Asymptotic Idempotency

Roberto Ghiselli Ricci

Abstract

This paper deals with aggregation operators. A new class of aggregation operators, called asymptotically idempotent, is introduced. A generalization of the basic notion of aggregation operator is provided, with an in-depth discussion of the notion of idempotency. Some general contruction methods of commutative, asymptotically idempotent aggregation operators admitting a neutral element are illustrated.

I. Introduction

The mathematical process of fusion of several input real values into a single output real value is crucial in many fields. According to the various applications, different properties are requested to the aggregation. In particular, dealing with problems of ranking, the basic characteristics requested of the aggregation are anonymity, which occurs when the knowledge of the order of the input values is irrelevant, and unanimity, which means that the global score must coincide with the partial scores, when they all are equal to a certain value. Anonymity and unanimity are mathematically translated into commutativity and idempotency of the aggregation operator. However, especially when the number of the inputs is huge, a more refined fusion is able to take into account all the data without being influenced by a generally great number of inputs not worthy of consideration. This is equivalent to saying that the aggregation operator admits a neutral element, i.e. an element which has the same effect as its omitting. An immediate consequence is that idempotency generally falls: the key point is to introduce a weaker form of idempotency which, combined with the presence of the neutral element, makes the aggregator sensitive to the number of input values. More precisely, the output of a large number of positive scores is higher than one of a few positive scores, so undoubtedly improving the quality of ranking. We introduce a weakened form of idempotency and discuss its properties.
The paper is organized as follows: in the second section, we present all the basic definitions and concepts on aggregation operators, with a critical discussion about the crucial notion of idempotency and the introduction of the asymptotical idempotency. In the third section, we focus on the class of commutative aggregation operators which admit a neutral element, distinguishing the two relevant cases of inner element or at the border with respect to the domain. In the fourth section, we provide two general procedures for building commutative, asymptotically idempotent aggregation operators with a neutral element. Finally, in the last

[^0]section, a representation theorem is shown, connected with classical results of Kolmogorov and Aczel.

II. BASIC CONCEPTS

In this work, we are interested in aggregation of input values, as well as outputs, belonging to some closed interval $[a, b] \subset \mathbb{R}$.

Definition 1: A mapping

$$
g:[a, b]^{n} \rightarrow[a, b], n \in \mathbb{N}
$$

is called an n-ary aggregation function (AF) acting on $[a, b]$ if it is non-decreasing monotone in its components, that is

$$
\begin{equation*}
g\left(x_{1}, \ldots, x_{n}\right) \leq g\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \tag{1}
\end{equation*}
$$

whenever $a \leq x_{i} \leq x_{i}^{\prime} \leq b$ for all $i \in\{1, \ldots, n\}$. Moreover, g is strict if (1) holds with the strict inequality provided that $\left(x_{1}, \ldots, x_{n}\right) \neq\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$. Finally, g is commutative if

$$
\begin{equation*}
g\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \tag{2}
\end{equation*}
$$

for any permutation $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ of an arbitrary tuple $\left(x_{1}, \ldots, x_{n}\right) \in[a, b]^{n}$.

Remark 1: Regarding the property of continuity, according to (1), any AF is continuous if and only if it is continuous in its components.

Definition 2: Let g be an n-ary AF acting on $[a, b]$. Fixed any $x \in[a, b]$, an element $(x, \ldots, x) \in[a, b]^{n}$ is called an idempotent element for g if

$$
\begin{equation*}
g(x, \ldots, x)=x \tag{3}
\end{equation*}
$$

The n-ary AF g is idempotent, if g fulfills (3) for any $x \in$ $[a, b]$.

Definition 3: A sequence $G=\left\{G_{n}\right\}_{n}$ of n-ary AFs acting on $[a, b]$ is called an aggregation operator on $[a, b]$ (briefly, AO on $[a, b]$).

