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Abstract 
Introduction: Autoimmunity occurs when the immune system recognizes and attacks host tissue. In addition to genetic factors, environmental 

triggers (in particular viruses, bacteria and other infectious pathogens) are thought to play a major role in the development of autoimmune 

diseases. 

Methodology: We searched PubMed, Cochrane, and Scopus without time limits for relevant articles. 

Results: In this review, we (i) describe the ways in which an infectious agent can initiate or exacerbate autoimmunity; (ii) discuss the 

evidence linking certain infectious agents to autoimmune diseases in humans; and (iii) describe the animal models used to study the link 

between infection and autoimmunity. 

Conclusions: Besides genetic predisposition to autoimmunity, viral and bacterial infections are known to be involved in the initiation and 

promotion of autoimmune diseases. These studies suggest that pathogens can trigger autoimmunity through molecular mimicry and their 

adjuvant effects during initiation of disease, and can promote autoimmune responses through bystander activation or epitope spreading via 

inflammation and/or superantigens. 
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Introduction 

The immune system must distinguish self from 

harmful non-self to repel invaders and to preserve the 

integrity of the host without inducing autoimmunity. 

Any deficit in this function can result in susceptibility 

to infections, malignancies [1-3] or over-reactivity to 

harmless antigens, leading to immunopathology and 

autoimmunity. The etiology of autoimmune diseases 

has been difficult to elucidate. Several factors are 

thought to contribute to the development of immune 

response to self, including genetics and environment 

[4-6] 

Several common autoimmune diseases, such as 

rheumatoid arthritis, systemic lupus erythematosus and 

multiple sclerosis, are genetically linked to distinct 

human major histocompatibility complex (MHC) class 

II molecules and other immune modulators. 

Furthermore, autoimmunity often clusters   families, 

indicating the potential for a broad-spectrum genetic 

defect in immunological tolerance mechanisms. 

However, the genetic factors leading to the 

development of immune responses against specific 

antigens in a tissue and/or organ-specific manner 

remain largely unknown. Among the environmental 

factors, infections have been implicated in the onset 

and/or promotion of autoimmunity [7]. 

This article reviews the evidence regarding the 

association of pathogens with autoimmune diseases. 

We searched PubMed, Cochrane, and Scopus without 

time limits. The following search terms were 

employed in various combinations: “bacterium”, 

“parasite”, “virus”, “infection” and “autoimmunity”. 

There are more than eighty identified autoimmune 

diseases [8]. Multiple arms of the immune system may 

be involved in autoimmune pathology. Antigens are 

taken up by antigen presenting cells (APC) such as 

dendritic cells (DC) and processed into peptides which 

are loaded onto MHC molecules for presentation to T 

cells via clonotypic T cell receptors (TCR). Cytolytic 

T cells (Tc, activated by MHC class I on APC) can 

directly lyse a target, while T helper cells (Th, 

activated by MHC class II) release cytokines that can 

have direct effects or can activate macrophages, 

monocytes and B cells. B cells themselves have 

surface receptors that can bind surface antigens. Upon 

receiving signals from Th cells, B cells secrete 
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antibodies specific for the antigens. Antibody may 

bind its specific target alone or may bind to and 

activate macrophages simultaneously via the Fc 

receptor. 

Multiple mechanisms have been described to 

explain how pathogens might induce activation and 

critical expansion of autoreactive T cells and start 

autoimmune disease [9-14]. A microbial antigen can 

include an epitope that is structurally similar to an 

autoantigen epitope, providing the basic element of the 

mechanism referred to as molecular mimicry [13-18]. 

