
 

 

 
Abstract 

 
Visual surveillance in outdoor environments requires 

the monitoring of both objects and events. The analysis is 
generally driven by the target application which, in turn, 
determines the set of relevant events and objects to be 
analyzed. In this paper we concentrate on the analysis of 
outdoor scenes, in particular for vehicle traffic control. In 
this scenario, the analysis of weather conditions is 
considered to signal particular and potentially dangerous 
situations like the presence of snow, fog, or heavy rain. 
The developed system uses a statistical framework based 
on the mixture of Gaussians to identify changes both in the 
spatial and temporal frequencies which characterize 
specific meteorological events.  Several experiments 
performed on standard databases and real scenes 
demonstrate the applicability of the proposed approach. 
 

1. Introduction 
Visual surveillance systems are based on different 
methodologies and pertain a series of applications ranging 
from traffic control to human body tracking. One of the 
major challenges in visual surveillance is the ability to i) 
define the features of the object or event to be detected 
and ii) define a computational model to extract such 
features from an image sequence. 
 Dealing with dynamic scene analysis, several methods 
exist to analyze the motion in the images. The motion of 
3D objects in space induces an apparent motion on the 
image plane. The apparent motion can be either computed 
on the basis of the displacement of few image features 
points or as a dense field of displacement vectors over the 
entire image plane. This vector field is often called optical 
flow ( )vu,=v . A fundamental problem in the 
computation of the optical flow is the inherent ambiguity 
due to the 3D to 2D projection. Whenever a gray level 
pattern is moving on the image plane, the image motion 
can be due to a number of different phenomena in 3D 
space. Particularly in the decade spanning from 1985 to 
1995, an abundance of algorithms were developed to 

compute the instantaneous velocity from image sequences, 
under different hypotheses [1-5]. 
 Even though it is possible to extract several dynamic 
features from the optical flow field, the analysis of the 
optical flow for event detection is rather difficult because 
of the inherent ambiguities in the motion field. For 
example, it is quite difficult to distinguish the ego-motion 
and the eco-motion from the optical flow computed from 
an image sequence acquired from a moving camera [6,7]. 
Other techniques directly based on the image differencing 
for background subtraction [8] are very sensitive to high 
frequency motion and are ineffective for slow motion 
detection. Moreover these techniques can not cope with 
the motion of the camera. 
 For these reasons several techniques have been 
proposed which directly compute dynamic features from 
the image sequence. Among them the most commonly 
used method is based on the mixture of Gaussian (MOG) 
model [9,10]. In this framework the rationale is to 
statistically characterize each single pixel in the image, 
through a set of Gaussian probability distributions. 
Through this model it is possible to define the variability 
of each pixel over time. This methodology, coupled with 
a Fourier analysis of the frequency content of the input 
sequence, has been applied to determine a series of 
anomalous events. In particular, to identify potentially 
dangerous weather conditions, namely snow fall and fog. 
In the reminder of the paper the mixture of Gaussians 
model is further explained and the technique adopted to 
identify anomalous events is detailed. Several experiments 
from real scenes are presented.  

2. Statistical analysis of image features 
Each image pixel in an image sequence can be 

statistically characterized as a series of values changing 
over time: 

 
{ } ( ){ }TttyxIXX t ≤≤= 1:,,,..., 001  (1) 
 
Where I(x,y,t) represents the intensity value of the pixel 

at position (x,y) and time t, in the image sequence. 
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The recent evolution of the intensities can be modeled 
as the mixture of K  Gaussian probability density 
distributions: 
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Where K is the number of Gaussian distributions, ωi,t is 

the individual weight of each Gaussian at time t (the sum 
being equal to 1), μi,t and Σi,t are the mean the covariance 
matrix associated with the ith Gaussian at time t. The 
general expression of the Gaussian distribution is: 
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In figure 1 an example of the time histogram of an 
image pixel over time and the related mixture of 3 
Gaussian probabilities is shown. 

