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Abstract—Face recognition performance depends upon the
input variability as encountered during biometric data capture
including occlusion and disguise. The challenge met in this
paper is to expand the scope and utility of biometrics by
discarding unwarranted assumptions regarding the completeness
and quality of the data captured. Towards that end we propose a
model-free and non-parametric component-based face recognition
strategy with robust decisions for data fusion that are driven
by transduction and boosting. The conceptual framework draws
support throughout from discriminative methods using likelihood
ratios. It links at the conceptual level forensics and biometrics,
while at the implementation level it links the Bayesian framework
and statistical learning theory (SLT). Feature selection of local
patch instances and their corresponding high-order combina-
tions, exemplar-based clustering (of patches) as components
including the sharing (of exemplars) among components, and
finally decision-making regarding authentication using boosting
driven by components that play the role of weak-learners, are
implemented in a similar fashion using transduction driven by a
strangeness measure akin to typicality. The feasibility, reliability,
and utility of the proposed open set face recognition architecture
vis-à-vis adverse image capture conditions are illustrated using
FRGC data. The potential for future developments concludes the
paper.

Index Terms—biometrics, boosting, component-based recogni-
tion, data fusion, face recognition, disguise, forensics, k-nearest
neighbor, likelihood ratio, margin, Neyman-Pearson, occlusion,
open set recognition, surveillance, transduction, strangeness, typ-
icality.

I. INTRODUCTION

The biometrics processing space can be thought of as an n-

D space with the axes describing variability along dimensions

that relate to the data acquisition conditions encountered dur-

ing enrollment and testing. The axes describe among others

geometry for imaging, temporal change, and un-cooperative

subjects together with impostors vis-à-vis occlusion and dis-

guise (“denial and deception”). The challenge met here is

to expand the scope and utility of biometrics by discarding

unwarranted assumptions (located at the origin of the n-D

space) regarding the completeness and quality of the biometric

data captured. Image variability and correspondence using

precise alignment are major challenges for object recognition,

in general, and face recognition, in particular. Component-

based face recognition facilitates authentication because it does

not seek for explicit invariance. Instead, it handles variability

using component-based configurations that are flexible enough

to compensate for limited pose changes, if any, and limited

occlusion and disguises. The next but obvious question is how

to define and derive the components (“parts”). Similar to neural

Darwinism the components are emergent local representations

that are the result of competitive processes that seek to make

legitimate associations between appearance and their (non-

accidental) coincidences, on one side, and class labels, on

the other side. Feed-forward (cortical) architectures provide

the wetware that supports such processes in an incremental

fashion. The feed-forward aspect is a limited version of the

latency and evidence accumulation concepts [1] reiterated

by psychophysical experiments (see result 18) [2]. Evidence

accumulation involves a steady progression in the way that

visual information is processed and analyzed. “This comes

from bandwidth requirements and the need for an early and

fast impression, categorization or recognition of the input.

Much of the processing required to achieve such a phenomenal

amount of computation in such a short time must be based on

essentially feed-forward mechanisms.” Progressive processing

squares well with sparse coding driven by suspicious (non-

accidental) coincidences [3] and has been shown to “generalize

well to novel views of the same face [for identification]” [4].

The outline for the paper follows. Sect. II provides background

and motivation for the scope of the biometric effort. Sects III

and IV address complementary issues related to forensics

and discriminative methods. Sects V and VI describe the

building blocks using transduction for learning and boosting

for ensemble methods. Sects VII and VIII are about repre-

sentation and learning and prediction, respectively. Sect. IX

is about experiments, Sect. X discusses the findings and their

implication, while Sect. XI concludes the paper.