Definition 4: An AO $G=\left\{G_{n}\right\}_{n}$ on $[a, b]$ is called asymptotically idempotent (AI) if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G_{n}(x, \ldots, x)=x \quad \text { for all } x \in[a, b] . \tag{4}
\end{equation*}
$$

Remark 2: It is our opinion that a sequence of n-ary AFs satisfying (4) is qualified for deserving the "title" of AO. In fact, from the theoretical point of view, the idempotent, "standard" AOs are a particular case of the AI ones; from the practical point of view, condition (4) assures the sensitivity of the output to the number of inputs, a refined property which is recommended in many applications, as told in the introduction. However, on the one hand, the AI AOs could not form a subclass of AOs , as to be expected, if we maintained the classical, commonly used in literature,
definition of AO on a real closed interval $[a, b]$, which, in addition, requires the following two conditions:

$$
\begin{equation*}
G_{n}(a, \ldots, a)=a, G_{n}(b, \ldots, b)=b \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{1}(x)=x \quad \text { for all } x \in[a, b] . \tag{6}
\end{equation*}
$$

Indeed, there exist AI AOs which do not meet (5) and (6), as shown in the following example, where $[a, b]=[0,1]$ and the n-ary AF is

$$
\begin{equation*}
G_{n}\left(x_{1}, \ldots, x_{n}\right)=\max _{i=1, \ldots, n}\left\{x_{i}\right\} \cdot \frac{\sqrt{\sum_{i=1}^{n} x_{i}^{2}}}{1+\sqrt{\sum_{i=1}^{n} x_{i}^{2}}} \tag{7}
\end{equation*}
$$

On the other hand, there exist AOs, under the classical definition, which do not satify (4), as shown in the following example, where $[a, b]=[0,1]$ and the n-ary AF is

$$
G_{n}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}x_{1}, & \text { if } n=1 ; \\
0, & \text { if } x_{1}=\cdots=x_{n}=0 \\
1, & \text { for all } n ; \\
\text { if } x_{1}=\cdots=x_{n}=1 \\
0, & \text { for all } n ; \\
\text { otherwise } \\
& \text { and } n \text { is even; } \\
1, & \begin{array}{l}
\text { otherwise } \\
\\
\text { and } n>2 \text { is odd }
\end{array}\end{cases}
$$

A way which seems to be reasonable for bypassing this "cul-de-sac" is to weaken the definition of AO , omitting conditions (5) and (6).

Definition 5: Let $G=\left\{G_{n}\right\}_{n}$ be an AO on $[a, b]$. We say that G is commutative, idempotent, strict or continuous if, for each $n \in \mathbb{N}\left(n \geq 2\right.$ in case of commutativity), any G_{n} is commutative, idempotent, strict or continuous respectively.

Definition 6: An AO $G=\left\{G_{n}\right\}_{n}$ on $[a, b]$ is called associative if for all $m, n \in \mathbb{N}$ and for all tuples $\left(x_{1}, \ldots, x_{m}\right) \in$ $[a, b]^{m}$ and $\left(y_{1}, \ldots, y_{n}\right) \in[a, b]^{n}$

$$
\begin{gathered}
G_{n+m}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)= \\
=G_{2}\left(G_{m}\left(x_{1}, \ldots, x_{m}\right), G_{n}\left(y_{1}, \ldots, y_{n}\right)\right) .
\end{gathered}
$$

From the structural point of view, an associative AO G is uniquely determined by the corresponding binary $\mathrm{AF} G_{2}$, hence, with abuse of notation, we will use the same symbol for G and G_{2}.

Definition 7: Let $G=\left\{G_{n}\right\}_{n}$ be an AO on $[a, b]$. Then an element $e \in[a, b]$ is called a neutral element (NE) for G if, for each $n \geq 2$, for each $k \in\{1,2, \ldots, n\}$ and for all $x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n} \in[a, b]$, we have

$$
\begin{align*}
& G_{n}\left(x_{1}, \ldots, x_{k-1}, e, x_{k+1}, \ldots, x_{n}\right)= \\
& =G_{n-1}\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right) \tag{8}
\end{align*}
$$

Remark 3: Observe that if $\boldsymbol{G}=\left\{G_{n}\right\}_{n}$ is an AO on $[a, b]$ which admits $e \in[a, b]$ as NE, the binary AF G_{2}, according to (8), satisfies

$$
G_{2}(e, x)=G_{2}(x, e)=G_{1}(x),
$$

which reduces to the standard form when (6) holds. What is interesting is that unicity of neutral elements is preserved also in case of AI AOs , as stated by the following lemma

Proposition 1: Let $G=\left\{G_{n}\right\}_{n}$ be an AI AO on $[a, b]$ admitting $e \in[a, b]$ as NE. Then, e is the unique NE for G.
The next is a well-known result regarding the transformations of AOs by means of a strictly monotone bijection.

