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Multiple Constraints 
to Compute Optical Flow 

Massimo Tistarelli 

Abstra~t-The; Gomputation of the opticial flow field from an image 
sequence requires the definition of constraints on the temporal change 
of image features. 

constraints in the computational schema. In the first step, it is shown 
that differential constraints correspond to an implicit feature tracking. 
Therefore, the lbest results (either in terms of measurement accuracy, 
and speed in the computation) are obtained by selecting and applying 
the constraints which are best "tuned" to the particular image feature 
under consideration. 

Considering also multiple image points not only allows us to obtain 
a (locally) better estimate of the velocity field, but also to detect 
erroneous mea.surements due to discontinuities in the velocity field. 
Moreover, by hypothesizing a constant acceleration motion model, also 
the derivatives of the optical flow are computed. 

Several experiments are presented from real image sequences. 

Index Terms--Optical flow, velocity field, differential constraints, 
dynamic vision., motion analysis, image velocity, dynamic scene 
analysis, computer vision. 

In this paper, we consider the implications of using multiple 

1 INTRODUICTION 
IN many comlputer vision techniques it is often desirable to over 
constrain the problem. This practice generally allows us to more 
precisely deteirmine the solution. Moreover, it is also important to 
use redundant information to enforce robustness with respect to 
measurement noise in the input data. This is particularly true 
dealing with differential methods where high frequency noise is 
enhanced by derivative operators. For this reason there are many 
examples in the literature, where optical flow is computed by 
means of several constraint equations applied to many image 
points 111, [21, [31, [41, [51, [61, [71, [81, [91, DO], D11, U21. Minimiza- 
tion and least squares are the mathematical tools most widely ap- 
plied to solve 1 his kind of problems. 

Not always the constraints are obtained by applying the same 
equation to multiple points, as in [Z], [41, [51, [71, [121, but also by 
defining multiple constraints for each image point, either based on 
a set of differential equations [l], [9], [lo], [ll], or obtained by ap- 
plying the same set of equations to different functions which are 
related to the local image brightness [31, [6], [8]. Many researchers 
have also exp Licitly addressed the problem of occlusions, in the 
computation of smooth flow fields [l], [Z], [5], [13], by using mul- 
tiple constraints. 

Regardless of the methodology used to over constrain the 
problem, there is a question to be answered: is always the problem 
posed in the correct way? What is the best way to over constrain 
the Computational problem and make it well posed? 

The aim of this paper is, to analyze differential flow constraints 
commonly used to compute optical flow, and understand the rela- 
tion with the underlying intensity pattern. The problem is faced in 
terms of the geometrical properties of the constraint equations in 
relation with the distribution of the image brightness. 

2 MOTION AND OPTICAL FLOW 
Uras et al. [14], among others [15], claim that the aperture problem 
is a "false problem." In fact, it can be easily overcome as soon as 
enough "structure" is present in the image brightness [151. For 
example, assuming the flow field to be locally constant: 

where E(x,  y, t )  is the image brightness. 
Several researchers 111, [lo], [141, 1151 exploited the integration 

of multiple constraint equations, to over constrain the computa- 
tional problem. By adding the brightness constancy equation to 
(l), three equations in two unknowns are obtained' [9], [lo]: 

d a + 

- E = O  - V E = O  
dt at 

In this case the optical flow is computed by solving, in closed 
form, an over-determined system of linear equations in the un- 
known terms (U, V) = ?. 

3 USING MULTIPLE CONSTRAINTS 
In this section, we consider three methods to compute the optical 
flow using multiple differential constraints:' 

1) For each point on the image, where the Hessian matrix of 
the image brightness is not singular, the direct solution of 
(1) provides the velocity vector v. 

2) Simultaneously solve (2) applied to a single pixel: 

(3) 

3) Solve an overconstrained system of linear equations ob- 
tained by applying (2) to a set of pixels within a given 
neighborhood. 

These methods deserve advantages as well as disadvantages 
[161. Considering Fig. 1, it ii; interesting to note that in the case of 
(2) it is impossible to determine, at least from the geometry of the 
system, which one is the wrong constraint line. 
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'. It is worth noting that this corresponds to a first order approxima- 
tion of the optical flow field with a locally constant vector field. By 
taking into account the values of the spatial derivatives of velocity, it is 
possible to extend the approximation to the second order, but the 

is here limited to the first order to allow the optical flow cam- 
putation to be based on single pixel measurements. 

