and ST 485 

residuals, with the exception of models 5, 6 and 7 (Fig. Y1 in Supplementary material), as 486 

well as between the ST and SWC residuals (except for model 4) at all sites (the correlation 487 

was moderate at the grazed sites; see Figs. Y1 and Y2 in Supplementary material). 488 

Meteorological factors such as the mean maximum temperature and precipitation (2-weeks 489 

means and totals, respectively) also had a notable effect on the residuals. In some cases there 490 

was no clear pattern among the sites. The relationship between the selected variables can be 491 

alternatively characterized as well. We can select an arbitrary (but high enough) absolute 492 

minimum threshold and identify the number of cases when the covariance equals or exceeds 493 

this expected minimum in absolute terms. Selecting the 0.66 correlation threshold (which 494 

represents ~44% explained variance), and considering only OEN and GRI, the most common 495 

relationship is the ST residual - maximum temperature, which is typical for models 1, 2, 4, 5 496 

and 6. The second most common feature is the SWC residual - yield residual relationship, 497 

which is present in the case of models 1, 2, 5 and 6. Strong precipitation - SWC residual, 498 

maximum temperature - SWC residual and ST residual - SWC residual relationships are 499 

present for three models. Maximum temperature - yield residual and ST residual - yield 500 



27 

 

residual relationships were strong for two models. The correlation between the other possible 501 

variable combinations did not reach the 0.66 threshold for GRI and OEN. Though the multi-502 

model medians of ST, SWC and yield are statistically-derived datasets, and not the result of a 503 

process-based model, it might be interesting to check their behaviour in terms of correlation 504 

between MMM residuals, and also the effect of environmental variables on the residuals. The 505 

MMM correlations were generally moderate probably owing to the decreased model 506 

uncertainty (Fig. Y5 in Supplementary material). We found a general negative correlation 507 

between the SWC and ST residuals, while the maximum temperatures were positively 508 

correlated with the SWC and negatively with the ST residuals at all sites (the highest 509 

correlation was characteristic to the GRI and OEN sites). These results are in accordance with 510 

our previous finding, namely that the MMM approach may give a better estimation than the 511 

individual models (here in terms of unexpected correlation between the residuals). 512 

 513 

3.3.2. Uncertainty assessment related to multi-model ensemble 514 

Appendix 4 shows, for both individual models and MMM, the ratios between the 515 

variability of the models envelope and standardized model residuals. Values greater than one 516 

indicate that the spread is larger than the model residual, i.e. the uncertainty associated with 517 

the ensemble of models is high. For ST, ratios >1 indicate that with both individual models 518 

(90%) and MMM (100%) model error was generally lower than the variability in the multi-519 

model ensemble (with ratio equal to 1, M1 at LAQ1 is the only exception). With SWC, the 520 

pattern of responses is more complex, ranging from ratios <1 with M1 at all sites to ratios >1 521 

with M6 and M7, and mixed situations with the other models and MMM (overall ratios >1 are 522 

68% with individual models and 60% with MMM). This complexity is also reflected in the 523 

yield responses (ratios >1 are 54% with individual models and 58% with MMM), where only 524 
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M3 shows ratios <1 at all sites expect MBO (where only two values of measured biomass 525 

were available). 526 

 527 

4. Discussion 528 

4.1. Soil temperature (ST) 529 

All the models simulated ST relatively well, and their performance for representing ST 530 

generally improved after calibration. However, modelling efficiency (ME, at times <0) 531 

indicated problems with the quality of the results. It means that the information content of the 532 

simulations is questionable in spite of the level of explained variance, which appears high. 533 

Therefore, developments are still needed in terms of ST representation of the models to 534 

improve the quality of the simulations. Error statistics show the utility of the ensemble ST 535 

simulations against individual models. Ensemble median ST based on the blind runs over-536 

performed the majority of the models (except in terms of ME), while ensemble median ST 537 

derived from the calibrated runs was still more appropriate than ~2/3 of the models. The 538 

results indicate that satisfactory results can already be acquired based on the ensemble of 539 

uncalibrated runs. 540 

 541 

4.2. Soil water content (SWC) 542 

Even though bias can exist in the measurements of SWC (e.g. in the case of the widely 543 

used water content reflectometers; Weitz et al., 1997; Chow et al., 2009), performance 544 

indicators clearly indicated that the models used in this study are not sufficiently accurate to 545 

estimate SWC. This was mainly associated with the unrealistic small amplitude of the annual 546 

cycle of the SWC curve, as compared to the measurements. Due to the known role of SWC on 547 

evapotranspiration, stomatal conductance and other processes, this problem has obvious 548 

consequences at sites where water shortage is a typical feature. According to the De 549 
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Martonne-Gottmann aridity index (Supplementary material, Fig. A), water shortage affected 550 

the majority of the sites, at least in some years. Proper response of the models to the water-551 

limited conditions is thus questionable, which means that the applicability of the models in 552 

semi-arid or arid ecosystems is not supported.  553 

This finding may be to some extent related to the ability of roots to extract soil water, 554 

which differs between perennial species dominating continental Europe and annual self-555 

seeding species dominating Mediterranean (semi-arid) sites (e.g. Volaire and Lelièvre, 2001; 556 