II. BACKGROUND

The working hypothesis for the (large) face recognition

evaluations carried out so far has not been particularly con-

cerned with the very possibility that subjects seek to deny

and/or foil their true biometric signatures. The subjects wanted

and/or under surveillance, however, are well motivated to hin-

der the acquisition of their biometrics. Recent large scale face

recognition evaluations, e.g., FRVT2002, FRGC, FRVT2006,

still do not consider occlusion (avoiding detection) and dis-

guise (masquerading) for testing purposes. Our own evaluation
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studies have shown that the performance displayed by well

know face recognition benchmark methods, e.g., PCA and

PCA + LDA (“Fisherfaces”), deteriorates significantly as a

result of disguise [5]. Occlusion and disguise are not always

deliberate. Examples for accidental occlusion are characteristic

of crowded environments, e.g., CCTV, when only face com-

ponents / poses of faces are visible from time to time and not

necessarily in the right sequence. Subjects (“targets”) can ap-

pear and disappear as time progresses and the presence of any

face is not necessarily continuous across (video) frames. Some

of the CCTV frames could actually be void of any face, while

other frames could include occluded or disguised faces from

different subjects. The goal is to identify the (CCTV) frames

where the same subject (“target”), either known (“enrolled”)

or unknown, shows up. Enrolled (“familiar”) subjects need

to be identified as well. This corresponds to the problems of

open set face recognition [6] including face selection. Open set

face recognition is different from closed set recognition where

the assumption is that all the subjects seen were previously

enrolled and each authentication requires a forced choice

decision.

III. FORENSICS

Gonzales-Rodriguez et al. [7] provide strong motivation

from forensic sciences for the evidential and discriminative

use of likelihood ratio (LR). They make the case for rigorous

quantification of the process leading from evidence (and expert

testimony) to decisions. Classical forensic reporting provides

only “identification” or “exclusion / elimination” decisions.

It has two main drawbacks. The first one is related to the

use of subjective thresholds. If the forensic scientist is the

one choosing the thresholds, he will be ignoring the prior

probabilities related to the case, disregarding the evidence

under analysis and usurping the role of the Court in taking the

decision, “. . . the use of thresholds is in essence a qualification
of the acceptable level of reasonable doubt adopted by the
expert” [8]. The second drawback is the large amount of non-

reporting or inconclusive cases that this identification / exclu-

sion process has induced. The Bayesian approach’s use of the

likelihood ratio avoids the above drawbacks. The roles of the

forensic scientist and the judge/jury are now clearly separated.

What the Court wants to know are the posterior odds in favor

of the prosecution proposition (P) against the defense (D)

[posterior odds = LR× prior odds]. The prior odds concern the

Court (background information relative to the case), while the

likelihood ratio, which indicates the strength of support from

the evidence, is provided by the forensic scientist. The forensic

scientist cannot infer the identity of the probe from the analysis

of the scientific evidence, but gives the Court the likelihood

ratio for the two competing hypothesis (P and D). The likeli-

hood ratio serves as an indicator of the discriminating power

(similar to Tippett plots) for the forensic system, e.g., the face

recognition engine, and it can be used to comparatively assess

authentication performance. The use of the likelihood ratio

has been motivated recently also by specific linkages between

biometrics and forensics [9] with the evidence evaluated using

a probabilistic framework. Forensic inferences correspond now

to authentication, exclusion, or inconclusive outcomes and are

based on the strength of biometric (filtering) evidence accrued

by prosecution and defense competing against each other. The

evidence consists of concordances and discordances for the

components making up the facial landscape. The likelihood

ratio LR is a quotient of a similarity factor, which supports

the evidence that the query sample belongs to a given suspect

(assuming that the null hypothesis is made by the prosecution

P), and a typicality factor, e.g., UBM (Universal Background

Model) which quantifies support for the alternative hypothesis

made by the defense D that the query sample belongs to

someone else (see Sect. V for the similarity between LR and

the strangeness measure).

IV. DISCRIMINATIVE METHODS

Discriminative methods support practical intelligence. Pro-

gressive processing, evidence accumulation, and fast decisions

are the hallmarks. There is no time for expensive density

estimation, marginalization, and synthesis characteristic of

generative methods. There are additional philosophical and

linguistic arguments that support the discriminative approach.