2 . Even though we are considering three basic constraints, the fol- 
lowing analysis and results apply for any number of constraints, at 
least two, derived from the image brightness function [l], [31, [61, [81. 
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Fig. 1. Effects of the errors in one constraint equation. The wrong constraint is the dotted line C,, while the correct constraint line is C,. The wrong 
velocity vector is dashed. The geometry of the constraint equations is shown in case of: the constraint equation (1) (left); the constraint equation 
(2) (middle): multiple data points applying the brightness constancy equation (right). 

Fig. 2. Two images from a set of 37 of a flat picture moving toward the camera along the optical axis (top). Optical flows computed by using the 
best intersection (left); the least squares (middle); the mean of the two better intersections (right). On the bottom row, an enlargement of the flow 
fields relative to the marked window is shown. 
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3.1 Mapping Flow Constraints 

Instead of taking all three equations of (2) at the same time, it is 
possible to consider three equation pairs separately and study 
their stability. This is equivalent to consider-each intersection point 
in Fig. 1 separately and determine the conditioning of the corre- 
sponding system of equations. This is done by analyzing the ma- 
trices? 

to the linage Brightness Structure 

A first option is to consider as correct solution the most reliable 
intersection in velocity space:* 

= Mi-’ ii e detM, > (detMj, det M,}, (5)  

i, j ,  k E {I, 2, 3}, i # j # k 

In Fig. 2, two images from a sequence of 37 are shown. The im- 
ages are 256 x 256 pixels with eight bits of resolution in intensity. 
The sequence i s  relative to a flat picture moving along the optical 
axis of the camera. This image sequence has been used to compute 
the optical flow in the following ways: 

Applying the equation pair with the highest determinant. 
Computing the pseudo-inverse as in (3) .  
Taking the average of the flow vectors computed from the 
equation pairs with higher determinants. 

TABLE 1 
STATISTICS OF THE THREE ALGORITHMS PRESENTED 

Algorithm (a): Algorithm Algorithm I highest “det M (b): least (c): mean of 

N. of vectors 

15 sec 17.5 sec 15.4 sec 

For 51 % of the image points, det MI is the highest determinant, as 3% is det 
M2, and for 46% is det M com aye with (4)). Optical flows have been com- 
puted on a Sun SPARC IPC workstation. 2 . L  

The three flow fields are quite similar, but, as shown in Table 1, 
their density is different. In order to facilitate a comparison of the 
techniques, a small portion of the optical flows is shown enlarged. 
As it can be noticed, the marked vector obtained from the mean of 
the two better intersections in the velocity space has a correct ori- 
entation (at least considering the velocity of the neighboring pix- 
els) while the same vector, computed from the best intersection 

’. In general one can consider a set of n functions of the image 
brightness F ( E )  with the constraints: 

$?(E) = $Vp(E) = 6 
where VF(E) re:presents the gradient operator applied to each ele- 

ment of the vector of functions F ( E ) .  These constraints result in a set 
of 3 x n equation pairs [31,[61, [81. 

‘. The computation of 2 x 2 matrix determinants is used throughout 
the paper to measure the reliability or confidence of the computed 
velocity vector, which corresponds to the intersection point of two 
straight lines in (U, v) space. In the Appendix this aspect is discussed in 
more detail. 

point in the velocity space, has an evidently wrong orientation. 
Most probably, this is due to the fact that, by taking the best inter- 
section point, some relevant information is still missing. This in- 
formatioq can be only included by considering also the remaining 
constraint line (or lines if more than three constraints are given). 
On the other hand, there are still errors depending on the local 
structure of the image brightness [17]. 

a 

b C 
Fig. 3. Synthetic image used to characterize the behaviour of the con- 
straint equations in response to different intensity patterns; a. Values of 
the determinants for the three equations: MI (left), M2 (middle), M3 
(right). The gray value codes the determinant values, light gray is 0, 
dark represent a negative value and bright a positive value: b. Domi- 
nance of the determinants. White values indicate that det M, is the 
greatest determinant, gray and black are points where det MI or det M3 
have the greatest values. The zero value is coded as bright gray; c. The 
dominance of the determinants is shown as the absolute value of the 
difference between the two greatest determinant values: ldet M i -  det MI. 
The zero value is coded as briglht gray. 

