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Abstract

Stemming from a sound mathematical framework dating back to the begin-
ning of the 20th century, this paper introduces a novel approach for 3D face
recognition. The proposed technique is based on joint differential invariants,
projecting a 3D shape in a 9-dimensional space where the effect of rotation and
translation is removed. As a consequence, the matching between two different
3D samples can be directly performed in the invariant space. Thus the matching
score can be effectively used to detect surfaces or parts of surfaces characterised
by similar when not identical 3D structure. The paper details an efficient pro-
cedure for the generation of the invariant signature in the 9-dimensional space,
carefully discussing a number of significant implications related to the applica-
tion of the mathematical framework to the discrete, non-rigid case of interest.
Experimental evaluation of the proposed approach is performed over the widely
known 3D RMA database, comparing results to the well established Iterative
Closest Point (ICP)-based matching approach.

Keywords. Biometry, 3D Face Recognition, Joint-Differential Invariants.

1 Introduction

Automatic analysis of faces represents an active research area, in which interest has
grown over recent years, for both scientific and industrial reasons [1]. The typical ap-
proach, in this context, consists in analysing the intensity image of a face – the so called
2D face. Nevertheless, in uncontrolled environments, illumination and pose variations
may severely impair recognition systems based on sole 2D information. To overcome
these problems, different alternatives have been proposed in recent years, based on 3D
information. The approaches presented in the literature – see [2] for an comprehensive
review – can be broadly divided into two classes: the first contains methods that per-
form recognition on the sole basis of shape, while the second comprises the so-called
mutimodal algorithms which use both 3D and 2D data (namely the texture of the 3D
shape) [3]. Here we concentrate on the former class: in this context, different are the
features that may be used, ranging from the raw clouds of points to the curvatures or
the face profiles, ending with the well known depth (range) images. All these features
have different characteristics in terms of accuracy, ease of computation, sensitivity to
noise and other factors. In this paper we propose a novel approach for 3D face recog-
nition, solely based on the analysis of the shape of a face represented as a raw cloud
of points. The method presented here follows the typical scheme for point cloud-based
systems [4]: given two clouds of points representing two faces, the matching score is
obtained by a registration process where the two clouds are aligned, and the matching
score is given by the registration error. In this context, the widely employed registra-
tion technique is the general Iterative Closest Point (ICP) method [5], which aligns two
shapes by iteratively minimizing the pairwise distances between corresponding points.
Even if some interesting and smart extensions have been proposed (e.g. to deal with
non rigid variations [6, 7, 8]), the registration obtained with ICP is prone to be erro-
neous and time consuming. In fact the registration is obtained with an optimization
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process, which, starting from an initial alignment of the two shapes, iteratively min-
imises a closeness measure. Such process is a local optimiser, which converges to the
nearest local minimum. It is therefore evident that a coarse pre-alignment is crucial to
ensure a proper registration. Moreover, it should be noted that the registration time
increases with the number of iterations, which could make the method unsuitable for
real time recognition purposes. The face recognition approach presented in this paper
aims to overcome these drawbacks, by proposing to perform the registration using joint
differential invariants [14]. This sound mathematical framework provides an optimal
way to project all points belonging to the two faces in a invariant space where the ef-
fects of rotation and translation are removed. The matching is then performed in such
space. The resulting registration process is not based on an optimization procedure
but directly derives from the invariant space. Moreover, no pre-alignment is required,
since the effect of rigid variations is by definition removed. Finally, it should be empha-
sised that even in case of poor overlapping of the two faces (30% or less), the method
has the potential to find the correct registration. It is important to note that such
invariants are defined on smooth manifolds, assuming continuous surfaces. Clearly, the
acquisition process samples the surface, and a too heavy sub-sampling may reduce the
accuracy of the registration. Although this registration process reaches perfection in
the ideal rigid-object noise-free case, in this paper we will show that it can be fruitfully
exploited in the face case, where non rigid variations and noise may be present. In
order to reduce the computational requirements, the matching is performed on specific
points, detected around maxima of curvature. Preliminary experiments made on the
well known 3D RMA dataset [10] show promising results, also with respect to the stan-
dard ICP. The remainder of the paper is organized as follows. Section 2 reviews the
mathematical framework of Joint Invariants, while in 3 its implementation in the face
case is proposed. Section 4 presents the comparative experimental evaluation; finally
in Section 5 conclusions are drawn and future perspectives are envisaged.