Proposition 2: Let $G=\left\{G_{n}\right\}_{n}$ be an AO on $[a, b]$ and φ : $[c, d] \rightarrow[a, b]$ a strictly monotone bijection, where $c, d \in \mathbb{R}$, with $c<d$. Then $G^{\varphi}=\left\{G_{n}^{\varphi}\right\}_{n}$, where the n-ary AF G_{n}^{φ} acting on $[c, d]$ is defined by

$$
\begin{equation*}
G_{n}^{\varphi}\left(u_{1}, \ldots, u_{n}\right)=\varphi^{-1}\left(G_{n}\left(\varphi\left(u_{1}\right), \ldots, \varphi\left(u_{n}\right)\right)\right) \tag{9}
\end{equation*}
$$

for all $u_{1}, \ldots, u_{n} \in[c, d]$, is an AO on $[c, d]$. Moreover, if $e \in[a, b]$ is a NE for \boldsymbol{G}, then $\varphi^{-1}(e) \in[c, d]$ is a NE for \boldsymbol{G}^{φ}. Finally, if \boldsymbol{G} is commutative or continuous, then \boldsymbol{G}^{φ} is commutative or continuous respectively.
This result suggests us to introduce a notion of isomorphism between AOs acting on the same interval.

Definition 8: Let $\boldsymbol{G}=\left\{G_{n}\right\}_{n}$ and $G^{*}=\left\{G_{n}^{*}\right\}_{n}$ be a pair of AOs on $[a, b]$. Then, we will say that G and G^{*} are isomorphic if there exists a strictly monotone bijection $\varphi:[a, b] \rightarrow[a, b]$ such that

$$
G^{*} \equiv G^{\varphi} .
$$

Finally, we conclude this section with another form of relaxed idempotency for an AO.

Definition 9: Let $G=\left\{G_{n}\right\}_{n}$ be an AO on $[a, b]$. We will say that \boldsymbol{G} is quasi-idempotent if for each $x_{0} \in[a, b]$ there exists an $n_{0}=n_{0}\left(x_{0}\right) \in \mathbb{N}$ such that $G_{n}\left(x_{0}, \ldots, x_{0}\right)=x_{0}$ for all $n \geq n_{0}$.
As we will see, in many cases we expect that an AI AO is at least quasi idempotent.

III. Commutative AOs with a NE

Let us denote by \mathcal{A} and \mathcal{B} the families of AOs on $[a, b]$, for any pair $(a, b) \in \mathbb{R}^{2}$ with $a<b$, admitting $e \in\{a, b\}$ and $e \in] a, b[$ as NE, respectively. Proposition 1 and Definition 8 allow us, without loss of generality and up to isomorphisms, to fix for both classes $e=0$ as NE and the domains $[0,1]$ and $[-1,1]$ respectively. Then, we set $\mathcal{E}:=\mathcal{A} \cup \mathcal{B}$ and we will denote by $\boldsymbol{A}=\left\{A_{n}\right\}_{n}, \boldsymbol{B}=\left\{B_{n}\right\}_{n}$ or $\boldsymbol{E}=\left\{E_{n}\right\}_{n}$ an arbitrary element of \mathcal{A}, \mathcal{B} or \mathcal{E} respectively: in the last case, we will denote by D the domain, where D may be indifferently $[0,1]$ or $[-1,1]$. Finally, given any $\boldsymbol{E}=\left\{E_{n}\right\}_{n} \in \mathcal{E}$, we set $d_{n}(x):=E_{n}(x, \ldots, x)$, where $d_{n}: D \rightarrow D$ for all $n \in \mathbb{N}$.

Proposition 3: Given any $\boldsymbol{E}=\left\{E_{n}\right\}_{n} \in \mathcal{E}$ and fixed any $x \in D$, the sequence $\left\{d_{n}(x)\right\}_{n}$ is monotone (strictly monotone if \boldsymbol{E} is strict and $x \neq 0$).