Another mechanism would imply that the 

inflammatory setting and the paracrine secretion of T 

cell growth factors induce the expansion of activated 

autoreactive T cells, whose small number was 

previously insufficient to drive an autoimmune 

disease. Such a mechanism is referred to as bystander 

activation [19]. Pathogen-induced tissue inflammation 

may result in local activation of APC and enhanced 

processing/presentation of self-antigens that causes T 

cell priming, followed by T cell activation and 

expansion of additional specificities (epitope 

spreading) [20,21]. Activation of resting autoreactive 

T cells may be achieved by viral and bacterial 

superantigens that bind a variety of MHC class II 

molecules and activate large numbers of T cells, 

irrespective of their specificity [22]. 

In this review, we outline the mechanisms by 

which pathogens could trigger autoimmune diseases 

and the evidence available for the involvement of 

specific pathogens in the initiation or exacerbation of 

representative autoimmune diseases. 

 
Pathogen responses and autoimmunity 

The ability of the host to defend against invading 

pathogens is to a large extent mediated by a group of 

germline-encoded receptors known as pattern-

recognition receptors (PRR). These molecules include 

Toll-like receptors (TLR), nucleotide-binding and 

oligomerization domain (NOD)-like receptors (NLR), 

(RIG-I)-like helicases and a subset of C-type lectin 

receptors, which together recognize a large number of 

molecular patterns present in bacteria, viruses and 

fungi [23]. The signalling pathways that are triggered 

by engagement of these molecules lead to cellular 

activation, which increases the antigen-presenting 

capacity of and the expression of co-stimulatory 

molecules by APC, as well as their production of type 

I interferons, pro-inflammatory cytokines and 

chemokines, which initiate and direct the immune 

response against the invading pathogen. Microbial 

antigens as well as PRR-triggered inflammatory 

molecules drive the clonal expansion of pathogen-

specific T and B cells. By triggering PRRs, stimulating 

early responses by the innate immune system and 

increasing the function of APC, pathogens act as 

adjuvants for the immune response, while at the same 

time providing an antigen source to drive T-cell and 

B-cell activation. In this highly inflammatory 

environment, it is easy to envision how an aberrant 

destructive immune response can be triggered and/or 

escalated if autoreactive cells are present. There are 

several postulated mechanisms by which pathogenic 

infections can trigger autoimmune disease (Figure 1). 

 

Molecular mimicry 

Antigen recognition by the TCR allows T-cell 

activation by different peptides bound to one or even 

several MHC molecules [24]. The pathogen may carry 

elements that are similar enough in amino acid 

sequence or structure to self-antigen, so T cells that are 

activated in response to the pathogen are also cross-

reactive to self and lead to direct damage and further 

activation of other arms of the immune system. 

Similarly, antibodies reflecting B-cell receptor 

specificity were found to recognize both microbial and 

self-antigens [25]. This hypothesis is known as 

molecular mimicry [10,26]. It is now generally 

accepted that a single T cell can respond to various 

distinct peptides, and that different peptide/MHC 

complexes can lead to cross-reactivity by the same 

TCR as long as the complexes have similar charge 

distribution and overall shape [27-29]. This flexibility 

of TCR recognition is thought to be central to many 

immunological processes including thymic selection 

and the ability to recognize nearly all pathogen-

derived peptides. A side effect of this is the induction 

of autoimmunity by microbial antigens [7]. 

Animal models in which molecular mimicry can 

trigger autoimmune disease are abundant. These 

include: Theiler's murine encephalomyelitis virus 

(TMEV)-induced demyelinating disease (TMEV-

IDD), a model of human multiple sclerosis in which 

intracerebral TMEV infection of mice leads to an 

autoimmune demyelinating disorder 30-40 days after 

infection [21]; herpes simplex virus (HSV)-associated 

stromal keratitis, in which HSV infection leads to 

blindness secondary to corneal-antigen-specific T-cell 

responses in both humans and mice [30-33]; cytotoxic 

reactions caused by antibodies against Streptococcus 

pyogenes antigens, which  may be one mechanism to 

explain the origin of autoimmune heart disease in 

rheumatoid myocarditis [34]; infection of prediabetic 

mice with a virus expressing an H-2Kb-restricted 

Figure 1. Mechanism by which pathogens may cause autoimmunity. a) Molecular mimicry describes the activation of crossreactive T cells that recognize 

both the pathogen-derived epitopes and the self-derived epitopes. Pathogen-derived epitops are taken up by APC and presented to T cells. Activation of T 

cells results in the direct lysis of self-tissue or release of cytokines and chemokines that activate macrophages, which mediate self-tissue damage, and 

provide help to pathogen-specific B cells. The subsequent release of self-tissue antigens and their uptake by APC perpetuates the autoimmune disease. b) 