Mapfumo et al., 2002).  557 

Quality of SWC simulation might seriously affect model parameter estimation as well. 558 

Calibration usually means a statistical method where the internal model parameters are 559 

adjusted, so that the agreement between model outputs and measurements is improved (e.g. 560 

Hidy et al., 2012). The pitfall of model calibration is the possible bias introduced to the 561 

optimized internal parameters when model structural errors are compensated with distorted 562 

parameters (e.g. Carvalhais et al., 2008; Martre et al., 2015). This is especially problematic if 563 

the model parameters are physical quantities (like C:N ratio, specific leaf are index, etc.) not 564 

merely coefficients of some empirical equation. Our results indicate that due to the deficient 565 

SWC estimation there is a high possibility that calibration will result in distorted parameter 566 

values. Further model developments are clearly and essentially needed in terms of soil 567 

hydrology to address structural errors within the models, and to avoid the systematic errors 568 

associated in some of the model parameters.  569 

The utility of the MMM SWC estimation is not as straightforward as in the case of ST. 570 

Ensemble median of the blind results usually performs better than 2/3 of the models (with the 571 

exception of R2), which means that some benefit can be expected by using an ensemble 572 

approach. Considering the calibrated models, the number of models that are outperformed by 573 

the median is decreased. These results indicate the usefulness of the ensemble approach 574 
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though the performance of the MMM still indicates several areas of improvement. In 575 

summary, the results indicate that SWC estimation should be used with caution in regional or 576 

continental scale simulations, and model developments focusing on soil hydrology are 577 

essential. 578 

 579 

4.3. Plant biomass 580 

Biomass data are discontinuously measured and rather large uncertainties on biomass 581 

measurements (mainly owing to spatial heterogeneity) may hinder model evaluation 582 

(Vuichard et al., 2007). Simulated yield dynamics were essentially dissimilar across the 583 

models used in this intercomparison. The results indicate that there is no systematic fashion in 584 

the response of the models to the environmental factors. This highlights the complexity of 585 

interactions between meteorology, soil properties, grassland floristic composition and their 586 

related resilience to environmental stress, management and other biogeochemical factors. This 587 

also indicates that the models are not developed enough to capture systematic differences 588 

between the sites. 589 

In our model intercomparison, calibration was performed using eddy covariance based on 590 

C flux and evapotranspiration data, together with SWC and ST (but some modelling groups 591 

only used a subset of measured data for calibration). Thus, biomass data were not used as a 592 

control variable for model optimization, which means that errors associated with the proper 593 

estimation of biomass can partly be explained by the lack of adjustments of some internal 594 

model parameters associated with biomass. Multi-objective model calibration should be 595 

extended to include biomass as a control variable with equal weight as the other, sometimes 596 

more data-rich data streams like GPP (Keenan et al., 2011). Besides uncertainty associated 597 

with the model parameters, structural problems might also affect the performance of models 598 

on yield. For example, constant ratios of the above- to below-ground biomass allocation may 599 
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cause unsatisfactory model performance on biomass. Ensemble simulation of grassland 600 

production is an opportunity as shown in the present study. Uncalibrated ensemble median 601 

was the most successful in terms of error statistics, in spite of the fact that the quality of the 602 

performance based on the median was still problematic at almost all the sites. Due to 603 

calibration, the multi-model median was still useful. 604 

 605 

4.4. Ensemble approach of grassland simulation 606 

We used such a simple approach (median of all simulations) to construct ensemble results, 607 

but there are alternative ways (see Schwalm et al., 2015 for an overview) to calculate multi-608 

model ensembles to take into account the skill of individual models with weighting according 609 

to errors. Schwalm et el. (2015) studied the effect of "naive" (i.e. simple multi-model 610 

ensemble like in our case) versus optimal techniques in terms of performance of terrestrial 611 

biosphere models. They found that sophisticated, skill-based methods are not superior in 612 

comparison with the naive approach in statistical sense. This means that our simple multi-613 

model median approach might already capture the essentials considering the possible 614 

applicability of the ensemble technique. Further steps are needed, probably with the inclusion 615 

of additional grassland models and ensemble integration techniques to evaluate the usefulness 616 