Proof If $x=0$, we have that $d_{n}(0)=E_{n}(0, \ldots, 0)=$ (according to (8)) $E_{n+1}(0, \ldots, 0)=d_{n+1}(0)$, so that $d_{n}(0)=d_{1}(0)$ for all $n \in \mathbb{N}$. If $x>0, d_{n}(x)=$ $E_{n}(x, \ldots, x)=$ (according to (8)) $E_{n+1}(x, \ldots, x, 0) \leq$ (according to (1), with the strict inequality, if the operator is strict) $E_{n+1}(x, \ldots, x, x)=d_{n+1}(x)$ for all $n \in \mathbb{N}$. The case $x<0$ may be shown in complete analogy.
An immediate consequence is that the sequence $\left\{d_{n}(x)\right\}_{n}$ converges on D to a function we will denote by $d(x)$, where $d: D \rightarrow D$. Hence, it is clear that any $\boldsymbol{E} \in \mathcal{E}$ is AI if and only if $d(x)=x$ for all $x \in D$.

Proposition 4: Given any $\boldsymbol{E}=\left\{E_{n}\right\}_{n} \in \mathcal{E}$, we have that $E_{n}\left(x_{1}, \ldots, x_{n}\right) \geq 0$ (or >0 if \boldsymbol{E} is strict) for all $x_{1}, \ldots, x_{n} \geq 0\left(\right.$ and $x_{j}>0$ for some $\left.j \in\{1, \ldots, n\}\right)$, while $E_{n}\left(x_{1}, \ldots, x_{n}\right) \leq 0$ (or <0 if \boldsymbol{E} is strict) for all $x_{1}, \ldots, x_{n} \leq 0$ (and $x_{j}<0$ for some $j \in\{1, \ldots, n\}$).

Remark 4: Note that, starting from an arbitrary $B \in \mathcal{B}$, we can always generate an $\mathrm{AO} \boldsymbol{A}^{B} \in \mathcal{A}$, simply restricting the domain of \boldsymbol{B} to the real unit interval, i.e. $\boldsymbol{A}^{B}:=\left.\boldsymbol{B}\right|_{[0,1]}$.

Definition 10: We will say that $B=\left\{B_{n}\right\}_{n} \in \mathcal{B}$ is symmetrical with respect to $e=0$ (e-symm, for short) if, for each $n \in \mathbb{N}$, we have

$$
B_{n}\left(x_{1}, \ldots, x_{n}\right)=-B_{n}\left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)
$$

for all $x_{1}, \ldots, x_{n} \in[-1,0[$.
Now, we set $\mathcal{C A}:=\{\boldsymbol{A} \in \mathcal{A}: \boldsymbol{A}$ is commutative $\}$ and $\mathcal{C B}:=$ $\{\boldsymbol{B} \in \mathcal{B}: \boldsymbol{B}$ is commutative $\}$.

Remark 5: Observe that, starting from an arbitrary $\boldsymbol{A} \in$ $\mathcal{C A}$, we can always generate an $\mathrm{AO} \boldsymbol{B}^{A}=\left\{B_{n}^{A}\right\}_{n} \in \mathcal{C B}$, where the n-ary AF is defined as follows:

$$
\begin{aligned}
& B_{n}^{A}\left(x_{1}, \ldots, x_{n}\right)=B_{n}^{A}\left(x_{1}^{*}, \ldots, x_{k}^{*}, x_{k+1}^{*}, \ldots, x_{n}^{*}\right)= \\
& \quad=A_{k}\left(x_{1}^{*}, \ldots, x_{k}^{*}\right)-A_{n-k}\left(\left|x_{k+1}^{*}\right|, \ldots,\left|x_{n}^{*}\right|\right),
\end{aligned}
$$

where $\left(x_{1}^{*}, \ldots, x_{k}^{*}, x_{k+1}^{*}, \ldots, x_{n}^{*}\right)$ is any permutation of an arbitrary tuple $\left(x_{1}, \ldots, x_{n}\right) \in[-1,1]^{n}$ such that $x_{1}^{*}, \ldots, x_{k}^{*} \geq$ 0 , while $x_{k+1}^{*}, \ldots, x_{n}^{*}<0$, for some $k \in\{0, \ldots, n\}$, with the convention $A_{0}=0$. The only point deserving to be shown is the monotonicity of the arbitrary n-ary AF: given any $\left(x_{1}, \ldots, x_{n}\right) \in[-1,1]^{n}$, without loss of generality, we can suppose that $x_{1}, \ldots, x_{k} \geq 0$ and $x_{k+1}, \ldots, x_{n}<0$, where $k \in\{0, \ldots, n-1\}$. Now, fixed any $i \in\{1, \ldots, n\}$, we have to prove that

