SYNTHESIS AND CNS ACTIVITIES OF PYRIDOPYRAZINONE AND PYRIDODIAZEPINONE DERIVATIVES (*) (¹)

FRANCESCO SAVELLI (**), ALESSANDRO BOIDO Istituto di Scienze Farmaceutiche, Università di Genova Viale Benedetto XV 3, 16132 Genova (Italy)

MARGHERITA SATTA, ALESSANDRA PEANA Cattedra di Farmacognosia, Università di Sassari Via Muroni 23, 07100 Sassari (Italy)

CRISTINA MARZANO

Dipartimento di Scienze Farmaceutiche, Centro di studio sulla Chimica del Farmaco e dei Prodotti biologicamente attivi del C.N.R. Via Marzolo 5, 35131 Padova (Italy)

Summary — New tricyclic derivatives with cyclocondensed pyrido-pyrazine 7,10 and pyrido-diazepine 20a,20b skeletons were synthetized and biologically investigated. The compounds, preliminarily tested on explorative, muscle relaxing, antinociceptive, spontaneous motor activities and influence on the narcotic effect of Evipan, revealed interesting CNS depressant and analgesic activities. The pyrido[2,3-e]pyrrolo[1,2-a]pyrazine structure of 7 appeared the most promising for analgesic and neuroleptic activities. The above compounds were assayed also for their capacity to inhibit DNA synthesis in Ehrlich ascites tumor cells; 20a appeared to be able of inducing a significant inhibition.

In the field of our research on heteropolycyclic tructures^{2,3} that may show biological activities, we lescribed in preceding papers pyrido-pyrazine⁴ and pyrido-diazepine derivatives⁵ with neuroleptic activity. As an extension of this study and with the aim of determining the influence resulting from the structural differences on pharmaceutical response, we have now prepared heterotricyclic systems, corresponding to general formula A, in which the above structures are fused with pyrrolidine or piperidine rings. These compounds were tested for the above pharmacological activity. Moreover, since various policyclic compounds can interact with DNA and/or can inhibit the activity of some important enzymes involved in DNA replication, we studied also their ability to inhibit DNA synthesis in the Ehrlich cells, a well-known tumor cell line of the mouse.

The synthetic approach to the required 7,8-dihydro-5-methylpyrido[2,3-e]pyrrole[1,2-a]pyrazin-6,9(5H,6aH)-dione 7 and 6a,7,8,9-tetrahydro-5-methyl-5H-dipyrido[1,2-a:2,3-e]pyrazin-6,10-dione 14 consisted in the condensation in boiling ethanol of 3amino-2-methylaminopyridine 1 with 2-ketoglutaric acid 3 and diethyl 2-oxoadipate 4 respectively, as depicted in Scheme 1. The carboxy derivatives 5 and 12 were reduced with sodium borohydride in diluted sodium hydroxide solution; occasionally, during the course of the reduction, a partial cyclization from 6 to 7 occurred, which was completed by heating in vacuo, whereas the cyclization of 13 to 14 was carried out by fusion *in vacuo* of the isolated intermediate. The synthesis of 10 was accomplished similarly starting from 2-amino-3-methylaminopyridine 2 and 3 and was realized in order to study the structure-activity correlations with the isomer 7. The reaction to obtain the cycloomologues 20 (Scheme 2) was carried out using the above described procedure under different conditions. Starting from 1 and diethyl 2-oxoadipate 15a in hot xylene the expected 17a was obtained, while 1 and diethyl 2-oxopimelate 15b afforded 17b, in addition to a small amount of imidazo[2,3-b]pyridine derivative 16 whose formation can be explained by the cyclization of intermediate 16*6,7. Compounds 17a,b were hydrogenated with Raney nickel under pressure to 18a,b, whose alkaline hydrolysis gave 19a, b without concomitant cyclization. The fusion in vacuo of 19a, b afforded smoothly 7,7a,8,9-tetrahydro-5-methyl-5H-pyrido[2,3b]pyrrole[1,2-d] diazepin-6,10-dione 20a and 7a,8,9,10-

A

(*) Part III of the series "Heterotricyclic systems" (**) To whom correspondence should be addressed. tetrahydro-7-methyl-5H-dipyrido[1,2-d:2,3-b]diazepin-6,11(5H,7H)-dione 20b, respectively.

The structures of all described compounds were supported by analytical and spectroscopic data. In particular reduced 9 and 13 showed a complex triplet (δ 4.0) and an exchangeable signal (δ 6.5-7.0) attributable to the methine proton and to NH, respectively. Similarly, the homologous compounds 18a,b and 19a,b exhibited the methine signal at δ 4.0, while the exchangeable peak of NH shifts to δ 3.6-5.5. The tricyclic compounds 7, 10 and 20a,b were investigated for CNS activities and tested for their capacity to inhibit DNA synthesis in Ehrlich ascites tumor cells.