Bystander activation is the nonspecific activation of self-reactive T cells. Activation of pathogen-specific T cells leads to inflammation that damages self-

tissue in an antigen non-specific manner, and triggers activation of self-reactive T cells. c) Epitope spreading involves a persistent pathogen infection that 

causes damage to self-tissue. This results in the release of self-peptides, which are engulfed by APC and presented to self-reactive T cells. Continual damage 

and release of self-peptides results in the spread of the self-reactive immune response to multiple self-epitopes. 
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mimic ligand to a self-epitope present on beta cells, 

which accelerates the development of autoimmune 

diabetes [35]; autoimmune demyelinating disease 

associated with Semliki Forest virus (SFV) [36]; 

autoimmune myocarditis associated with coxsackie 

virus infection [37];  and murine cytomegalovirus 

[38]. T cells with low affinity for a self-antigen and 

that have escaped thymus negative selection, as would 

be the case for many self-antigen-specific responses, 

can become activated by infection with a 

microrganism containing an identical antigen, which 

provides appropriate innate immune signals, resulting 

in overt autoimmune disease. 

In keeping with the observation that specific T 

cells that have been primed by pathogens and cross-

react with self-antigens can cause autoimmunity in 

animal models, patients with autoimmune diseases 

such as systemic lupus erythematosus, rheumatoid 

arthritis and multiple sclerosis have been found to 

have higher frequencies activated self-reactive 

lymphocytes [39-42]. In multiple sclerosis, receptor 

analysis of T and B cells in central nervous system 

(CNS) tissue and in the cerebrospinal fluid (CSF) 

showed clonal expansions in both populations, 

indicating that there is clonal reactivity to a restricted 

number of disease-relevant antigens [43-45]. In 

Figure 1. Mechanism by which pathogens may cause autoimmunity. a) Molecular mimicry describes the activation of crossreactive T cells that recognize 

both the pathogen-derived epitopes and the self-derived epitopes. Pathogen-derived epitops are taken up by APC and presented to T cells. Activation of T 

cells results in the direct lysis of self-tissue or release of cytokines and chemokines that activate macrophages, which mediate self-tissue damage, and 

provide help to pathogen-specific B cells. The subsequent release of self-tissue antigens and their uptake by APC perpetuates the autoimmune disease. b) 

Bystander activation is the nonspecific activation of self-reactive T cells. Activation of pathogen-specific T cells leads to inflammation that damages self-

tissue in an antigen non-specific manner, and triggers activation of self-reactive T cells. c) Epitope spreading involves a persistent pathogen infection that 

causes damage to self-tissue. This results in the release of self-peptides, which are engulfed by APC and presented to self-reactive T cells. Continual damage 

and release of self-peptides results in the spread of the self-reactive immune response to multiple self-epitopes. 
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addition, longitudinal studies provided evidence for 

long-term persistence of individual myelin-specific T-

cell clones tracked over several years in the blood of 

patients with multiple sclerosis [46-48], indicating a 

strong, persisting memory response and/or ongoing 

autoantigen exposure at least for a subset of myelin-

reactive T cells in multiple sclerosis. These memory 

responses may reflect, at least in part, persisting clonal 

expansions of polyspecific T cells recognizing both 

self and virus antigens. For example, high viral loads 

that occur during symptomatic primary EBV infection, 

resulting in infectious mononucleosis, are associated 

with an increased risk of developing multiple sclerosis 

[49-51], and could prime these polyspecific T-cell 

responses. Accordingly, patients with multiple 

sclerosis have predominant clonal expansions of T 

cells specific for the EBV-encoded nuclear antigen 1 

(EBNA1), which is the most consistently recognized 

EBV-derived CD4+ T-cell antigen in healthy virus 

carriers, and EBNA1-specific T cells recognize myelin 

antigens more frequently than other autoantigens that 

are not associated with multiple sclerosis [52]. 