At every frame, each pixel density is updated according 
to its intensity value. The update is performed by changing 
the Gaussian distribution from the pool with the mean 
value at a distance less than 2.5 times its standard 
deviation. This value has been experimentally found to be 
optimal to characterize the time variability of the pixel 
intensity [10]. The probability density distribution is 
modified by changing the weight associated to each 
Gaussian according to the following law: 

 
( ) ( )tktktk M ,1,, 1 αωαω +−= −    (4) 

 
Where Mk,t is a binary value which determines if the 

considered pixel belongs to one of the Gaussians, α is a 
parameter associated with the learning capability of the 
distribution, and the sum of all K weights is equal to 1.  

In particular, the value of α determines the speed 

Figure 2: Initialization of the Gaussian probabilities with the
mean values (top) and the most recurrent values (bottom).  In
both cases the displayed intensities are the mean values of the
Gaussian associated with the background. 

Figure 1: (left) Time histogram of an image pixel in a sequence and (right) the corresponding mixture of three Gaussian
probability distributions. The ordinates report the frequency of each intensity value over time. 
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adaptation of the distribution to local changes. This is a 
key element to tune the model to the desired temporal 
frequency and thus detect either slow or fast objects from 
the background. The parameters of the selected Gaussian 
are updated according to: 
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After the update, the Gaussians are ordered according to 

the ratio ω/σ. Having the lower weight and higher 
variance, the first Gaussian is always the one representing 
the (stationary) background in the scene. The advantage of 
this model over other methods is the capability to 
dynamically learn new “objects” or variations and 
incorporate them in the background model. The time to be 
elapsed for a new object to be “learned” depends on the 
tuning of the parameter α.  

The model initialization is critical to correctly 
characterize the scene and the events. The initial 
parameters associated to each Gaussian are either 
determined by computing the mean values of the first 
Gaussian from a set of images or by selecting the Gaussian 

associated with the background as the one which is the 
most recurrent within the entire field of view. Assumed 
that the background covers a significant portion of the 
field of view, both methods perform almost equally well. 
An example of applying the two initialization methods is 
shown in figure 2 for a traffic scene, using 3 Gaussian 
distributions to model the sequence. The correct scene 
characterization is learned by the model after few frames. 
It is worth noting that slowly moving vehicles are merged 
with the steady objects in the scene, but gradually 
disappear as the model is updated. This effect is clearly 
evident in figure 3 as the ghosts of the moving vehicles is 
still visible in the foreground. The maximal velocity of the 
objects to be included in the steady background is 
determined by the learning speed of the Gaussian model. 

In some of the experiments color image sequences have 
been used and the mixture model has been modified to 
handle color pixel values as well. In order to train the 
MOG with the color values, 9 Gaussian probability 
density functions are used which are merged, according to 
the relevance of each RGB color channel, into three main 
densities to code the variability of each pixel. The analysis 
of the color values proved to be more robust with respect 
to acquisition noise than the processing of 8 bit intensity 
values. 

3. Detection of adverse weather conditions 
Within the framework of traffic monitoring, it is 

important to detect anomalous or potentially dangerous 
events for the vehicles. Among all possible events, the 
detection of typical weather conditions is of great interest 
to deliver proper information to the drivers and also for 
timely alert of police patrols, thus reducing the probability 
of car accident or queues [11-15]. 

Differently from moving objects and other dynamic 
events, the change in the weather conditions affects the 
entire field of view. At the same time, it is important to 
still be able to identify moving objects, for example to 
classify cars from trucks and pedestrians. Toward this end 
it is necessary uniquely characterize the spatial and 
temporal features of each weather condition and how they 
affect the image sequence. A proper analysis of the spatio-
temporal frequencies in the sequence allows to identify the 
different weather conditions. 

In order to properly characterize the performances of 
the proposed system a mixed sequence has been produced 
including 62 frames for each different weather condition 
and mixed together in a single sequence 186 frames long. 
The resulting sequence reports all possible combinations 
in the transition between sunny to snow, and to fog. 

Figure 3: Mean values of the background after 400 frames
(top) and 1800 frames (bottom). It is worth noting how fast
moving objects disappear as they are discarded by the model. 
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Figure 5: Traffic scene in figure 4 but acquired during snow fall and processed with a MOG model with α equal to 0.9 (top) and 0.01 
(bottom). The falling snow flocks are clearly detected with the high value of α, while the vehicles are still correctly detected with the 
lower value. 

