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Abstract - On a simulated population of 2,500 individuals, Principal Component Analysis and 
Factor Analysis were used to reduce the number of independent variables for the prediction of GEBVs. 
A genome of 100 cM with 300 bialleic SNPs and 20 multiallelic QTLs was considered. Two heritabilities 
(0.2 and 0.5) were tested. Multivariate reduction methods performed better than the traditional BLUP 
with all the SNPs, either on generations with phenotypes available or on those without phenotypes, 
especially in the low heritability scenario (about 0.70 vs. 0.45 in generations without phenotypes). The 
use of multivariate reduction techniques on the considered data set resulted in a simplification of cal-
culations (reduction of about 90% of predictors) and in an improvement of GEBV accuracies.
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Introduction - In recent years, the use of marker assisted selection programs in livestock has 
been constrained by poor knowledge on causal mutations affecting the expression of traits of economic 
interest (Dekkers, 2004). Dense SNP maps allowed the prediction of Genomic Breeding Values (GE-
BVs) based on the estimation of SNP genotype effects on the considered trait (Meuwissen et al., 2001). 
Possible advantages of Genome Wide Selection (GWS) over the conventional selection are the reduc-
tion of the generation interval, the increase of accuracy, particularly for females (Schaeffer, 2006) and 
the reduction of costs (Konig et al., 2009). In the basic idea of GWS, marker effects are estimated in 
a training population where both phenotypes and SNP genotypes are measured. Estimates are then 
used to calculate GEBVs in a prediction population (i.e. juvenile animals) where only SNP genotypes 
are available. One major issue in GEBV estimation is represented by the large number of predictors 
(for example 50K SNPs for cattle) and the relatively small number of records available. Several ap-
proaches have been proposed to select relevant markers. Among these, multivariate methods (Woolas-
ton et al., 2007) are of particular interest. In the present paper, two multivariate dimension reduction 
techniques, Principal Component Analysis and Factor Analysis were used to select a reduced number 
of independent variables for the prediction of GEBVs.

Material and methods - A population of 2,500 individuals, belonging to five overlapping genera-
tions was simulated. A one chromosome genome (2n=2) with length set to 100 cM was created. A total 
of 20 multiallelic (n. alleles≤5) QTL and 301 bialleic SNP markers were generated. Two heritabilities 
were considered: 0.2 and 0.5. Initial frequencies of SNP and QTL alleles were set at 0.5 and 1, respec-
tively. Founder population consisted of 50 males and 50 females. One thousand random mating gen-
erations were performed, with mutation rates of 25*10-4 and 25*10-5 for SNPs and QTLs, respectively. 
Starting from generation 1,001, the population was expanded and phenotypes were created adding 
random noise to true breeding values (TBV). Individuals of generations 1,001 and 1,002 were used as 
training data (TRAIN) whereas those of generations 1,003-1,005 were considered as prediction gen-
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erations (PRED). �������������������������������������        ��������������������������������������������       A SNP data matrix M with m rows (m=2,500, the number of individuals of the whole 
data set) and n columns (n=301, the number of SNP markers) was created. Each element corresponded 
to the genotype of a specific marker. ���������������������������������������������������������������         Principal Component and Factor Analysis������������������������      were carried out on M.� 
The number of retained principal components and factors��������������������������������������������        retained for further analysis was based on 
of the sum of the eigenvalues of the correlation matrix of M, corresponding to the amount of the total� 
variance explained. Single marker effects were estimated in the TRAIN data using three different 
predictors: all the 301 markers (SNP301), the Principal Component (PC) or the Factor (FACT) scores. 
The estimation was carried out with the following mixed linear model:

y = 1�������   ��µ������   �� + Zu +e

where y is the vector of phenotypes, µ is the overall mean, Z is the incidence matrix of random 
effects (SNP genotypes, PC, or FAC scores), u is the vector of solutions for random effects, e is the 
random residual. The (co)variance matrix G of the random effect was assumed to be diagonal Iσ2/n, 
where σ2 is the genetic variance (assumed known, equal to 20 or 50 in the two scenarios), and n is the 
number of SNPs, PC, or FACT used. Such an assumption is a strong simplification when SNPs are 
directly modeled, meaning absence of interaction between different loci, whereas it is correct when PC 
or FACT are used, being their scores orthogonal. Effects estimated in the TRAIN generations (�������� û������� ) were 
then used to predict GEBVs both for TRAIN and PRED individuals as

GEBV = µ + Σ z����'���û  

Accuracies of prediction were evaluated as cor-
relations between TBV and GEBVs. Each scenario 
was replicated 30 times.

Results and conclusions - The pattern of eigen-
values of the correlation matrix of SNP genotypes 
(Figure 1) showed a sudden drop after the extrac-
tion of about 50 PC. Assuming 0.80 as a reasonable 
threshold for the explained variance, a total of 32 PC 
and FAC were retained for further analyses. 

Higher accuracies of GEBVs estimation in the 
TRAIN generations (Table 1) were obtained for the 
scenario with high heritability, in agreement with 
previous results reported in literature (Kolbedhari 
et al., 2007). 

Table 1. 	 Correlations between Genomic and True Breeding Values in the TRAIN and 
PRED generations with the different methods and for two levels of heritability. 

TRAIN PRED

h2=0.2 h2=0.5 h2=0.2 h2=0.5

Method Mean s.d. Mean s.d. Mean s.d. Mean s.d.

SNP301 0.57 0.07 0.74 0.06 0.45 0.06 0.61 0.07

PC 0.72 0.05 0.78 0.05 0.71 0.05 0.76 0.05

FACT 0.70 0.09 0.78 0.05 0.69 0.11 0.76 0.05
 

Figure 1. 	 Pattern of eigenvalues of the 
correlation matrix of SNP ge-
notypes.
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In spite of the large reduction in the number of predictors used (about 90%), both PC and FACT 
gave better results than those obtained using all SNPs, especially with the low heritable trait. This 
advantage is maintained in both TRAIN generations (Figure 2a). ���� ���������������������������     As expected, a drop in GEBV ac-
curacy is observed in the PRED generations (Table 1), but only for the SNP301 method. Accuracies 
obtained with PC and FACT are comparable with those reported for BLUP estimation methodology 
(Meuwissen et al., 2001; Van Raden, 2008) and tend to remain constant in the three prediction genera-
tions (Figure 2b). 

In the simulated data set analysed, the use of principal component and factor analysis to extract 
latent variables from SNP genotypes had a relevant impact on GEBV calculations, with a reduction 
of about 90% of the predictor variables. In spite of such a reduction, accuracies of GEBVs were always 
higher in comparison with the model that used all markers available, especially for the scenario with 
h2=0.2. Moreover, no differences in accuracies were observed between TRAIN and PRED. A possible 
interpretation could be found in the ability of multivariate methods, that were carried out on SNP data 
of both TRAIN and PRED generation simultaneously, to extract latent variables that are able to sum-
marize the genetic relationships (i.e., the resemblance in the specific combinations of SNPs) between 
individuals of different generations. These results, if confirmed in larger genomes and actual data, 
may be of great interest for routine use of GWS.  
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Figure 2.	  Correlations between Genomic (GEBV) and True (TBV) Breeding Values in 
the different generations in the scenario with h2=0.2 (a) and h2=0.5 (b).
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