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Application of the Wolf method for the evaluation of Coulombic
interactions to complex condensed matter systems: Aluminosilicates
and water

Pierfranco Demontis, Silvano Spanu, and Giuseppe B. Suffrittia)

Dipartimento di Chimica, Universita` di Sassari, Via Vienna 2, I-07100 Sassari, Italy

~Received 13 November 2000; accepted 20 February 2001!

The application of the method recently proposed by Wolfet al. @J. Chem. Phys.110, 8254~1999!#
for the evaluation of Coulombic energy in condensed state systems by spherically truncated,
pairwiser 21 summation is verified for liquid water and anhydrous and hydrated aluminosilicates.
Criteria for the estimation of the optimum values for the truncation radius and the damping
parameter are discussed. By several examples it is verified that the new method is computationally
more efficient than the traditional Ewald summations. For the considered systems the performances
of the new method are good, provided that the truncation radius and the damping parameter are
carefully chosen. ©2001 American Institute of Physics.@DOI: 10.1063/1.1364638#
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I. INTRODUCTION

In condensed matter calculations and simulations, on
the most frequently occurring problems is the evaluation
the Coulomb potential, involving the slowly convergentr 21

summation. This problem has received considerable atten
throughout the last century, starting from the proposal of
Ewald method,1 which made the calculation feasible for an
periodic system and has long been the most used for ev
ating energies, forces, and stresses in the simulation of
uids and solids. The Ewald method assumes that the con
ered system is periodic, and its application to liquids or
general to disordered systems has long been criticized,2 as it
would create unphysical correlations, but even its applica
to crystals could be questionable. Indeed, although in p
ciple fully converged Ewald sums yield the correct limitin
value of the Coulombic energy, in practice the direct sp
sums are usually evaluated by including all the charges
suitable number of replicas of the simulated system. In m
cases the system is contained in a parallelepiped, or
space-filling three-dimensional cell~never possessing spher
cal symmetry!, and the reciprocal space sums run ove
more or less large number of reciprocal cells which in
whole are not spherically symmetrical@see Eq.~6! below#.
On the other hand, Coulomb potential does show spher
symmetry, as interactions between charges are central fo
Recently, a long article was published by Wolfet al.2 where
a comprehensive and deep analysis of the problem is
ported, and a new method using just a spherically trunca
pairwiser 21 summation is proposed and verified for a fe
classical ionic systems, namely NaCl and MgO in crystall
and liquid phase. In the present paper the application of
method to the simulation of complex systems contain
charged particles, in particular anhydrous and hydrated
croporous aluminosilicates~namely zeolites! and liquid wa-
ter, which are currently studied by our research group,3,4 is
considered. The chemical composition of zeolites5,6 usually

a!Electronic mail: pino@uniss.it
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consists of silicon, aluminum, oxygen, and exchangeable
ions. The crystalline framework is built up by corner shari
TO4 tetrahedra~in which theT sites are occupied by eithe
silicon or aluminum! giving rise to a rather complex bu
precisely repetitive atomic network with regular caviti
joined by channels in which guest molecules of appropri
size can be accommodated. These void interior spaces
admit water, many gases, larger molecules, and cations~usu-
ally metallic! which compensate for the charge deficit due
the aluminum/silicon substitution. Although the method pr
posed in Ref. 2 is simple to implement in energy minimiz
tion or molecular dynamics~MD!7 computer codes, the cri
teria for the choice of the involved parameters had to
refined for systems with special features like, for instan
noncubic unit cells. It will be shown that not only is it pos
sible to find out general empirical criteria for the estimati
of the best parameter values, but also the new method
proves the efficiency of the computations without requirin
for the considered systems, any substantial change in t
size. Before describing particular applications the main f
tures of the new method will be briefly recalled.

II. THEORY AND MODEL

A. The pairwise, spherically truncated rÀ1 sum

After Wolf et al.,2 ‘‘the key observation is that the prob
lems encountered in determining the Coulomb energy
pair wise, spherically truncatedr 21 summation are a direc
consequence of the fact that the system summed over is p
tically never neutral.’’ Then the authors proceed to deve
the new method by the following steps.

~i! Neutralization of the net charge of the system co
tained in a sphere with radiusRc .

It is shown that the total Coulombic energy might b
come convergent to the Madelung energy~its limit value! if
only a charge-neutralizing potential associated with the
system charge is subtracted from the total energy. T
charge-neutralizing potential is evaluated by considering
the charges necessary to neutralize the actual net charge
0 © 2001 American Institute of Physics
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tained in a sphere with radiusRc are always located within
the surface shell of thicknessubu aroundRc , given thatubu
represents the nearest-neighbor distance between ions o
posite charge. Therefore, by supposing thatubu!Rc it is as-
sumed that the entire neutralizing charge is localizedexactly
at the system surface atRc .

The charge-neutralization term can be written as f
lows:

Etot
neutr~Rc!'

1

2 (
i 51

N
qiDqi~Rc!

Rc
5

1

2 (
i 51

N

(
j 51

~r i j →Rc!

N
qiqj

Rc
~1!

because the net charge within the spherical truncation she
given by

Dqi~Rc!5 (
j 51

~r i j ,Rc!

N

qj . ~2!

Like in Ref. 2 it is important to note that the termj 5 i needs
to be included so that the true total charge in the spheric
truncated volume is obtained.

