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It is shown that, for a tightly bound ion-solvation shell complex, the mean square displacement for
solvation molecules is characterized by a long lasting transitory. This initial portion is related to the
rotational relaxation of the complex and can reach up to several hundred picoseconds for a
representative example such as the Mg2+ ion in water. As the diffusion coefficient is usually fitted
using much shorter time spans, unnoticed overestimations are possible. It is argued that, instead of
computing the aforementioned diffusion coefficient from the mean square displacement, it should be
defined taking as a basic guideline the ratio between the rotational relaxation time of the complex
and the lifetime within the first solvation shell. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1856920g

I. INTRODUCTION

Diffusion of molecules belonging to the ionic solvation
shell has been studied for a variety of systems in the liquid
phase.1–16Generally, their motion is found to be substantially
slowed down with respect to bulk solvent molecules but still
somewhat faster than that of the ion. This conclusion is usu-
ally founded on the computation of the diffusion coefficient
for the subset of first solvation shell molecules: its value is
larger than that of the ion and lower than that of the bulk.
While a hindered motion seems perfectly reasonable on
physical grounds, in this work it will be argued that some
care must be taken in assigning a diffusion coefficient, a
point that can be illustrated with a simple example. For a
tightly bound ion-shell system, one in which no exchanges
can take place between first and second solvation shells, it is
obvious that the diffusion coefficient of first shell molecules
must be identical to that of the ionsas the complex diffuses
as a unitd. Contrary to this expectation, this equality is not
found in computer simulations for cases where it is manifest
that no exchanges have taken place during the calculation.
Figure 1sbd displays results obtained for Mg2+ in water ssee
below for computational detailsd, a representative case for
which the previous considerations apply. A linear regime is
sapparentlyd attained after<1 ps for the mean square dis-
placementsMSDd of the ion, for first solvation shell mol-
ecules, and for bulk solvent. The slope of the ion’s MSD is
clearly the smallest one, so that the conclusion that first shell
molecules have a larger diffusion coefficient, but still smaller
than that of bulk solvent, seems inescapablesthe same con-
clusion is reached from analysis of the corresponding veloc-
ity autocorrelation functions, VACFd. The computational ori-
gin of this artifact, together with the physical interpretation
of the apparent faster diffusion of solvation molecules, will

be studied here in detail. Moreover, the implications for the
estimation of the mean diffusion coefficient in different sce-
narios will also be addressed.

The paper is organized as follows: the basic formulas are
derived in the following section, results for a couple of illus-
trative examples are described in Sec. III, and the final sec-
tion is devoted to sketch a general picture and to summarize
the main conclusions.

II. THEORY

The rather simple explanation is that too short a cutoff is
used for the MSD or VACF of the solvation shell molecules.
Although, strictly speaking, the diffusion coefficient is a long
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FIG. 1. Short time behavior of the mean square displacement for the sys-
tems studied.sad Carbonssolid lined and chlorinesdashed lined atoms in
CCl4. sbd Mg2+ ssolid lined, first shell moleculessdashed lined, and bulk
water sdotted lined.
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time property, it is usually determined with rather short simu-
lations, to the point that within the time span usually taken
for the MSD s<5–10 psd the ion only diffuses by roughly
one ionic diameter. If we take, for instance, a diffusion co-
efficient of <1 s10−9 m2/sd, the square root of the corre-
sponding MSD after 10 ps is<2.5 Å, i.e., of the order of the
ionic diametersa much shorter distance is obtained if com-
puting the diffusion coefficient from the VACFd. Although,
remarkably, this suffices to produce an accurate diffusion co-
efficient for the ion, it will be shown within that this is not so
for solvation shell molecules. The physical process that ex-
plains the apparently higher diffusion of the latter is easily
understood from the sketch in Fig. 2 where, for the sake of
clarity, the ion diffuses two diameters from its original posi-
tion. During that time, a given solvation molecule A will
travel the same distance as the ionsending in position A1d
only if it follows the ion rigidly. However, the motion of
solvation molecules is a combination of translation and rota-
tion around the ion, so that the molecule is also likely to end
up in positions A2, A3, or A4, which imply a net displace-
ment larger than that of the ion. If the MSD is averaged over
all these possible outcomes an apparently higher diffusion of
solvation molecules will be found. Obviously no such effect
would be present if the ion would be allowed to diffuse by a
large enough distance before computing the MSD, as the
effect of rotations in random directions would cancel out.