of the ensemble technique. This would mean a major step towards robust and reliable 617 

estimation of production and greenhouse gas balance of grasslands. 618 

 619 

4.5. Possible explanations for model errors (residual analysis) 620 

We presented an approach that uses a covariance matrix (with graphical representation) to 621 

take into account all possible correlations between ST, SWC and yield residuals and, 622 

additionally, mean maximum air temperatures and precipitation totals. This residual analysis 623 

can help find relationships between some variables, and between variables and external 624 
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drivers (and thus it can help find additional variables that may need to be included in the 625 

models as predictors; Medlyn et al., 2005). This analysis might indicate dependency of errors 626 

in one process that is related to another (which is a typical case of error propagation within the 627 

model), though the way of error propagation cannot be easily retrieved from the covariance 628 

matrix. For example, overestimation of biomass may cause overestimated shading of the soil 629 

surface that interferes with the ST simulation. In turn, bias in ST may interact with ecosystem 630 

respiration that affects plant growth and thus biomass amount. Underestimation of leaf 631 

biomass may interact with evapotranspiration (by decreasing it) which can cause errors in 632 

SWC due to slower water depletion. SWC effect on biomass is probably more 633 

straightforward. The results indicated that the SWC annual cycle is not well represented by 634 

model simulations and, hence, drought stress on plant growth and biomass could not be 635 

captured by models. This is particularly well illustrated at GRI. 636 

Considering the specific models that provided calibrated outputs, the results can be used to 637 

make recommendations for model improvement (Supplementary material, section 4). The 638 

results indicate that the structural errors can be detected based on the analysis of model 639 

residuals. The lack of strong correlation between the residuals at the grazed site (LAQ1 and 640 

LAQ2) as well as extensive sites (ROT2, KEM2) indicates that the process representation of 641 

state-of-the-art grassland models is not satisfactory, and more research is needed to accurately 642 

simulate biogeochemical processes and grass yield at grazed and extensively managed sites. 643 

As we only used a few variables in the correlation matrix, additional variables might be added 644 

to the covariance matrix analysis of residuals.  645 

 646 

4.6. Uncertainties in grassland modelling 647 

Uncertainty of output data, defined as spread of results arising from unknown or 648 

imperfectly characterized processes, is an inherent property of mathematical modelling. In 649 
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grassland modelling and, generally, in ecological modelling, uncertainty is caused by internal 650 

variability, errors in the initial and boundary conditions, parameterization, and model 651 

structure. In multi-model frameworks, uncertainty is also associated with the different model 652 

formulations (Schwalm et al., 2015).  653 

Considering the nine grassland models, our study suggests that the spread of the ensemble 654 

members tends to be higher than the model error. This means that variability of simulation 655 

results can be explained by model formulation rather than structural uncertainties within the 656 

models. Work is needed to constrain the multi-model results and decrease uncertainty in 657 

simulating grassland functioning. Uncertainty is associated with the measurements which are 658 

used to train (i.e. calibrate) the individual grassland models. For example, eddy covariance 659 

measurements that were used in the present study inherently contain random and systematic 660 

errors that might interact with the parameter estimation (Richardson et al., 2006). Errors 661 

associated to the training dataset might cause bias in the optimized parameters for a given 662 

model structure. Initial conditions are typically estimated by self-initialization or equilibrium 663 

run (e.g. Lardy et al., 2011), which creates consistent initial conditions for the simulations in 664 

terms of different pools and nutrient availability. However, the equilibrium pools might 665 

deviate strongly from reality. Incorrect estimation of boundary conditions (i.e. meteorological 666 

drivers) might also cause uncertainty in the results.  667 

Grassland models typically use many parameters (i.e. constants) that are variables in 668 

reality, which substantially alter the biophysical and biogeochemical processes. In many 669 

cases, these parameters are hard to define due to lack of measurement (e.g. for plant traits like 670 

leaf C:N ratio or specific leaf area), or due to the nature of the parameter (e.g. in empirical 671 

equations without physical meaning). Thus, model calibration is essential to optimize model 672 

results for a given ecosystem. However, parameters are highly variable in time and space (e.g. 673 

Zaehle et al., 2005), thus their general applicability as one defined plant functional type (PFT, 674 
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Bonan et al., 2002) is problematic. Grassland models can simulate management in such a way 675 

that the user prescribes the management related data to the model (e.g. Hidy et al., 2012). 676 