2 Joint Invariants for Surface Classification

In this section the theory that leads to Joint Invariants is presented, starting with an
outline of the Moving Frames Theory of Olver [11], following with the description of the
invariant signature adopted here and ending by detailing its application to the point
cloud case.

2.1 Outline of the Moving Frame Theory

The classical differential invariant theory for surfaces embedded in the Euclidean space
leads to invariants of second order derivative, the well known Gaussian and Mean
curvatures (see [15]). These invariants, together with their 1st order derivatives with
respect to the Frenet frame, parameterise a signature manifold that completely deter-
mines the surface up to Euclidean transformations (see [11]). This implies that two
surfaces are the same (up to an Euclidean motion) if and only if their signature man-
ifolds are the same and thus gives us a way to characterise surfaces up to Euclidean
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motions. In practice, a given a surface and a copy of it obtained by simply rototrans-
lating the original one, share the same invariants signature. However, if we apply this
methodology to experimental cases, where the surface is approximated by a sampling
of points, any noise in the points will be amplified by the second order derivatives,
making comparison of signatures difficult.

The theory developed by Olver in [11] is based on the classical theory of Moving
Frames first introduced by Cartan [13] and provides us with an algorithm for building
functionally independent sets of invariants that characterise a surface up to Lie Group
transformations (which include Euclidean motions). By prolonging the group action to
various cartesian copies of the surface, we can build invariants that depend on smaller
order derivatives, the so called joint differential invariants. In particular, if taking one
copy of the surface leads to the classical Gaussian and Mean curvature at each point
of the surface, by considering three copies of the surface the invariants will depend on
three points, and will consist of the three distance between the points and 6 first order
invariants. If we prolong the action to enough copies (7 in the case of surfaces), we
will find 21 invariants that depend only on the inter-point distances of 7 points of the
surface at a time. As in the case of the classical differential invariants, joint invariants
parameterise a signature that characterises the original surface up to the considered
transformations.

The theory of joint differential invariants therefore gives a very elegant and powerful
way of constructing a minimal set of invariants that are necessary to define a signature
of the surface. The signature will live in a space of dimension equal to the number
of invariants that parameterise it whereas its dimension will depend on the number
of points the invariants are defined on (i.e. on the prolongation). This means that,
through prolongation, we can have a representation of the original surface that is
invariant to transformations and dependent on low order derivatives, at the expense
of high dimensionality and computational complexity. In practical terms, a zero order
signature is parameterised by the 21 inter-point distances between all ordered subsets
of 7 points of the surface. If the surface is a point cloud consisting of n points, then
we would have n7 subsets each of which generates 21 invariants: if n is large, both
the generation of the signature and any further processing become computationally
challenging.

2.2 Invariants and Signature Generation

To compromise between computational time and robustness we choose a 3-fold prolon-
gation, so that our invariants will depend on three points at one time. As we will see,
this choice leads to three invariants of order zero plus six of order one. Let p1, p2 and
p3 be three points on the surface. If the surface is smooth we can define the normal
vector ni at each point pi.

Furthermore, (see figure 1) let r be the direction of the line between the first two
points and nt the normal to the plane through the 3 points:

r =
p2 − p1

‖p2 − p1‖ and nt =
(p2 − p1) ∧ (p3 − p1)

‖(p2 − p1) ∧ (p3 − p1)‖ .
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Figure 1: Triplet with associated normals

The zero order invariants we find are the 3 interpoint distances Ik(p1, p2, p3) for
k = 1, 2, 3:

I1 = ‖p2 − p1‖, I2 = ‖p3 − p2‖ and I3 = ‖p3 − p1‖
The first order invariants are the following:

Jk(p1, p2, p3) =
(nt ∧ r) · nk

nt · nk

for k = 1, 2, 3

and
J̃k(p1, p2, p3) =

r · nk

nt · nk

for k = 1, 2, 3.

To each triplet (p1, p2, p3) on the surface we can then associate a point of the
signature given by (I1, I2, I3, J1, J2, J3, J̃1, J̃2, J̃3). As the invariants depend on three
points, each of which has two degrees of freedom on the surface, the signature will be
a 6-dimensional manifold embedded in 9-dimensional space.

2.3 Point Cloud Implementation

Our aim is to adapt the general framework for constructing an optimal set of invariants
to our case of interest: the registration of (possibly partially overlapping) clouds of
points obtained by sampling surfaces. Let F1 = {p1, . . . , pn} and F2 = {q1, . . . , qm} be
two clouds of points sampled from two faces. For i = 1, 2 we consider all unordered
triplets of points in the sets Fi and calculate the invariants described in 2.2. This will
produce two discrete sets of points, S1 and S2, that would lie on the signature manifold
theoretically generated by the continuous surfaces of the faces, i.e. two sub-samplings
of the signature manifolds. The next step is the comparison of the two signatures.

