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Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive
analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently,
a relatively new type of compact, quasimonochromatic x-ray sources based on Compton
backscattering has been proposed for phase contrast imaging applications. In order to plan a phase
contrast imaging system setup, to evaluate the system performance and to choose the experimental
parameters that optimize the image quality, it is important to have reliable software for phase
contrast imaging simulation. Several software tools have been developed and tested against
experimental measurements at synchrotron facilities devoted to phase contrast imaging. However,
many approximations that are valid in such conditions �e.g., large source-object distance, small
transverse size of the object, plane wave approximation, monochromatic beam, and
Gaussian-shaped source focal spot� are not generally suitable for x-ray tubes and other compact
systems. In this work we describe a general method for the simulation of phase contrast imaging
using polychromatic sources based on a spherical wave description of the beam and on a
double-Gaussian model of the source focal spot, we discuss the validity of some possible
approximations, and we test the simulations against experimental measurements using a microfocus
x-ray tube on three types of polymers �nylon, poly-ethylene-terephthalate, and
poly-methyl-methacrylate� at varying source-object distance. It will be shown that, as long as all
experimental conditions are described accurately in the simulations, the described method yields
results that are in good agreement with experimental measurements. © 2008 American Institute of
Physics. �DOI: 10.1063/1.3006130�

I. INTRODUCTION

The phase contrast imaging technique is based on the
observation of interference patterns produced when an x-ray
beam partially or totally coherent crosses an object charac-
terized by variation in the real part of the refractive index
with position.1–9 In a typical setup for this type of experi-
ment, the radiation produced by a relatively small x-ray
source acquires partial coherence during propagation in free
space, crosses an object placed at relatively large distance
from the source, and produces an image on an observation
plane �screen�. The amplitude of the interference fringes pro-
duced on the screen is particularly large around the border of
structures inside the object having a refractive index different
from the surrounding material. In many cases phase contrast
can reveal structures that are hardly visible through absorp-
tion imaging.4–6 The Van–Cittert–Zernike theorem10 gives a
relationship between the spatial coherence function of an
electromagnetic wave and the intensity distribution of the
source. In particular, the radiation produced by a quasimono-
chromatic and totally incoherent source becomes partially
coherent at a large distance compared to the linear size of the
source. In order to obtain a transverse coherence length large
enough for phase contrast imaging, the distance from the
source to the object should be large compared to the linear

size of the source. This is the case in synchrotron facilities
devoted to phase contrast imaging.2–4,6 The possibility of
phase contrast imaging using a polychromatic beam has been
first demonstrated by Wilkins et al.,7 who used a microfocus
x-ray tube with a linear size of the source S�20 �m and a
source-object distance z�50 cm. Recently, Konica Minolta
Medical Imaging Inc. announced the distribution of a com-
mercial system for phase-contrast mammography using an
x-ray tube source.11 A new generation of quasimonochro-
matic high-flux x-ray sources, based on the physical process
of Compton backscattering, is under development.12 These
sources can be much more compact than synchrotrons and
they have important potential applications in the field of
phase contrast imaging. In order to optimize all the experi-
mental parameters of phase contrast imaging systems, it is
important to have reliable simulation software. For instance,
in medical imaging applications the experimental parameters
should be chosen so as to optimize the signal-to-noise ratio
for a given value of the radiation dose delivered to the pa-
tient. However, phase contrast imaging systems based on
compact sources, such as x-ray tubes or Compton back-
scattering sources, use source-object distances much smaller
than typical distances used in synchrotron facilities. Further-
more, application of this technique to the medical field in-
volves imaging of relatively large objects. Many approxima-
tions that are used for the simulation of phase contrasta�Electronic mail: golosio@uniss.it.
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imaging at synchrotron sources are not valid for this type of
geometry. In the following section we describe a general
method for phase contrast imaging experiment simulation
based on spherical waves, which is suitable also when the
approximations of large source-object distance and small
transverse size of the object are not valid. In order to test the
simulation method, several measurements have been done
using a microfocus x-ray tube and a complementary metal-
oxide semiconductor �CMOS� pixel detector in measuring
the phase contrast effect on three types of plastics and vary-
ing geometrical conditions.