These considerations can be readily translated into math-
ematical form. The position vector of a solvation molecule
rWM can be expressed in terms of that of the ionrWI and the
relative vectorrW

rWM = rWI + rW. s1d

The MSD of the molecule

DMstd = kfrWMstd − rWMs0dg2l s2d

can thus be written in terms of the ion position and the rela-
tive vector as

DMstd = DIstd + kfrWstd − rWs0dg2l

+ 2kfrWIstd − rWIs0dg · frWstd − rWs0dgl. s3d

The last term is zero since there is no correlation on
average between the ion position and the molecule-ion rela-
tive vector, so that one gets

DMstd = DIstd + kfrWstd − rWs0dg2l, s4d

which can be rewritten as

DMstd = DIstd + 2fr2 − krWstd · rWs0dlg, s5d

wherer denotes the mean distance between the ion and the
solvating molecule.

At long times the time correlation function contained
into the last term will tend to zero so that the ion and solva-
tion molecule mean square displacementsfDIstd ,DMstdg will
only differ by a constant value 2r2. Therefore, since the dif-
fusion coefficient is obtained as

D =
1

6
lim
t→`

dfDstdg
dt

, s6d

the corresponding diffusion coefficients will be identical as
expected. Of course, this is only strictly valid under the as-
sumption of no exchanges between first and second shells,
the limit in which r is well defined.

To a very good approximation formulas5d can be written
in a form that highlights the role of solvation shell rotation.
For tight solvation shells the ion-molecule distance is almost
constant, as reflected, for instance, in the steep first peak of
the corresponding radial distribution function. Assuming a
constant separation equal to the mean value, the relative vec-
tor can be written asrW> rr̂ swherer̂ denotes the unit vectord.
From this approximation it follows:

DMstd > DIstd + 2r2f1 − kr̂std · r̂s0dlg

= DIstd + 2r2f1 − P1stdg, s7d

where P1std stands for the Legendre polynomial which ap-
pears in the theory of rotational absorption spectroscopy,17

and which after very short times is characterized by an al-
most exponential decay18 fP1std=e−t/t1g. DMstd will only
get parallel toDIstd after P1std has decayed to zero. As the
rotation of a solvation complex made of several molecules
will be slow,t1 can be longer than the time it takes the ion to
reach diffusive behavior, this is why a MSD shorter than 10
ps is not capable of displaying the same diffusion coefficient
for the ion and for the solvation shell molecules. Thus, Eq.
s7d summarizes the basic idea of this work: at short times the
mean square displacement of first solvation shell molecules
sDMd results from ion translationsDId plus rotation around
the ion fembodied in the term containingP1stdg, while at
longer times, after rotational correlation is lost, both MSD
differ by just a constant and yield the same diffusion coeffi-
cient. It is interesting to note that the present image, accord-
ing to which the ions with their solvation shells should be
regarded as rigid spheres on a picosecond time scale, is in
line with the conclusions reached from recent measures of
rotational relaxation within the solvation shell.19

FIG. 2. Sketch of possible configurations after the ion and a first solvation
shell molecule diffuse for a given time: a molecule initially located in po-
sition A can move to any of the sites Ai.
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From Eq.s7d it is possible to get a pretty good idea of
the time length required in order to obtain the expected iden-
tical values for the ion and solvation molecules diffusion
coefficients. An estimate for the reorientational time can be
derived from the rotational version of the Stokes–Einstein
relation,20 here applied to the ion plus first solvation shell
complex

t =
8phR3

kBT
, s8d

whereh stands for the bulk solvent viscosity andR for the
radius of the complex. The time obtained for Mg2+ in water
falls in the vicinity of 70 psssee Sec. III B for detailsd. The
important point is that this time is more than one order of
magnitude larger than the 5 ps used in Fig. 1sbd.

Equations7d also makes it clear why one can be mislead
by the shape of the MSD at such short times and assume that
diffusive behavior has already been attained and a diffusion
coefficient can be fitted. As previously stated, at intermediate
timessshorter than<10 psd the ion will have attained diffu-
sive translationfso that its MSD will be linear in time:
DIstd=6DIt, whereDI denotes the ion’s diffusion coefficientg,
but P1std can still be approximated by its short time expan-
sion fP1std=1−st /t1d+¯g. If both expressions are inserted
into Eq. s7d we get

DMstd < 6DIt + 2r2 t

t1
= S6DI +

2r2

t1
Dt, s9d

i.e., a linear behavior is obtained, which mimics the charac-
teristic diffusive behavior. From the latter expression one
would estimate the solvation molecule diffusion coefficient
as

DM = DI +
r2

3t1
, s10d

which in all cases exceeds the true value by a constant value
r2/3t1. Sincer2 is close to the shortest distance that can be
attained andt1 is a rather long time, the overestimation is
usually not substantialfas can be inferred for instance from
Fig. 1sbdg, but is noticeable enough to suggest that solvation
molecules diffuse faster than the ion.