Figure 4: Traffic scene acquired during good weather and processed with a MOG model with α equal to 0.9 (top) and 0.01 (bottom). 
It is worth noting that no objects are detected with the high value of α, while the vehicles are correctly detected with the lower value.
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The error rate in the identification of the varying 

weather conditions is reported in table 1. Most of the 
reported errors are due to the unnatural abrupt transition 
between different weather conditions which can not be 
immediately accounted by the MOG model. In real 
weather changing conditions, the smooth change in the 
environment would produce a much lower error rate. As 
an example, processing a single weather condition, such as 
either snow fall or fog, the classification error is always 
equal to 0% 

3.1. Snow fall detection 
Snow falling is characterized by a number of small 

image blobs crossing the field of view in a single 
direction. This weather condition can be detected by 
selecting and counting the objects in the scene which are 
small in size and moving relatively fast across the image. 
The snow flocks will move, in general, faster than any 
other object in the scene, because they are very close to 
the camera lens. 

The snow flocks can be detected simply by tuning the 
parameter α in equation (4) to adjust the learning speed of 
the mixture of Gaussians to the spatio-temporal frequency 
of the falling snow flocks. The discriminating value of the 
parameter can be determined by analyzing the same scene 
under different weather conditions. A thorough analysis 
has been carried out on several image sequences 
containing different weather conditions. In case of good 
weather conditions a very small value of α can be used, 
which is always below 0.1 (10% of the range). In case of 
snow the optimal value of α has been determined equal or 
greater than 0.9 (90% of the range). For this reason, a 
value of α equal to 0.9 has been applied to detect the 
presence of snow. 

The results obtained from the analysis of the snow fall 
are presented in figure 4 and 5. The processed sequences 
has been obtained from the University of Karlsruhe public 
database of traffic scenes, which is a standard database for 
the evaluation of algorithms for traffic monitoring 
(http://i21www.ira.uka.de/image_sequences/). 

The sequence contains at least 200 frames, with image 
resolution of 320x240 pixels with 24 bits per pixels to 
code the pixel color values. In order to train the MOG with 
the color values of the image pixels, 9 Gaussian 
probability density functions are used which are merged 
together in three main densities to code the variability of 
each pixel. In the processed sequences, the same scene 
view was captured under different weather conditions 
(snow fall and sunny) and analyzed with a MOG with α 
equal to 0.9 and 0.01. As it can be noticed, while the first 
value of α allows to detect the snow flocks, the second 
value clearly detects all moving objects. 

Figure 6: Traffic scene reported in figure 4, under good
weather conditions (top) and with fog (bottom). 

Figure 7: Amplitude of the Fourier spectrum for the two
images in figure 6. The picture corresponding to the street
scene with fog is represented by the section of the spectrum on
the right hand side of the graph. 
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3.2. Detection of fog 
Unlikely snow fall, the detection of fog requires the 

identification of a relevant change in the spatial 
frequencies of the entire image. In other terms, the effect 
of fog is a general blurring of the image which is almost 
equivalent to a low pass filtering. To detect this condition 
it is necessary to detect the change in the frequency 
content of the entire background image over time. 

In order to analyze the distribution of the spatial 
frequencies in the image the Fourier Transform is 
computed over time and compared with the Gaussian 
distribution values associated with the stable background. 
The change in the amplitude of the Fourier spectrum over 
time determines if, and to what extent, the frequency 
content is changing within the entire field of view.  

Figure 6 shows a sample traffic scene from the 
University of Karlsruhe public database, acquired from the 
same view point in good weather conditions and with fog. 
The Fourier spectrum for the two images is shown in 
figure 7. As expected, while many high frequency 
components are accounted in the image corresponding to 
the good weather, the frequencies computed from the fog 
image are much lower and uniformly distributed. 

To detect the foggy weather condition it is required to 
determine if the Fourier spectrum is a simple plateau or it 
contains the series of peaks corresponding to a sharp 
image. The average of the values of the amplitude of the 
Forurier spectrum is generally sufficient. In the example 
presented in figure 7 the computed mean values of the 
Fourier transform amplitude are: 

• 2927 for the image in the good weather condition, 

• 1486 for the foggy weather condition. 