4 IMPLICIT FEATURE TR~CKING 
Any algorithm for the compultation of the optical flow field, can be 
regarded as a solution to the tracking problem 1161, [181. In fact, 
even though differential methods do not establish any explicit 
correspondence between image features over time, still the differ- 
ential operators involved (in any framework) track characteristic 
intensity patterns over time [ll]. This is an interesting aspect 
which dramatically changes the perspective under which differ- 
ential techniques should be analyzed and applied. Flow and/or 
motion constraints should not be applied regardless of the image 
sequence to be processed, but rather, purposively selected as a 
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Fig. 4. Optical flows computed by using the weighted sum of the best intersections (on the left is the raw optical flow, and on the right is the 
smoothed optical flow). The parameters applied for the estimation of the optical flow fields are: a. os = 2, of = 1, of= 1.2, A = 5%, r= 1; b. os = 2, 
Of= 1, of= 1, A =  5%, Z= 1. 

function of the local distribution of the image brightne~s.~ In gen- 
eral, this is implicitly performed when tuning thresholds on the 
parameters of the algorithm or discarding flow vectors with a low 
confidence (in any way they have been computed in the first place) 
[l l] .  This methodology implies the measurement of wrong data 
from the beginning, while it would be desirable to avoid useless 
measurements This is possible only by tuning the constraints to 
the underlying intensity distribution As shown in Table 1, a side 
effect of this procedure is the reduction in the time required to 
process the image sequence 

4.1 Effects of the image Intensity Distribution 
By analyzing the values of the derivatives of the image brightness, 
Nagel [15] demonstrated that the brightness constancy equation 
(BCE) and the stationarity of the intensity gradient (SIG) equations 
are not defined when characteristic gray patterns occur on the 
image. In particular, none can be applied to compute the image 
velocity whenever the gray level variation is linear In this case, at 
least one of the derivatives E, and E ,  are null, and E,, = 0 and/or 
E, = 0 On the other hand, the value of det M,, as from (41, (which 
corresponds to the SIG equations), is minimum at gray level cor- 
ners and it is maximum at extrema of the image intensity This fact 
explains why the optical flow, computed by means of the con- 
straint equations expressed in (11, is much less dense than apply- 
ing all three equations of (3) because they also take into account 
the corners of the image intensity Therefore, whenever the gray 
level pattern is not a corner or a maximum, all three equations are 
"weak," in the sense that the straight lines represented by equation 
pairs do not intersect at right angles (1 e ,  the corresponding matrix 
determinant is low) 

The behavior of the considered differential constraint equations 
is explained in Fig 3 The value of the dominant determinant for 

'. It is worth noting that in the work by Fleet et al. [19] this is per- 
formed by applying multiple filtering stages tuned to characteristic 
frequency bands in the image sequence. 

each image point is shown in Fig. 3b. Dark pixels correspond to a 
maximum for det M,, the middle gray identifies pixels where det 
M3 is maximum, and bright pixels correspond to a maximum for 
det M,. The areas where det M, is prevalent are very small and 
limited to the peaks in the image intensity. It is now evident that 
not all the equations are "well t uned  to "sense" the temporal 
variation of every intensity pattern. But, rather, each equation is 
best suited to compute the motion of a particular intensity distri- 
bution. 

Assuming the determinants of two equation pairs to be greater 
than a given threshold z (stating the intersections to be admissi- 
ble), it is possible to consider the probability of the intersections of 
both line pairs and try to maximize the a posteriori probability. In 
the ( U ,  v) space this corresponds to move one intersection point 
toward the other, according to their confidence. If the two inter- 
sections have the same probability (or the three intersection points, 
obtained from the three equation pairs, are the vertexes of an isos- 
celes triangle), then the most probable solution will be located at a 
point in the middle of the line connecting the two intersections. It 
is worth noting that this point does not correspond to the least 
squares solution. 

In this way, the correct solution corresponds to the "center of 
mass" of the two points, where the "mass" of each point is the 
value of the respective matrix determinant, which is used as confi- 
dence measure: 

where N: = b:M: - bfM,12 and NY = b,"MB1 - b:M,Z are the 

numerators of the expression for 7 = (ul,  U*) , as from (51, and D, 

= det M,. In the general case, selected m constraints from the total 
n equations, we obtain: 
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1 .- 2 Di 
id 

(7) 

where the selected m constraints are the best tuned to the local 
intensity profile. 