However, due to the nature of management the settings are often affected by uncertainties. A 677 

typical example is grass cutting, or grazing. Within the present model intercomparison, yield 678 

simulation was rather unsuccessful at the grazed site (LAQ1 and LAQ2; Figs. R13 and R14 in 679 

the Supplementary material), which can be the consequence of management-related 680 

uncertainty. Individual grassland models are constructed using diverse representations of 681 

specific processes (Table B1 in Supplementary material). Though there are similarities in the 682 

applied methods (e.g. the Penman-Monteith method is used usually for evapotranspiration 683 

simulation), the heterogeneity of the process representations is obvious. Scientific level of 684 

understanding of plant processes is far from being perfect. Here we mention a few processes 685 

that are widely discussed in the literature. 686 

Plant phenology is clearly problematic as timing of onset of vegetation growth and litter 687 

production in autumn strongly influence grassland functionality (e.g. Zhang et al., 2013). 688 

Photosynthesis routines coupled with stomatal conductance parameterization are subjected to 689 

uncertainties due to parameterization. Plant respiration formulation is quite heterogeneous 690 

among the models, which is a major source of model output uncertainty in grassland models 691 

and biogeochemical models in general. Soil water balance representation is another source of 692 

uncertainty for the models that was clearly demonstrated in the present study. 693 

Although grassland models typically have some kind of representation of drought related 694 

senescence and changes of plant functioning due to water limitation and/or heat, this logic is 695 

still based on the above-mentioned PFT logic. Van der Molen et al. (2011) suggested that 696 

grassland ecosystems cannot be considered as a single PFT but should be treated as mixtures 697 

of plants with different plant strategic properties. For example, at the drought-prone Bugac-698 

puszta site in Hungary (Nagy et al., 2007), observations revealed that C3 grasses dominate the 699 
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spring/early summer intensive growth, then during the summer drought resistant C4 grass 700 

species start to interact with the overall C balance also due to their delayed phenological cycle 701 

at this extensively managed sandy grassland (Nagy Z., personal communication). None of the 702 

studied grassland models is at present prepared to represent this strategy for mixtures of 703 

grassland species. 704 

Other processes not mentioned here might also be poorly represented within state-of-the-705 

art grassland models. In any case, it is clear that our understanding is not satisfactory yet to 706 

provide reliable estimations for grassland functioning and biogeochemistry. 707 

 708 

5. Conclusions and future directions 709 

Quantitative representations of the uncertainty in models can be used to study strategies for 710 

decision-making. Estimating uncertainty derived from multi-model ensembles is a relatively 711 

recent topic in climate-related agronomic research, and it has gained a lot of momentum over 712 

the last few years (e.g. Asseng et al., 2013). The uncertainties that are embodied by a 713 

spectrum of modelling choices are thus represented and by the inherent imperfection of each 714 

and every one of them. In this study, we presented a framework for proper interpretation of 715 

model performances and uncertainties obtained with a set of biophysical models (individually 716 

and in an ensemble) simulating grasslands systems at a variety of sites. 717 

There are multiple foci when designing multi-model studies of complex ecosystems (such 718 

as grasslands) depending on the questions to be answered. We have not identified the best 719 

model for grasslands and we have not assigned probability of success to prove the suitability 720 

of using one or another model. We are not even claiming that a set of parameter values of 721 

general validity was produced by calibrating grassland models. Rather, we have pursued 722 

questions to be answered about drivers of grassland processes and modelled responses (and 723 

their uncertainties). 724 
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The results indicated that some of the main drivers and results of the grassland processes 725 

are not represented well by state-of-the-art grassland models. Especially SWC and yield had 726 

severe problems that may prevent their applicability in reliable, larger scale experiments. 727 

Model errors were presented for the studied processes in a tabular form, which may provide 728 

comparability basis for further studies. Presentation of daily, weekly and monthly results 729 

might be useful for other researchers to compare model performance at the same sites.  730 

Calibration seemed to improve the model results to some extent, but there was no dramatic 731 

increase in model performance for any of the studied models, at any of the sites. Ensemble 732 

technique seems to be a feasible method for the simulation of grassland processes, but model 733 

development is inevitable to improve the multi-model approach. In our intercomparison, we 734 

highlighted the uncertainties that are associated with the models, and we created 735 

recommendations to some of the models. Uncertainty was characterized in a fashion, which 736 

allowed highlighting the scientific challenges faced in simulating soil processes (temperature 737 

and water content) and biomass on European and peri-European grasslands with a variety of 738 

state-of-the art models used individually or within an ensemble. What seems to be a message 739 

from our intercomparison is that grassland models should be further developed and tested at a 740 

large number of experimental sites. In order to provide validation and calibration data for the 741 

models, essential processes and outputs like GPP, RECO, SWC, ST, C allocation, emission of 742 

non-CO2 GHGs, and also magnitude and timing of human intervention should be 743 

characterized in systematic and accurate fashion in multiple grassland sites covering large 744 

climatic gradients. 745 

Though the exercise of the presented model intercomparison performed (the first on 746 

permanent grasslands) is large enough, we are aware that it does not completely cover most of 747 

the modelling approaches used to simulate grasslands. An example is the process-based, 748 

biogeochemical model ORCHIDEE-GM, which includes an enhanced representation of 749 
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grassland management derived from PaSim (Chang et al., 2013, 2015). Another example is 750 

represented by a grassland-specific model derived from STICS (BioMA-Grassland, personal 751 

communication by G. De Sanctis, Joint Research Centre of the European Commission, Ispra, 752 

