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Abstract- This paper deals with aggregation operators. A
new class of aggregation operators, called asymptotically idem-
potent, is introduced. A generalization of the basic notion of
aggregation operator is provided, with an in-depth discussion of
the notion of idempotency. Some general contruction methods of
commutative, asymptotically idempotent aggregation operators
admitting a neutral element are illustrated.

I. INTRODUCTION

The mathematical process of fusion of several input real
values into a single output real value is crucial in many fields.
According to the various applications, different properties are
requested to the aggregation. In particular, dealing with prob-
lems of ranking, the basic characteristics requested of the ag-
gregation are anonymity, which occurs when the knowledge
of the order of the input values is irrelevant, and unanimity,
which means that the global score must coincide with the
partial scores, when they all are equal to a certain value.
Anonymity and unanimity are mathematically translated into
commutativity and idempotency of the aggregation operator.
However, especially when the number of the inputs is huge,
a more refined fusion is able to take into account all the
data without being influenced by a generally great number
of inputs not worthy of consideration. This is equivalent
to saying that the aggregation operator admits a neutral
element, i.e. an element which has the same effect as its
omitting. An immediate consequence is that idempotency
generally falls: the key point is to introduce a weaker form
of idempotency which, combined with the presence of the
neutral element, makes the aggregator sensitive to the number
of input values. More precisely, the output of a large number
of positive scores is higher than one of a few positive
scores, so undoubtedly improving the quality of ranking. We
introduce a weakened form of idempotency and discuss its
properties.
The paper is organized as follows: in the second section, we
present all the basic definitions and concepts on aggregation
operators, with a critical discussion about the crucial notion
of idempotency and the introduction of the asymptotical
idempotency. In the third section, we focus on the class
of commutative aggregation operators which admit a neu-
tral element, distinguishing the two relevant cases of inner
element or at the border with respect to the domain. In
the fourth section, we provide two general procedures for
building commutative, asymptotically idempotent aggrega-
tion operators with a neutral element. Finally, in the last
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section, a representation theorem is shown, connected with
classical results of Kolmogorov and Aczel.

II. BASIC CONCEPTS

In this work, we are interested in aggregation of input
values, as well as outputs, belonging to some closed interval
[a, b] cIR.

Definition 1: A mapping

g : la, b]n -> [a, b], n C N

is called an n-ary aggregation function (AF) acting on [a, b]
if it is non-decreasing monotone in its components, that is

(1)
whenever a < xi < x' < b for all i e {1, ..., n}. Moreover,
g is strict if (1) holds with the strict inequality provided that
(Xl,...,Xn) 7t (XI,...4X/). Finally, g is commutative if

(2)
for any permutation (x,C ...,t x ) of an arbitrary
tuple (X1 ,.. Sn) C [a, b]n
Remark 1: Regarding the property of continuity, accord-

ing to (1), any AF is continuous if and only if it is continuous
in its components.

Definition 2: Let g be an n-ary AF acting on [a, b]. Fixed
any x C [a,b], an element (x,...,x) C [a,b]n is called an
idempotent element for g if

g(x. I) = X. (3)

The n-ary AF g is idempotent, if g fulfills (3) for any x C
[a, b].

Definition 3: A sequence G={Gn}n of n-ary AFs acting
on [a, b] is called an aggregation operator on [a, b] (briefly,
AO on [a, b]).

Definition 4: An AO G={Gn}n on [a, b] is called asymp-
totically idempotent ( Al ) if

lim G,(x, ..., x) = x for all x e [a, b].
n-oo (4)

Remark 2: It is our opinion that a sequence of n-ary AFs
satisfying (4) is qualified for deserving the "title" of AO.
In fact, from the theoretical point of view, the idempotent,
"standard" AOs are a particular case of the Al ones; from the
practical point of view, condition (4) assures the sensitivity
of the output to the number of inputs, a refined property
which is recommended in many applications, as told in
the introduction. However, on the one hand, the Al AOs
could not form a subclass of AOs, as to be expected, if
we maintained the classical, commonly used in literature,
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definition of AO on a real closed interval [a, b], which, in
addition, requires the following two conditions:

Gn(a,..., a) = a, Gn(b, ..., b) = b (5)
and

G1(x) =x for all xe [a,b]. (6)

Indeed, there exist Al AOs which do not meet (5) and (6),
as shown in the following example, where [a, b] = [0, 1] and
the n-ary AF is

max {xi}.
i 1= ,...,n

E Xi2
i=l

1 + x/i2
i=l

On the other hand, there exist AOs, under the classical
definition, which do not satify (4), as shown in the following
example, where [a, b] = [0,1] and the n-ary AF is

Remark 3: Observe that if G={Gn}n1 is an AO on [a, b]
which admits e C [a, b] as NE, the binary AF G2, according
to (8), satisfies

G2(e,X) = G2(X,e) = G1(x),

which reduces to the standard form when (6) holds. What
is interesting is that unicity of neutral elements is preserved
also in case of Al AOs, as stated by the following lemma

Proposition 1: Let G={Gn}n1 be an Al AO on [a, b]
admitting e C [a, b] as NE. Then, e is the unique NE for
G.
The next is a well-known result regarding the transformations
of AOs by means of a strictly monotone bijection.

Proposition 2: Let G={G,}n1 be an AO on [a, b] and f:
[c, d] -> [a, b] a strictly monotone bijection, where c, d C JR,
with c < d. Then G~' {G=}G , where the n-ary AF Gnf
acting on [c, d] is defined by

G(o (ul, ..., aUn) = o-l (Gn( (U1), (Un))) (9)

X1,

0,

1,

0,

1,

if n= 1;
if x1 = . . . =

for all n;
if x1 = . . . =

for all n;
otherwise
and n is even
otherwise
and n > 2 is (

A way which seems to be reasonable for t
"cul-de-sac" is to weaken the definition of
conditions (5) and (6).

Definition 5: Let G={Gn}n1 be an AO on
that G is commutative, idempotent, strict or
for each n E N (n > 2 in case of commutativi
commutative, idempotent, strict or continuous

Definition 6: An AO G={Gn}n1 on [a, b] i
ciative if for all m, n C N and for all tuples
[a, b]m and (Y1,...,Yn) E [a,b] n

Gn+m(X ...Xm,Yi ...Yn)=
G2(Gm(xi, ...,xm), Gn(YI, .,Yn))J

From the structural point of view, an associative AO G is
uniquely determined by the corresponding binary AF G2,
hence, with abuse of notation, we will use the same symbol
for G and G2.

Definition 7: Let G={Gn}n be an AO on [a, b]. Then an
element e C [a, b] is called a neutral element (NE) for G
if, for each n > 2, for each k C {1,2,...,n} and for all
X1, ...,Xk-1,Xk+1,... Xn C [a,b], we have

Gn(Xl, ...: ~k-1 e,C X+1, .. zXn)=

Gn_l(X, ... Xk-1,Xk+1, ..., Xn)

for all u1, ..., u2 C [c, d], is an AO on [c, d]. Moreover, if
eC [a,b] is a NE for G, then - 1(e) C [c,d] is a NE for

X12n 0O G'. Finally, if G is commutative or continuous, then G' is
commutative or continuous respectively.

X12 1 This result suggests us to introduce a notion of isomorphism
between AOs acting on the same interval.

Definition 8: Let G={Gn}n1 and G* = {Gn}n be a
pair of AOs on [a, b]. Then, we will say that G and G*
are isomorphic if there exists a strictly monotone bijection
[0:la, b] -> [a, b] such that

odd. G G'.
Finally, we conclude this section with another form of

)ypassing this relaxed idempotency for an AO.
AO, omitting Definition 9: Let G={Gn}In be an AO on [a, b]. We will

say that G is quasi-idempotent if for each xo C [a, b] there
[a,b]. We say exists an no = no(xo) C N such that Gn(XO,X,O) = xo
continuous if, for all n > no
-ty), any Gn is As we will see, in many cases we expect that an Al AO is
respectively. at least quasi idempotent.