II. METHOD

Figure 1 shows the conventions and notation that we will
use in this work:

• The coordinate origin is placed on the x-ray source.
• The object lies on an ideal plane perpendicular to the z

axis and placed at distance z1 from the source.
• The screen lies on a plane perpendicular to the z axis

and placed at distance z2 from the source and at dis-
tance z12=z2−z1 from the object plane.

• A point on the object plane is represented by three
coordinates in space, r1= �x1 ,y1 ,z1�, r1�R3, or by two
coordinates on the plane itself x1= �x1 ,y1�, x1�R2; the
distance of this point from the source is r1= �r1�.

• A point on the screen is represented by three coordi-
nates in space, r2= �x2 ,y2 ,z2�, r2�R3, or by two co-
ordinates on the screen itself x2= �x2 ,y2�, x2�R2; the
distance of this point from the source is r2= �r2�.

• The vector joining a point on the object plane to a
point on the screen is r12=r2−r1; the distance between
these points is r12= �r12�.

The simplest source that we can consider is a monochro-
matic dimensionless point source emitting spherical waves.
The wave function of the incident radiation on the object
plane is

�0�x1� = A
eikr1

r1
, �1�

where A is a constant, k=2� /� is the wave number, and � is
the wavelength of the radiation in the vacuum. A statistical
source can be modeled as a superposition of independent

point sources. Since there is no correlation between the
waves emitted by such sources, the intensities that they pro-
duce on the screen can be calculated independently and
summed up. We assume that the effect of the object on the
incident wave can be completely described by its complex
refractive index, which is a function of the position. This
means that we consider the object homogeneous on the
atomic lengthscale, thus we neglect effects due to the atomic
and crystalline structures. Specifically, in case of objects
made of amorphous materials, we neglect the Compton and
Rayleigh scatterings. Their contribution to the intensity on
the screen can be calculated independently, e.g., by Monte
Carlo simulations. In case of monochromatic radiation of
energy E, the complex refractive index n at the position r is

n�E,r� = 1 − ��E,r� + i��E,r� , �2�

where � is the refractive index decrement and � is the ab-
sorption index, which is related to the linear absorption co-
efficient � as

��E,r� = 2k��E,r� . �3�

In a compound material, � and � can be expressed in terms
of the weight fractions wj of the atomic elements,

� =
reNA�2�

2�
�

j

wj�Zj + f j��
Aj

, �4�

� = NA��
j

wj� j

Aj
, �5�

where re=2.82	10−15 m is the classical electron radius, NA

is the Avogadro number, �=hc /E is the wavelength of the
radiation in vacuum, � is the mass density of the material, Aj

and Zj are the atomic weight and the atomic number of the
jth element, f j� is the real part of the dispersion correction,13

and � j is the total �photoelectric+Compton+Rayleigh� cross
section for the interaction of a x-ray photon of energy E with
the element Zi. Values of � and � used in this work are
obtained from the library described in Ref. 14, which is
based on calculations made by Kissel et al.15 and by Elam et
al.16 for f� and �, respectively. If the object is thin along the
radiation propagation direction, we can neglect deviation of
the x-ray paths inside the object from straight lines �thin-
sample approximation�. Using this approximation, the effect
of the object on the incident wave is entirely described by a
transmission function T�x1�,

T�x1� = �
−


+


exp�ikn�E,r1 + r̂1s��ds , �6�

where the integration is made along the direction of propa-
gation r̂1=r1 / �r1� and the integration limits �
 are large
enough to include the whole thickness of the object. The
transmitted wave function on the object plane immediately
after the object is

�1�x1� = �0�x1�T�x1� . �7�

According to the Fresnel–Kirchhoff equation, the wave am-
plitude on the screen �see Fig. 1� is given by

FIG. 1. Schematic diagram showing the notation used in this work. The
transmitted wave function on the object plane immediately after the object is
�1�x1�=�0�x1�T�x1�. The wave function on the screen �2�x2� can be calcu-
lated through the Fresnel–Kirchhoff equation.
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�2�x2� = �
R2

�1�x1�
eikr12

i�r12
cos �dx1, �8�

where �1�x1� is the wave amplitude on the object plane and
� is the angle between r12 and the surface normal vector ẑ.
Calculations made for experiments with synchrotron radia-
tion often use the plane-wave approximation, i.e., �0 is as-
sumed to be constant over the object plane. Using the plane-
wave approximation and the paraxial or small-angle
approximation �cos ��1�, �2 can be expressed as9