$$
\begin{equation*}
B_{n}^{A}\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \leq B_{n}^{A}\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right) \tag{10}
\end{equation*}
$$

for all $x_{i}^{\prime} \in\left[x_{i}, 1\right]$. The case $i \in\{1, \ldots, k\}$ for $k \neq 0$ is trivial, so assume that $i \in\{k+1, \ldots, n\}$ for any $k \in$ $\{0, \ldots, n-1\}$. If $x_{i}^{\prime} \geq 0$, (10) becomes

$$
\begin{gather*}
A_{k}\left(x_{1}, \ldots, x_{k}\right)- \\
-A_{n-k}\left(\left|x_{k+1}\right|, \ldots,\left|x_{i-1}\right|,\left|x_{i}\right|,\left|x_{i+1}\right|, \ldots,\left|x_{n}\right|\right) \leq \\
\leq A_{k+1}\left(x_{1}, \ldots, x_{k}, x_{i}^{\prime}\right)- \\
-A_{n-k-1}\left(\left|x_{k+1}\right|, \ldots,\left|x_{i-1}\right|,\left|x_{i+1}\right|, \ldots,\left|x_{n}\right|\right) . \tag{11}
\end{gather*}
$$

Note that $A_{k}\left(x_{1}, \ldots, x_{k}\right)=A_{k+1}\left(x_{1}, \ldots, x_{k}, 0\right) \leq$ $A_{k+1}\left(x_{1}, \ldots, x_{k}, x_{i}^{\prime}\right)$ by (8) and (1) respectively, and, by the
same reasons, $A_{n-k-1}\left(\left|x_{k+1}\right|, \ldots,\left|x_{i-1}\right|,\left|x_{i+1}\right|, \ldots,\left|x_{n}\right|\right)=$ $A_{n-k}\left(\left|x_{k+1}\right|, \ldots,\left|x_{i-1}\right|, 0,\left|x_{i+1}\right|, \ldots,\left|x_{n}\right|\right)$ $A_{n-k}\left(\left|x_{k+1}\right|, \ldots,\left|x_{i-1}\right|,\left|x_{i}\right|,\left|x_{i+1}\right|, \ldots,\left|x_{n}\right|\right)$, so that (11) is assured. Finally, if $x_{i}^{\prime}<0,(10)$ becomes

$$
\begin{aligned}
& A_{n-k}\left(\left|x_{k+1}\right|, \ldots,\left|x_{i}\right|, \ldots,\left|x_{n}\right|\right) \geq \\
& \geq A_{n-k}\left(\left|x_{k+1}\right|, \ldots,\left|x_{i}^{\prime}\right|, \ldots,\left|x_{n}\right|\right)
\end{aligned}
$$

which follows from (1) and the fact that $\left|x_{i}\right| \geq\left|x_{i}^{\prime}\right|$.
Note that any B^{A} is $e-s y m m$ and further it fulfills the following stronger property:

$$
\begin{equation*}
B_{2 n}^{A}\left(x_{1}, \ldots, x_{n},-x_{1}, \ldots,-x_{n}\right)=0 \tag{12}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in[-1,0[\cup] 0,1]$ and for each $n \in \mathbb{N}$.
Remark 6: Observe that, starting from an arbitrary $\boldsymbol{A} \in$ $\mathcal{C A}$, if we generate, as shown in the previous remark, $B^{A} \in$ $\mathcal{C B}$ and subsequently $A^{B^{A}} \in \mathcal{C} \mathcal{A}$, as illustrated in Remark 4, we easily get $\boldsymbol{A} \equiv \boldsymbol{A}^{B^{A}}$. This is equivalent to saying that $\left.\mathcal{C B}\right|_{[0,1]}=\mathcal{C} \mathcal{A}$, where $\left.\mathcal{C B}\right|_{[0,1]}:=\left\{\boldsymbol{A}^{B}: B \in \mathcal{C B}\right\}$. The same does not occur if, starting from an arbitrary $B \in \mathcal{C B}$, we consider first \boldsymbol{A}^{B} and then $\boldsymbol{B}^{\boldsymbol{A}^{B}}$, because we cannot generally conclude that $\boldsymbol{B}=\boldsymbol{B}^{A^{B}}$. Indeed, if this were true, B would necessarily satisfy (12), but, as we will see in the next section, there exist AOs belonging to $\mathcal{C B}$ which do not verify (12).