Italy), which is being developed for the platform BioMA (Biophysical Models Applications, 753 

http://bioma.jrc.ec.europa.eu). Grassland model intercomparisons with the inclusion of more 754 

models should therefore be continued to improve our ability to simulate grassland processes 755 

with acceptable quality. We also think that further analyses and better understanding of these 756 

ensembles are required to achieve fundamental progress in grassland modelling by 757 

investigating the sensitivity of models to climate and management drivers. This assessment 758 

goes beyond the scope of this paper, and a paper on this topic should be arranged later as a 759 

natural evolution of what has already been presented here. 760 

761 

http://bioma.jrc.ec.europa.eu/
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APPENDICES 975 
 976 

Appendix 1 977 
 978 

Individual (M1-M8) and multi-model ensemble (MMM) performance at different information 979 

(SIM) levels - uncalibrated (U1, U2), calibrated (C) and validated (V) - at the most humid and 980 

the most arid flux sites (ID as in Table 1) based on different metrics calculated on weekly 981 

averaged soil temperature (ST). NA: not available ST simulations. 982 

 983 

Model 

ID 
SIM 

Mean of 

observations 

(°C) 

Mean of 

simulations 

(°C) 

BIAS 

(°C) 

RRMSE 

(%) 
ME R2 

GRI LAQ1 GRI LAQ1 GRI LAQ1 GRI LAQ1 GRI LAQ1 GRI LAQ1 

M1 

U1 9.74 8.95 8.71 7.69 -1.02 -1.26 32.25 28.77 -0.06 -0.15 0.77 0.83 

U2 10.17 8.54 9.69 7.63 -0.47 -0.90 14.63 25.80 0.07 0.36 0.95 0.93 

C 9.74 8.95 8.60 7.71 -1.14 -1.24 34.81 37.02 0.63 0.59 0.89 0.90 

V 10.17 8.54 9.39 7.49 -0.78 -1.05 30.60 41.71 0.70 0.72 0.96 0.93 

M2 

U1 9.74 8.95 5.01 7.36 -4.73 -1.59 54.21 28.66 -1.37 -0.65 0.90 0.89 

U2 10.17 8.54 6.91 6.92 -3.26 -1.62 39.92 27.81 -0.79 -0.19 0.92 0.94 

C 9.74 8.95 4.85 7.17 -4.89 -1.78 55.09 28.16 -1.36 -0.59 0.90 0.90 

V 10.17 8.54 6.81 6.58 -3.36 -1.96 40.69 29.96 -0.80 -0.09 0.92 0.94 

M3 

U1 9.74 8.95 10.38 10.26 0.64 1.31 50.53 50.83 0.88 0.79 0.70 0.78 

U2 10.17 8.54 10.44 10.26 0.27 1.72 44.54 56.98 0.88 0.81 0.73 0.78 

C 9.74 8.95 7.80 7.65 -1.94 -1.30 29.93 25.49 -0.17 -0.07 0.86 0.88 

V 10.17 8.54 9.15 7.31 -1.02 -1.23 18.44 31.00 0.13 0.31 0.94 0.88 

M4 

U1 9.74 8.95 10.04 8.70 0.31 -0.25 36.77 28.93 -1.10 -0.88 0.91 0.90 

U2 10.17 8.54 11.94 8.37 1.77 -0.16 35.82 23.48 -0.98 -0.37 0.91 0.94 

C 9.74 8.95 10.01 8.36 0.27 -0.59 35.59 26.59 -1.05 -0.81 0.91 0.91 

V 10.17 8.54 11.70 8.01 1.54 -0.53 32.55 20.71 -0.88 -0.27 0.93 0.95 

M5 

U1 9.74 8.95 7.80 NA -1.94 NA 27.08 NA -0.02 NA 0.89 NA 

U2 10.17 8.54 9.14 NA -1.03 NA 17.06 NA 0.25 NA 0.97 NA 

C 9.74 8.95 7.84 NA -1.89 NA 27.38 NA -0.29 NA 0.90 NA 

V 10.17 8.54 9.31 NA -0.86 NA 16.08 NA 0.02 NA 0.95 NA 

M6 

U1 9.74 8.95 6.95 7.21 -2.79 -1.74 31.92 24.50 -0.15 0.04 0.91 0.93 

U2 10.17 8.54 8.81 6.80 -1.36 -1.74 18.99 31.93 0.24 0.34 0.97 0.93 

C 9.74 8.95 11.45 7.20 1.72 -1.75 40.15 33.64 0.44 0.38 0.73 0.88 

V 10.17 8.54 10.50 5.96 0.33 -2.58 26.89 42.21 0.05 0.39 0.81 0.93 

M7 

 