Autoimmune chronic gastritis (AIG) is an organ-

specific inflammatory disease, characterized by 

lymphocytic infiltrates in the gastric mucosa and by 

destruction of parietal cells, resulting in mucosal 

atrophy, hypochloridria, and eventually pernicious 

anemia. [53]. In most AIG patients, serum anti-parietal 

cell autoantibodies (PCAs) are detectable. The 

autoantigen recognized is the gastric H+K+ adenosine 

triphosphatase (ATPase), the proton pump, localized 

in the parietal cell canaliculi [54,55]. H+K+ ATPase is 

also the target of autoreactive T cells that infiltrate the 

gastric mucosa of AIG patients [56]. Autoimmune 

gastritis and Helicobacter pylori-associated gastric 

atrophy develop through similar mechanisms 

involving the proton pump H+K+ ATPase as 

autoantigen. Helicobacter pylori-infected patients with 

gastric autoimmunity harbor in vivo activated gastric 

Th1 CD4 cells that recognize both H+K+ ATPase and 

Helicobacter pylori antigens [57,58]. So, in genetically 

susceptible individuals, Helicobacter pylori infection 

can activate cross-reactive gastric T cells leading to 

gastric autoimmunity via molecular mimicry. 

 

Bystander activation of autoreactive cells and epitope 

spreading 

Bystander activation describes an indirect or non-

specific activation of autoimmune cells caused by the 

inflammatory environment present during infection. 

APCs that have become activated within the 

inflammatory milieu of a pathogenic infection can 

stimulate the activation and proliferation of 

autoreactive T or B cells. In this case, APC present 

self-antigen, obtained subsequent to tissue destruction 

and/or the uptake of local dying cells, to autoreactive 

cells [59,60]. In addition to autoimmune responses that 

are initially primed by APC and stimulated by 

bystander activation, additional autoantigen-specific T 

or B cells can be primed through epitope spreading 

[20], a situation in which an immune response that is 

initiated by various stimuli, including microbial 

infection, trauma, transplanted tissue or autoimmunity, 

spreads to include responses directed against a 

different portion of the same protein (intramolecular 

spreading) or a different protein (intermolecular 

spreading). Activating a broader set of T cells through 

epitope spreading is helpful in an anti-pathogen or 

anti-tumour immune response, because the pathogen 

or tumour cannot easily escape immune control with a 

single mutation in an immunogenic epitope. However, 

autoimmune disease potentially arises when spreading 

cross-reacts with self-proteins, leading to the 

destruction of self-tissue.  

Epitope spreading in animal models proceeds in an 

orderly and hierarchical manner, such that more 

immunodominant epitopes elicit responses first, 

followed by less dominant responses. This type of 

spreading has been shown in experimental 

autoimmune encephalomyelitis (EAE), a model of 

multiple sclerosis [61,62], as well as in the non-obese 

diabetic (NOD) mouse model of type 1 diabetes [63]. 

These examples document epitope spreading within 

autoantigens and to additional autoantigens. 

Mycobacterium leprae is known to preferably 

reside in Schwann cells. Antibodies to neuronal 

glycolipids such as galactocerebroside [64,65], 

ceramide [64] and asialo GM1 of myelin may be 

associated with nerve damage in leprosy patients. 

Anti-ceramide IgM antibody titre was significantly 

higher in multibacillary leprosy patients in comparison 

to both controls and paucibacillary leprosy patients 

[66]. 