IV. Construction methods of commutative, AI AOs with a NE

In this section, we are interested in providing some procedures for building different models of AI AOs belonging to $\mathcal{C E}:=\mathcal{C} \mathcal{A} \cup \mathcal{C B}$. First of all, we emphasize the fact that there are not many examples of idempotent $\mathrm{AOs} \in$ $\mathcal{C E}$ and generally they have a rather poor structure. For instance, if we restrict to the associative ones, the only associative, idempotent $\mathrm{AO} \in \mathcal{C} \mathcal{A}$ is the t-conorm given by the maximum (and, at the same time, if we fixed $e=1$ as NE , we would find as unique example the t-norm given by the minimum). Otherwise, the associative, idempotent $\mathrm{AOs} \in \mathcal{C B}$ form the more substantial family of idempotent uninorms: however, observe that, if U belongs to this class, necessarily $\left.U\right|_{[0,1]^{2}} \equiv \max$ and $\left.U\right|_{[-1,0]^{2}} \equiv \min$.
Now we present a model of $\mathrm{AI} \mathrm{AO} \in \mathcal{C} \mathcal{A}$, in which there is no necessity of permutation, or rearrangement in more general sense, of the input values.

Example 1: Let $\boldsymbol{A}^{\mathbf{H}, \psi}=\left\{A_{n}^{\mathbf{H}, \psi}\right\}_{n}$ be a sequence of n ary AFs so described:

$$
\begin{gathered}
A_{n}^{\mathbf{H}, \psi}\left(x_{1}, \ldots, x_{n}\right)= \\
=\max \left\{x_{1}, \ldots, x_{n}\right\} \cdot \psi\left(h_{n}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{gathered}
$$

where $\psi:[0, \infty] \rightarrow[0,1]$ is a non-decreasing mapping such that $\psi(0)=0$ and $\psi(\infty)=1$, while $\mathbf{H}=\left\{h_{n}\right\}_{n}$ is a commutative AO acting on the interval $[0, \infty[$, with $e=0$ as NE, such that $h_{1}(0)=0$ and $\sup _{n \in \mathbb{N}} h_{n}(x, \ldots, x)=\infty$ for any $x>0$. The fact that $\boldsymbol{A}^{\mathbf{H}, \psi}$ actually belongs to $\mathcal{C} \mathcal{A}$ is quite
easy to show. The set of mappings which behave as ψ is very large; what is more interesting is to investigate some simple ways to construct explicit examples of \mathbf{H}. For instance, if we consider any non-decreasing function $\mu:[0, \infty[\rightarrow[0, \infty[$ such that $\mu(0)=0$, and $\mu(t)>0$ as $t>0$, it is trivial to see that $\mathbf{H}^{\mu}=\left\{h_{n}^{\mu}\right\}_{n}$, where the n-ary AF is defined

$$
h_{n}^{\mu}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \mu\left(x_{i}\right)
$$

fulfills all the required properties on $[0, \infty[$. Note that (7) is a particular case of this model, with $\psi(t)=\frac{\sqrt{t}}{1+\sqrt{t}}$ and $\mu(t)=t^{2}$. Finally, observe that $\boldsymbol{A}^{\mathbf{H}, \psi}$ is continuous if ψ and \mathbf{H} are continuous.

Proposition 5: The $\mathrm{AO} \boldsymbol{A}^{\mathbf{H}, \psi}$ is quasi-idempotent if and only if there exists $t_{0}>0$ such that $\psi\left(t_{0}\right)=1$.
The second, general construction method we present regards a class of $e-$ symm AI AOs belonging to $\mathcal{C B}$. The philosophy of this method is that, according to Remark 6, the subdomain $[0,1]^{n}$ of the n-ary AF we have to define may be covered by the respective AF of any $\mathrm{AI} \mathrm{AO} \in \mathcal{C} \mathcal{A}$, hence, by the symmetry, also the subdomain $[-1,0]^{n}$ is covered. The most interesting part is the rest of the domain, more precisely $c l\left([-1,1]^{n} \backslash I_{n}\right)$, i.e.the topological closure of the set $[-1,1]^{n} \backslash I_{n}$, where $I_{n}:=[0,1]^{n} \cup[-1,0]^{n}$.