�2�x2� = �0T � GPW �9�

where “ �” denotes the convolution and GPW is the propaga-
tor kernel,

GPW�x� =
eikz12

i�z12
eik�x2/2z12�. �10�

The plane wave approximations is valid when the source-
object distance z1 is much greater than the object-screen dis-
tance z12 and than the linear size D of the object, z1z12 and
z1D. These conditions are usually fulfilled for experiments
made at synchrotron facilities, however they are not valid in
general for experiments made using other kind of x-ray
sources, e.g., x-ray tubes. In case of a monochromatic point
source emitting spherical waves �Eq. �1��, under the thin-
sample approximation, the Fresnel–Kirchhoff Eq. �8� yields

�2�x2� = A�
R2

T�x1�
eikr1

r1

eikr12

i�r12
cos �dx1. �11�

Let X1= �X1 ,Y1� be the coordinates of the point on the object
plane intersected by the straight line connecting the source to
the observation point,

X1 =
z1

z2
x2, �12�

where R1 is the distance from the source to the intersection
point, R2 is the distance from the source to the observation
point, and R12=R2−R1 is the distance from the intersection
to the observation point. In a small neighborhood of the in-
tersection point, the factor 1 /r1r12 changes much more
slowly than the phase factor and can be treated as constant
and equal to 1 /R1R12,

�2�x2� = A
cos �

i�R1R12
�

R2
T�x1�eik�r1+r12�dx1. �13�

A Taylor expansion of r1+r12 to the second order in s=x1

−X1 yields

r1 + r12 = R2 +
1

2
	 1

R1
+

1

R12

�s2 − �� · s�2� , �14�

where �=x2 /R2 and it is related to the angle � as �2

=sin2 �. Substituting it in Eq. �13� yields

�2�x2� = A
eikR2 cos �

i�R1R12
�

R2
T�x1�

	eik/2�1/R1+1/R12���x1 − X1�2−��x1 − X1� · ��2�dx1.

�15�

Equation �15� is not a convolution of the transmission func-
tion T with a propagation kernel, essentially because � and �
depend on the position on the screen x2. However, for small
angles ���1�, Eq. �15� becomes

�2�x2� = A
eikR2

i�z1z12
�

R2
T�x1�eik/2�1/z1+1/z12��x1 − X1�2

dx1.

�16�

Besides a phase factor, Eq. �16�, is the convolution of T with
the propagation kernel

G�x� =
A

i�z1z12
eik/2�1/z1+1/z12�x2

�17�

evaluated at the point X1=z1 /z2�x2�. The factor z1 /z2 ac-
counts for magnification. Besides this factor, Eq. �16� differs
from Eq. �9� obtained with the plane wave approximation for
the factor �1 /z1+1 /z12� in the propagation kernel exponent,
which becomes equal to 1 /z12 only in the limit z1z12.

Figure 2 compares simulations made using the plane
wave and the spherical wave approximations. The simulated
system consists of a monochromatic point source �E
=20 keV�, an ideal detector placed at a 50 cm distance from
the source, and a 200 �m diameter nylon wire placed at a 5
cm distance from the source, with the axis perpendicular to
the radiation direction. Even taking into account magnifica-
tion, the plane-wave approximation does not yield correct
results.

In the case of a polychromatic point source, the signal on
the detector can be computed as
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FIG. 2. Simulations made using the plane wave and the spherical wave
approximations. The simulated system consists of a monochromatic point
source �E=20 keV�, an ideal detector placed at a 50 cm distance from the
source, and a 200 �m diameter nylon wire placed at a 5 cm distance from
the source, with the axis perpendicular to the incident wave direction. The
figure shows the interference fringes corresponding to the right border of the
wire. The solid line represents the intensity obtained through the magnified
plane wave approximation, while the dashed line represents the intensity
obtained through the spherical approximation.
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Ipoint�x2� =� 
�E��2�E,x2��2
��E,x2�dE , �18�

where 
�E� is the detector energy response. An extended in-
coherent source with a source distribution Isource�xs� can be
modeled as a superposition of independent point sources.8

The intensity contribution from different points is identical
except for a weighting factor Isource�xs� and a translation
given by xsz12 /z1. The average intensity is thus equal to the
convolution between the intensity of a point source and the
geometrical projection of the source distribution Isource

through the object on the detector, i.e.,

I�x2� = Isource�x2z1/z12� � Ipoint�x2� , �19�

where the � denotes the convolution.