4.2 Experimlental Results 
The results of two experiments, relative to the computation of the 
optical flow by integrating multiple constraints for each pixel, are 
reported in Fig. 4. 

In order to allow the numerical computation of the spatiotem- 
poral derivatives of the image brightness, a spatio-temporal 3D 
Gaussian kernel has been applied to the images. The resulting raw 
optical flow has been further regularized by applying also a small 
Gaussian filter to both the U and ZI components of the vector field6 
1141, [201. The parameters which have been set in the algorithm 
are the following: 

o, and q are the values of the standard deviation of the 
Gaussian kernel in space and time; 
A is the maximum allowed difference in the values of the 
higher determinants; 
zis the threshold on the value of the determinant computing 
the flow vectors; 
q is the value of the standard deviation of the Gaussian 
kernel used to smooth the U and v component of the com- 
puted velocity field; 

In order to improve visibility, the flow fields have been sub- 
sampled by taiking one vector every five, along the x and y image 
coordinates. The spatial and temporal derivatives of the image 
brightness have been computed with fixed one-dimensional 
masks, locally approximating the Taylor expansion of the bright- 
ness function [.201. The sequences in Fig. 4 have been acquired with 
an ordinary CCD camera, under different conditions; all the im- 
ages in the sequences are 256 x 256 pixels with eight bits of resolu- 
tion in intensit:y. 

The sequence in Fig. 4a (moving sequence) has been acquired in- 
side a room, from a camera mounted on a mobile vehicle moving 
along a direction slightly inclined with respect to the camera opti- 
cal axis. The object on the right, in the foreground, is moving along 
a direction almost orthogonal to the vehicle trajectory. On the 
bottom, both the raw and the smoothed optical flow are shown. As 
the object in the foreground is moving very fast, compared to the 
motion of the camera, the applied differential operators do not 
allow to compute a correct estimate of the image velocity of the 
moving object Itself. 

The second sequence (blocks sequence) has been acquired, at the 
University of Karlsruhe from a camera mounted on a robot arm 
[211. Two images (256 x 256 pixels with eight bits per pixel) from 
the original sequence are shown in Fig. 4b. On the bottom of the 
same figure, both the raw and the smoothed optical flow are 
shown. It is worth noting that the moving block in the foreground 
can not be traclked very well because, during the motion, the sur- 
faces in the bacl<ground are occluded. This is an intrinsic limitation 
of the applied constraints and can be overcome by taking into ac- 
count multiple ;pixels. 

‘. It is worth noting that the Gaussian filtering of the optical flow is 
not mandatory for the proposed algorithms. In the experiments it is 
mainly applied to fill-in missing flow vectors and to facilitate the un- 
derstanding of the presented results. 

5 
The application of multiple constraints can be extended to multi- 
ple data points. This is possible by assuming the flow field to be 
constant within a given neighborhood of the current pixel and by 
applying the constraints relative to each pixel simultaneously. The 
velocity vector is determined as the center of mass of the cloud of 
intersections (from the constraint lines), in the velocity space, rela- 
tive to each pixel within the considered neighborhood. 

If the velocity field is locally constant or smooth, a very small 
cloud is expected, because all the pixels will have the same veloc- 
ity. On the other hand, if the cloud is large, or the intersection 
points are spread apart, then the pixels exhibit different velocities 
(see Fig. 5). 

INTEGRATION OF DATA FROM MULTIPLE POINTS 

Fig. 5. A small window is shown out of the original image. For each 
pixel within a 3 x 3 window, three constraint lines are defined in the 
velocity space. One or two intersection points are selected for each 
pixel, according to the value of the determinant of the corresponding 
system of equations. As sketsched by the diagram on the upper right 
corner, all the selected intersection points form a cluster in the velocity 
space, which determines the velocity vector for the central pixel within 
the 3 x 3 window. 