EXPERIMENTAL SECTION

A) CHEMISTRY

Melting points were determined by the capillary method on a Büchi 510 apparatus and are uncorrected. UV spectra were measured in 95% ethanol with a Perkin-Elmer Model 550S spectrophotometer.

260

IR spectra were recorded on a Perkin-Elmer Model 297 spectrophotometer and ¹H-NMR spectra were recorded on a Varian-Gemini 200 spectrometer with TMS as internal standard. Elemental analyses for C, H, N were performed on the Carlo Erba Elemental Analyser Model 1106 at the Microanalytical Laboratory, Istituto di Scienze Farmaceutiche, Università di Genova, and were within $\pm 0.4\%$ of the theoretical values.

Reactions between aminopyridines and α -ketoacids

a) 2-(2-Carboxyethyl)-4-methyl-pyrido[2,3-b]pyrazin-3(4H)-one 5 - To a suspension of 2-ketoglutaric acid 3 (2.95 g, 20 mmoles) in ethanol (15 ml) was added an ethanol solution (20 ml) of 3-amino-2-methylaminopyridine 1 (2.5 g, 20 mmoles), obtained by hydrogenation at atmospheric pressure of 2-methylamino-3nitropyridine, and the mixture was refluxed with stirring for 90 min. The solution was evaporated under reduced pressure to give 5 as

2.88 (t, J = 7.3 Hz, 2H), 3.67 (s, 3H), 7.42 (dd, J = 7.6 Hz, pyr β -H), 8.22 (dd, J = 7.9 Hz, pyr γ -H), 8.61 (dd, J = 4.7 Hz, pyr α -H), 12.07 (OH, exchangeable).

Anal. $(C_{12}H_{13}N_3O_3)$ C,H,N.

Compound 12 was reduced to 13 with sodium borohydride, as reported for 7. The reaction mixture was neutralized (10% tartaric acid solution), saturated with NaCl and extracted several times with dichloromethane. The organic solution was dried (Na_2SO_4) and evaporated to give 2-(3-carboxypropyl)-1,2-dihydro-4-methylpyrido[2,3-b]pyrazin-3(4H)-one 13 in yields not higher than 38%, mp 118-121 °C (ethanol). IR (Kbr): 3350, 1690, 1630 cm⁻¹; ¹H-NMR (DMSO-d₆): δ 1.62 (m, 4H), 2.24 (m, 2H), 3.38 (s, 3H), 3.92 (m, 1H), 6.40 (br s, NH exchangeable), 6.88 (dd, J = 7.8 Hz, pyr β -H), 7.08 (dd, J = 8.0 Hz, pyr γ -H), 7.70 (dd, J = 2.4 Hz, pyr α -H), 12.02 (br s, OH, exchangeable).

Anal. $(C_{12}H_{15}N_{3}O_{3})$ C,H,N.

a solid which was collected by filtration and recrystallized from ethanol. mp 194-196 °C (yield 88%). UV: λ_{max} nm (log ϵ): 220 (4.41), 322 sh (4.06), 331 (4.07); IR (KBr): 3190, 1740, 1635 cm⁻¹; ¹H-NMR (CDCl₃): δ 2.93 (t, J = 6.8 Hz, 2H), 3.30 (t, J = 6.8 Hz, 2H), 3.82 (s, 3H), 7.30 (dd, J = 7.9 Hz, pyr β -H), 8.09 (dd, J = 7.9Hz, pyr γ -H), 8.56 (dd, J = 4.6 Hz, pyr α -H), 10.10 (br s, OH, exchangeable).

Anal. (C₁₁H₁₁N₃O₃) C,H,N.

b) 3-(2-Carboxyethyl)-4-methyl-pyrido[2,3-b]pyrazin-2(1H)-one 8 - In a similar manner, starting from 2-amino-3methylaminopyridine 2 and 3, 8 was obtained in 60% yield, mp 210-213 °C (ethanol). UV: λ_{max} nm (log ϵ): 222 (4.28), 328 sh (3.92), 331 (3.95); IR (KBr): 3400, 1710, 1660 cm⁻¹; ¹H-NMR $(DMSO-d_6): \delta 2.78 (t, J = 6.4 Hz, 2H), 3.14 (t, J = 6.4 Hz, 2H),$ 3.62 (s, 3H), 7.62 (dd, J = 7.6 Hz, pyr β -H), 8.15 (dd, J = 7.2 Hz, pyr γ -H), 8.58 (dd, J=4.3 Hz, pyr α -H), 12.18 (s, OH, exchangeable).