U1 9.74 8.95 8.23 NA -1.51 NA 25.37 NA -0.33 NA 0.90 NA 

U2 10.17 8.54 9.72 NA -0.45 NA 12.99 NA -0.02 NA 0.96 NA 

C 9.74 8.95 7.86 NA -1.88 NA 27.29 NA -0.36 NA 0.90 NA 

V 10.17 8.54 9.36 NA -0.81 NA 14.56 NA -0.03 NA 0.96 NA 

M8 

U1 9.74 8.95 28.06 28.04 18.32 19.09 198.41 223.42 -7.42 -10.57 0.80 0.86 

U2 10.17 8.54 28.21 27.99 18.05 19.45 186.53 238.72 -7.48 -8.24 0.95 0.89 

C 9.74 8.95 NA NA NA NA NA NA NA NA NA NA 

V 10.17 8.54 NA NA NA NA NA NA NA NA NA NA 

MMM 

U1 9.74 8.95 8.14 8.39 -1.60 -0.56 24.63 20.03 -0.12 0.00 0.90 0.92 

U2 10.17 8.54 9.66 8.03 -0.51 -0.50 12.12 18.58 0.17 0.31 0.97 0.97 

C 9.74 8.95 7.90 7.44 -1.83 -1.51 26.59 22.54 -0.26 0.02 0.90 0.93 

V 10.17 8.54 9.31 6.91 -0.86 -1.63 14.34 28.75 0.07 0.31 0.96 0.95 

 984 

  985 
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Appendix 2 986 
 987 

Individual (M1-M9) and multi-model ensemble (MMM) model performance at different 988 

information (SIM) levels - uncalibrated (U1, U2), calibrated (C) and validated (V) - at the 989 

most humid and the most arid flux sites (ID as in Table 1) based on different metrics 990 

calculated on weekly averaged soil water content (SWC). NA: not available SWC 991 

simulations. 992 

Model 

ID 
SIM 

Mean of 

observations 

(m3 m-3) 

Mean of 

simulations 

(m3 m-3) 

BIAS 

(m3 m-3) 