In order to analyze the distribution of the intersection points, 
the modulus of the mean E(v) and of the variance (T(v) of the 

distribution can be defined:7 

’, Other measurements could be applied, like the residual of the least 
square error, or other statistical techniques aimed at the definition of 
the clustering degree of a given data set [22]. The mean and variance of 
the point positions have been chosen because they directly reflect the 
measurements performed by the algorithm. On the other hand, other 
error measurements, like the residual, do not take into account the 
explicit non-linearity of the algorithm. 
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(9) 

where N is the number of selected intersection points, v = (U, a) 
is the velocity vector computed from the set of intersection points, 
and = (ui, vi) is the velocity vector defined by each intersec- 

tion point in the velocity space. The vector 6 represents the mean 
distance of the set of intersection points from the top of the re- 
sulting velocity vector V .  By setting a threshold on the value of 
E(V) it is possible to determine if the velocity field is locally con- 

stant or, conversely, if the current image location corresponds to a 
flow discontinuity. It is worth noting that this method relies on a 
local assumption of the differential properties of the velocity field, 
which is used to compute a flow estimate at each pixel position. 

5.1 Including Linear Variations of Velocity 
By considering multiple pixels it is also possible to include a first 
order, nonconstant, term in the flow constraints (2). Linear varia- 
tions of the optical flow [41 can be expressed as: 

- 

- 

(10) 

where ux, uy, vx, ny represent the spatial derivatives of the image 

velocity at go = (x0, yo), Ax = xo - x and Ay = yo - y. 
By substituting this expression into (2), for two points ?! and 

where (U', vo 

X i  one obtains: 

ELdy 

E' A' +E: 
E;A; 

ELA~,, + E: 

w v  
. .  

E L A i  

= V ( q ,  
1 of the image brightness E,, are computed at the point ?[. The 

optical flow and its first order derivatives can be computed if the 
parameter matrix is not singular. A necessary condition is that the 
intensity gradients at the image points gi and X i  are not null and 

not aligned. 
In order to reduce the errors in the velocity estimate, and to 

improve accuracy, more than just two points are used. In general, 
matrix inversion is a source of round-off errors. For this reason, 
singular value decomposition (SVD) has been applied to find a 
robust numerical solution for each possible intersection. In order 
to reduce the processing time, not all the available equations for 
each point' are used. For each pixel, det MI, det M2, and det M, 
are also computed; only the equation pairs corresponding to the 
higher determinants are included in the estimation matrix. In this 
way, not only computations are avoided in areas where there is 
not enough structure in the gray levels to allow measurements 
(compare with Fig. 3b), but also sources of possible numerical 
errors are avoided. 

5.2 Experimental Results 
In Fig. 6 to Fig. 8, several experiments, performed by applying 

multiple constraints from multiple pixels, are shown. The pa- 
rameters which have been set in the algorithm are the same of the 
previous experiments, while E ( P )  is the mean of the distribution 

of the computed intersection points in the (U, v) space, measured in 
pixels. In order to improve visibility the flow fields have been sub- 
sampled by taking one vector every five, along the x and y image co- 
ordinates. 

In Fig. 6 an experiment performed on the "moving sequence" is 
shown. On top one original image (left) and the computed raw 
optical flow (right) are shown. The parameters used for the veloc- 

ity computation are: os = 2, q = 1, A = 5%, z= 1, E V 0.2. In the 
middle, the optical flow smoothed with a Gaussian kernel with 

standard deviation 7 equal to one is shown. On the right, an en- 
largement of one computed velocity vector in the velocity space, 
corresponding to the position marked with a cross on the original 
image, is shown. All the intersection points used to compute the 
vector are also shown as small dots. On the bottom, are the com- 
puted mean (left) and variance (right) for all the image points. The 
light gray indicates a zero value, all other values range from one 
(dark) to 255 (white). It is worth noting that the area correspond- 
ing to the moving object in the foreground, has very high values 
both for the mean and for the variance of the distribution of the 
intersection points in velocity space. High values in the mean are 
also reported along the depth discontinuities. 

In Fig. 7 the same images have been used to compute the opti- 
cal flow with two different methods: 

a by computing the pseudo intersections of all the constraints 
(least squares solution) and 

a by integrating the constraints from multiple image points. 

(7 = 

Both optical flows have been smoothed with a Gaussian operator 
with standard deviation 9 equal to one. 

As can be noticed, the first flow field reports errors in the area 
corresponding to the moving object. Conversely, the method 
based on the integration of constraints from multiple points allows 
to detect and discard the areas corresponding to wrong measure- 
ments. 