~ii ! The ‘‘shifted Coulomb pair potential.’’ After some
algebra, it is shown that the direct sum truncated atRc minus
the neutralizing potential is equivalent to the pairwise sum
‘‘shifted’’ Coulomb pair potentialsVsh

C (r i j ):

Vsh
C ~r i j !5qiqj S 1

r i j
2

1

Rc
D5

qiqj

r i j
2 lim

r i j →Rc

H qiqj

r i j
J ~3!

from which a sort of ‘‘self term’’ is subtracted. In Eq.~3!, r i j

is the distance between the ionsi andj bearing the chargesqi

andqj , respectively. The second form ofVsh
C (r i j ) is conve-

nient in order to evaluate the appropriate derivatives w
computing the forces, the stresses, etc. Indeed~see Ref. 2 for
more details!, in order to obtain correct results, derivativ
must be evaluated prior to taking the limit. The resulti
expression for the total Coulomb energy is

Etot
Mad~Rc!'

1

2 (
i 51

N

(
j Þ i ~r i j ,Rc!

Vsh
C ~r i j !2

1

2Rc
(
i 51

N

qi
2, ~4!

whereN is the total number of ions of the system. Using th
approximation of the Madelung energy, for sufficiently lar
Rc a convergence toward the limiting value is achieve
which is reasonable but not yet satisfactory.

~iii ! The ‘‘damped, charge-neutralized Coulomb pair p
tential.’’ In order to improve the convergence and make
close to that of the Ewald sum, a damping is applied to
charge-neutralized Coulomb potential, ‘‘in analogy to the
trick applied@...# to derive the Ewald sum’’ as it is written in
Ref. 2. The final formula is given by

Etot
Mad~Rc!'

1

2 (
i 51

N

(
j Þ i ~r i j ,Rc!

S qiqj erfc~ar i j !

r i j

2 lim
r i j →Rc

H qiqj erfc~ar i j !

r i j
J D

2S erfc~aRc!

2Rc
1

a

p1/2D(
i 51

N

qi
2 ~5!
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where erfc is the complementary error function,a is a pa-
rameter to be optimized, and the other quantities are defi
above. This expression is surprisingly simple and involv
only a direct pair summation over the distances with cut
radiusRc and constant terms. For comparison, we recall
Ewald summations which, using the same symbols as in
~5!, read

Etot
Mad'

1

2 (
i 51

N

(
j 51

N

(
nÄ0

` S qiqj erfc~aur i j 1n"L u!
ur i j 1n"L u D

2
a

p1/2(
i 51

N

qi
21

2p

3V S (
i 51

N

qir i D 2

1
2p

V (
kÞ0

`
exp~2k2/4a2!

k2 Q~k!. ~6!

In Eq. ~6!, neglecting the symbols defined previously, t
vector n5(nx ,ny ,nz) denotes the three-dimensionally pe
odic images of the simulation box of sidesL5(Lx ,Ly ,Lz)
andk is a reciprocal space vector. If the cell does not ha
orthogonal sides the dot productn"L is to be intended as a
generalized one giving the correct cell translations in Ca
sian coordinates. In the first term, fornÄ0 must bejÞi. The
function Q(k) is the so-called charge structure factor, giv
by

Q~k!5S (
j 51

N

qj exp@ i ~k"r j !# D S (
j 51

N

qj exp@2 i ~k"r j !# D . ~7!

The third term in Eq.~6!, resulting from the reciprocal spac
part of the Ewald sums fork50, is denoted as a ‘‘dipolar
term’’ and in most cases~and also in this work! is neglected,
because it is zero by symmetry or very small. Usually,
simulation box dimensions and the value ofa are assumed a
large so as to ensure that the first term of the Ewald sum
tions converges even forn50, so that the sums run over a
the ions of the simulation box alone. In this case, the ter
not containingRc in Eq. ~5! are of the same analytical form
as the first two terms in Eq.~6!, but in Eq. ~5! only the
interionic distancesr i j ,Rc are considered. As shown in Se
V of Ref. 2, the first double summation in Eq. (5) is nume
cally very close to the first real-space term of the Ewald s
for the same system and the same damping parametera, but
including all the ions of the simulation box~see also Table
II !. The evaluation of the forces and other quantities rela
to the derivatives of the potential, which are required
energy minimization or molecular dynamics simulations,
performed starting from Eq.~5! with the above recalled pre
scription of taking the limit forr i j →Rc after computing the
derivatives~see Ref. 2 for details!.

B. Derivation when the spherical truncation volume
exceeds the simulation box

One of the most interesting features of the new meth
is the possibility of using values of Rc larger than one half of
the minimum cell side. In Ref. 2 this statement is implici
but, as it might appear paradoxical, it deserves treatmen
detail, also because it allows, in practice, one to achi
remarkable computer efficiency improvements. Obvious
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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for crystals and liquids, when assumingRc.dmin/2, where
dmin is the smallest simulation box side, the minimum ima
convention and the periodic boundary conditions are
tained. Leti be an ion which, following the minimum imag
convention, is at the center of the simulation box. Referr
to Fig. 1, where a schematic two-dimensional representa
of a rectangular simulation box is reported, the choice
Rc.dmin/2 corresponds to include in the evaluation of t
Coulombic energy all the point charges contained both in
rectangle and in the circle, by excluding those not contai
in the rectangle. If the total net charge is not zero, one
evaluate the charge neutralization energy as follows. F
one can selectM point charges contained between the brok
lines in Fig. 1, or, in general, between arbitrary lines co
necting the intersections between the rectangle and the ci
so that this subsystem is neutral. In three dimensions, th
lines become surfaces with the same properties; the recta
and the circle become a parallelepiped and a sphere, res
tively. Then, if it is assumed, as was previously the case,
the entire neutralizing charge is localizedexactlyat the sys-
tem surface atRc , or better at that portion of the surfac
which is included in the simulation box, the neutralizati
energy can be evaluated by again using Eq.~1!, but in this
case the net chargeDqi(Rc) is given by

Dqi~Rc!5 (
j 51

~r i j ,Rc!