Anal. $(C_{11}H_{11}N_3O_3)$ C,H,N.

c) 2-(2-Ethylcarboxypropyl)-4-methyl-pyrido[2,3-b]pyrazin-3(4H)one 11 - Starting from 1 and diethyl 2-oxo-adipate 4⁸ and following the same procedure described above, 11 was obtained in 85% yield, mp 117-119 °C (ethanol). IR (CHCl₃): 1725, 1660

Compound 13 was cyclized to 14 in 65% yield by fusion under the condition described for 10, mp 110-112 °C (ethanol). UV: λ_{max} nm (log ϵ): 287 (3.97); IR (CHCl₃): 1685 cm⁻¹; ¹H-NMR (CDCl₃): $\delta 1.92$ (m, 2H), 2.22 (m, 1H), 2.58 (m, 3H), 3.51 (s, 3H), 4.08 (t, J = 6.2 Hz, 1H), 7.08 (dd, J = 8.8 Hz, pyr β -H), 7.38 (dd, J = 9.0Hz, pyr γ -H), 8.30 (dd, J = 4.8 Hz, pyr α -H). Anal. $(C_{12}H_{13}N_{3}O_{2})$ C,H,N.

7,8-DIHYDRO-5-METHYL-PYRIDO[3,2-e]PYRROLE[1,2-a]PYRAZIN-6,9 (5H,6aH)-DIONE 10

Starting from 8, 3-(2-carboxyethyl)-3,4-dihydro-1-methylpyrido[2,3-b]pyrazin-2(1H)-one 9 was obtained in 52% yield by reduction with sodium borohydride, mp 163-164 °C (ethanol). λ_{max} nm (log ϵ): 213 (4.61), 265 (3.48); 316 (4.03); IR (KBr): 3250, 1720, 1690 cm⁻¹; ¹H-NMR (DMSO-d₆): δ 1.88 (m, 2H), 2.34 (m, 2H), 3.36 (s, 3H), 4.05 (t, J = 6.0 Hz, 1H), 6.72 (dd, J = 8.0 Hz, pyr β -H), 7.04 (s, NH, exchangeable), 7.24 (dd, J = 8.0 Hz, pyr γ -H), 7.41 (dd, J = 4.0 Hz, pyr α -H), 12.12 (br s, OH, exchangeable). Anal. $(C_{11}H_{13}N_3O_3)$ C,H,N.

Compound 9 gave, by heating in vacuo at melting point for 1 h, a solid residue which was dissolved in dichloromethane and extracted with a 5% NaHCO₃ solution. The organic solution was washed with water, dried (Na_2SO_4) and evaporated to give 10 in 58% yield as needles, mp 175-177 °C (ethanol). UV: λ_{max} nm (log ϵ): 224 (4.20), 269 (3.88), 294 (3.88); IR (CHCl₃): 1725, 1690 cm⁻¹; ¹H-NMR (DMSO-d₆): $\delta 2.28-2.70$ (m, 4H), 3.38 (s, 3H), 4.62 (t, J = 12 Hz, 1H), 7.31 (dd, J = 8.0 Hz, pyr β -H), 7.67 (dd, J = 8.9Hz, pyr γ -H), 8.30 (dd, J = 4.6 Hz, pyr α -H). Anal. $(C_{11}H_{11}N_3O_2H_2O)$ C,H,N.

cm⁻¹; ¹H-NMR (CDCl₃): δ 1.26 (t, J = 7.2 Hz, 3H), 2.17 (m, 2H), 2.48 (t, J = 7.7 Hz, 2H), 3.02 (t, J = 7.2 Hz, 2H), 3.80 (s, 3H), 4.14 $(q, J = 7.1 Hz, 2H), 7.31 (dd, J = 8.0 Hz, pyr \beta-H), 8.13 (dd, J = 8.0$ Hz, pyr γ -H), 8.55 (dd, J = 2.5 Hz, pyr α -H). Anal. $(C_{14}H_{17}N_{3}O_{3})$ C,H,N.

7,8-DIHYDRO-5-METHYL-PYRIDO[2,3-e]PYRROLE[1,2-a]PYRAZIN-6,9 (5H, 6aH)-dione 7

Sodium borohydride (1.0 g) was added to a solution of 5 (2 g, 9 mmoles) in 2N NaOH (10 ml) and the mixture was allowed to stand at room temperature for 24 h. The mixture was acidified with 10% solution of tartaric acid, extracted several times with dichloromethane, the combined extracts were washed with water, dried (Na_2SO_4) and evaporated to give an oily residue which was let to stand *in vacuo* at 150 °C for 1 h. After cooling, the residue was triturated with ethanol and filtered off to give a solid which was suspended in a 5% solution of NaHCO₃ with stirring for 15 minutes. Compound 7 was obtained in 46% yield, mp 141-144 °C (ethanol). UV: λ_{max} nm (log ϵ): 224 (4.42), 293 (4.11); IR (CHCl₃): 1705, 1690 cm⁻¹; ¹H-NMR (CDCl₃): $\delta 2.62$ (m, 4H), 2.54 (s, 3H), 4.41 (t, J = 7.0 Hz, 1H), 7.08 (dd, J = 8.0 Hz, pyr β -H), 8.19 (dd, J = 4.2 Hz, pyr γ -H), 8.41 (dd, J = 7.3 Hz, pyr α -H). Anal. $(C_{11}H_{11}N_3O_2)$ C,H,N.