RRMSE 

(%) 
ME R2 

GRI LAQ1 GRI LAQ1 GRI LAQ1 GRI LAQ1 GRI LAQ1 GRI LAQ1 

M1 

U1* 0.45 0.36 0.37 0.36 -0.08 0.01 14.17 11.20 -714.6 0.30 0.10 0.50 

U2 0.41 0.33 0.36 0.36 -0.06 0.04 18.01 15.98 0.32 -1.91 0.83 0.25 

C* 0.45 0.36 0.39 0.39 -0.06 0.03 13.61 15.43 -329 0.34 0.08 0.46 

V 0.41 0.33 0.38 0.39 -0.03 0.06 17.84 21.38 0.82 -3.55 0.87 0.37 

M2 

U1* 0.45 0.36 0.39 0.38 -0.06 0.02 16.35 14.38 -406.8 0.00 0.32 0.41 

U2 0.41 0.33 0.37 0.39 -0.04 0.06 14.94 21.67 0.42 -3.65 0.82 0.20 

C* 0.45 0.36 0.39 0.37 -0.06 0.02 16.51 14.21 -409.9 -0.05 0.45 0.40 

V 0.41 0.33 0.38 0.39 -0.04 0.06 15.37 21.22 0.49 -3.53 0.76 0.20 

M3 

U1* 0.45 0.36 0.24 0.26 -0.21 -0.10 44.31 31.65 -4291 -3.68 0.34 0.18 

U2 0.41 0.33 0.22 0.26 -0.19 -0.06 47.51 24.08 -3.87 -4.92 0.70 0.07 

C* 0.45 0.36 0.30 0.35 -0.15 -0.01 33.46 19.79 -2219 -0.64 0.55 0.12 

V 0.41 0.33 0.27 0.43 -0.14 0.11 37.11 50.52 -1.80 -23.88 0.60 0.00 

M4 

U1* 0.45 0.36 0.23 0.38 -0.22 0.02 50.95 14.41 -4336 0.21 0.09 0.31 

U2 0.41 0.33 0.23 0.38 -0.19 0.05 48.60 19.64 -3.44 -3.06 0.56 0.23 

C* 0.45 0.36 0.34 0.36 -0.11 0.00 25.13 11.73 -1011 0.56 0.20 0.44 

V 0.41 0.33 0.34 0.36 -0.08 0.04 26.52 14.14 0.29 -0.86 0.66 0.29 

M5 

U1* 0.45 0.36 0.31 NA -0.14 NA 37.84 NA -1934 1.00 0.00 NA 

U2 0.41 0.33 0.31 NA -0.11 NA 33.85 NA -0.52 1.00 0.02 NA 

C* 0.45 0.36 0.29 NA -0.16 NA 37.95 NA -2368 1.00 0.38 NA 

V 0.41 0.33 0.29 NA -0.13 NA 34.63 NA -1.29 1.00 0.55 NA 

M6 

U1* 0.45 0.36 0.31 0.29 -0.14 -0.06 42.54 24.92 -2066 -1.94 0.00 0.10 

U2 0.41 0.33 0.31 0.30 -0.10 -0.03 30.46 19.01 -0.75 -3.42 0.38 0.18 

C* 0.45 0.36 0.45 0.33 0.00 -0.03 3.43 12.90 0.74 -0.40 0.26 0.48 

V 0.41 0.33 0.46 0.30 0.05 -0.03 18.81 12.51 0.29 -0.02 0.53 0.18 

M7 

 

U1* 0.45 0.36 0.70 NA 0.25 NA 64.14 NA -5817 1.00 0.45 NA 

U2 0.41 0.33 0.69 NA 0.28 NA 68.30 NA -8.97 1.00 0.49 NA 

C* 0.45 0.36 0.35 NA -0.10 NA 17.90 NA -1038 1.00 0.44 NA 

V 0.41 0.33 0.34 NA -0.07 NA 24.44 NA 0.11 1.00 0.44 NA 

M8 

U1* 0.45 0.36 0.19 0.22 -0.26 -0.13 66.39 62.01 -8509 -24.12 0.70 0.18 

U2 0.41 0.33 0.14 0.19 -0.27 -0.13 72.21 58.86 -10.05 -36.17 0.14 0.01 

C* 0.45 0.36 NA NA NA NA NA NA NA NA NA NA 

V 0.41 0.33 NA NA NA NA NA NA NA NA NA NA 

M9 

U1* 0.45 0.36 0.29 0.31 -0.16 -0.05 46.04 25.15 -2627 -2.09 0.51 0.03 

U2 0.41 0.33 0.29 0.32 -0.12 -0.01 40.18 21.67 -1.60 -4.25 0.01 0.06 

C* 0.45 0.36 NA NA NA NA NA NA NA NA NA NA 

V 0.41 0.33 NA NA NA NA NA NA NA NA NA NA 

MMM 

U1* 0.45 0.36 0,31 0,33 -0,14 -0,02 40,18 16,11 -1945,6 -0,44 0,01 0,22 

U2 0.41 0.33 0,30 0,33 -0,11 0,01 32,71 13,39 -0,72 -1,04 0,23 0,20 

C* 0.45 0.36 0,35 0,36 -0,10 0,01 17,90 11,28 -975,49 0,43 0,44 0,55 

V 0.41 0.33 0,35 0,37 -0,07 0,05 22,91 17,39 0,30 -1,79 0,74 0,20 
* 

Six available observed SWC data during U1 and C simulations at Grillenburg. 993 

 994 
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Appendix 3 996 
 997 

Individual (M1-M9) and multi-model ensemble (MMM) model performance at different 998 

information (SIM) levels - uncalibrated (U) and calibrated (C) - for SAS and KEM1 sites (ID 999 

as in Table 1) based on different metrics calculated on cutting events of yield biomass 1000 

(harvested aboveground biomass). NA: not available yield simulations. 1001 

Model 

ID 
SIM 

Mean of 

observations 

(g DM m− 2) 

Mean of 

simulations 

(g DM m− 2) 

BIAS 

(g DM m− 2) 