An even broader form of bystander activation is 

achieved by cross-linking MHC class II molecules on 

APC with TCR comprising a certain Vβ domain by 

superantigens. T-cell populations that are stimulated in 

this manner could potentially contain a subset of T 

cells specific for a self-antigen [67]. There are 

multiple examples in which superantigens are involved 

in diseases such as EAE, arthritis and inflammatory 

bowel disease, making superantigens another 

mechanism by which bystander activation can initiate, 
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or at the least exacerbate, autoimmunity in mouse 

models [68-70]. 

Although molecular mimicry might initially prime 

autoreactive T cells, these responses could be 

amplified by superantigen-mediated expansion and by 

activation of autoantigen-specific T cells that express a 

given Vβ chain that is targeted by microbial 

superantigens.  

 

Others mechanisms 

Infections can affect the immune response in many 

ways, and mechanisms such as molecular mimicry and 

bystander activation are certainly not the only ways in 

which pathogens might trigger or accelerate 

autoimmune disease. Infection may lead to 

autoimmunity through the processing and presentation 

of cryptic antigens. In contrast to dominant antigenic 

determinants, subdominant cryptic antigens are 

normally invisible to the immune system. The 

inflammatory environment that arises after infection 

can induce increased protease production and 

differential processing of released self-epitopes by 

APC [71]. 

A recent study showed that in a spontaneous 

animal model of systemic lupus erythematosus, lipid 

raft aggregation on T cells, induced by Cholera toxin 

B from Vibrio cholerae, enhanced T-cell signalling 

and exacerbated systemic lupus erythematosus activity 

[72].  

Persistent infection of microglia with TMEV has 

been shown to cause upregulation of MHC and 

costimulatory molecules and enhance the ability of 

these cells to function as effective APC [73]. This 

shows that viral infections could also directly maintain 

autoreactive effector cells or autoantigen-presenting 

cells. 

The fact that the various mechanisms for 

infection-induced autoimmunity discussed here are 

interrelated and non-mutually exclusive make them 

both more complicated and more plausible as potential 

causes for human autoimmune disease. For example, 

molecular mimicry and adjuvant effects of pathogens 

might work early on during the development of 

autoimmune responses, whereas bystander activation 

end epitope spreading through the inflammatory 

environment of infections and/or superantigens might 

exacerbate autoimmune responses later on 

[13,26,31,74]. 

 
Induction of overt autoimmune disease 

Although several causal relationships between 

pathogen infection and autoimmunity have been 

identified in animal models and correlations have been 

drawn in human autoimmune diseases, pathogen-

derived triggers of autoimmunity have been difficult to 

identify because evidence of autoimmunity is likely to 

become clinically apparent only after a considerable 

period of subclinical autoimmune responses. 

Autoreactive adaptive immune cells are 

unavoidably present in the periphery in humans and 

animals. These cells can exist because their cognate 

self-antigen was not expressed in the thymus and the 

antigen will therefore only become apparent to the 

immune system after tissue destruction as a result of 

infection or trauma. Alternatively, whereas many 

autoreactive T cells are deleted in the thymus during 

development, some T cells that make their way to the 

periphery might be highly specific for a microbial 

antigen, but also have lesser affinity for a self-antigen. 

The presence of autoreactive cells in the periphery, 

however, does not necessarily predispose for clinical 

autoimmune disease. 