Philosophically, it has to do with practical reasoning and

epistemology, when recalling from Hume, that “all kinds of

reasoning consist in nothing but a comparison and a discovery

of those relations, either constant or inconstant, which two

or more objects bear to each other.” The likelihood ratio

LR provides straightforward means for discriminative methods

using optimal hypothesis testing. Assume that the null “H0”

and alternative “H1” hypotheses correspond to impostor i and

genuine g subjects, respectively. The probability to reject the

null hypothesis, known as the false accept rate (FAR) or type I

error, describes the situation when impostors are authenticated

as genuine subjects by mistake. The probability for correctly

rejecting the null hypothesis (in favor of the alternative hy-

pothesis) is known as the hit or genuine acceptance (“hit”) rate

(GAR). It defines the power of the test 1−β with β the type II

error when the test fails to reject the null hypothesis when it is

false. The Neyman-Pearson (NP) statistical test Ψ(x) tests in

an optimal fashion the null hypothesis against the alternative

hypothesis, e.g., P (Ψ(x) = 1|H0) = α,Ψ(x) = 1 when

fg(x)/fi(x) > τ , and Ψ(x) = 0 when fg(x)/fi(x) < τ with

τ some constant. The Neyman-Pearson lemma further says that

for some fixed FAR = α one can select the threshold τ such that

the Ψ(x) test maximizes GAR and is the most powerful test for

testing the null hypothesis against the alternative hypothesis

at significance level α. Specific implementations for Ψ(x)
during cascade classification are possible and they are driven

by strangeness (transduction) (see Sect. V) and boosting (see

Sect. VI).

V. TRANSDUCTION

Transduction is a type of local inference (“estimation”) that

moves from particular(s) to particular(s). In contrast to induc-

tive inference, where one uses empirical data to approximate

a functional dependency (the inductive step [that moves from
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particular to general] and then uses the dependency learned

to evaluate the values of the function at points of interest

(the deductive step [that moves from general to particular]),

one now directly estimates (using transduction) the values of

the function only at the points of interest from the training

data [10]. The simplest mathematical realization for transduc-

tive inference is the method of k-nearest neighbors. The Cover-

Hart theorem [11] proves that asymptotically the one nearest

neighbor algorithm is bounded above by twice the Bayes’ min-

imum probability of error. This makes the connection between

the Bayesian approach and likelihood ratios, on one side, and

strangeness (see below) and transduction, on the other side.

Transduction seeks to find, from all possible authentications

for unknown faces, the one that is most probable according

to the gallery of known faces. Face recognition requires (for

discrimination purposes) to compare and rank face images

according to the way they are different from each other and to

rank them accordingly. Scoring and ranking is done using the

strangeness and p-values, which are introduced and explained

below. Transduction and Kolmogorov complexity are closely

related. Let #(z) be the length of the binary string z and K(z) be

its Kolmogorov complexity, which is the length of the smallest

program (up to an additive constant) that a Universal Turing

Machine needs as input in order to output z. The randomness

deficiency D(z) for string z is D(z) = #(z) − K(z) with

D(z) a measure of how random the binary string z is [12].

The larger the randomness deficiency is the more regular and

more probable the string z is. Kolmogorov complexity and

randomness using MDL (minimum description length) are

closely related. Transduction chooses from all the possible

labeling for test data the one that yields the largest randomness

deficiency, i.e., the most probable labeling. The strangeness

measures the lack of typicality for a face component with

respect to its true or putative (assumed) identity label and the

labels for all the other faces. Formally, the strangeness measure

αi is the (likelihood) ratio of the sum of the k nearest neighbor

(k-nn) distances d from the same class y divided by the sum

of the k nearest neighbor (k-nn) distances from all the other

classes (¬y).

