STUDI SASSARESI

Sezione III

1977

Volume XXV

ANNALI DELLA FACOLTÀ DI AGRARIA DELL'UNIVERSITÀ DI SASSARI

DIRETTORE: O. SERVAZZI

COMITATO DI REDAZIONE; M. DATTILO - F. FATICHENTI - L. IDDA · F. MARRAS A. MILELLA - P. PICCAROLO - A. PIETRACAPRINA - R. PROTA · G. RIVOIRA R. SATTA - C. TESTINI - G. TORRE - A. VODRET

ORGANO UFFICIALE Della società sassarese di scienze mediche e naturali

GALLIZZI - SASSARI - 1978

St. Sass. III Agr.

Stereochimica di alcuni acquo-complessi adsorbiti su bentonite

C. GESSA*, L. ERRE** e P. PIU**

INTRODUZIONE

La montmorillonite è un fillosicato a tre strati caratterizzato da una carica negativa che si origina principalmente nello strato ottaedrico in seguito a fenomeni di sostituzione isomorfa.

Tale carica è neutralizzata da cationi scambiabili presenti nello spazio « interlayer » la cui altezza non è fissa ma varia in relazione al tipo di coordinazione dell'acquo-complesso adsorbito.

Poichè il valore d_{001} del silicato dipende dal numero di strati molecolari di acqua « interlayer », è evidente che la coordinazione dell'acquo-complesso risente dello stato di idratazione del minerale.

In questa nota vengono riportati i risultati relativi allo studio spettroscopico della bentonite di Uri saturata con ioni diversi al fine di chiarire meglio il tipo di coordinazione degli acquo-complessi adsorbiti e le modificazioni che subisce la geometria dello ione Cu^{2+} al variare del valore d_{001} del minerale.

MATERIALI E METODI

Le M-bentoniti (M=catione adsorbito) sono state ottenute mediante successivi lavaggi con soluzioni acquose di M-Cl 1N. Per eliminare il sale in eccesso le bentoniti sono state ripetutamente lavate con acqua distillata e successivamente messe a dializzare.

^{*} Istituto di Chimica Agraria

^{**} Istituto di Chimica Generale

Le determinazioni spettroscopiche sono state effettuate sui campioni di argilla ottenuti lasciando seccare all'aria a temperatura ambiente le sospensioni argillose disposte su strato sottile.

Gli spettri elettronici di riflettanza diffusa sono stati eseguiti con apparecchio Beckman DK-2A.

Gli spettri E.P.R. sono stati eseguiti con apparecchio Varian E9 con banda X.

Gli spettri di diffrazione di raggi X sono stati eseguiti con un'apparecchiatura Philips PW 1049/50 usando filtro Na a radiazione CuKa.

RISULTATI E DISCUSSIONE

Spettri di diffrazione ai raggi X

Nella tab. 1 sono riportati i valori d_{001} della bentonite saturata con i diversi ioni.

Tab. 1 - Valore d_{001} delle M-bentoniti (M = catione adsorbito).

	H+ - bent.	Na+ - bent.	Mg ²⁺ - bent.	Cu ²⁺ - bent.	Mn²+ - bent.	Ni ²⁺ - bent.	Fe ⁿ⁺ - bent.
d _{ao} ,	14,7	12,3	14,2	12,6	14,6	15,2	13,9

L'altezza dello spazio interlayer può essere facilmente calcolata tenendo presente che il parametro c della cella elementare argillosa è di 9,60 Å (3), (4).

E' noto che nelle bentoniti l'altezza dello spazio interlayer varia in funzione del numero di strati di acqua contenuti. La presenza di un monostrato di acqua è compatibile con un'altezza interlayer di 2,8 Å circa cioè con un valore $d_{001} \sim 12,4$ Å. In questa situazione, che ritroviamo nella Na-bentonite e nella Cu-bent. lo ione adsorbito dovrebbe avere coordinazione ottaedrica con distorsione tetragonale allungata lungo l'asse z; esso dovrebbe coordinare quattro molecole d'acqua disposte nel piano equatoriale ad una lunghezza di legame di circa 2,0 Å (2), mentre la quinta e la sesta posizione di coordinazione dovrebbero essere occupate da due atomi di ossigeno facenti parte della coordinazione tetraedica del silicio. Poichè il raggio dell'ossigeno di un silicato è 1,4 Å, il quinto ed il sesto legame di coordinazione dovrebbero misurare 2,8 Å (fig. 1).

Tab. 2 - Coordinazione degli acquo-ioni adsorbiti sulla bentonite.

