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Abstract 

KISS1 and its receptor, KISS1R, have both
been found to be expressed in central nervous
system, but few data are present in the litera-
ture about their distribution in peripheral nerv-
ous structures. Thus, the aim of the present
study was to investigate, through immunohisto-
chemistry, the expression and distribution of
KISS1 and KISS1R in the rat and human carotid
bodies and superior cervical ganglia, also with
particular reference to the different cellular
populations. Materials consisted of carotid bod-
ies and superior cervical ganglia were obtained
at autopsy from 10 adult subjects and sampled
from 10 adult Sprague-Dawley rats.
Immunohistochemistry revealed diffuse expres-
sion of KISS1 and KISS1R in type I cells of both
human and rat carotid bodies, whereas type II
cells were negative. In both human and rat
superior cervical ganglia positive anti-KISS1
and -KISS1R immunostainings were also selec-
tively found in ganglion cells, satellite cells
being negative. Endothelial cells also showed
moderate immunostaining for both KISS1 and
KISS1R. The expression of both kisspeptins and
kisspeptin receptors in glomic type I cells and
sympathetic ganglion cells supports a modulato-
ry role of KISS1 on peripheral chemoreception
and sympathetic function. Moreover, local
changes in blood flow have been considered to
be involved in carotid body chemoreceptor dis-
charge and kisspeptins and kisspeptin receptors
have also been found in the endothelial cells. As
a consequence, a possible role of kisspeptins in
the regulation of carotid body blood flow and,
indirectly, in chemoreceptor discharge may also
be hypothesized.

Introduction

The KISS1 gene was originally identified
through a differential expression approach
showing up regulation of its expression in
tumor cells which had lost their potential to
metastize.1-3 It encodes for a 145 amino acid
precursor, which can be cleaved into a 54
amino acid protein, originally called metastin,
or shorter 14, 13 and 10 amino acid peptides,
which share a common C-terminal amidation
site. With the term of kisspeptins are collec-
tively named all the peptides cleaved from the
precursor hormone. The larger protein shows
some variability among species whereas the C-
terminal 10 amino acid sequence is well con-
served.1,4-6

The kisspeptin receptor, now called KISS1R
in humans and Kiss1r in rodents,7 was initial-
ly discovered in rats in 1999 as an orphan G
protein-coupled membrane receptor named
GPR54,8 in 2001 kisspeptins being identified
as its natural ligands.4-6,9 Its gene shares mod-
est homology with the gene coding for the
galanin receptor 2, although kisspeptins do not
bind the above galanin receptor.8

Kisspeptins play a crucial role in the control
of puberty onset and reproductive function.
Apart from central nervous system, KISS1 and
KISS1R have both been found to be widely
expressed in many other tissues such as the
pituitary, gonads, placenta, pancreas, liver,
intestines and vessels.1,5,6,10,11 As it concerns
the peripheral nervous system, both KISS1 and
KISS1R have recently been found to be
expressed in rat dorsal root ganglion.12 To the
best of our knowledge, there are no data
regarding expression of kisspeptin and
kisspeptin receptor in the carotid body and
sympathetic ganglia. 

The carotid body is the main peripheral arte-
rial chemoreceptor, inducing increases in ven-
tilatory volume and frequency in response to
hypoxia, hypercapnia, or reduction of blood pH.
It is organized in lobules of cells belonging to
two different populations: type I cells, with
roundish shape and higher dimensions, and
type II cells, with fusiform shape and located at
the edges of the clusters. Type I cells represent
the real chemoreceptor elements. In response
to the various stimuli they release many differ-
ent neurotransmitters and neuromodulators,13-
17 which mainly act on the glosso-pharyngeal
afferent fibers arising from the petrosal gan-
glion. However, substances released from type
I cells may also act on other components of the
carotid body, such as type I cells themselves
(through autocrine and paracrin mecha-
nisms), type II cells, vessels, and connective
cells. Type II cells show astrocytic markers and
play a supportive role, but it has recently been
observed that if exposed to prolonged hypoxia

they may also behave as stem cells precursor
for type I cells.18 The carotid body also shows
parasympathetic and sympathetic innervation,
the latter mainly from the superior cervical
ganglion.