REACTION OF 3-AMINO-2-METHYLAMINOPYRIDINE WITH β -Ketoesters

A solution of 1 (2.5 g, 20 mmoles) and diethyl 2-oxopimelate 15b (5.0 g, 22 mmoles) in xylene (100 ml) was refluxed for 20 h. After cooling, the solution was extracted with 2N HCl, the acid solution was made alkaline with 2N NaOH and extracted with dichloromethane. The oily residue obtained after evaporation of the combined extracts was dissolved in diethyl ether (10 ml) and let to stand in a freezer for a day, whereby a small amount (0.1 g) of 2-(3-ethylcarboxypropyl)-3-methyl-imidazo[2,3-b]pyridine 16 was obtained, mp 70-71 °C (diethyl ether). UV: λ_{max} nm (log ϵ): 251 (3.65), 286 (4.08); IR (CHCl₃): 1725 cm⁻¹; ¹H-NMR (CDCl₃): $\delta 1.26$ (t, J = 8.5 Hz, 3H), 2.23 (m, 2H), 2.52 (t, J = 7.0 Hz, 2H), 2.98 (t, J = 7.0 Hz, 2H), 3.84 (s, 3H), 4.14 (q, J = 8.5 Hz, 2H), 7.18 $(dd, J = 8.8 Hz, pyr \beta - H), 7.97 (dd, J = 9.0 Hz, pyr \gamma - H), 8.32 (dd, Hz, pyr \gamma - H), 8.32 (dd, Hz, pyr \gamma - H), 8.32 (dd, Hz, pyr \gamma - Hz), 8.32 (dd, Hz),$ J = 4.2 Hz, pyr α -H).

6a,7,8,9-TETRAHYDRO-5-METHYL-5H-DIPYRIDO[1,2-a:2,3-e]PYRAZIN-6,10-DIONE 14

Compound 11 (2 g, 7 mmoles) was suspended in 2N NaOH (10 ml) and stirred for 6 h at room temperature. The mixture was washed with diethyl ether, neutralized with 10% solution of tartaric acid and extracted with dichloromethane to give in 80% yield 2-(3carboxypropyl)-4-methyl-pyrido[2,3-b]pyrazin-3(4H)-one 12, mp 201-203 °C (ethanol). IR (CHCl₃): 1710, 1660 cm⁻¹; ¹H-NMR $(DMSO-d_6): \delta 1.97 (q, J = 7.1 Hz, 2H), 2.40 (t, J = 7.3 Hz, 2H),$

Anal. $(C_{13}H_{17}N_{3}O_{2})$ C,H,N. The liquid residue obtained by evaporation of diethyl ether was chromatographed on basic alumina. By elution with dichloromethane, 3,5-dihydro-2-(ethylcarboxypropyl)-5-methyl-4Hpyrido[2,3-b][1,4]diazepin-4-one 17b was collected as an oil (52%) yield). UV: λ_{max} nm (log ϵ): 294 (3.93); IR (CHCl₃): 1725, 1670 cm⁻¹; ¹H-NMR (CDCl₃): $\delta 1.76$ (t, J = 7.2 Hz, 3H), 2.08 (q, J = 6.5 Hz, 2H), 2.42 (t, J = 2.5 Hz, 2H), 2.68 (t, J = 6.5 Hz, 2H), 3.18 (m, 2H), 3.49 (s, 3H), 4.13 (q, J = 7.2 Hz, 2H), 7.19 (dd, J = 6.8Hz, pyr β -H), 7.66 (dd, J = 6.8 Hz, pyr γ -H), 8.37 (dd, J = 4.4 Hz, pyr α -H).

Anal. (C15H19N3O3) C,H,N.

A further elution gave unreacted 1 (8% yield).

The reaction of 1 with diethyl 3-oxo-adipate $15a^9$, carried out as described above, afforded, 3,5-dihydro-2-(ethylcarboxyethyl)-5methyl-4H-pyrido[2,3-b][1,4]diazepin-4-one 17a, as a sole product, which in a small amount was separated from the diethyl ether solution of combined extracts. A further amount (55% overall yield) was collected by chromatography on basic alumina of the oily residue obtained by evaporation of diethyl ether. White crystals, mp 60-62 °C (diethyl ether); UV: λ_{max} nm (log ϵ): 295 (3.90); IR (CHCl₃): 1725, 1670 cm⁻¹; ¹H-NMR (CDCl₃): $\delta 1.24$ (t, J = 7.0 Hz, 3H), 2.74 (t, J = 6.2 Hz, 2H), 2.96 (t, J = 6.2 Hz, 2H), 3.18 (m, 2H), 3.48 (s, 3H), 4.26 (q, J = 7.0 Hz, 2H), 7.18 (dd, J = 5.8 Hz, pyr β -H), 7.61 (dd, J = 6.2 Hz, pyr γ -H), 8.37 (dd, J = 4.4 Hz, pyr α -H). Anal. (C₁₄H₁₇N₃O₃) C,H,N.