The resulting difference between the two mean values is 
more than 50%, which is sufficient to set a robust 
threshold to discriminate the two conditions. 

In order to further test the fog detection method, a 
sequence of 200 frames, with 320x240 RGB color images 
coded with 24 bit per pixels has been acquired from a 
camera placed at the window of a residential building, and 
overlooking a street. Two sample frames with and without 
fog are shown in figure 8. 

To detect the foggy weather conditions, the reference 
mean frequency corresponding to the good weather were 
first computed. The first images with good weather were 
processed computing the Fourier transform of the pixel 
values corresponding to the Gaussian distribution 
associated with the stable background. The average of the 
Fourier spectrum was set as reference index Vgw for the 
good weather condition. The rest of the sequence was 
processed computing, every 10 frames, the mean value of 
the Fourier amplitude spectrum. This value constitute the 
index for the fog condition Vfw. Whenever the value of Vfw 
drops to 40% of Vgw the image is tagged as captured in fog 

weather condition. Conducting this analysis on the locally 
captured sequence a classification error equal to 0% was 
reported. 

The classification results of the snow and fog weather 
conditions are summarized in table 1. 

 
 

Table 1: Error rates in the classification of adverse 
weather conditions in the two experimental sequences. 

 

Weather condition  Classification Error 

Fog sequence 
(200 frames) 

Fog / Sunny 0% 

Mixed weather sequence 
(186 frames - from the U. Karlsruhe database) 

Fog 1.6% 
Snow fall 19.8% 
Sunny 1.6% 

 
To detect the changing weather conditions in the second 

experiment reported in table 1, the two methods for the 

Figure 8: Traffic scene from a sequence of 200 frames, under 
good weather conditions (top) and with fog (bottom). 
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detection of fog and snow have been applied 
simultaneously to the entire sequence. 

It is worth noting that the mixed weather sequence is 
composed of three different video streams recorded at 
different times. Therefore, the poor recognition rate 
accounted for the detection of snow fall is mainly due to 
the abrupt changes within the sequence. 

4. Conclusions 
The monitoring of activities in traffic scenes often 

requires being able to detect adverse weather conditions. 
This allows to improve the safety and the traffic flow 
control. In this paper two adverse weather conditions were 
analyzed: snow falling and fog. 

The performed analysis is based on two different 
processes for the two considered weather conditions: 

i. tuning the learning capabilities of the mixture of 
Gaussians model for the image sequence, 

ii. and analyzing the frequency spectrum from the 
Fourier transform. 

The method proved to be robust to image noise. 
Moreover, processing the sequence at different scale-space 
frequencies, in space and time, the system is capable of 
discriminating the weather conditions and to isolate the 
moving objects at the same time. 

Future developments include the analysis of other 
adverse conditions such as rain and hail. We expect hail to 
produce the same effect as snow on the images, but we 
could not make any experimental tests. As for the rain, 
given that the water is almost transparent to light, a careful 
choice of both the camera optics and the viewing distance 
is required to capture enough moving texture associated 
with the falling water drops. The same process adopted to 
detect fog can be also extended to detect smoke in the 
scene, which may be produced by a fire. This can be 
accomplished by dividing the image into disjoint areas and 
analyzing each area independently. 

Currently the system is implemented in Matlab code 
and requires between 7 and 15 sec to process each frame 
(including the computation of the Fast Fourier transform). 
This is due, not only to the inefficiency of the interpreter, 
but also to the non-optimal memory allocation to store the 
frame sequence. By re-coding the entire process with a 
compiled and optimized implementation a processing time 
reduction of 1/10 is expected. Moreover improvements in 
speed will be also obtained by processing down-sampled 
images. 

Nonetheless, the processing time required does not limit 
the applicability of the approach. In fact, in real 
environments the weather conditions change rather slowly 
and within the range of several minutes. Therefore, the 
time constraints for this application are not the same of 
vehicle tracking. A timely response can be accounted even 

processing the sequence (and providing a detection score) 
at the rate of 1 frame every 5 or 10 seconds. 
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