Example 2: Given any AI $\boldsymbol{A} \in \mathcal{C} \mathcal{A}$, we set

$$
\left.\boldsymbol{B}^{*}\right|_{[0,1] \cup[-1,0]}:=\left.\boldsymbol{B}^{\boldsymbol{A}}\right|_{[0,1] \cup[-1,0]},
$$

i.e. for each $n \in \mathbb{N}$ we have $B_{n}^{*}\left(x_{1}, \ldots, x_{n}\right)=$ $A_{n}\left(x_{1}, \ldots, x_{n}\right)$, if $\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}$, while $B_{n}^{*}\left(x_{1}, \ldots, x_{n}\right)=-A_{n}\left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$, if $\left(x_{1}, \ldots, x_{n}\right) \in$ $[-1,0]^{n}$. Let $f:[-1,1] \rightarrow[-1,1]$ be an arbitrary strictly increasing bijection such that $f(0)=0$. Consider then a sequence $\left\{g_{n}\right\}_{n}$ of mappings from I_{n} to I_{n} defined

$$
g_{n}\left(x_{1}, \ldots, x_{n}\right)=f\left(B_{n}^{*}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Evidently, any g_{n} is non-decreasing and commutative: further, for every $n \geq 2$, we have $g_{n}\left(x_{1}, \ldots, x_{n-1}, 0\right)=$ $g_{n-1}\left(x_{1}, \ldots, x_{n-1}\right)$ for all $\left(x_{1}, \ldots, x_{n-1}\right) \in I_{n-1}$. Now, for each $n \geq 2$, we can define the n-ary AF B_{n}^{*} on $c l\left([-1,1]^{n} \backslash\right.$ I_{n}) as follows:

$$
\begin{aligned}
& B_{n}^{*}\left(x_{1}, \ldots, x_{n}\right)=B_{n}^{*}\left(x_{1}^{*}, \ldots, x_{k}^{*}, x_{k+1}^{*}, \ldots, x_{n}^{*}\right)= \\
& =f^{-1}\left(g_{k}\left(x_{1}^{*}, \ldots, x_{k}^{*}\right)+g_{n-k}\left(\left|x_{k+1}^{*}\right|, \ldots,\left|x_{n}^{*}\right|\right)\right)
\end{aligned}
$$

recalling that $\left(x_{1}^{*}, \ldots, x_{k}^{*}, x_{k+1}^{*}, \ldots, x_{n}^{*}\right)$ is any permutation of an arbitrary input n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ such that $x_{1}^{*}, \ldots, x_{k}^{*} \geq$ 0 , while $x_{k+1}^{*}, \ldots, x_{n}^{*}<0$, for some $k \in\{0, \ldots, n\}$. It is not difficult to check that B_{n}^{*} is well defined on $\operatorname{cl}\left([-1,1]^{n} \backslash I_{n}\right)$ and the whole B^{*} so obtained is actually an $e-$ symm AI AO belonging to $\mathcal{C B}$. Note that if f is not symmetrical with respect to zero, unlike B_{1}^{*}, also $g_{1}(x)=f\left(B_{1}(x)\right)$ is not symmetrical, hence, for some $x \neq 0$, by definition of B_{2}, we get $B_{2}(x,-x)=f^{-1}\left(g_{1}(x)+g_{1}(-x)\right) \neq 0$, so proving that such a kind of B^{*} generally does not fulfill (12).

V. A Representation Theorem

In this section, we pose the following problem: given any $\boldsymbol{E}=\left\{E_{n}\right\}_{n} \in \mathcal{E}$, is it possible to represent the n-ary AF E_{n} in terms of d_{n} ? In other words, is any tuple $\left(x_{1}, \ldots, x_{n}\right) \in D^{n}$ associated with a unique $\xi_{n}=\xi_{n}\left(x_{1}, \ldots, x_{n}\right) \in D$ such that $E_{n}\left(x_{1}, \ldots, x_{n}\right)=d_{n}\left(\xi_{n}\right)$? A first, easy answer is provided when the AO fulfills some particular properties.