REDUCTION OF 17a,b TO 18a,b

whereby **20a** was collected (69% yield), mp 139-141 °C (ethanoldiethyl ether). UV: λ_{max} nm (log ϵ): 283 (3.85); IR (CHCl₃): 1700, 1670 cm⁻¹; ¹H-NMR (CDCl₃): δ 2.25 (m, 2H), 2.60 (m, 3H), 2.93 (dd, J = 16.0 Hz, 1H), 3.41 (s, 3H), 4.38 (m, 1H), 7.23 (dd, J = 10.0 Hz, pyr β -H), 7.72 (dd, J = 9.5 Hz, pyr γ -H), 8.46 (dd, J = 5.0 Hz, pyr α -H).

Anal. (C₁₂H₁₃N₃O₂) C,H,N.

Starting from **18b** and following the above procedure, 1,2,3,5tetrahydro-2-(3-carboxypropyl)-5-methyl-4H-pyrido[2,3b][1,4]diazepin-4-one **19b** in 76% yield, mp 157-159 °C (ethanol). IR (KBr): 3310, 1715, 1630 cm⁻¹; ¹H-NMR (DMSO-d₆): δ 1.56 (m, 4H), 2.28 (m, 3H), 3.38 (m, 3H + 1H), 3.78 (m, 1H), 5.42 (br s, NH, exchangeable), 7.08 (dd, J = 6.0 Hz, pyr β -H), 7.39 (dd, J = 6.0 Hz, pyr γ -H), 7.98 (dd, J = 4.2 Hz, pyr α -H), 12.02 (br s, OH, exchangeable).

Anal. (C13H17N3O3) C,H,N.

Compound **19b** was converted to **20b** (76% yield) by fusion *in vacuo*, mp 138-139 °C; UV: λ_{max} nm (log ϵ): 288 (3.86); IR (CHCl₃): 1660 cm⁻¹; ¹H-NMR (CDCl₃): δ 2.03 (m, 4H), 2.50 (m, 3H), 2.81 (dd, J = 14.0 Hz, 1H), 3.42 (s, 3H), 4.14 (m, 1H), 7.22 (dd, J = 9.8 Hz, pyr β -H), 7.69 (dd, J = 9.0 Hz, pyr γ -H), 8.42 (dd, J = 4.8 Hz, pyr α -H). Anal. (C₁₃H₁₅N₃O₂) C,H,N.

An ethanol suspension of 17a (2.75 g, 10 mmoles) and Raney nickel (3 g) was shaken at room temperature in a Parr apparatus under 60 psi of hydrogen. After 12 h the uptake of hydrogen ceased, the catalyst was filtered off and washed with ethanol. The filtrate was concentrated to dryness under reduced pressure affording a crude semisolid product which was triturated with diethyl ether, filtered and the solid residue was purified either by chromatography on neutral alumina or by crystallization from ethanol.

1,2,3,5-tetrahydro-2(2-ethylcarboxyethyl)-5-methyl-4Hpyrido[2,3-b][1,4]diazepin-4-one **18a** was obtained, in 65% yield, as an oil. UV: λ_{max} nm (log ϵ): 258 (3.69), 308 (3.74); IR (CHCl₃): 1725, 1660 cm⁻¹; ¹H-NMR (CDCl₃): δ 1.25 (t, J = 7.0 Hz, 3H), 1.91 (m, 2H), 2.30-2.70 (m, 4H), 3.41 (s, 3H), 3.68 (s, NH, exchangeable), 3.95 (m, 1H), 4.14 (q, J = 7.0 Hz, 2H), 6.98 (dd, J = 8.0 Hz, pyr β-H), 7.16 (dd, J = 8.6 Hz, pyr γ -H), 8.11 (dd, J = 4.2 Hz, pyr α -H).

Anal. (C₁₄H₁₉N₃O₃) C,H,N.

From 17b, by an identical procedure, 1,2,3,5-tetrahydro-2(3ethylcarboxypropyl)-5-methyl-4H-pyrido[2,3-b][1,4]diazepin-4-one 18b, was obtained in 55% yield as a microcrystalline powder; mp 108-109 °C. UV: λ_{max} nm (log ϵ): 261 (3.88), 307 (3.77); IR (CHCl₃): 1725, 1660 cm⁻¹; ¹H-NMR (CDCl₃): δ 1.26 (t, J = 7.0 Hz, 3H), 1.69 (m, 4H)), 2.38 (m, 3H), 2.61 (dd, J = 13.0 Hz, 1H), 3.49 (s, 3H), 3.60 (br s, NH, echangeable), 3.89 (m, 1H), 4.16 (q, J = 7.0 Hz, 2H), 6.89 (dd, J = 6.4 Hz, pyr β -H), 7.19 (dd, J = 6.4 Hz, pyr γ -H), 8.11 (dd, J = 4.2 Hz, pyr α -H).