αi =

∑k
j=1 dy

ij
∑k

j=1 d¬y
ij

(1)

The smaller the strangeness, the larger its typicality and

the more probable its (putative) label y is. The strangeness

facilitates both feature selection (of image patches) (similar to

Markov blankets) and variable selection (dimensionality reduc-

tion). One finds empirically that the strangeness, classification

margin, sample and hypothesis margin, posteriors, and odds

are all related via a monotonically non-decreasing function

with a small strangeness amounting to a large margin. The

likelihood-like definitions for strangeness are intimately related

to discriminative methods. The p-values available compare

the strangeness values to determine the credibility and con-

fidence in the putative classifications made. The p-values bear

resemblance to their counterparts from statistics but are not

the same [13]. They are determined according to the relative

rankings of putative authentications against each one of the

identity classes known to the gallery using the strangeness.

The standard p-value construction shown below, where l is the

cardinality of the training set T, constitutes a valid randomness

(deficiency) test approximation [14] for some transductive

(putative label y) hypothesis

py(e) =
#{i : αi ≥ αy

new}
l + 1

(2)

The interpretation for p-values is similar to statistical testing

of likelihood ratios used to assess the extent to which the

biometric data supports or discredits the null hypothesis (for

some specific authentication) (see Sect. III). When the null hy-

pothesis is rejected for each identity class known, one declares

that the test image lacks mates in the gallery and the identity

query is answered with “none of the above.” This corresponds

to forensic exclusion with the rejection characteristic of open

set (face) recognition [6].

VI. BOOSTING

The basic assumption behind boosting is that “weak” learn-

ers can be combined to learn any target concept with probabil-

ity 1− η. Weak learners, usually built around simple features,

learn to classify at better than chance (with probability 1/2+η
for η > 0). AdaBoost [15] works by adaptively and iteratively

re-sampling the data to focus learning on samples that the

previous weak (learner) classifier could not master, with the

relative weights of misclassified samples increased after each

iteration. AdaBoost thus involves choosing T effective features

ht to serve as weak (learners) classifiers and using them to

construct the separating hyper-planes. The mixture of experts

or final boosted (stump) strong classifier H is

H(x) =
T∑

t=1

αtht(x) >
1
2

T∑

t=1

αt (3)

with α the reliability or strength of the weak learner. The con-

stant 1/2 comes in because the boundary is located mid-point

between 0 and 1. If the negative and positive examples are at

-1 and +1 the constant used is 1 rather than 1/2. The goal for

AdaBoost is margin optimization with the margin viewed as a

measure of confidence or predictive ability. The weights taken

by the data samples are related to their margin and explain the

AdaBoost’s generalization ability. AdaBoost minimizes (using

greedy optimization) some risk functional whose minimum

defines logistic regression. AdaBoost converges to the posterior

distribution of y conditioned on x, and the strong but greedy

classifier H in the limit becomes the log-likelihood ratio test.

The same margin can be also induced using the strangeness and

this is the approach taken here (see Sect. VII). The multi-class

extensions for AdaBoost are AdaBoost.M1 and .M2 the latter

used here to learn strong classifiers with the focus now on both

difficult samples to recognize and labels hard to discriminate.

The use of features or components as weak learners is justified

by their apparent simplicity. The drawback for AdaBoost.M1

comes from its expectation that the performance for the weak

learners selected is better than chance. When the number of
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classes is k > 2, the condition on error is, however, hard to

be met in practice. AdaBoost.M2 addresses this problem and

allows the weak learner to generate instead a set of plausible

labels together with their plausibility (not probability), i.e.,

[0, 1]k. The AdaBoost.M2 version focuses on the incorrect

labels that are hard to discriminate. Towards that end, Ad-

aBoost.M2 introduces a pseudo-loss et for hypotheses ht such

that for a given distribution Dt one seeks ht : x × Y → [0, 1]
that is better than chance. “The pseudo-loss is computed with

respect to a distribution over the set of all pairs of examples and

incorrect labels. By manipulating this distribution, the boosting

algorithm can focus the weak learner not only on hard-to-

classify examples, but more specifically, on the incorrect labels

y that are hardest to discriminate” [15]. The use of Neyman-

Pearson is complementary to AdaBoost.M2 training and can

meet pre-specified hit and false alarm rates during weak learner

selection.