From the general theory it follows that if two signatures partially overlap (i.e. they
intersect in a subset whose dimension equals their dimension), then also the surfaces
that generated them will have the same property (they will overlap) after an Euclidean
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motion. In order to establish the intersection of S1 and S2, we need to define a metric
in the embedding space R9.

After normalising the values of the 9 invariants, we found the Euclidean metric was
sufficient for reliably establishing matching points. Using a kd-tree algorithm [16], the
search of the closest point qi ∈ S2 for each point pi ∈ S1 can be performed efficiently.
Let d? be a fixed threshold and M the set of pairs (pi, qi) that satisfy the inequality
‖pi − qi‖ ≤ d?.

If we denote by |M | the cardinality of M , the signatures intersection is defined to
be SI = |M |/min{|S1|, |S2|}.

3 A Joint-Invariants Based Face Recognition Algo-

rithm

In view of the theory outlined in 2, we could readily implement an algorithm for face
recognition. Following the standard approach to point cloud-based 3D face recognition
[4], given two faces to be compared, the idea is to register them and use the registration
error as a matching score.

In details, suppose we have a training set G containing face scans of various subjects.
Each face scan can be represented by its 6-dimensional signature embedded in E9,
which, as we have seen, characterises it up to Euclidean motion. When a test scan comes
along and we want to compare it with the training scans we can build its signature and
compare it to all signatures in the training set by evaluating the intersections SI ’s. The
unknown testing scan is then assigned to the subject with the most similar signature
(highest value of the SI ’s). The algorithm may be easily extended to the authentication
scenario, where a testing face is authenticated if the template’s signature is similar
enough (given a threshold).

Using all points of the scans and invariants of maximum differential order equal
to one, the matching would be robust and simple. Indeed, even considering facial
expressions, it is reasonable to assume that there are enough stable points to distinguish
an individual from another (since the method works also in case of partial overlapping)
and no special metric is necessary to compare the signatures (see 2.3).

All this makes the framework very appealing. Unfortunately, computational com-
plexity prevents us to readily apply it in this “full” form: the average cardinality of a
face scan F in 3D databases can be beyond computationally capability. In the database
we experimented on it is 4× 103. Considering all these points would result in 43 × 103

signature points. This is computationally unfeasible, not to mention the processing
time of such a bulk of data. To overcome this problem, we need a way to sub-sample
the face scans. Since the invariants depend on distances and normals, we must ensure
that, in common patches of different scans of the same subject, we sub-sample the
same points.
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3.1 Sub-sampling

Given a scan F , we calculate an approximation of the mean curvature at each point p
in this way. We fix a neighborhood radius r and consider all points within the sphere
of radius r and centre p. We perform PCA analysis on the neighborhood points to find
the principal directions and so the curvature value and the normal vector at the central
point. Using the same neighborhood radius, we select the points of local maximum,
and amongst them we take the 14 points of highest curvature (in norm). We found
that this number of points was optimal to extract stable features like the nose tip and
the eyes. In fact, to guarantee the presence of stable features, for each face we extract
the maxima of curvature at different scales, by repeating the previous process 4 times
using increasing neighborhood radii. As a result we have 4 sets of characteristic points
on which to base the registration of the faces.

3.2 Signature Matching and Validation

For each set of characteristic points we consider all triplets, then for each triplet we
determine the 9 invariants as in 2.2 and finally we collect them in a signature. At the
end of the process we will have 4 signatures sets for each face. Given two faces F1 and
F2, for each scale si, i = 1, . . . , 4, we compare their signatures as in 2.3. For each si, we
will have SI i matching pairs of signature points. As a final score we take the maximum
of the SI i. In theory, this score should be enough for recognition purposes. In practice,
however, the signatures are generated starting from a maximum of 14 points on the
face scan, which leads to a heavy sub-sampling of the signature and so to the loss of
certainty of properties that in the general theory follow from continuity and smoothness.
Specifically, with no clues about proximity of matching pairs in the signature space, it
might well happen that quite a few number of invariants are close enough to indicate
a match, but this might just be the result of multiple transversal intersections of the
two signatures. If our measure of signatures similarity solely consists on counting the
number of matches over the total number of signature points we might be fooled by
transversal matches. To prevent this, we need to validate the matches. Fortunately this
almost comes for free: a match in the invariant space corresponds to a pair of matching
triplets T1 ⊂ F1, T2 ⊂ F2. We find the rototranslation that takes T2 onto T1 and we
apply it to all point of F2. To validate the match, we measure the “closeness” of the
transformed scan to the other in this way. We start by looking for each point qi ∈ F2