B) Pharmacology

The following investigation have been worked out on the heterotricyclic compounds 7,14,20a and 20b: explorative, muscle relaxing, spontaneous motor, antinociceptive activities and influence on the narcotic effect of Evipan.

MATERIAL AND METHODS

For all the above tests, male Swiss albino mice were used. The animals, weighing 18-22 g, were housed at constant temperature (20-22 °C). The test compounds were administered s.c. at the dose of 1/5 mmole dissolved in 10 ml/kg of PEG 200, 30 min before tests.

EXPLORATIVE ACTIVITY

It was detected with the Boissier and Simon test¹⁰ using a square board 37 cm wide with 16 equidistant holes (2.2 cm diameter), on which each animal was kept for 5 min and the explored holes were counted. Control animals received only PEG 200. Diazepam (5 mg/kg s.c.) was used as a reference drug (Table 1, Fig. 1).

Anal. $(C_{15}H_{21}N_{3}O_{3})$ C,H,N.

It was often difficult to purify the reduced products 18a and 18b from unreacted 17a and 17b. In this case we submitted the unresolved mixture to the next reaction, because the unreacted 17a,b cannot cyclize to 20a,b.

7,7a,8,9-Tetrahydro-5-methyl-5H-pyrido[2,3-b]pyrrole[1,2-d][1,4]diazepin-6,10-dione 20a and 7a,8,9,10-Tetrahydro-5methyldipyrido[2,3-b: 1,2-d][1,4]diazepin-6,11(5H,7H)-dione 20b.

Compound **18a** (2.5 g, 10 mmoles) was suspended in 2N NaOH (10 ml). After stirring at room temperature for 6 h, the alkaline solution was washed with dichloromethane, neutralized with 10% solution of tartaric acid and extracted with dichloromethane. The solution was dried (Na₂SO₄) and evaporated to dryness to give 1,2,3,5-tetrahydro-2-(2-carboxyethyl)-5-methyl-4H-pyrido[2,3-b][1,4]diazepin-4-one **19a** as an oil which was triturated with diethyl ether and recrystallized from ethanol, mp 143-145 °C. IR (KBr): 3310, 1710, 1625 cm⁻¹; ¹H-NMR (DMSO-d₆): δ 1.70 (m, 2H), 2.30 (m, 3H), 3.23 (s, 3H), 3.38 (m, 1H), 3.78 (m, 1H), 5.46 (br s, NH, exchangeable), 7.08 (dd, J = 7.9 Hz, pyr β -H), 7.38 (dd, J = 7.1 Hz, pyr γ -H), 7.79 (dd, J = 4.5 Hz, pyr α -H), 12.12 (br s, OH, exchangeable).

TABLE 1 - EXPLORATIVE ACTIVITY

Compound	Dose (mg/kg)	Number of explored holes	±S.E.	Var. %	
Controls	· · · · ·	24.4	4.66		
Diazepam	5	4.8**	0.86	-80	
7	43	4.6**	1.6	-81	
14	46	7.6**	1.91	-69	
20 a	46	11.4*	1.32	-53	
20 b	49	10.6*	1.21	-57	

Values are expressed as mean \pm S.E. of animals. For statistical analysis "t" test was used. *p<0.05; ** p<0.01; n. 5 for each substance.

Anal. (C₁₂H₁₅N₃O₃) C,H,N.

Compound **19a** was kept up at melting temperature under reduced pressure (10^{-1} mm Hg) for one hour. After cooling the residue was suspended in dichloromethane and washed with 5% solution of NaHCO₃ solution. The organic solution was dried (Na₂SO₄) and evaporated to dryness to give an oily residue which was chromatographed on neutral alumina eluting with dichloromethane, MOTOR COORDINATION (MUSCLE RELAXING ACTIVITY)

This activity was evaluated with the Kinnard and Carr¹¹ method, using a "Rotarod" apparatus (U. Basile, Milano) turning at 16 rpm. Six hours before dosing, animals were selected; only those remaining on the turning rod for more than 120 sec were utilized. To these animals (5 for each compound) the test substances were given 30 min before the test. Mice that remained on the turning rod for less than 2 minutes were considered incoordinate. Diazepam (5 mg/kg s.c.) was used as a reference drug (Table 2, Fig. 2). Pyridopyrazinones and diazepinones derivatives

animals

Fig. 1 - Explorative activity.

Fig. 3 - Spontaneous motor activity.