	Geometria dell'acquo complesso	n. di molecole di acqua coordinate	n. di atomi di ossigeno del silicio coordinato	distanza di coordinazione lungo l'asse z Å
Na - bent.	ottaedrica	4	2	2,7
Cu - bent.	ottaedrica	4	2	2,8
Fe · bent.	ottaedrica inclinata di 45º	6		3,5
Mg - bent.	ottaedrica	6	_	3.7
Na - bent.	ottaedrica	6	_	3.7
Mn - bent.	ottaedrica	6		3,8

La presenza di due strati di acqua è proponibile quando l'altezza interlayer è di 4,7 Å circa (1), (2) ed il valore $d_{001} \sim 14,3$ Å. In questo caso, che dovrebbe essere quello delle Mg²⁺, Fe³⁺, Mn²⁺ bentoniti, la coordinazione attorno allo ione adsorbito potrebbe essere tetraedica o ottaedrica allungata con direzione assiale inclinata di 45° rispetto alla normale ai piani del silicato (1), (2) (fig. 2). Infine tre strati di acqua possono essere contenuti nello spazio interlayer se esso ha un'altezza di 5,4 Å circa.

Quest'ultimo è il caso della Ni-bentonite. La coordinazione attorno allo ione Ni^{2+} adsorbito dovrebbe essere di tipo ottaedrico allungato (distorsione tetragonale) con sei molecole di acqua nelle posizioni di coordinazione e con l'asse z normale ai piani del silicato (fig. 3).

 $\bullet = H_g C$

Fig. 3 - Rappresentazione schematica della geometria dell'acquo-complesso adsorbito sull'argilla caratterizzata da un valore d₀₀₁~15,0 Å.

Spettri di riflettanza diffusa

La geometria degli acquo-ioni adsorbiti, prevista sulla base dei valori d_{001} , è stata confermata dagli spettri di riflettanza diffusa eseguiti sulle Cu, Mn, Ni-bentoniti (fig. 4).

Infatti la Cu-bent., come tutti i complessi esacoordinati di rame (11) che presentano distorsione di tipo tetragonale allungato, mostra una banda di media intensità accompagnata da una spalla appena rilevabile a frequenza inferiore (5). La banda principale cade a 750 nm e deve essere assegnata alla transizione ${}^{3}B_{18} \rightarrow {}^{3}B_{26}$.

Lo spettro della Ni-bent, rivela due bande con frequenza a 1140 e 720 nm che si ritrovano nello spettro del complesso $[Ni(H_2O)_e]^{2+}$ (6), (7) dimostrando che lo ione Ni²⁺ adsorbito assume una coordinazione ottaedrica impegnando sei molecole di acqua.

Anche lo ione Mn^{2+} dovrebbe essere adsorbito sotto forma di complesso $[Mn(H_2O)_6]^{2+}$ poichè la banda che si evidenzia a 500 nm dello spettro della Mn-bent. è quella assegnata alla transizione ${}^{6}A_{1r} \rightarrow {}^{4}T_{1r}$ dello ione $[Mn(H_2O)_6]^{2+}$.

Nella tab. 2 sono riassunti i tipi di coordinazione dei diversi ioni adsorbiti.

Spettri ESR

Una chiara prova dello stretto rapporto fra la geometria dell'acquo-ione e la distanza basale della bentonite è data dagli spettri ESR eseguiti sulla Cu-bent. a diverso grado di idratazione. Le prove sono state condotte su campioni ottenuti evaporando a temperatura ambiente sospensioni di Cu-bent. su film di polietilene.

Questi campioni, sostenuti da una laminetta di teflon, sono stati posti in un tubicino di quarzo ed inseriti nella cavità dello spettrometro. Operando in questo modo è stato possibile registrare spettri ESR conoscendo l'angolo tra la direzione del campo magnetico esterno e le superfici del silicato.

Era ovvio prevedere che quando l'ottaedro era disposto a 45° rispetto alle superfici della cella elementare i segnali g₁₁ e g₁ non potevano essere individuati separatamente con H parallelo o perpendicolare alla superficie dell'argilla.

Quando invece l'ottaedro era disposto col suo asse z perpendicolare alle superfici della cella elementare era possibile registrare i segnali di g_{11} e di g_{\perp} a seconda che H risultasse rispettivamente perpendicolare o parallelo alle superfici argillose (cioè parallelo o perpendicolare all'asse z del cristallo argilloso).

In fig. 5 è riportato lo spettro ESR di un campione di Cu-bent. Dal confronto degli spettri (a) e (b) risulta che il segnale g_{\perp} a campo inferiore è indipendente dalla orientazione del campione rispetto al campo magnetico, mentre l'intensità del secondo segnale di g_{\perp} dipende dalla orientazione del campione.

Fig. 5 - Spettri ESR Cu-bentonite; (a) H_{\perp} allo strato; (b) H_{II} allo strato.

Per l'interpretazione di questo risultato è necessario ricordare che quando lo ione Cu^{2+} coordina ottaedricamente 6 molecole di acqua, causa la rapida rotazione di $[Cu(H_2O)_s]^{2+}$, si ottiene un solo valore di g medio indipendentemente dalla direzione di H rispetto all'asse z.

Il Cu²⁺ interlayer presenterà lo stesso comportamento quando la distanza d₂₀₁ supera i 15 Å, cioè quando lo ione è adsorbito come esa-acquo complesso disposto col suo asse z perpendicolare alle superfici argillose.