is called asso-
(Xi ... Xm) C

III. COMMUTATIVE AOs WITH A NE

Let us denote by A and B the families of AOs on [a, b], for
any pair (a, b) C IR2 with a < b, admitting e C {a, b} and
e C la, b[ as NE, respectively. Proposition 1 and Definition 8
allow us, without loss of generality and up to isomorphisms,
to fix for both classes e = 0 as NE and the domains [0,1]
and [ -1, 1] respectively. Then, we set S:=A U B and we will
denote by A={A,}2,, B={Bn}n1 or E={En} an arbitrary
element of A, B or S respectively: in the last case, we
will denote by D the domain, where D may be indifferently
[0,1] or [- 1,1]. Finally, given any E={EnE}n1 C 8, we set
d, (x) := E,(x ..., x),where d: D -> D for all n C N.

Proposition 3: Given any E={En}n1 C S and fixed any
x C D, the sequence {dn (x)l}n is monotone (strictly
monotone if E is strict and x :t 0).
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Proof If x = 0, we have that dn(O) = En(O ...o) =

(according to (8))En+1(0,...,O) = dn+1(0), so that
dn (O) = di (O) for all n C N. If x > 0, dn (X) =

En(xU ...,,x) =(according to (8))En+1±(X,..,X,0) <
(according to (1), with the strict inequality, if the operator is
strict) En+ (x,.., x, x) = dn+ (X) for all n C N. The case
x < 0 may be shown in complete analogy. D
An immediate consequence is that the sequence {dn(X)}n
converges on D to a function we will denote by d(x), where
d: D -> D. Hence, it is clear that any Ee S is Al if and
only if d(x) = x for all x C D.

Proposition 4: Given any E={En}n E 5, we have
that En(x1, -.., Xn) > 0 (or > 0 if E is strict) for all
Xl ... Xn > 0 (and xi > 0 for some j {1,..., n}),
while En(X, . Xn) < 0 (or < 0 if E is strict) for all

Xl .. zn < 0 (and xi < 0 for some j CI{,.., n}).
Remark 4: Note that, starting from an arbitrary Be B, we

can always generate an AO AB c A, simply restricting the
domain of B to the real unit interval, i.e. AB:=B [O0,].

Definition 10: We will say that B={Bn}n C B is sym-
metrical with respect to e 0 (e-symm, for short) if, for
each n C N, we have

Bn(Xl,-- ,n) =-Bn(Xlz,: : lXnl)
for all X1, Xn C [-1,0[.

Now, we set CA: {Ac A: A is commutative} and CB:=
{BE 1B: B is commutative}.
Remark 5: Observe that, starting from an arbitrary Ac

CA, we can always generate an AO BA={BA}In CBCL,
where the n-ary AF is defined as follows:

BnA (Xl: :..n) = BnA(X*..1*:*z:+D ... =

=Ak(z1 ..*) - An-k(lX*+lk ...: lX* ):

where (xl,...,x,xk+1, ...xn) is any permutation of an

arbitrary tuple (X1,., Xn) e [-1, l]n such that x1,..., xk >
0, while xk±1, ...,x* < 0, for some k C {0, ..., n}, with the
convention AO = 0. The only point deserving to be shown
is the monotonicity of the arbitrary n-ary AF: given any
(X1 :...Xn) C [-1, l]n, without loss of generality, we can

suppose that X1...,Xk > 0 and Xk+±1, .,Xn < 0, where
k C {O, ..., n -1}. Now, fixed any i C {1, ..., n}, we have to
prove that

BA(X. : Xi: . Xn) < BnA(Xl . ix Xn) (10)

for all xl C [xi,1]. The case i C {1,...,k} for k + 0
is trivial, so assume that i C {k + 1, ..., n} for any k C
{0, ..., n -1}. If xl > 0, (10) becomes

Ak(Xl,... Xk)