III. RESULTS

The experimental setup for the measurements consisted
of a microfocus x-ray tube and a pixel detector based on
CMOS technology. The x-ray tube was a tungsten anode
microfocus model 60KVMFX-SPL produced by
Hamamatsu. The spectrum has been measured for different
voltage �kVp� values using the FLUXEN spectrometric
system.17 In the phase contrast imaging measurements, the
voltage has been set to a fixed value of 30 kVp. The source
spot has been measured using the penumbra method.18,19 A
40 �m thick tungsten sheet was placed between the source
and the detector with the edge in the center of the field. The
edge spread function �ESF�, shown in Fig. 3�a�, has been
extracted from the image. The derivative of the ESF is the
line spread function �LSF�, shown in Fig. 3�b�. The LSF is
approximately equal to the source focal spot magnified by a
factor of z12 /z1. Hames et al.18 and Uchida et al.19 made a fit
on the LSF using a Gaussian function. However, it can be
observed that the LSF decreases more slowly to zero at the
borders compared to a Gaussian function. A more realistic
representation can be obtained by fitting the LSF using the
superposition of two Gaussian functions. Since the noise in

the LSF is relatively much larger than that in the ESF, due to
derivative operation, the fit has been done directly on the
ESF using a function of the form

F�x� = C1 erf	 x − x0

2�1

 + C2 erf	 x − x0

2�2

 + C3 �20�

where C1, C2, C3, x0, �1, and �2 are fitting parameters. Fig-
ure 3�a� compares the fit that uses a single error function
�erf� to the fit that uses a superposition of two erfs. In Fig.
3�b� the derivatives of the fitting functions are compared to
the LSF.

The detector was a silicon photodiode array model Rad-
Eye™ 2 produced by Rad-icon Imaging Corp, containing
1024	1024 pixels at a pitch of 48 �m. The point spread
function �PSF� has been measured using the edge method.
The estimated value of the full width at half maximum
�FWHM� was 120�10 �m. In the simulations, the PSF was
modeled by a Gaussian function having the same width.
Phase contrast imaging measurements have been done on
three types of wires: a 500 �m diameter nylon-6 wire, a
500 �m diameter poly-ethylene-terephthalate wire, and a 1
mm diameter poly-methyl-methacrylate �pmma� wire. The
compositions and densities used in the simulations for those
materials are the ones reported in the National Institute of
Standards and Technology database.20 The source-detector
distance was fixed at 70 cm. The source-object distances
were varied between 2.5 and 27.5 cm. Dark signal and flat-
field images have been acquired immediately before each
measurement. The raw images have been equalized by sub-
tracting the dark signal and dividing by the flat-field signal.
The scattering background contribution, due to Compton and
Rayleigh scattering from the wire and the detector supports,
from the wire itself and from the air, was also taken into
account. It has been modeled as a uniform background su-
perimposed on the primary signal.21 Because of the difficulty
of computing this contribution, it was evaluated from experi-
mental measurements. The contribution of the primary radia-
tion to the flat field signal on the detector is
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FIG. 3. Source focal spot ESF and LSF measured using the penumbra method. In �a� the solid line represents the measured profile of the ESF, the dashed line
is a fit using a single erf function, the dotted line is a fit using the superposition of two erf functions. In �b� the solid line represents the LSF obtained as the
derivative of the measured profile of the ESF, the dotted line is the derivative of the fit that uses two erf functions, and the dashed line is the derivative of the
fit that uses a single erf function.
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S0
prim = F0� ��E�
�E�dE , �21�

where F0 is the flat field fluence on the detector, ��E� is the
normalized spectrum, and 
�E� is the detector energy re-
sponse. According to the Lambert–Beers law, the primary
signal corresponding to the middle of the wire is

Sprim = F0� ��E�
�E�e−��E�ddE = �S0
prim, �22�

where ��E� is the absorption coefficient of the wire material,
d is the wire diameter, and � is the ratio between the primary
signal and the primary flat-field signal. For a fixed setup and
energy spectrum, the scattering background signal is propor-
tional to the primary signal21

Sscatt = �S0
prim, �23�

where beta is the scatter-to-primary ratio. The total signal
and the flat-field signal are, respectively,