III. NUMERICAL RESULTS

In this section a couple of illustrative examples will be
described, both studied by means of molecular dynamics
simulations. In all cases a time step of 1 fs was used and the
temperature was kept constant by applying a Berendsen ther-
mostat with a coupling constant of 10 ps.21 Molecules were
kept rigid using the SHAKE algorithm.22 Further details for
each system are given in the next sections.

A. Carbon tetrachloride

Liquid CCl4 will be used as a toy model: the C center
will play the role of the ion and the Cl centers that of the
solvation molecules. In this way one can eliminate several
sources of statistical noise in order to check unambiguously
the formulas developed above. For ion diffusion it takes a

long simulation time to get enough statistics as there is only
one ion surrounded by several hundred solvent molecules,
while in neat CCl4 statistics can be collected for every mol-
ecule. In addition, the approximation used to obtain formula
s7d, namely, that the ion-molecule distance is constant, here
is exact. Finally, the rotation time for the molecule is known
to be shorter than 10 ps,23 so that no extremely long simula-
tions are required. Molecular dynamics simulations of 1.5 ns
were done for a system of 215 molecules. The reference
temperature and density were, respectively, 298.15 K and
1.579 g cm−3. The geometric and interaction parameters for
carbon tetrachloride are given in Ref. 23. Figure 1sad dis-
plays the MSD for carbon and for chlorine up to 10 ps. They
both attain, to a good approximation, a linear behavior with
different slopes within that time window. As in the case of
Mg2+ in water fFig. 1sbdg it is tempting to conclude that the
chlorine centers have a larger diffusion coefficient than the
carbon, which is obviously impossible for a rigid molecule.
In order to analyze this case, formulas7d applies exactly, as
the distances are fixed. The rotational correlation function
P1std is displayed in Fig. 3sad, it is well represented by an
exponential decay witht1=4.8 ps, so that it is safe to con-
sider it has vanished after<20–30 ps for practical purposes.
Therefore, according to Eq.s7d, after that time the MSD for
the C center and that for the C centers should be parallel and
differ by a constant amount of 2r2 swhich in this case, with a
C–Cl bond of 1.766 Å, is equal to 6.24 Å2d. The results from
the simulation are in perfect quantitative agreement with this
expected behavior, as displayed in Fig. 4sad.

B. Mg2+ in liquid water

For this system the lifetime of a molecule within the first
solvation shellsestimated to fall in the microsecond range24d
is much longer than the time required for the rotational re-
laxation of the first shell solvation complexsestimated in
Sec. II to be lower than 100 psd. Therefore, the formulas

FIG. 3. P1std for sad chlorine atoms in CCl4 andsbd water molecules around
Mg2+.
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developed in Sec. II for tightly bound complexes should be
valid. Simulations of 15.0 ns were done for a system of 215
SPC/E water molecules25 and one magnesium ion. The ref-
erence temperature and density were set, respectively, to
298.15 K and 0.997 g cm−3. The Lennard-Jones interaction
parameters for Mg2+-water were taken from Ref. 26. With
these parameters the first solvation shell contains six mol-
ecules, and none of them is observed to leave the first shell
during the course of the simulation.

As previously stated, the estimated rotational relaxation
time can be rather long. The theoretical prediction is only
approximate since, besides the phenomenological character
of Eq. s8d on which it relies, water viscosityh, for the SPC/E
model used here, is estimated27,28 to fall in the range 0.71–
0.91fwhich brackets the experimental value of 0.85 cPsRef.
29dg. Regarding the radius of the complex, we have taken
2.41 Å, the distance at which first solvation shell population
has decayed to zero, as estimated from the ion-oxygen radial
distribution function, which is consistent with the results
from a variety of spolarizable and nonpolarizabled
models.27,30,31The rotational time thus obtained applying Eq.
s8d is 68–87 pssdepending on the value of the viscosityd.
This theoretical estimation is confirmed to a large extent in
Fig. 3sbd, which displays the computedP1std. An exponential
fit results in a time oft1=78 ps so that even for a time as
long as 200 ps this function will have a non-negligible con-
tribution. This implies, according to the considerations in
Sec. II, that in order to get a diffusion coefficient for solva-
tion shell molecules equal to that of the ion, the correspond-
ing MSD should be several hundred picoseconds long, what
is in stark contrast with the 5–10 ps range usually chosen.
Figure 4sbd shows that for times larger than 100 ps both
MSD are parallel to a good approximation and differ by a
constant value which approachesssee belowd the theoretical
prediction 2r2=9.24 Å2, where we have takenr =2.15 Å sthe

position of the first maximum of the radial distribution func-
tiond. The accord is excellent considering that in this case the
ion-molecule distance is only approximately constant. The
rather small disagreement is more visible in Fig. 5, where the
function 2r2f1−P1stdg is compared with the difference
DMstd−DIstd. According to Eq.s7d both functions are only
approximately equal, although from Fig. 5 it is clear that the
deviation is negligible in this case, particularly considering
that the statistics obtained from a single ion simulation can
be subject to some noise at such long times. It can also be
easily appreciated in Fig. 5 howDMstd−DIstd asymptotically
approaches the theoretical values9.24 Å2d.