E' evidente pertanto che nel campione di argilla sono adsorbiti due diversi acquo-complessi di Cu²⁺: uno, responsabile del segnale di g₁ a campo più basso indipendente dalla direzione di H, è di tipo $[Cu(H_2O)_a]^{2+}$; il secondo, responsabile del segnale a campo più elevato, è di tipo $[Cu(H_2O)_4O_2]^{2+}$ (dove O è l'atomo di ossigeno del silicato). In queste condizioni di idratazione la Cu-bent. è caratterizzata da due valori dello spazio basale rispettivamente di 15,0 Å e di 12,6 Å.

Nella fig. 6 sono riportati gli spettri ESR dello stesso campione di Cu-bent. lasciato seccare all'aria a temperatura ambiente per un maggior numero di giorni. Gli spettri (a) e (b), fatti rispettivamente con H perpendicolare e parallelo alle superfici argillose, dimostrano la dipendenza di g dalla orientazione del campione ed escludono quindi che lo ione $[Cu(H_2O)_0]^{2+}$ sia presente nell'interlayer.

Fig. 6 - Spettri ESR Cu-Bentonite; (a) H_{\perp} allo strato; (b) $H_{\rm H}$ allo strato.

I valori di g₁₁ e di g₊, che risultano rispettivamente uguali a 2,35 e 2,10 sono in accordo con quanto si prevede per lo spettro ESR di un complesso di Cu²⁺ che presenti distorsione tetragonale « allungata » lungo l'asse di simmetria z (5).

E' possibile pertanto affermare che a questo stadio di disidratazione il rame adsorbito sull'argilla coordina un monostrato di acqua, disposto su un piano equatoriale perpendicolare all'asse z del silicato, in accordo col valore d_{aa1} di 12,6 Å.

RIASSUNTO

E' stata studiata spettroscopicamente la stereochimica di alcuni acquocomplessi adsorbiti su bentonite.

La coordinazione degli ioni « interlayer », prevista sulla base di valori dello spazio basale determinato mediante analisi ai raggi X, è stata confermata dagli spettri di riflettanza diffusa e di ESR. Lo spazio « interlayer » risulta occupato da un monostrato di acqua quando il valore $d_{001} \sim 12.4$ Å; lo ione adsorbito coordina quattro molecole di acqua nel piano xy e due atomi di ossigeno del silicato lungo l'asse z. Due strati di acqua sono compatibili con un valore $d_{001} \sim 14.3$ Å; lo ione coordina sei molecole di acqua formando un complesso inclinato di 45° rispetto alle superfici argillose.

Infine, tre strati di acqua possono essere contenuti quando il valore $d_{001} \sim r_5 A$; anche in questo caso lo ione coordina sei molecole di acqua ma il complesso è disposto perpendicolarmente alle superfici argillose.

ABSTRACT

The stereochemistry of some hydrated ions on the interlamellar surfaces of bentonite has been investigated by spectroscopic methods.

The coordination of adsorbed ions estimated on the basis of d_{001} values has been confirmed by diffuse reflectance and ESR spectra.

When the d_{001} value is ~ 12.4 Å a monolayer of water occupies the « interlayer »; the ion is coordinated to four water molecules in the xy plane and to two silicate oxygens along the z axis.

When the d_{001} value is 14.3 Å two layers of water occupy the « interlayer »; the ion is octahedrally coordinated to six water molecules and the symmetry axis of the acqueous-complex is inclined with respect to the silicate layers at an angle of 45° .

When the d_{001} value is ~ 15.0 Å, three layers of water are present in the interlayer; the ion is octahedrally coordinated to six water molecules but the symmetry axis is perpendicular to the silicate layers.

BIBLIOGRAFIA

 MCBRIDE M. B., PINNAVAIA T. J., MORTLAND M. M. (1975) — Electron spin resonance studies of cation orientation in restricted water layers on Phyllosilicate (Smectite) surfaces. - J. Phys. Chem. 79, 2430.

- 2) CLEMENTZ D. M., PINNAVAIA T J., MORTLAND M. M. (1973) Stereochemistry of hydrated copper (II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study. J. Phys. Chem. 77, 196.
- 3) DEER W. A., HOWIE R. A., ZUSSMAN J. (1976) Rock forming Minerals, vol. III, Longman-London.
- 4) GRIM R. E. (1968) Clay Mineralogy. McGraw-Hill. New York.
- 5) HATHAWAY B. J., BILLING D. E. (1970) Electronic properties and stereochemistry of mononuclear complexes of the copper (11) ion. - Chem. Rev. 5, 143.
- 6) HUSH N. S., HOBBS R. J. M. (1968) Absorption Spectra of Crystals containing Transition Metal lions. - Progress in Inorganic Chemistry 10.
- 7) JORGENSEN C. K. (1962) Absorption Spectra and Chemical Bonding in Complexes. - Pergamon Press, London.