N2M

qj ~8!

because only theN–M charges exceeding the above-defin
neutral subsystem are to be considered. In order to rec
the exact form of Eq.~1!, which is necessary to derive th

FIG. 1. Two-dimensional representation of the situation when the sphe
truncation volume exceeds the simulation box. The system is all conta
in the rectangle, and the charges to be included in the evaluation o
Madelung energy are those at a distance less thanRC from the center of the
rectangle. The subsystem contained between the broken lines~in the shaded
region! must be neutral. If it is not so, the broken lines are supposed to
slightly deformed~letting their ends unchanged! in order to make the sub-
system neutral in any case.
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other formulas of the Wolf method@Eqs.~3!–~5!#, a simple
trick can be applied. Since the subsystem containing theM
charges is neutral and it is completely included in the tru
cation sphere, Eq.~8! can be rewritten in the following form

Dqi~Rc!5(
j 51

M

qj1 (
j 51

~r i j ,Rc!

N2M

qj5 (
j 51

~r i j ,Rc!

N

qj , ~9!

which is identical to Eq.~2!. Obviously, this derivation holds
for any shape of the simulation box. Therefore, the W
method can be applied even ifRc.dmin/2. Indeed, we veri-
fied numerically that the Coulombic energy is practically t
same~within very small error bounds due to the differe
number of neutralizing charges that are shifted to the sph
cal truncation surface! in the whole interval ifdmin/2,Rc

,Rmax, whereRmax is one half of the largest diagonal of th
simulation box, whatever its shape may be~see also Table
II !. In the caseRc5Rmax, whenRc becomes the radius of th
sphere circumscribing the simulation box, all the ions of t
system are included, so that the system is neutral, and
computed Coulombenergyis exactly the same as the dire
part of the Ewald sums~it is easily shown that in this cas
the neutralizing potential is zero!. However, forces and
stressesare not the same, because the direct part of
Ewald sums shows a discontinuity atr i j 5Rc , while the new
shifted potential does not~see Sec. V B of Ref. 2!. Using
forces and stresses as derived by the Wolf method ens
that corrects results are obtained. Moreover, it should be
marked that in this case the symmetry of the system is
more spherical, so that theforcesandstressesderived by the
Wolf method should be influenced by the shape of the sim
lation box, by assuming its translational symmetry. Ho
ever, this result, at least forcrystals, turns into anadvantage,
especially if the unit cells are large. Indeed, a spherical tr
cation which does not includes at least one full crystal
graphic cell cannot account for the translational symmetry
the crystal itself, so that a simulation box made of adjac
unit cells should include at least eight cells to adopt a tr
cation sphere embedding at least one full unit cell witho
reaching the simulation cell boundaries. On the other han
the unit cell is as large as the ones of some systems con
ered in this paper~sides of about 2 nm!, using Rc5Rmax

would allow one to take into account the translational sy
metry of a crystal by adopting a relatively small simulatio
box, resulting in a large reduction of CPU time and stora
requirements. As reported in the following, these findin
were carefully and successfully verified. A similar approa
can be followed to derive another more extensive and in
esting property of the Wolf method, which is reported in S
VIII of Ref. 2: ‘‘Our method is particularly powerful for the
simulation of interfacial systems, such as bicrystals, free s
faces, and liquid-vapor interfaces.’’ Indeed, the treatmen
the same except for avoiding the minimum image convent
across the interfaces. In conclusion,the Wolf method allows
turning the long-ranged Coulomb interactions into sphe
cally symmetric, relatively short-ranged effective potent
functions, like, for instance, the Lennard-Jones ones.
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C. Evaluation and optimization of the parameters

The parameters required for applying the Wolf meth
@see Eq.~2!# are the cutoff radiusRc and the damping pa
rametera. The cutoff radius depends in turn on the interion
distance ubu, since it must obey the conditionRc@ubu.
Therefore the most general criteria to choose the approp
values of these parameters should be found. In Ref. 2,
new method was tested for NaCl and MgO in different sta
~crystal, disordered solid, and liquid! and at different tem-
peratures, and, overall, satisfactory results were achieved
1.5a<Rc<2.5a, wherea is the~cubic! crystallographic cell
side, and for 1.5/a>a>0.8/a, provided thataRc'2.3. By
considering the actual interionic distanceubu in the two sys-
tems, it appears thatRc@ubu is in practice satisfied forRc

>5ubu. Therefore, for systems withubu shorter than in NaCl
and in MgO,Rc could be smaller. This happens for instan
for water (ubu'0.1 nm) and for SiO2 polymorphs, including
zeolites (ubu'0.16 nm!, entailing Rc'0.5 nm and Rc