VII. REPRESENTATION

Image patches (“features”) at different scales and bandwidth

channels are extracted. A Gaussian pyramid is built by blurring

the original image and image patches are extracted at each

level of the pyramid. The local patches extracted encode 1st

or 2nd order statistics. The motivation for the 2nd order patches

comes from the importance of suspicious coincidences [3],

which states that “two candidate feature A and B should be

encoded together if the join appearance probability P(A, B)

is much greater than P(A)P(B).” The 2nd order patches are

extracted from two local regions that neighbor each other.

Next one computes a descriptor for each local patch that is

highly distinctive yet is invariant to image variability, e.g.,

illumination and deformations such as facial expressions. The

SIFT descriptor [16], which satisfies such requirements, is used

to represent the local patches. SIFT provides robustness against

both localization errors and geometric distortions. It is further

normalized to unit length in order to reduce the sensitivity

to image contrast and brightness changes during the testing

stage. Feature (“patch instance”) selection takes place next.

Fig. 1. Exemplar-Based Face Components

Since background features are distributed uniformly they are

relatively strange and are iteratively discarded using iterative

backward elimination that approximates Markov blanket fil-

tering [17]. During face detection, i.e., face (foreground) vs.

background, one finds for each patch the closest patches from

other images that carry the same class label. If there is only

one class of objects, patches from additional background only

images are used to compute the strangeness. Competition to

prototype the face components is unsupervised and employs

k-means clustering. Boosting subsequently employs the com-

ponents to build corresponding strong classifiers for prediction

purposes (see Sect. VIII). The components are exemplar-based

combinations rather than singletons (see Fig. 1). This leads to

both flexibility and redundancy. Flexibility to match what is

most conspicuous and redundancy to allow substitutions when

patches and/or components are missing or their appearance has

changed. Additional motivation comes from the way objects in

inferotemporal (IT) cortex are represented using a variety of

combinations of active and inactive cortical column (“patches”)

for individual features [18]. The exemplar-based representation

used provides also effective means to share features (“patches”)

among components [19] and for transfer learning.

VIII. LEARNING AND PREDICTION

The strangeness is the thread to implement both represen-

tation and boosting (learning and prediction on classification).

The strangeness, which implements the interface between

the face representation and boosting, combines the merits

of filter and wrapper classification methods. The coefficients

and thresholds for the weak learners, including the thresholds

needed for open set recognition and rejection are learned

using validation images, which are described in terms of

components similar to those found during enrollment. The best

feature correspondence for each component is sought between

a validation and a training face image over the patches defining

that component. The strangeness of the best patch found during

training is computed for each validation image under all its

putative class labels c (c = 1, · · · , C). Assuming M validation

images from each class, one derives M positive strangeness

values for each class c, and M(C−1) negative strangeness val-

ues. The positive and negative strangeness values correspond to

the case when the putative label of the validation and training

image are the same or not, respectively. The strangeness values

are ranked for all the components available, and the best

weak learner hi is the one that maximizes the recognition

rate over the whole set of validation images V for some

component i and threshold θi. Boosting execution is equivalent

of cascade classification [20]. A component is chosen as a

weak learner on each iteration (see Fig. 2). The level of

Fig. 2. Learning Weak Learners as Stump Functions

significance determines the scope for the null hypothesi.

Different but specific alternatives can be used to minimize Type
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II error or equivalently to maximize the power (1 − β) of the

weak learner [21]. During cascade learning each weak learner

(“classifier”) is trained to achieve (minimum acceptable) hit

rate h = (1−β) and (maximum acceptable) false alarm rate α.