RRMSE 

(%) 
ME R2 

SAS KEM1 SAS KEM1 SAS KEM1 SAS KEM1 SAS KEM1 SAS KEM1 

M1 
U 

117.6 126.6 
64.5 240.0 -53.1 113.4 89.4 132.3 -0.26 -22.99 0.15 0.09 

C 26.9 113.1 -90.7 -13.4 102.5 56.6 -0.46 -2.63 0.14 0.02 

M2 
U 

117.6 126.6 
11.1 93.2 -106.6 -33.4 111.4 46.8 -0.67 -1.18 0.22 0.02 

C 5.2 57.5 -112.5 -69.0 118.0 65.0 -0.81 -3.78 0.08 0.02 

M3 
U 

117.6 126.6 
62.6 36.1 -55.0 -90.4 129.8 80.3 -0.93 -6.20 0.02 0.01 

C 10.7 23.2 -107.0 -103.3 113.5 86.1 -0.62 -7.71 0.32 0.04 

M4 
U 

117.6 126.6 
34.8 124.9 -82.8 -1.7 97.8 25.7 0.02 0.84 0.21 0.14 

C NA 184.0 NA 57.5 NA 54.5 NA -2.39 NA 0.10 

M5 
U 

117.6 126.6 
85.6 38.4 -32.0 -88.1 72.5 79.4 0.00 -6.32 0.28 0.00 

C 85.6 101.8 -32.0 -24.8 72.5 67.7 0.00 -3.46 0.28 0.02 

M6 
U 

117.6 126.6 
190.3 335.8 72.6 209.3 139.8 181.5 -3.98 -42.07 0.28 0.05 

C 110.7 183.3 -6.9 56.7 73.9 62.0 0.68 -3.77 0.05 0.07 

M7 
U 

117.6 126.6 
99.7 166.5 -17.9 39.9 92.9 60.9 -0.87 -5.05 0.19 0.26 

C 65.9 155.6 -51.7 29.1 76.0 52.5 0.07 -4.13 0.29 0.37 

M8 
U 

117.6 126.6 
97.2 466.3 -20.4 339.7 88.4 294.5 0.44 -111.08 0.00 0.00 

C NA NA NA NA NA NA NA NA NA NA 

M9 
U 

117.6 126.6 
107.0 179.9 -10.6 53.4 91.3 107.5 0.08 -13.92 0.03 0.02 

C NA NA NA NA NA NA NA NA NA NA 

MMM 
U 

117.6 126.6 
61.2 153.5 -56.5 26.9 81.5 31.8 0.17 -1.48 0.19 0.62 

C 38.7 106.5 -78.9 -20.0 87.6 32.7 -0.12 -0.40 0.40 0.24 

1002 
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Appendix 4 1003 

Average ratio of the ensemble spread to model error: average absolute standardized spread 1004 

(maximum-minimum) of model results / average absolute standardized model residual. 1005 

Responses are from calibrated simulations of soil temperature (ST), soil water content (SWC) 1006 

and yield biomass, as obtained at each site (ID as in Table 1) with both individual models 1007 

(M1-M7) and the ensemble median (MMM). NA: not available simulations. 1008 
Output Site M1 M2 M3 M4 M5 M6 M7 MMM 

ST 

OEN 1.10 1.92 3.90 6.19 5.03 1.95 5.58 4.95 

MBO 1.07 2.72 2.60 3.80 3.03 1.44 3.39 2.97 

GRI 1.54 2.42 3.91 4.15 4.78 2.25 5.16 4.95 

LAQ1 1.00 2.79 2.37 4.17 NA 1.39 NA 2.53 

LAQ2 1.53 3.04 3.54 4.51 NA 1.91 NA 4.19 

SWC 

OEN 0.64 1.23 1.09 1.33 1.13 4.42 1.07 2.04 

MBO 0.38 0.57 0.39 2.15 0.66 3.04 1.40 0.62 

GRI 0.83 2.03 1.01 0.29 0.91 2.66 1.05 0.82 

LAQ1 0.83 1.56 2.58 1.61 NA 2.48 NA 1.60 

LAQ2 0.74 1.62 3.09 1.46 NA 1.33 NA 2.27 

Yield 

biomass 

KEM1 0.96 0.95 0.14 1.10 2.49 1.18 2.27 1.89 

KEM2 0.75 0.76 0.15 0.72 1.65 1.48 2.30 0.76 

ROT1 1.92 2.51 0.14 4.96 1.47 1.78 3.76 2.07 

ROT2 1.82 2.44 0.15 6.05 1.63 1.66 4.30 2.29 

LEL 0.28 0.73 0.13 2.62 1.97 0.52 1.10 0.44 

MAT 0.20 1.52 0.11 0.09 0.94 2.18 1.04 1.07 

SAS 0.71 0.15 0.10 NA 2.09 4.57 1.12 0.75 

OEN 0.09 0.61 0.99 1.05 0.48 0.47 1.09 0.50 

MBO 0.52 0.55 4.67 0.39 0.85 3.27 2.56 0.79 

GRI 0.63 1.02 0.96 0.99 2.08 0.93 1.84 1.10 

LAQ1 1.28 1.42 0.55 0.83 NA 2.56 NA 2.17 

LAQ2 1.67 1.32 0.19 1.09 NA 1.15 NA 1.86 

 1009 