'0.8 nm, respectively. These values are smaller than
half of the usual simulation box dimensions adopted for M
simulations for both kinds of systems, so that they co
remain unchanged if the new method is used. Howe
while for liquid water a cubic simulation box is almost th
rule, often unit cells of zeolites are not cubic and have d
ferent cell sides, so that there is no ‘‘natural’’ value forRc

and its right value, as small as possible to limit compu
tional effort, but sufficiently large to ensure convergen
must be found. As a first test, we tried to apply the n
method to silicalite8 which at room temperature shows
monoclinic ~but with b590.67°! relatively flat cell so that
the simulation box is usually made of two crystallograph
cells superimposed alongc with dimensions 2.0076
31.992632.6802 nm, including 576 atoms. Its framewo
structure comprises two different channel systems, each
fined by ten-membered rings of SiO4 tetrahedra. Straigh
channels with an elliptical cross section of approximat
0.57–0.52 nm are parallel to the crystallographic axisb and
sinusoidal channels with nearly circular cross section of 0
nm run along the crystallographic axisa. The resulting inter-
sections are elongated cavities up to 0.9 nm in diameter.
Rc50.9963 nm~one half of theshortestside, a value which
should be sufficiently large according to the abov
mentioned arguments!, the comparison of the new metho
results with those of Ewald seemed to be satisfactory. H
ever, the optimum value ofa had to be found. In other case
the meaning of the minimum interionic distanceubu becomes
unclear. An example is anhydrous zeolite Ca A.9 The pore
system of A-type zeolites could be schematically represen
by a cubic array of nearly spherical cavities~a cages! inter-
connected through eight-membered oxygen rings~windows!
with free aperture about 0.43 nm when not blocked by
cation. The diameter of thea cages is about 1.12 nm, and
Ca A zeolite the Ca21 cations are located near their surfac
The Ca21 cations neutralize an electron excess arising fr
the presence of Al atoms instead of Si in TO4 tetrahedra but
spread among several Al, Si, and O atoms of the framew
which are not chemically bound to the cations~their distance
from the cation is in the range 0.23–0.31 nm!, so that a
definite value ofubu is lacking, and the validity of the new
Downloaded 28 Oct 2008 to 192.167.65.24. Redistribution subject to AIP
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method in such cases had to be checked. Therefore, we
dertake an extended investigation for different systems
different simulation boxes in order to find the correct val
of ubu, which entails an estimate of the cutoff radius. Amo
zeolites, we considered silicalite, an all-silica zeolite sho
ing a noncubic unit cell~see the previous text!, anhydrous
zeolite Ca A,9 whose unit cell is cubic but with a not well
defined value ofubu, and scolecite,10 which not only contains
Ca21 cations in a noncubic cell, but also water molecul
Scolecite is a natural fibrous zeolite, which has channels r
ning along thec direction formed by eight-membered ring
of (Si, Al!O4 tetrahedra. The unit cell is monoclinic, witha
50.652 22 nm, b51.896 78 nm, c50.983 98 nm, andb
5109.97°, containing 60 framework atoms~40 O, 12 Si, and
8 Al! and 4 charge compensating Ca1 ions occupying crys-
tallographically ordered sites in the channels. Three m
ecules of water for each cation~or 12 molecules per unit cell!
are present in the channels in ordered positions and
linked to the cations by electrostatic forces and to the fram
work by hydrogen bonds, so that diffusion is hindered
room temperature. Finally, liquid water was simulated
using a model recently developed by our research gro4

including the electric field gradient at the position of ea
oxygen atom, which requires considerable computer
sources. The characteristics of the simulated systems an
the simulations are collected in Table I. In particular, in o
der to check the dependence of the results onRc and on the
dimensions of the system and to find the optimum vale ofa,
for silicalite and zeolite Ca A the simulations were pe
formed both for the usual MD boxes~with sides of approxi-
mately 2–2.5 nm! and for larger boxes~with sides of about
4–5 nm!. Most of the interaction potentials developed in o
laboratory for zeolites and water~always assuming that al
the particles bear electric charges! are reported or reference
in Ref. 4; the only not yet published parameters are thos
the Ca21–water potential functions, which are of the form

VCaO, H~r !5
1

4p«0

qCaqO, H

r
1ACaO, Hexp~2bCaO, Hr !

1
CCaO, H

r 2 , ~10!

where qCa is the nominal charge of Ca21(2e), qO

520.659 66e, andqH50.329 83e. The values of the param
eters are: ACaO52.5983105 kJ mol21; ACaH51.2026
3105 kJ mol21; bCaO50.351 nm21; bCaH50.679 nm21;
CCaO515.91 kJ mol21 nm22; CCaH58.16 kJ mol21 nm22.
The general behavior of the Coulombic energy obtained
the Wolf method using Eq.~5! may be investigated by evalu
ating the derivative of the Madelung energy with respect
a:

]Etot
Mad

]a
5

1

p1/2 S (
i 51

N

(
j ~r i j ,Rc!

qiqj exp~2a2Rc
2!

2(
i 51

N

(
j ~r i j ,Rc!

qiqj exp~2a2r i j
2 !2(

i 51

N

qi
2D , ~11!

where we note that the sums overj now include the valuei
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Downloaded 28 Oc
TABLE I. Characteristics of the systems considered in this work.

System
Unit cell dimensions

~nm and deg!
Simulation box dimensions

~nm and deg!
Number of

atoms

Silicalite
~monoclinic!

a52.0107 Silicalite~2 cells! a52.0107 576

b51.9879 b51.9879
c51.3369 c52.6738
b590.67 b590.67

Silicalite ~12 cells! a54.0152 3656
b53.9852
c54.0203
b590.67

Zeolite Ca A
~cubic!

a52.4555 Zeolite Ca A~1 cell! a52.4555 624

Zeolite Ca A~8 cells! a54.9110 4992

Scolecite
~monoclinic!

a50.652 22 Scolecite~6 cells! a51.956 66 600

b51.896 78 b51.896 78
c50.983 98 c51.967 92
b5109.97 b5109.97

Water ¯ a52.1752
~cubic!