the closest point pi in F1 and we save the Euclidean distance di = ‖qi − pi‖ between
the two. We get a set of distances D = {di}i∈I where I = |F2|. However, since the
acquisition viewpoint may change, even in the case of an accurate registration, some
points might belong to only one of the scans and their distances from the closest points
in the other scan could be relatively large. We therefore experimented two metrics. The
first used a point to normal distance and is an approximation of volumetric distance:
for each point qi ∈ F2 we consider the normal line through it; if there is a point pi ∈ F1

close enough to the line (where by close enough we mean comparable to the acquisition
resolution), then we save their Euclidean distance di, otherwise qi is ignored. In this
way we remove outliers and we can evaluate the “closeness” of the transformed scan
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as the mean or median of distances (of remaining points). This measure proved to
be reliable but time consuming for a practical experiment on a large number of scans.
Also there are issues about the threshold on the point to normal distance since the face
sampling might not be uniform (and it certainly is not if the cloud is the output of a
single scan). A quicker but still reasonably robust alternative estimator of “closeness”
of scans proved to be the median of distances computed over all the points of the
clouds. This second metric has been used in extensive experiments.

4 Experimental Evaluation

We chose to test the proposed framework on the 3D RMA database [10] which, despite
being generally noisy, comprises scans of subjects taken from different viewpoints and
with varying facial expressions. The database contains a total of 106 subjects whose
faces where scanned using a structured light acquisition system during two different
acquisition campaigns. In the first one, 3 scans per subject were acquired from different
viewing directions (with angular variations of about 10 ◦). After a year the same
subjects were scanned two to three times, again from different view points. In total
there are 617 scans each of which contains on average 4× 103 points. We divided the
dataset into a training set G = {S1, . . . , S106}, where each Si consists of the first 3 scans
of subject i, and a test set P = {V1, . . . , V106}, where each Vi contains the remaining
scans of subject i acquired in the second campaign. For all scans in the training set, we
extracted the points of maximum curvature without any pre-processing on the points
and calculated the signatures at 4 different scales (see 2.2). Then, for j = 1, . . . , 106, we
considered all test and train subjects subsets pairs Gj = {S1, . . . , Sj}, Pj = {T1, . . . , Tj}
and proceeded as follows: one test scan at a time from Pj was compared to all scans
in Gj. The training scan that achieves maximum score after signatures matching,
registration and validation through the median distance (see 3.2) has been taken as a
match. If the matching test and train scans belong to the same subject the match is
validated.

The first two images in figure 4 show the curvature variation in two scans of the
same subject. Deep red and blue correspond to high absolute values of curvature.
The extracted points of maximum curvature are represented by the stars. The third
image is the result of the registration of the two scans; the profile view emphasises the
accuracy of the registration.

To compare our results we set up the same experiment framework using Besl and
McKay [5] original version of the ICP algorithm for registration and matching. This
version of the ICP algorithm minimises point to point Euclidean distances (under a
fixed threshold) through successive iterations.

To prevent ICP from converging to a local minima, a pre-registration has been
provided by manual selection of nose tips. The final matching score is taken to be the
mean or the median distance between corresponding points after the last iteration. The
results of all tests are illustrated in figure 3. The figure should be read in this way: for
each horizontal coordinate j = 10, 11, . . . , 106, the vertical one expresses the accuracy
(normalized to 1) of the recognition test carried out on the pair of subsets Gj =

TR No. CVL -2008-001 University of Sassari



3D Face Recognition Using Joint Differential Invariants 10

(a) (b) (c)

Figure 2: Characteristic points extraction and scans registration
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Figure 3: Matching scores of the different techniques as a function of database cardi-
nality.

{S1, . . . , Sj} and Pj = {T1, . . . , Tj}, namely the data subset obtained by considering
the first j subjects.