The aim of the present study was therefore
to investigate, through immunohistochemistry
and real-time RT-PCR, the expression and dis-
tribution of KISS1 and KISS1R in the rat and
human carotid body and superior cervical gan-
glia, also with particular reference to the dif-
ferent cellular populations.

Materials and Methods

Tissue sampling and preparation
Materials consisted of carotid bodies and

superior cervical ganglia obtained at autopsy
from 10 adult subjects [6 males, 4 females;
mean age 46 years, standard deviation
(SD)±3.6], clinically negative for chronic pul-
monary or cardiovascular diseases, and sam-
pled from 10 adult Sprague-Dawley rats.
Autopsies were performed between 24 and 30 h
after death. 

Sampling from rats was performed soon
after sacrifice. Right carotid bifurcations and
superior cervical ganglia from humans and
rats were fixed in Bouin solution and embed-
ded in paraffin wax. 
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Immunohistochemical analysis
Immunohistochemical examinations were

carried out on 3 mm thick sections. For anti-
KISS1R immunohistochemistry, unmasking
was performed with 10 mM sodium citrate
buffer, pH 6.0, at 90°C for 30 min. For anti-
KISS1 immunohistochemistry, antigen unma -
sking was not necessary. Sections were incu-
bated in 0.03% hydrogen peroxide for 10 min at
room temperature, to remove endogenous per-
oxidase activity, and then in blocking serum
(0.04% bovine serum albumin, A2153, Sigma-
Aldrich, Milan, Italy and 0.5% normal goat
serum X0907, Dako Corporation, Carpinteria,
CA, USA, in PBS) for 30 min at room tempera-
ture. Primary anti-KISS1 antibody (rabbit poly-
clonal antibody anti-metastin [1-25)/KISS-1
(68-92), Catalog No. H-048-62, Phoenix
Pharmaceuticals, Inc., Burlingame, CA, USA]
was diluted 1:1500 in blocking serum. Primary
anti-KISS1R antibody (rabbit polyclonal anti-
body anti-AXOR12 (375-398), Catalog No. H-
048-61, Phoenix Pharma ceuticals, Inc.,) was
diluted 1:100 in blocking serum. Both antibod-
ies were incubated overnight at 4°C.  Sections
were then washed three times for 5 min in
PBS. Sections were revealed with anti-rabbit
serum (DAKO® EnVision + TM Peroxidase,
Rabbit, Dako Corporation) for 30 min at room
temperature. Finally, sections were developed
in 3,3’-diaminobenzidine (DAB, Sigma-
Aldrich) and counterstained with hematoxylin.
Negative controls were performed by omission
of primary antibody and absorption tests.
Immunoreactions detected in human placenta
and rat brain were used as positive controls. 

The percentages of type I and II positive
cells were evaluated on fields of 180¥134 mm.
Five sections and 3 fields per section were
examined. In rat and human carotid bodies,
about 40 and 25-30 type I cells were counted for
each field, respectively. The mean percentages
of positive cells were calculated for each case
and for the entire series.

Statistics
Percentages obtained were compared with

Mann-Whitney test. A P value of 0.05 was con-
sidered significant. 

Results

Immunohistochemistry revealed diffuse
expression of kisspeptins and receptor in type
I cells of both human and rat carotid bodies.
Immunostained cells were distributed both in
the centre and in the periphery of the lobules.
Conversely, no kisspeptins or receptor
immunostainings were observed in type II cells
(Figure 1). Endothelial cells of some vessels

also showed moderate immunostaining for
both KISS1 and KISS1R.

In both human and rat superior cervical
ganglia positive anti-KISS1 and –KISS1R
immunostainings were selectively found in
ganglion cells. Satellite cells were negative or
only showed weak reaction (Figure 2). Glomic
and ganglion cell immunostainings were
eliminated when preabsorbed antiserum was
used or primary antibodies were omitted.