1029
~343 molecules!
al
ir

t

u
s
t
ffi
t
e
th
i

th

e
-

r

o
l

m

ins
t. In
ults
can

y.

eri-

of
nd-

ox
ms
nd

m
f the

.
ox

nd
II C,
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lue,
the
5j. The first term is identically zero if the system is neutr
and in general it is much smaller than the others; the th
term is always negative, so that for large values ofa, when
the second term also becomes negligible, the slope of
Madelung energy versusa is negative. For small values ofa
usually ~an exception is liquid water, see the following! the
first term is negative and the second one is positive, beca
in ionic materials the particles of opposite charge are clo
together than the particle of the same charge. Moreover,
number of nearest neighbors is at least four and for su
ciently small values ofa the Gaussian functions in the firs
and second terms approach unity. Thus it is likely that th
sum is positive and larger than the third term, so that
slope of the Madelung energy is positive. Therefore, it
expected that for a~relatively small! value of a the Made-
lung energy shows a maximum. On the other hand, if
direct space Ewald sums in Eq.~6! are limited to the simu-
lation box, that is, the terms withnÞ0 are neglected, as
usual when the simulation box is sufficiently large, the d
rivative with respect toa of the Madelung energy as evalu
ated using Ewald sums is given by

]Etot
Mad

]a
5

1

p1/2 S (
i 51

N

(
j 51

N

qiqj exp~2a2r i j
2 !2(

i 51

N

qi
2D

1
2p

V (
kÞ0

`
exp~2k2/4a2!

2a3 Q~k!. ~12!

The first and second terms in Eq.~12! are similar to the
corresponding~second and third, respectively! terms of Eq.
~11! and it is easily shown that their behavior too is simila
Therefore, we usually expect that for small values ofa, the
contribution of the third term being negligible, the slope
the Madelung energy is positive and decreases unti
reaches zero. However, for larger values ofa the third term,
representing the contribution of the reciprocal space su
t 2008 to 192.167.65.24. Redistribution subject to AIP
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grows so that the slope of the Madelung energy mainta
the zero value, because this energy becomes constan
other words, the curve representing the Ewald sums res
reaches a plateau and the corresponding Coulomb energy
be assumed as the limiting value of the Madelung energ

III. CALCULATIONS, RESULTS, AND DISCUSSION

We evaluated first the Madelung energies for the exp
mental structures of silicalite~13132 and 23233 unit
cells!, zeolite Ca A~13131 and 23232 unit cells!, sco-
lecite ~33132 unit cells!, and water~343 molecules in a
cubic box! in order to check the convergence of the values
the energies obtained by Ewald and Wolf methods depe
ing on the values ofa and onRc . The cutoff radiusRc was
set equal to one half of thesmallestand of thelargest cell
sides~when significantly different! for noncubic cells. More-
over, in all cases we also performed a simulation withRc

equal to the radius of the sphere circumscribing the MD b
~see Table I for more details about the considered syste!.
Figure 2 illustrates an example of the Coulomb energy tre
as a function of the damping parametera, evaluated from the
Ewald method and Wolf method for different values ofRc .
The data refer to zeolite Ca A, the most critical syste
among those considered in the present study, because o
undefined but possibly large value ofubu, which would re-
quire a largeRc for a correct application of the Wolf method
Figure 2~a! shows the results for the smaller simulation b
~one crystallographic cell!; while in Fig. 2~b! the ones for the
larger simulation box~eight crystallographic cells! are re-
ported. It is important to remark that in both cases the tre
expected on the basis of the arguments reported in Sec.
in particular about Eqs.~11! and ~12!, is observed. Indeed
for very small values ofa the Coulomb energy resulting
from the Ewald sums does not converge to the correct va
but asa is increased the curve reaches a plateau and
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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corresponding Coulomb energy can be assumed as the
iting value of the Madelung energy. This trend was obser
for all the considered systems, but the value ofa for which
the Coulomb energy becomes constant, or the position of
‘‘knee’’ in the curve, depends on the dimensions of the sim
lation box. An exception is water, which shows a very sm
variation of the Coulomb energy obtained by both metho
even for very small values of the damping parameter. T
effect is caused by the peculiar characteristics of wa
which is a structured molecular hydrogen bonded liquid.
deed, the distribution of the charges surrounding oxygen
hydrogen atoms is different from that of an ionic material
an aluminosilicate, and a detailed inspection of the ac
structure of the first neighbors molecular shell is sufficien
ascertain that the derivative of the Madelung energy, gi
by Eq.~12!, is close to zero for any valuea. Before discuss-
ing the dependence of the Ewald energy curve on the si
lation box dimensions, the results of the Wolf method will
illustrated. Referring again to Fig. 2, forRc5d/2 ~d is the
cubic cell side! and for small values ofa the Coulomb en-
ergies are closer to the limiting value than the ones deri
from the Ewald sums. They increase slightly for increas
a, reaching a maximum approximately in corresponde
with the knee of the Ewald sums curve. For higher values
a the Coulomb energies yielded by the Wolf method d
crease monotonically diverging from the limiting value
the Ewald sums, as expected on the basis of the discussi
the behavior of Eq.~11!. For the smaller simulation box thi
effect is greater than for the larger simulation box. Howev
for a given system, the decrease of the Coulomb energie

FIG. 2. Total Coulomb energy per crystallographic unit cell for zeolite Ca
~in MJ/mol! as a function of the damping parametera ~in nm21! contained
in Eq. ~5!, for different evaluation methods~Ewald: continuous lines; Wolf:
broken lines! and for different values of the cutoff radiusRC . ~a!: One unit
cell; dashed line:RC5dmin/251.228 nm; dotted line:RC5(A3/2)dmin