ANTINOCICEPTIVE ACTIVITY (HOT PLATE TEXT)

The method of Woolfe - McDonald¹³ was used, employing 10 animals for each compound. The animals were placed on a stainless steel plate at 55 ± 0.5 °C and the mean reaction time was determined for each group of mice just before the administration of the test compounds and 30, 60, 120 and 180 min after the dosing. The percent reaction time variations were referred to initial values. The animals with an initial reaction time superior to 10 sec were discarded. Morphine was used as reference drug at the dose of 10 mg/kg s.c. (Table 4, Fig. 4).

Fig. 2 - Muscle relaxing activity.

TABLE 2 - MUSCLE RELAXING ACTIVITY

Compoud	Dose	Number	of animals	
	mg/kg	Incoorainate	Ireatea	
Controls		0	5	
Diazepam	5	5	5	
7	43*	4	5	
14	46*	4	5	
20 a	46*	3	5	
20 Ъ	49*	5	5	

INFLUENCE ON THE NARCOTIC EFFECT OF EVIPAN

The influence on the narcotic effect of Evipan was evaluated by strengthening of sleep. Thirty minutes before the intraperitoneal injection of Evipan (100 mg/kg), the compounds were administered s.c. at the dose of 1/5 mmole/kg dissolved in 10 ml/kg of PEG 200. The sleeping time exobarbital induced was measured against that of a series of control animals¹⁴. The average length of sleeping time was measured, and the percentage of increased sleep in respect to the control animals. The control animals received only Evipan (Table 5, Fig. 5).

* 1/5 mmole/kg/10 ml PEG 200.

SPONTANEOUS MOTOR ACTIVITY

Cages similar to those used by Raphaelson and Rabin¹² were utilized and the number of movements of the animals were recorded. The number of spontaneous movements were registered 30 min after the s.c. administration of the compounds and every 30 min for 3 h (Table 3, Fig. 3).

TABLE 3 - SPONTANEOUS MOTOR ACTIVITY.

	Number of spontaneous movements every 30 minutes for three hours after the administration								
Compound	Dose	30'	60'	90'	120'	150'	180'	Average	% Change
Compound	(mg/kg)				120	100	100	Average	in change
Controls		1146	793	284	79	108	621	505	
Diazepam	5	509	363	583	322	58	125	327	-35
7	43*	524	136	139	247	57	93	199	-61
14	46*	1017	731	404	361	90	259	477	-5
20a	46*	460	444	69	202	93	437	284	-44
20b	49*	1163	741	515	459	147	512	589	17

* : 0.2 mmoles/Kg / 10 ml

TABLE 4 - ANTINOCICEPTIVE ACTIVITY - HOT PLATE TEST.

	Mean reaction time in seconds (± S.E.) after the dosing									
	(% Change relative to 0 value)									
Compound	Dose mg/Kg	0	30'	%	60'	%	120'	%	180'	%
Morphine	10	7.03±0.65	11.63±1.75	65	13.52±1.18	92	17.20±1.79**	145	13.45±1.85	91
7	43	6.42±0.86	10.18±1.95	59	8.98±1.08	40	11.35±1.23**	108	8.55±1.48	33
14	46	7.37±0.73	9.68±1.70	31	11.80±1.89	60	13.15±1.82*	78	10.33±1.51	40
20a	46	7.97±0.67	7.25±0.56	-9	11.72±1.75	47	13.50±2.17*	69	18.88±0.79	36
20b	49	8.40±0.56	10.88±1.18	29	14.20±1.96	69	13.72±2.14*	63	10.08±1.33	20

Statistical analysis was performed using "t"test for paired data, at second hour

* : p < 0.05; ** : p < 0.01; n = 6 for each substance

Fig. 5 - Influence on the narcotic effect of evipan (Sleep

Compound	Dose (mg/kg)	Increase %		
 Diazepam	2.5	205**		
7	43	145**		
14	46	72**		
20a	46	38*		
20Ь	49	39*		

For statistical analysis "t" test was used for unpaired data. *: p < 0.05; **: < 0.01; n. 5 for each substance.

strengthening).

STATISTICAL ANALYSIS

The data are expressed as mean values \pm standard error of five or six animals and percent variation.

The statistical analyses were performed by using "t" test for unpaired data or "t" test II for paired data (hot-plate) at a significance level 5% or 1%.

C) BIOLOGICAL ACTIVITY

EHRLICH CELLS¹⁵

Ehrlich ascites tumor (Lettrè strain from Heidelberg) was routinely transferred by injecting intraperitoneally 2×10^6 cells per animal into NCL mice. For the experiments, the tumor cells, collected on the 6th-7th day after the transplant, were suspended ($2 \times 107 \text{ ml}^{-1}$) in Hank's solution containing the compound to be tested and were incubated at 37 °C for 30 min; then, 40 KBq ml⁻¹ of ³H-thymidine (4.77 TBq mM⁻¹; from Amersham International LTd, UK) in a small volume of the same medium were added and the cells were further incubated for 30 min at 37 °C. The acid-insoluble fraction was precipitated by adding 5% ice-cold trichloroacetic acid and filtered on Whatman GF/C filters (2.5 cm in diameter). After several washing with cold 1% trichloroacetic acid the filters were dried and counted by a Packard A 300 CD liquid scintillation spectrometer. The filtrations were carried out with a Sample Manifold apparatus (Millipore Corporation, Bedford, USA).