Discussion

To the best of our knowledge, this is the first
study demonstrating kisspeptin and kisspeptin
receptor expression in glomic type I cells
through immunohistochemistry. In the carotid
body, glomic type I cells release many neuro-
transmitters and peptide neuromodulators that
play a role in the regulation of chemoreceptor
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Figure 1. Anti-KISS1 immunohistochemistry in human (A,B,E,F) and rat (C,D,G,H)
carotid bodies (A-D) and superior cervical ganglia (E-H), showing selective positivity of
glomic type I cells (arrows) and ganglionic cells, immunostaining being largely eliminat-
ed in negative controls (B,D,F,H). Note also negativity of type II cells (asterisks) in the
carotid body and of satellite cells in the superior cervical ganglia. Scale bars: A-D, 
37.5 mm; E-H, 75 mm.
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discharge.13-15,19,20 Our findings about expres-
sion of both KISS1 and KISS1R in type I cells,
which represent the real chemoreceptive ele-
ment of the carotid body, support a modulato-
ry role of KISS1 on peripheral chemorecep-
tion. Kisspeptins have been found to directly
stimulate excitability of neurons, such as the
granule cells of the dentate gyrus,21 and to
modulate the release of other peptides, such
as in hypophysis22 and islets of
Langherans.23,24 Thus, also in the carotid body
kisspeptins could act on excitability of type I
cells and/or on their release of peptide neuro-
modulators. Further functional studies will be
necessary to clarify the effects of kisspeptins
on chemosensory process in glomic cells.
Kisspeptin receptor probably preferentially
bind peptides locally released in the carotid
body but circulating factors have also been
reported to act on carotid body type I cells, and
possible actions by blood-borne kisspeptins
may not be excluded. 

The possible role of kisspeptins in the car-
diovascular system has also recently been con-
sidered. The carotid body is the structure in
the body with the highest blood flow (about
1400 or 2000 mL/100 g/min in the cat, depend-
ing on the technique for determination of tis-
sue blood flow),25,26 and local changes in blood
flow have been considered to be involved in
carotid body chemoreceptor discharge.20,27,28

KISS1R and KISS1 have been found to be
expressed in the endothelial cells of the aorta,
coronary artery and umbilical vein and
kisspeptins have been demonstrated to show
potent vasoconstrictor action.10 In the present
work anti-KISS1 and – KISS1R immunoreac-
tions were also found in endothelial cells of
some vessels, as a consequence a possible role
of kisspeptins in the regulation of carotid body
blood flow and, indirectly, in chemoreceptor
discharge may be hypothesized.

Kisspeptins could also show trophic actions
on glomic cells. In the pre- and postnatal peri-
ods the carotid body undergoes structural
changes, mediated by trophic factors, includ-
ing carotid body volume increase, proliferation
of type I, type II, endothelial and Schwann cells
lining peripheral nerve fibers and increased
number of synapses between type I and II
cells.15,29 Moreover, environmental stimuli (for
instance, hypoxic, hyperoxic or inflammatory
noxae) may also cause a series of morphologi-
cal, cellular and biochemical changes.29-34 For
instance, chronic hypoxia has been shown to
increase O2 sensitivity in the carotid body
through changes in molecular chemorecep-
tors, ion channels and neurochemicals.35-37 The
above changes are mediated by a wide series
of trophic factors. It may also be hypothesized
that kisspeptins released by type I cells may
modulate the expression and effects of trophic
factors in the carotid body. For instance,

kisspeptins have been found to increase BDNF
expression in hippocampal slice cultures,38 and
this growth factor has been identified in type I
cells and nerve fibers of rat carotid body.15,39,40 

In the literature, KISS1 and KISS1R have been
found to be expressed in the dorsal root ganglia
and to be upregulated after intraarticular injec-
tion of the complete Freund’s adjuvant, suggest-

ing possible involvement in chronic inflammato-
ry pain.12 In the present work, expressions of
both KISS1 and KISS1R were found in ganglion
cells of the human and rat superior cervical gan-
glia. Thus, it may be hypothesized a role of
kisspeptins also in the modulation of the sympa-
thetic function, probably mainly through
autocrine or paracrine mechanisms.
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Figure 2. Anti-KISS1R immunohistochemistry in human (A,B,E,F) and rat (C,D,G,H)
carotid bodies (A-D) and superior cervical ganglia (E-H), showing selective positivity of
glomic type I cells and ganglionic cells, immunostaining being largely eliminated in neg-
ative controls (B,D,F,H).  Note also negativity of type II cells (asterisks) in the carotid
body and of satellite cells in the superior cervical ganglia. Scale bars: A, D, 23.8 mm; B,
C, E, F, 37.5 mm; G-H, 75 mm.
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