The invariants method clearly outperforms the ICP (both with median and mean
final error measurements) for 10 ≤ j < 30. At j = 30 the accuracy of both methods
is 96.7%. For j > 30 the invariant method performance gracefully degrades to the
advantage of ICP. At j = 106 the Invariant method score is 87.7% against the ICP
score of 90.6%. The reason for this is due to the nature of the 3D RMA database: in the
first of the two acquisition campaigns and for the first 30 subjects only, the matching
of corresponding points detected by the projected light pattern was manually aided,
leading to low noise point coordinates. From subject 31 onwards, the correspondences
were found automatically [10]. Since the extraction of curvatures suffers from noisy
input data, the registration through invariants might lose in accuracy, leading to wrong
matches. In fact, when we performed the recognition test on the test subset P30 =
{T1, . . . , T30} paired with the whole train set G = {S1, . . . , S106}, the matching score
was exactly the same for both methods, indicating that the presence of impostors
{S31, . . . S106} does not affect the result. This did not hold true for j > 30.
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Figure 4: Cumulative match characteristic curves for Invariants and ICP methods

In figure 4, we can see the Cumulative Match Characteristic (CMC) curves for the
Invariant and ICP methods applied to the whole database (on all 106 subjects). It
represents the classification accuracy of the three methods at different ranks. Rank k
means that a correct classification is assigned if the correct label is found within the
first k best matches. From the figure we can observe that ICP performs better at rank
1, whereas from rank 2 onwards the Invariant method is almost always ahead.

The performance of ICP when the median is used to measure the final registration
error instead of the mean (see figures 3 and 4) is also worthy of remark: we expected
similar results with the use of the median, but surprisingly we had a substantial per-
formance drop. Since the median and the mean are evaluated on the same set of
matching closest points, the only way to explain the difference is that the distances
were not normally distributed within the interval limited by zero and the ICP threshold
value.

In the joint invariants test, to validate a registration, we did not set a threshold to
discard closest points whose distances were quite big compared to acquisition resolution.
This is because our purpose was not only to obtain a measure of closeness of the
registered scans, but also to validate the registration, and so we would have had to
set two thresholds, one on the distance and the other on the number of closest points
under that distance. To avoid setting two thresholds we used the median on the
set of distances D = {di}i∈I as explained in 3.2. In the light of the ICP results,
however, we could improve the matching score by using a different metric to validate the
registration. This is supported by some experiments carried out using the volumetric
(point to normal) distance defined in 3.2, in which we have improvements on false
subjects matching. Alas, due to time limits we could not get results on the whole
database thus far.

The Joint invariant and ICP algorithms together with the tests were all implemented
in MatLab and carried out on AMD Opteron of 2 GB of RAM and 2.5 GHz CPU
speed. The joint invariant method took on average 2 seconds to extract the maximum
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curvature points, generate the signatures, and validate the matches of a pair of scans.
In order to speed-up the procedure, the extraction of the maximum curvature points
and the generation the signatures of the training set can been performed off line. This
took about 45 minutes in total, and reduced the average pairwise matching time to
1.5 seconds. The ICP proved to be slower due to the iteration process, and took on
average 4 seconds per pairwise matching.

5 Conclusions and Future Work

The main original contribution of this paper is the introduction of a novel approach for
3D face recognition, based on the sound mathematical framework of Moving Frames.
In this context, a single signature for a cloud of 3D points is generated using joint dif-
ferential invariants. Even if this concept of signature is defined for continuous surfaces,
here it has been adapted to the considered discrete set of points, projecting a 3D shape
in a 9-dimensional space where the effect of rotation and translation is removed.

In the paper we have presented an efficient procedure for the generation of an
invariant signature in 9-dimensional space, suitable to be employed for registration-
based matching. Experimental evaluation over the 3D RMA database showed that
the proposed method performance is in line with the well known ICP-based matching
approach and outperforms it in the case of low noise input data. It should be noted
that, contrary to the ICP, the proposed method does not require pre-registration and
can work in case of limited overlap between surface scans.

Performance improvements, in terms of computational speed and robustness, are
foreseeable with a more robust extraction of the points of maximum curvature. This
is especially true in the case of noisy input data. Also, it is reasonable to think that
pre-processing the data, e.g. cropping it to remove spikes due to hair or acquisition
artefacts, would positively affect the results. Additional work will also be devoted to
the implementation of a more sophisticated metric to validate the registration; in par-
ticular, an implementation of the volumetric distance described in 3.1 will be evaluated
against the whole database. Tests will be run on other databases, in order to further
evaluate the performance of the method in the presence of noise, facial expressions etc.

Finally, the ability to automatically capture and segment rigid parts of a face is
expected to be a main outcome of this research effort in the short time.
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