S = Sprim + Sscatt = �� + ��S0
prim, �24�

S0 = S0
prim + Sscatt = �1 + ��S0

prim, �25�

and the contrast is

C =
S0 − S

S0
=

1 − �

1 + �
. �26�

Solving this equation for �, we obtain

� =
1 − �

C
− 1. �27�

Using this equation, � has been evaluated for the three types
of wires at a fixed source-detector distance z2=70 cm and
varying source-object distance, by computing the parameter
� through Eq. �22� and evaluating the contrast C from ex-
perimental measurements. The estimated values of the
scatter-to-primary ratio, �=0.18�0.03, did not depend sig-
nificantly on the type of wire and on the source object dis-
tance, basically because the wire itself gives a very little
contribution to the total scattering background compared to
the air and to other parts of the experimental system.

Figure 4 shows the experimental and the simulated sig-
nal profile of the pmma wire placed at a 5 cm distance from
the source, with a source-detector distance of 50 cm. The
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FIG. 4. Simulated and experimental signal profile of the 1 mm diameter pmma wire placed at a 5 cm distance from the source, with a source-detector distance
of 50 cm. �a� Detail of the wire right border simulated signal before convolution with the PSFs due to the detector and to the source focal spot extension. �b�
Comparison between the experimental signal �solid line� and the simulated signal after convolution �dashed line�. The experimental signal has been corrected
for the dark signal, normalized to the flat field, and averaged over 100 rows of the image acquired by the detector. �c� Detail of the wire right border
experimental signal and simulated signal after convolution.
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edge enhancement effect due to phase contrast is clearly vis-
ible at the borders of the wire. Figure 4�a� shows a detail of
the wire right border before convolution with the PSFs due
to the detector and to the source focal spot extension. In Figs.
4�b� and 4�c�, the solid line represents the measured profile,
corrected for the dark signal and normalized to the flat field,
averaged over 100 rows of the image, while the dashed line
represents the simulated profile after convolution.

For each profile we estimated the peak intensity, the
peak FWHM, and the peak-to-peak distance. Figure 5 com-
pares the peak intensities evaluated from experimental and
simulated profiles for the three types of wires at varying
source-object distances. The solid lines represent the values
calculated from simulated images using a double-Gaussian
model for the source focal spot. The band between the two
dotted lines represents the uncertainty in those values. It was
assumed that the main uncertainties are due to the errors in
the source focal spot size and in the FWHM of the detector
PSF that have been used in the simulations, while all other
error sources are considered as negligible in comparison. The
stars represent the values calculated from simulated images
using a single Gaussian model for the source focal spot. The
error bars represent the values determined from experimental
images. It can be seen that within the error ranges practically

all experimental values are compatible with values calculated
from simulations using a double-Gaussian model, while re-
sults obtained using the single-Gaussian model are signifi-
cantly different, particularly for small source-object dis-
tances. Figure 6 compares the peak FWHM evaluated from
experimental and simulated profiles for the three types of
wires at varying source-object distances. The measurements
of the left and right side positions of the peak cannot be more
precise than the detector pixel size �48 �m�, therefore the
error on the measured values of the FWHM ��96 �m� is
relatively large. Figure 7 shows the peak-to-peak distances
evaluated from experimental and simulated profiles for the
pmma wire at varying source-object distances.

IV. CONCLUSION

The simulations made using the method based on spheri-
cal waves are in good agreement with the experimental mea-
surements made using the microfocus x-ray tube in all geo-
metrical conditions and with all three types of samples that
we used. The description of the source focal spot based on a
double-Gaussian model in the simulations yields results that
are compatible with experimental measurements even when
the source-object distance is as small as a few centimeters,
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FIG. 5. Peak intensities evaluated from experimental and simulated profiles for the three types of wires at varying source-object distances. The solid lines with
diamonds represent the values calculated from simulated images using a double-Gaussian model for the source focal spot. The band between the two dotted
lines represents the uncertainty in those values. The stars �“ �”� represent the values calculated from simulated images using a single-Gaussian model for the
source focal spot. The error bars represent the values determined from experimental images.
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while the single Gaussian model yields good results only
when the source-object distance is relatively large. We can
conclude that the method that we presented is suitable for the

simulation of phase contrast imaging experiments in a wide
range of experimental conditions, including those of compact
x-ray sources.
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