-An-OXlk+l1,---, |Xi-fl, Xil, |Xi+l|,... |Xnl) <
< Ak+1(X1,...,Xk, )X

-An-k-tA X(1k+l,---x AXi-±,(i+xl,---, .Xnk)- K

Note that Ak(Xl, ..., zX) = Ak+1(Xl X.:k: O) <
Ak+1 (Xl, ...,Xk, ) by (8) and (1) respectively, and, by the

same reasons, An-k-1(Xk+1± ,Xi-l1Xi+l Xn =

An-k(Xk±1. . l,Xi-l Xi+l : Xn) <
An-X(kx+±1, **, :Xi- 1Xi|Xi+,1, |...., .Xn ), so that
(11) is assured. Finally, if x' < 0, (10) becomes

An_(Xk4,l-- Xik, , lXn >

> An-Ok(4,11 : 1z,~Xi -, lXnD),
which follows from (1) and the fact that lxji > 1x.
Note that any BA is e -symm and further it fulfills the
following stronger property:

B2n(1 ... Xn-X1, ..., Xn) = 0 (12)

for allx1, ..., x C [ -1, 0[ U ]0, 1] and for each n C N.
Remark 6: Observe that, starting from an arbitrary A C

CA, if we generate, as shown in the previous remark, BAG
CB and subsequently ABA C CA, as illustrated in Remark
4, we easily get A ABA. This is equivalent to saying that
CB [0,1] = CA, where CB [0,1] := { AB: Be CB3}. The
same does not occur if, starting from an arbitrary Be CB3,
we consider first AB and then BAB, because we cannot
generally conclude that B=BA . Indeed, if this were true,
B would necessarily satisfy (12), but, as we will see in the
next section, there exist AOs belonging to CB which do not
verify (12).

IV. CONSTRUCTION METHODS OF COMMUTATIVE, Al
AOs WITH A NE

In this section, we are interested in providing some pro-
cedures for building different models of Al AOs belonging
to CS := CA U CB. First of all, we emphasize the fact
that there are not many examples of idempotent AOs C
CS and generally they have a rather poor structure. For
instance, if we restrict to the associative ones, the only
associative, idempotent AO C CA is the t-conorm given by
the maximum (and, at the same time, if we fixed e = 1 as NE,
we would find as unique example the t-norm given by the
minimum). Otherwise, the associative, idempotent AOs C CB
form the more substantial family of idempotent uninorms:
however, observe that, if U belongs to this class, necessarily
Ul[o,1]2=_max and Ul[-1,0]2 min.
Now we present a model of Al AO C CA, in which there
is no necessity of permutation, or rearrangement in more
general sense, of the input values.
Example 1: Let AH, {A=AH1 be a sequence of n-

ary AFs so described:

where e [0, o] > [0,1] is a non-decreasing mapping
such that 4(0) = 0 and 4(oo) = 1, while H= {hn} is a
commutative AO acting on the interval [0, oc [, with e = 0 as
NE, such that hi(0) = 0 and suph,(x,...,x) = oc for any

neN
x > 0. The fact that AH, X actually belongs to CA is quite
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easy to show. The set of mappings which behave as ) is very
large; what is more interesting is to investigate some simple
ways to construct explicit examples of H. For instance, if
we consider any non-decreasing function ,u: [0, oc [-> [0, oc[
such that ,u(0) = 0, and ,u(t) > 0 as t > 0, it is trivial to
see that H"' {h14}, where the n-ary AF is defined

n~~~~

hn' (x1, ., Xn) = iE (xi),
i=l

fulfills all the required properties on [0, oc [. Note that (7)
is a particular case of this model, with 4b(t) = NWa and
,u(t) = t2. Finally, observe that AH, P is continuous if b
and H are continuous.