52.127 nm.~b! Eight unit cells; dashed line:RC5dmin/252.455 nm; dotted
line: RC5(A3/2)dmin54.254 nm.
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increasinga yielded by the Wolf method is practically inde
pendent ofRc . This trend is to be expected because, follo
ing the arguments of Sec. II C, Eq.~11!, the limit value of the
derivative of the Madelung energy for largea is independent
of Rc . We stress that the above-described behavior is sh
by all the considered systems, so that a general rule ma
guessed:there is always an optimum value ofa,abest, for
which not only the results of the two methods are close
gether but also both of them yield the correct Coulomb
ergy value (which can be evaluated by the full converg
Ewald sum for largea), provided that Rc is sufficiently
large, in order to satisfy the condition Rc@ubu. Becausea
must be as small as possible,abest should correspond to the
knee in the Ewald results curve. It remained to find anot
rule relatingabest to some characteristic of the system,
order to avoid the evaluation of Coulomb energy versusa
curves in each case. By comparing the results reporte
Figs. 2~a! and 2~b!, and the corresponding trends for th
smaller and larger simulation boxes of silicalite~not shown!,
it appeared thatabestdecreased by increasing the dimensio
of the simulation boxesindependently of Rc . Therefore, we
attempted to plot the values ofabest against the inverse o
some measure of the simulation box dimensions. It w
found that the best results were obtained by consideringthe
smallest side of the simulation box. The results are shown in
Fig. 3, where it appears that for all the considered syste
the dependence ofabeston 1/dmin , wheredmin is the smallest
simulation box side, was represented very well by a strai
line. The best reproduction of the Ewald results was obtai
for abest54/dmin , within an error of a few percent. We di
not succeed in showing that this result can be derived a
lytically from Eq. ~11!. However, it is easy, though a b
tedious, to verify that for a perfect rock salt structure crys
assuming a cubic box of sided5dmin510ubu, a54/dmin

52/(5ubu), andRc>5ubu, Eq. ~11! yields a value very close
to zero as a result of the sum of relatively large mutua
canceling terms. On the basis of these findings, we p
formed a series of test MD simulations in theNVEensemble
of the considered systems~see Table I!. The systems were al
equilibrated at a nominal temperature of 300 K and the p

FIG. 3. Minimum value of the damping parametera ~in nm21! ensuring the
correct convergence of the Coulomb energy both for Ewald sums and
Wolf method for the systems considered in this work as a function of 1/dmin

~in nm21!, wheredmin is the smallest simulation box side. Black squar
zeolite Ca A~8 cells!; black triangle:silicalite~12 cells!; gray square: zeolite
Ca A ~1 cell!; gray triangle:silicalite~1 cell!; circle: water; diamond: sco-
lecite.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. Results of MD simulations for the systems considered in this work. By ‘‘direct Coulomb energy’’ we mean for the Ewald method the rea
sums; for the Wolf method the first double sums in Eq.~5!. Direct and total Coulomb energies are per crystallographic unit cells~for water per simulation
box!. The CPU time includes the contribution of short-range interactions, and its value is relative to the one necessary for the simulations with t
method. For the larger systems the CPU time relative to the corresponding smaller systems is also reported~in parentheses!.

System

Number
of

simulation

Method
(E5Ewald)
(W5Wolf)

Damping
parameter

a
~nm21!

Cutoff
radius

RC

~nm!

Direct
Coulomb
energy

~MJ/mol!

Total
Coulomb
energy

~MJ/mol!
Pressure
~MPa!

Percent
rms total
energy

Relative
CPU
time

Silicalite 1 E 2.0 ¯ 2273.452 2363.634 30 0.4031024 1.00
~2 cells! 2 W 2.0 0.994 2273.267 2363.765 162 0.1631023 0.73

3 W 2.0 1.340 2273.399 2363.705 38 0.3531024 0.75
4 W 2.0 1.948 2273.412 2363.713 51 0.4231024 0.96

Silicalite 5 E 1.006 ¯ 2318.387 2363.809 122 0.1531024 1.00~20.8!
~12 cells! 6 W 1.006 1.988 2318.189 2363.705 4 0.1231024 0.69~14.5!

7 W 1.006 3.483 2318.357 2363.778 24 0.1631024 0.85~17.9!
8 W 2.0 1.948 2273.334 2363.447 52 0.6331025 0.68~14.1!
9 W 1.006 0.994 2313.929 2365.685 100 0.2831022 0.54~11.2!

10 W 2.012 0.994 2272.766 2363.746 3 0.9831024 0.54~11.2!
11 W 1.006 1.340 2317.651 2364.761 21468 0.3831023 0.57~11.9!
12 W 1.492 1.340 2296.242 2363.746 0 0.3131022 0.57~11.9!

Zeolite Ca A 13 E 1.629 ¯ 2483.729 2621.864 21397 0.1331021 1.00
~1 cell! 14 W 1.629 1.228 2483.173 2621.613 21138 0.3431023 0.53

15 W 1.629 2.127 2483.829 2622.094 21264 0.3331023 0.91

Zeolite Ca A 16 E 0.814 ¯ 2552.753 2621.721 21455 0.4731022 1.00~71.4!
~8 cells! 17 W 0.814 2.455 2552.131 2621.366 21492 0.1331021 0.69~50.0!