The last experiment has been performed on an image sequence 
obtained from the original "blocks sequence," by cropping a 
256 x 256 window around the moving marble block. On the top 
row of Fig. 8 the computed raw optical flow (left) and the optical 

flow smoothed with a Gaussian kernel with standard deviation 9 
equal to one (right) are shown. The parameters used for the com- 

putation are: O, = 2, o, = 1, A = 5%, z= 1, E(V) = 0.5. In the middle 

row, one original image is shown. On the right, an enlargement of 
the computed velocity vector, in the velocity space, at two differ- 
ent positions (marked with a cross on the original image), are 
shown. All the intersection points used to compute the vectors are 
also shown as small dots. On the bottom row, are the computed 
mean (left) and variance (right) for all the image points. As it can 
be noticed, most of the higher values of the mean and variance are 
at the image points corresponding to depth discontinuities or to 
occluding edges of the two blocks in the image. High values in the 
mean are also reported, on the lower left corner, within an area 
with uniform intensity. 

'. Considering a 3 x 3 neighborhood around I,, a total of 3 x 8 = 

24 equations are obtained. 
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Fig. 6. Computation of the optical flow by applying constraints from 
multiple points or1 the “moving” image sequence. 

a. b. 
Fig. 7. Comparison between the optical flows computed with two differ- 
ent methods from the “moving” image sequence. 

Fig. 8. Optical flow computed by applying constraints from multiple 
points on the “blocks” image sequence. The sequence has been ob- 
tained by extracting a 256 x 256 window from the original 512 x 512 
images. 

5 CONCLUSION 
In this paper, the problem of combining multiple constraints to 
compute the optical flow field from an image sequence has been 
addressed. 

One of the main aspects which has been outlined in this paper 
is that the response of a given constraint strictly depends on the 
local distribution of the image intensity. Therefore, the choice of 
the constraints to be applied should depend on the local structure 
of the image brightness and riot only on the confidence associated 
to the measurement. In fact, there are examples where the local 
image structure does not allow to apply a given constraint at all, or 
the information obtained is completely wrong. These observations 
lead to the conclusion that iin order to compute the optical flow 
field from an image stream, the constraints to be applied to the 
image sequence should not be chosen only on the basis of the mo- 
tion to be detected, but also considering the local image structure. 

It is demonstrated, both analytically and with experiments, that 
the same equations applied to different brightness structures can 
give exact or wrong estimates. 

The complex nature of the real world, often makes assumptions 
for the velocity computation fail. This is due to many phenomena, 
like occlusions, shadows, depth discontinuities or even an exces- 
sive velocity of the objects. Two simple measurements, namely the 
mean and the standard deviation of the distribution of the inter- 
sections among the constraint lines, are devised to detect and pos- 
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sibly threshold the flow vectors corresponding to image points 
where some of the assumptions may be violated. 

By applying different measurements other properties could be 
detected, and eventually determine which assumptions are vio- 
lated. This analysis could be usefully applied to better understand 
the nature of the scene for successive vision tasks. 

APPENDIX 
In the literature, different criteria have been proposed to define the 
confidence of velocity measurements [11]. Considering first order 
differential techniques it has been pointed out that the magnitude 
of the spatial gradient is somehow related (or proportional) to the 
accuracy in velocity estimation. On the other hand, the determi- 
nant of the Hessian matrix of the image intensity is the most reli- 
able measure to define the confidence of velocity estimates in sec- 
ond order differential techniques. 

In this approach, the accuracy of a velocity estimate is related 
to the confidence of partial measurements obtained from equation 
pairs, namely single straight lines intersections in the velocity 
space. The determinant of each matrix Mi in (4) is directly propor- 
tional to the difference in the direction of the two straight lines: 

where 5 = tan 8, and are the angular coefficients of 

the two straight lines and A 0  = Bo - 4 The value of det M is 
maximum when the straight lines intersect at right angle 
( A 8  = k$) and minimum when the straight lines are parallel 

The value of the determinant also corresponds to the product of 
the eigenvalues Even though each eigenvalue is proportional to 
the reliability of the corresponding constraint equation, the deter- 
minant has the advantage of being easier to compute, and also 1s 
directly related to the combination of the two equations There- 
fore, the value of det M is a good measure for the confidence of the 
computed velocity vector 

= tan 
bo b, 
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