The results were calculated as percentage of radioactivity incorporated into DNA of untreated control cells (about 3-6 MBq); the ID₅₀, that is the drug concentration, expressed in μ g/ml, which induces a 50% inhibition of DNA synthesis, was then calculated by probit analysis.

typically overspinal showed a good central analgesic activities particularly produced for 7 and 14. 7 enhanced reaction time (+108% at 120') being the most potent one at the second hour after the administration, compared with that of morphine. Other tested compounds also showed a stronger activity at the second hour.

Compounds 14 and 20b, tested for their capacity to inhibit DNA synthesis in Ehrlich ascites tumor cells, did not induce a significant inhibition while the compound 7 and still more 20a appeared to be able of inducing a significant inhibition (Table 6).

In conclusion, from these preliminary pharmacological assays, it appears that the tested compounds revealed interesting CNS depressant and analgesic activities particularly appreciable on the pyridopirazinone cyclohomologues 7 and 14 and support our interest on these tricyclic structures whose potentialities will be further investigated.

TABLE 6 - DNA SYNTHESIS INHIBITION IN EHRLICH CELLS.

Compound	ID ₅₀	Standard deviation
7	93.66	1.77
14	Not detectable	
20a	20.91	1.6
20Ъ	Not detectable	

ID50 \pm Standard deviation expressed $\mu g/kg$.

RESULTS AND DISCUSSION

The results of the pharmacological screening on pyridopyrazinones 7,14 and pyridodiazepinones 20, 20b are illustrated in Tables 1-5 and Figures 1-5.

Received October 6, 1993; accepted November 10, 1993.

REFERENCES

- (¹) Presented in part at XVII Congresso Nazionale della Società Chimica Italiana, Genova 25-30 Oct. (1992) and supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica.
- (2) F. SAVELLI, A. BOIDO, J. Heterocycl. Chem., 29, 529 (1992).
- (3) F. SAVELLI, A. BOIDO, Boll. Chim. Farm., 131, 309 (1992).
- (⁴) G. PIRISINO, M.C. ALAMANNI, F. SAVELLI, F. SPARATORE, P. MANCA, M. SATTA, *Il Farmaco, Ed. Sci., 38*, 350 (1983).
- (⁵) F. SAVELLI, A. BOIDO, G. PIRISINO, L. PIU, M. SATTA, P. MANCA, *Il Farmaco, Ed. Sci.*, 42, 833 (1987).

It is worthy to note that all compounds have marked depressant effect on CNS and good analgesic activity (central analgesia) at 1/5 mmol/kg. Compound 7 markedly reduced the spontaneous motor activity, less active 20a and diazepam, instead 20b increases it.

All compounds exhibited a appreciable depression of the explorative activity and that of 7 was the same as diazepam.

Concerning the motor coordination, 20b produced an incoordination comparable to diazepam while 7 and 14 were less active.

Compound 7 markedly potentiated the narcotic effect of evipan (Exobarbital).

Results of the hot plate test, kind of analgesia,

- (6) M. ISRAEL, L.C. JONES, J. Heterocycl. Chem., 10, 201 (1973).
- (7) F. SAVELLI, A. BOIDO, A. MULÈ, L. PIU, M.C. ALAMANNI, G. PIRISINO, M. SATTA, A. PEANA, *Il Farmaco, Ed. Sci.*, 44, 1250 (1989).
- (8) H. GOULT, Bull. Soc. Chim. Fr., 11, 382 (1912).
- (⁹) B. RIEGEL, W.M. LILIENFELD, J. Am. Chem. Soc., 67, 1273 (1945).
- (10) I.R. BOISSIER, P. SIMON, Arch. Int. Pharmacol., 147, 372 (1964).
- (¹¹) W.J. KINNARD, C. CARR, J. Pharmacol. Exp. Ther., 121, 354 (1957).
- (12) A.C. RAPHAELSON, B.M. RABIN, Amer. J. Psychol., 77, 493 (1964).
- (13) J. WOOLFE, A.D. MC DONALD, J. Pharmacol., 80, 300 (1944).
- (14) R. LISCIANI, A. BALDINI, B. SILVESTRINI, Arzneim. Forsch., 32, 674 (1982).
- (15) M. FERLIN, G. CHIARELOTTO, F. BACCICHETTI, F. CARLASSARE, L. TONIOLO, F. BORDIN, *Il Farmaco*, 47, 1513 (1992).