18 W 0.814 4.254 2552.633 2621.721 21439 0.3231022 0.85~62.5!
19 W 1.629 2.127 2482.943 2621.204 21291 0.4531021 0.63~45.0!
20 W 0.814 1.228 2544.586 2623.562 24905 0.3931022 0.54~38.5!
21 W 1.629 1.228 2483.019 2621.565 21477 0.2431023 0.54~38.5!

Scolecite 22 E 2.1 ¯ 251.8204 270.947 2699 0.21 1.00
~6 cells! 23 W 2.1 0.984 251.7279 270.889 2940 0.23 0.26

24 W 2.1 1.866 251.7765 270.909 2829 0.12 0.32

Water 25 E 1.839 ¯ 2155.141 2187.302 648 0.6531023 1.00
~liquid! 26 W 1.839 1.088 2154.962 2187.401 872 0.2831022 0.37

27 W 1.839 1.884 2155.145 2187.418 677 0.8331023 0.39
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red
duction trajectory was 104 steps long, corresponding to 10 p
for the anhydrous zeolites and to 5 ps for scolecite and wa
This time proved to be sufficient for the estimation of t
quantities we were interested in: average Madelung ene
and contribution of the ‘‘direct sum’’ for both Ewald an
Wolf methods, the total energy conservation, expressed
rms percent variation, and, finally, the ratio of the CPU tim
required for the calculation using the two methods. Mo
over, the average structures and the vibrational spectra w
evaluated following standard procedures~see Ref. 3, and ref
erences therein!. The most relevant results are collected
Table II, where the simulations are numbered in order
make the discussion easier. First, it was assumeda54/dmin

and, in order to check the dependence of the results onRc ,
the simulations were repeated by increasing the value oRc

from dmin/2 to the radius of the sphere circumscribing t
simulation box~simulations 2, 4, 6, 7, 14, 15, 17, 18, 23, 2
26, and 27!. As evidenced in Sec. II B, when assumingRc

.dmin/2, the minimum image convention and the period
boundary conditions were retained. For the smaller simu
tion box of silicalite, the simulation was performed also
assumingRc equal to thelargest cell side ~simulation 3!.
Moreover, for silicalite and zeolite Ca A, simulations of th
Downloaded 28 Oct 2008 to 192.167.65.24. Redistribution subject to AIP
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larger systems were carried out forRc equal to the radius of
the sphere circumscribing thesmallersimulation box and for
the value ofa corresponding to the smaller simulation bo
in order to compare the results of systems with the trunca
sphere completely embedded in the simulation box w
those of corresponding neutral simulation boxes comple
contained in the truncation sphere with the sameRc ~simu-
lations 8 and 19 to be compared with simulations 4 and
respectively!. The Ewald method should yield the same r
sults for the same systems with different simulation box
Therefore, their actual differences can be considered a
intrinsic numerical error,which in the following discussion is
assumed as a measure of the goodness of the resultsFor
instance, the relative difference between the total Coulo
energy for the smaller and larger simulation boxes of s
calite ~simulations 1 and 5, respectively! and of zeolite Ca A
~simulations 13 and 16, respectively! is about 1022%.
Therefore we consider ‘‘satisfactory’’ all the total Coulom
energies obtained by simulations performed using the W
method yielding differences within 1022% from the ones
evaluated by the Ewald method for the same system,
‘‘not quite satisfactory’’ ~although possibly acceptable! the
others. It is clearly shown that for the above-conside
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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simulations, to be compared with simulations 1, 5, 13, 16,
and 25, which were performed using the Ewald summatio
the two methods yield practically the same values of
Coulomb energy~within about 1022%!, both for the total
one and the ‘‘direct’’ contribution, which for the Wol
method is to be intended as the first double sum in Eq.~5!, as
remarked previously. This is true also for the smaller sim
lation box of zeolite Ca A withRc5dmin/2. The general
trend of the structural results, which for crystals include
distribution of the atomic coordinates~taking into account
the symmetry of the system!3 and the corresponding ave
ages, while for water consist of radial distribution functio
and average molecular dimensions, is similar for the t
methods. For water the results are practically indistingui
able whereas for crystals, in spite of the built-in translatio
symmetry of the Ewald sums, the Wolf method yields mo
symmetric and ordered structures in all the considered c
~except for the smaller simulation box of silicalite withRc