Proposition 5: The AO AH, X is quasi-idempotent if and
only if there exists to > 0 such that y(to) = 1.
The second, general construction method we present regards
a class of e -symm Al AOs belonging to CU. The phi-
losophy of this method is that, according to Remark 6, the
subdomain [0, 1]n of the n-ary AF we have to define may be
covered by the respective AF of any Al AO C CA, hence,
by the symmetry, also the subdomain [_1,O]n is covered.
The most interesting part is the rest of the domain, more
precisely cl([-1, 1]n \ In), i.e.the topological closure of the
set [-1, 1]n \ In, where In := [0, 1]n U [_1, O]n.
Example 2: Given any Al A e CA, we set

B* [O,j]u[-1,O] :=BA [O,1]u[- 1,O]
i.e. for each n C N we have B*(x1,...,Xn)
An(Xli ...,x2n), if (Xi,l.Xn) C [0,1]n, while
B*(xl,.,Xn) = -An(XlzA1(i:... l,xn1), if (Xl,.,Xn) C
[1, 0]1n . Let f: [1 - 1, 1] be an arbitrary strictly
increasing bijection such that f (0) = 0. Consider then a
sequence {gnn} of mappings from In to In defined

gn (Xl, Xn) f(B1(xl,. xn))
Evidently, any gn is non-decreasing and commutative: fur-
ther, for every n > 2, we have gn(X12(...Xn-1 0) =

gn-l(Xl,...,Xn-l) for all (xl,...x n-1) C In'2. Now, for
each n > 2, we can define the n-ary AF Bn on cl([_1, 1]n \
In) as follows:

B* (xl xn) = Bn(xI,.x.,xkx*k± x) =

f-1(gk(X*1, ,Xk)+ gn-1k(Xk+± l...
recalling that (x1, ..., Xk, X1, ..., xx12) is any permutation of
an arbitrary input n-tuple (Xl, ...,Xn) such that x1, ...,X >

0, while xk±1,...x12 < 0, for some k C {0,...., n}. It is not
difficult to check that Bn is well defined on cl([-1, 1]n \ In)
and the whole B* so obtained is actually an e-symm Al
AO belonging to CU. Note that if f is not symmetrical with
respect to zero, unlike B1, also gi(x) f(B1(x)) is not
symmetrical, hence, for some x 0, by definition of B2, we

get B2 (x, x) = f- 1 (gi (x) + gi (- x)) #0O, so proving that
such a kind of B* generally does not fulfill (12).

V. A REPRESENTATION THEOREM

In this section, we pose the following problem: given any
E={En1} C 8, is it possible to represent the n-ary AF En in
terms of dn? In other words, is any tuple (X1, ..., x2n) E Dn
associated with a unique f1n = fn (X1, ...-, Xn) C D such that
En (X1i, ..., Xn) = dn(W)? A first, easy answer is provided
when the AO fulfills some particular properties.
Lemma 1: Assume that E={FEn}In C S is strict and

continuous. Then, for each n e N and for any tu-
ple (Xlw,..,Xn) C Dn there exists a unique 1n =
n ((xi, . ..,,xn) C D such that En (x1, . ..xXn) = dn (&W)

Consequently, under the assumptions of strict monotonicity
and continuity of E, we can define a new AO 6-d={f}nn
acting on D which is easily shown to be strict, commu-
tative, continuous and idempotent. Now, the problem is
that generally is not explicitly representable. The next
proposition, based on an Aczel's variation of a classical result
of Kolmogorov and Nagumo, is only apparently helpful.

Proposition 6: Assume that E={FEn}n C S is strict and
continuous. Then, there exists a sequence {ff}n of strictly
increasing bijections on D such that

En(X1, ...,xXn) = dn f1f1(fXl)( ++f(x()X))
for each n e N and for all tuples (xlX...,xn) C Dn.
Actually, the problem is only conveyed from to the family
{fnf}2n of strictly increasing bijections which satisfy on D
an highly complicated system of functional equations of the
type

ffl( z) =(d- 1 o di)(x);

|f- 1 ((n )n (x) fn (X)) (d- 1 o dn_ l ) (X).
VI{. CONCLUSIONS

In this work, we have introduced a new class of aggre-
gation operators, called asymptotically idempotent, which
extend the classical idempotent ones and even the standard
definition of aggregation operator. Particularly, we have
focused on commutative Al aggregation operators with a
neutral element, emphasizing their importance in applications
such as ranking problems, due to their sensitivity to the num-
ber of significative inputs, being simultaneously absolutely
not influenced by data devoid of significance.
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