IV. DISCUSSION

The role played by exchanges between first and second
solvation shells remains to be addressed. The corresponding
time scale is critically dependent on the system under study:
for monoatomic ions dissolved in water it spans 18 orders of
magnitude,24 with the lower limit estimated to fall within the
picosecond range and the upper limit reaching up to Ms. The
very long times involved in most cases constitute a barrier
for computational studies, it is only recently that the dynam-
ics and kinetics of this process have started to be
addressed32–36using numerical methods borrowed from reac-
tion rate theory. The bottom line of the previous sections is
that, as long as the exchange time scale is much longer than
that for rotational relaxation, the diffusion coefficient of first
solvation shell molecules should be taken equal to that of the
ion. Indeed, the case of Mg2+ is probably representative of
the majority of cases for multiply charged monoatomic ions
in water:24 the rotational relaxation time will be of the order
of 0.1 ns and the exchange time higher than 1 ns. Overesti-
mations of the diffusion coefficientfclose to the value given
in Eq. s10dg will be obtained if short MSDsof the order of
0.01 nsd are used, and are due to the transient rotational
relaxation of the complex at short times. The situation is less
well defined for singly charged ions in water, while for other
liquids and/or ions the field is largely unexplored.

In order to get a general view that includes systems for
which the time scales are not so clear cut it is important to
note that, indeed, any diffusion coefficient for first shell mol-
eculessDfirstd is a temporary one since, eventually, exchanges
will occur and the molecule will diffuse as bulk solvent. This
formulation makes it clear that the value taken forsDfirstd is

FIG. 4. Long time behavior of the mean square displacement for the sys-
tems studied.sad Carbonssolid lined and chlorinesdashed lined atoms in
CCl4. sbd Mg2+ ssolid lined and first shell moleculessdashed lined.

FIG. 5. Dashed line: difference between ion and solvation molecules mean
square displacements. Solid line: approximate result predicted by Eq.s7d
h2r2f1−P1stdgj.
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actually a matter of definition, which will only be valid for
times lower thantex. In other words,DMstd sa function that
results from an average over all molecules initially belonging
to the first solvation shelld will go through differentslineard
regimes, each one characterized by a temporary diffusion
coefficient. This expected behavior is sketched in Fig. 6 for a
tightly bound solvation shell: a fit of the MSD for times
lower thant1 would result in the value given in Eq.s10d, for
times in the ranget1, t,tex the fit would yield DM =DI,
and, finally, for times larger thantex it is clear that one would
obtainDM =Dbulk. This suggests that a sensible definition of
the diffusion coefficient should be based on the ratio between
the exchange timetex and the rotational relaxation timet1

for the system of interest. As previously stated, iftex@t1 it
seems reasonable to defineDfirst;Dion, without requiring the
actual calculation of the MSD. Indeed such calculation
would not provide any new information and, in addition, it
would involve extremely long simulationssas illustrated by
the Mg2+ cased. If texùt1 sboth falling within the same order
of magnituded, i.e., if son averaged solvation molecules leave
the first shell shortly after rotation of the complex has re-
laxed, then according to Eq.s10d it should probably be a
reasonable choice to takeDfirst;Dion+r2/3t1. To stress that
this is in fact a definition one can note that it is not possible
to obtain such result from simulation. If all solvation mol-
ecules would be used for the calculation, given that a fraction
of them would escape during the simulation run, a mean
between diffusion in the first shell andsthe much fasterd bulk
diffusion would be obtained; on the contrary, if one would
try to computeDfirst only using those solvation molecules
that do not escape, the result would initially be equal to Eq.
s10d and subsequently be followed by a value equal toDion.
Finally, if texøt1, i.e., most of the molecules are exchanged
before the complex can rotate significantly, it does not seem
possible to talk of aDfirst clearly different from that of bulk
solvent molecules. To summarize, simple definitions forDfirst

seem possible which take into account the role of exchanges.
The computer simulations required to estimate the diffusion
coefficient are not direct calculations of the MSD for solva-

tion shell moleculesswhich have been argued to be problem-
atic in all casesd, but rather the solvation shell lifetime and
rotational relaxation time of the complex.
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