5dmin/2!. This is not surprising, because, as remarked
Sec. I, the Wolf method retains the spherical symmetry
the Coulomb potential, while Ewald sums do not. Therefo
the Wolf method should be more suitable, not only for li
uids and disordered systems, but, almost paradoxically,
for crystals. The simulation runs were too short for a relia
evaluation of the pressure, which is the most critical quan
for the Wolf method. This problem was evidenced in t
original paper2 where a corrective term was also derived f
liquids. However, its value for water~25.3 MPa!, is not
sufficient to completely reduce the gap between the va
obtained by the two methods, although for the larger value
Rc the difference is less than 5%, an encouraging resul
more irregular trend is observed for crystals, where diff
ences of the order of 100 MPa among the computed p
sures of each system are found. We note in passing tha
large negative values for zeolite Ca A is to be expected
this structure in its equilibrium state is hydrated, while f
scolecite it is caused probably by a water–zeolite poten
which is too deep and, indeed, is under revision. The vib
tional spectra evaluated using the two methods are very s
lar; in particular, the ones obtained with the Wolf method
the smaller systems are practically the same as the co
sponding spectra resulting from the Ewald method for
larger systems, when available. In summary, it appears
the Wolf method applied even to the smaller simulati
boxes, which correspond to the usually adopted ones for
calculations, are sufficiently large to yield results reasona
close to the ones obtained by the Ewald method, especia
Rc corresponds to the radius of the sphere circumscribing
simulation box. In particular, the results for the smaller sim
lation box of zeolite Ca A show that the conditionRc@ubu is
satisfied even forRc5dmin/2. Therefore, it can be assume
that in this caseubu is of the order of 0.2 nm, or that i
corresponds to the largest of the nearest-neighbor dista
~about 0.23 nm! between particles of opposite charge,
spite of the fact that the involved ions~the charge compen
sating Ca21 cations and the oxygen atoms of the framewo!
do not completely neutralize each other. In some cases
instance when long-range distribution functions or diffus
properties are to be studied, large simulation boxes mus
Downloaded 28 Oct 2008 to 192.167.65.24. Redistribution subject to AIP
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used, and a value ofRc,dmin/2 could be sufficient to ensur
a correct simulation. A recent example is reported in Ref.
where the screening behaviors of molten and gaseous N
are studied by assumingRc5a/3, a being the side of the
cubic simulation box. By performing simulations 9 and 1
~for silicalite!, and 20~for zeolite Ca A! we verified that
maintaining the value ofa which is the best for the large
simulation boxes leads to results which are not fully satisf
tory ~in the above-specified meaning!. Indeed, in these case
the interactions of each charged particle are cut atRc , so that
the value ofa cannot be correlated with the dimensions
the simulation box. Instead, it should be related toRc , by
considering an effective simulation box of sided852Rc and,
therefore,a52/Rc . The results of simulations 10, 12, and 2
show that this choice considerably improves the perf
mances. The computational efficiency of the two metho
can be compared by considering the relative CPU ti
needed for the calculations, besides the consideration of
much simpler form of the algorithm required by the Wo
method. In the Ewald method, the real space summations
performed over all the charged particles of the simulat
box, and after the reciprocal space sum is to be added
Usually, in order to obtain the maximum efficiency, it
suggested to choose a value ofa entailing a roughly equiva-
lent CPU time consumption for each kind of sums; in pra
tice, for the considered systemsa should be of the order o
0.3 nm21, and this value was used in our previous wor
@Refs. 3 and 4#, but no relevant difference in computer tim
was recorded for smaller values ofa, because the simulation
boxes are sufficiently large to allow including a relative
small number of points in the reciprocal space sums even
relatively large values ofa. In the Wolf method, the summa
tions involve the real space only, so that it is expected to
faster. The actual CPU time consumption relative to
Ewald method performances on a HP K-460 compu
equipped with four processors are reported in Table II. T
Wolf method always appears more efficient, and the co
puter time is reduced by a factor spanning from about
~for Rc corresponding to the radius of the circumscribi
sphere in silicalite! to about 0.3~for scolecite, where the
potential model for the included water4 involves the gradient
of the electric field, which requires large computer resour
for the evaluation of the reciprocal space part of the Ew
sums.! In Table II, for the larger simulation boxes, the com
puter time relative to Ewald method calculations of the c
responding smaller simulation boxes is also reported. TheN2

law for computer time~whereN is the number of charged
particles! is not exactly obeyed because we report the to
CPU time, including the evaluation of short-range forc
input–output operations, and some statistical calculatio
For simulations withRc,dmin/2, the efficiency could be im-
proved by using neighbor lists.7 Nevertheless, using the
larger simulation boxes, if not necessary, appears to dem
too much computer time. The rms deviation of the total e
ergy, which is an index of the accuracy of the calculations
also reported for each simulation in Table II. It is about
the same order of magnitude for the two methods, withou
definite trend, so that the same value of the time step ma
used for both methods.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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IV. CONCLUSIONS

Some conclusions about the simulation of aluminos
cates and water using the Wolf method for the evaluation
Coulombic interactions may be drawn from the pres
study.

~i! The conditionRc@ubu ~in practiceRc>5ubu! is rea-
sonably satisfied ifubu corresponds to the largest of th
nearest-neighbor distances between particles of oppo
charge. Therefore, simulation boxes withdmin52Rc>10ubu
~where dmin is the smallest simulation box side! are suffi-
ciently large to obtain results equivalent to those result
from the Ewald sums by using the Wolf method. In partic
lar, for the systems considered in this work, the usual sim
lation boxes~with sides of at least about 2 nm! are suitable
for both methods.

~ii ! In order to ensure a good reproduction of the resu
obtained by the Ewald method with the Wolf one, ifRc

>dmin/2 the optimum value of the damping parameterabest,
within narrow error bounds, is given byabest54/dmin . If the
system is sufficiently large to fit criterion~i! with Rc

,dmin/2, good results are obtained ifa52/Rc .
~iii ! For a given simulation box and assuminga

54/dmin , the best results are obtained withRc equal to the
radius of the sphere circumscribing the simulation box.

~iv! The computer efficiency is better for the Wo
method. Moreover, as it retains the spherical symmetry
the Coulombic potential, it seems physically more meani
ful than the Ewald method not only for liquids and diso
dered systems, but also for crystals.

In the present paper it is shown that the Wolf meth
may be used safely for the evaluation of Coulombic inter
Downloaded 28 Oct 2008 to 192.167.65.24. Redistribution subject to AIP
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tions in condensed matter simulations not only for pur
ionic substances but also for complex systems contain
charged particles like anhydrous and hydrated alumino
cates and liquid water, provided that the involved parame
are chosen following some criteria that we tried to deriv
We shall apply this method extensively in the future, and
wish to recommend its use as computationally more effici
and physically more meaningful than the Ewald method.
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