Lemma 1: Assume that $\boldsymbol{E}=\left\{E_{n}\right\}_{n} \in \mathcal{E}$ is strict and continuous. Then, for each $n \in \mathbb{N}$ and for any tuple $\left(x_{1}, \ldots, x_{n}\right) \in D^{n}$ there exists a unique $\xi_{n}=$ $\xi_{n}\left(x_{1}, \ldots, x_{n}\right) \in D$ such that $E_{n}\left(x_{1}, \ldots, x_{n}\right)=d_{n}\left(\xi_{n}\right)$.
Consequently, under the assumptions of strict monotonicity and continuity of \boldsymbol{E}, we can define a new AO $\boldsymbol{\Xi}=\left\{\xi_{n}\right\}_{n}$ acting on D which is easily shown to be strict, commutative, continuous and idempotent. Now, the problem is that generally $\boldsymbol{\Xi}$ is not explicitly representable. The next proposition, based on an Aczel's variation of a classical result of Kolmogorov and Nagumo, is only apparently helpful.

Proposition 6: Assume that $E=\left\{E_{n}\right\}_{n} \in \mathcal{E}$ is strict and continuous. Then, there exists a sequence $\left\{f_{n}\right\}_{n}$ of strictly increasing bijections on D such that

$$
E_{n}\left(x_{1}, \ldots, x_{n}\right)=d_{n}\left(f_{n}^{-1}\left(\frac{f_{n}\left(x_{1}\right)+\ldots+f_{n}\left(x_{n}\right)}{n}\right)\right)
$$

for each $n \in \mathbb{N}$ and for all tuples $\left(x_{1}, \ldots, x_{n}\right) \in D^{n}$.
Actually, the problem is only conveyed from $\boldsymbol{\Xi}$ to the family $\left\{f_{n}\right\}_{n}$ of strictly increasing bijections which satisfy on D an highly complicated system of functional equations of the type

$$
\left\{\begin{array}{l}
f_{n}^{-1}\left(\frac{f_{n}(x)}{n}\right)=\left(d_{n}^{-1} \circ d_{1}\right)(x) \\
\cdot \\
f_{n}^{-1}\left(\frac{(n-1) f_{n}(x)}{n} f_{n}(x)\right)=\left(d_{n}^{-1} \circ d_{n-1}\right)(x) \\
\quad \text { VI. CONCLUSIONS }
\end{array}\right.
$$

In this work, we have introduced a new class of aggregation operators, called asymptotically idempotent, which extend the classical idempotent ones and even the standard definition of aggregation operator. Particularly, we have focused on commutative AI aggregation operators with a neutral element, emphasizing their importance in applications such as ranking problems, due to their sensitivity to the number of significative inputs, being simultaneously absolutely not influenced by data devoid of significance.

REFERENCES

[1] J. Aczel , "On mean values," Bullettin of the American Math. Society, vol. 54, pp. 392-400, 1948.
[2] J. Aczel, Lectures on Functional Equations and Applications, New York: Academic Press, 1966.
[3] T. Calvo, G. Mayor, and R. Mesiar, Editors, Aggregation Operators. New trends and applications, Heidelberg, New York: Physica-Verlag, 2002.
[4] J. Fodor and M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1994.
[5] J. C. Fodor, R. R. Yager, and A. Rybalov, "Structure of uninorms," Int. Jour. of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 5, pp. 411-427, 1997.
[6] E. P. Klement, R. Mesiar, and E. Pap, Triangular Norms, Dordrecht: Kluwer Academic Publishers, 2000.
[7] A. N. Kolmogorov, "Sur la notion de la moyenne," Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur, vol. 12, pp. 388-391, 1930.
[8] M. Nagumo, "Über eine Klasse der Mittelwerte," Japanese Jour of Mathematics, vol. 6, pp. 71-79, 1930.
[9] R. R. Yager, "On ordered weighted averaging aggregation operators in multi-criteria decision making," IEEE Trans. on Systems, Man and Cybernetics, vol. 18, pp. 183-190, 1988.
[10] R. R. Yager and A. Rybalov, "Uninorm aggregation operators," Fuzzy Sets and Systems, vol. 80, pp. 111-120, 1996.

[^0]: Roberto Ghiselli Ricci is with D.E.I.R., University of Sassari, Via Torre Tonda 34, 07100 Sassari, Italy (phone: +39333 6659159; email: ghiselli@unimo.it).