It is clear that, in many cases, an infection is 

necessary for the development of overt disease, even 

when abundant autoreactive T cells are present. The 

potential for the development of overt disease is 

clearly dependent on the presence of autoreactive T 

cells. However, whether overt disease actually occurs 

can depend on various other coincident events, 

including the number of autoreactive T cells present, 

the avidity and affinity of these cells (determined by 

co-receptor expression and binding to MHC/peptide 

complexes, respectively), and the presence of innate 

inflammatory signals required for activation and 

differentiation of those T cells to a pathogenic 

phenotype. Despite the requirement for all these 

elements, it is clear that they do not need to happen at 

the same time or in the same place to elicit 

autoimmune disease. In many animal models, 

autoimmune responses are triggered during the initial 

or acute response to an infection, and autoimmune 

disease occurs exclusively in the infected organ, such 

as during corneal HSV infection leading to stromal 

keratitis [13,30,31]. However, none of the proposed 

mechanisms for the development of infection-induced 

autoimmunity excludes the possibility that disease can 

occur temporally and/or spatially distal from the site of 

the initiating infection. Animal models that allow 

investigators to study this aspect of infection-induced 

autoimmune disease are few, but they might provide 

important insights relevant to human disease. 

Autoimmune CNS demyelinating disease can be 

triggered by molecular mimicry when the pathogen 

containing the mimic epitope does not infect the CNS 
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itself. When mice that express an LCMV protein in the 

CNS were peripherally infected with LCMV, 

autoimmune responses occurred in the CNS despite 

the fact that LCMV was not detectable in that organ 

[75]. 

Finally it is of interest to emphasize that the 

preferential homing of primed antiviral or antibacterial 

T cells might also falsely implicate pathogens in the 

immunopathology of autoimmune diseases. Lytic EBV 

infection was suspected to contribute to rheumatoid 

arthritis after it was found that lytic EBV antigen-

specific T cells were enriched in inflamed joints [76]. 

It was later found that these lytic EBV antigenspecific 

T cells were home to a variety of autoimmune 

inflamed tissues [77], including knees affected by 

rheumatoid arthritis, eyes of patients with uveitis, and 

the brains of patients with multiple sclerosis. These 

data were interpreted as primarily reflecting the 

migration of EBV-specific T cells in response to 

inflammatory chemokines, such as the CXCR3 ligand 

CXCL10, rather than a direct involvement of EBV-

directed immunity in the immunopathology of the 

autoimmune diseases. 

 
Conclusions 

Besides genetic predisposition to autoimmunity, 

environmental factors are known to be involved in the 

initiation and promotion of autoimmune diseases. 

Among these, viral and bacterial infections are the 

main candidate environmental factors due to their 

capacity to elicit strong immune activation and to 

induce autoimmune diseases in animal models, as well 

as the correlation of several pathogens with 

autoimmune diseases in humans. These studies 

suggest that pathogens can trigger autoimmunity 

through molecular mimicry and their adjuvant effects 

during initiation of disease, and can promote 

autoimmune responses through bystander activation or 

epitope spreading via inflammation and/or 

superantigens. However, an association of 

dysregulated antiviral immune responses with a given 

autoimmune disease has to be interpreted with caution, 

because these can be differently primed in individuals 

with ongoing autoimmune disease or with a genetic 

predisposition to autoimmune disease. Furthermore, 

the autoimmune disease can alter virus infection by 

affecting its host cells, and might lead to redistribution 

of antiviral lymphocytes to sites of autoreactive tissue 

inflammation. 
 

Dedication 
The news that you never want to hear: the passing of a good friend, 

mentor and scientist. Gianfranco Del Prete said goodbye to this 

world in November 2010. 

Here we would like to remember Gianfranco Del Prete not just 

because he was a full professor of medicine in the University of 

Florence or because of his large number of important publications 

in the immunology field, where one of his major research goals of 

was the study of important scientific issues related to developing 

countries. Here we would like to remember Gianfranco as a person 

able to dedicate himself to research, until the end of his life, with 

always a very impressive energy, passion and curiosity. He was 

straightforward but always honest and he had the gift of being able 

to involve everyone in a magical feeling: the feeling of science … 

where you think that with your job, your mind, doing research, 

working hard with passion, you can improve someone else’s life 

… you can give new knowledge to the community. A fruitful life 

of achievement makes Gianfranco Del Prete a Man to be 

remembered in science. 

For all you gave us and to the world it is with great emotion that 

we say, Thank you, Gianfranco! 
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