Upon completion, boosting yields the strong classifier H(x),
which is a collection of discriminative components playing

the role of weak learners. The hit rate after T iterations (see

Sect. VI) is hT and the false alarm αT .

IX. EXPERIMENTS

The results obtained confirmed first several known psy-

chophysical results [5], among them Result 5 “that of the

different facial features, eyebrows were indeed found most

important for face detection” (categorization layer 1: face vs.

background with Caltech 101 database) using transduction and

boosting. The face images in Caltech 101 database have faces

as well as clutter background. Faces are not segmented or

aligned. The best facial landmark is that component that earned

the largest coefficient during boosting. The eye brows are

highly discriminative due to their emotive contents, stability

and location above a convexity. This makes them less suscepti-

ble to shadow and illumination changes. Biometric experiments

using the interplay between transduction and boosting were

then performed on frontal faces collected at the University

of Notre Dame (UND) during 2002-2003, and now part of

the FRGC face image database [22]. The experiments are

functionally similar to those using multiple samples for face

recognition. The face images were acquired under varying

illumination (I) (uncontrolled lighting conditions) and/or with

varying facial expressions (E). There is also temporal (T)

variation as the face images were acquired during different

sessions over a one year period. We sampled 200 subjects

from the data base; for each one of them there are 48

(frontal) images of which 16 were acquired in an uncontrolled

(I&E&T ) environment. The local patches are extracted and

the corresponding SIFT descriptors are computed at five scales

using Ns = 5. Each face is represented by P = 43Ns = 215
components described using five feature (patches) exemplars.

Using symmetry the number of components comes down to

P = 26Ns = 130. For each subject, we randomly select 12

images as training set, another 12 images as the validation set

and the remaining 24 images as testing set. Euclidian distance

is used to compute the strangeness. The top-1 rank identi-

fication rates using 1st order patches and strangeness based

boosting were 97.5% and 97.9 without and with symmetry,

respectively. The corresponding rates using both 1st and 2nd

order patches were 98.1% and 98.9%, respectively. Test images

were then modified to simulate occlusion. A circle region with

radius r is randomly chosen across the face image, the content

of which is either set to zero or filled with random pixel values

in [0, 255]. On the average the recognition rate decreases when

the radius of occluded region increases but it does not drop

too much. The occluded regions are randomly chosen and

the performance observed is very stable when the occluded

regions are not too large. The next experiment considered the

case when the occluded regions are fixed, e.g., eyes, nose,

and mouth, and symmetry is used. The performance is almost

the same when one eye is occluded and the other one is

available. The occlusion of nose affects the performance more

than the mouth and eyes. This is consistent with the relative

distribution found for the face components’ coefficients and

with our earlier findings regarding the importance of the nose

for asymmetric faces [23]. Note the nose relevance for second

categorization layer (“identification”) vs. eye brow importance

(discussed earlier) for first categorization layer (“detection”).

X. DISCUSSION

One can expand on the thesis put forward by Barlow

(1989) regarding suspicious coincidences and their impact on

image representations and association codes. Towards that end

Balas and Sinha [24] have argued that “rather than relying

exclusively on traditional edge-based image representations, it

may be useful to also employ region-based strategies that can

compare noncontiguous image regions.” They further show that

“under certain circumstances, comparisons [using dissociated

dipole operators] between spatially disjoint image regions are,

on average, more valuable for recognition than features that

measure local contrast.” This leads to the obvious observation

that one can and should learn “optimal” sets of regions

comparisons for recognizing faces across varying pose and

illumination. The choices made on such combinations (during

the feature selection stage) amount to “rewiring” operators

that connect among lower level operators, usually local ones.

This corresponds to a higher processing and competitive stage

for the feed-forward and layered architecture. As a result

the repertoire of feature now ranges over local, global, and

non-local (disjoint) operators (“filters”). Ordinal rather than

absolute codes are also possible to gain invariance to small

changes in inter-region contrast [24]. The components are

clusters described as exemplar-based collections of representa-

tive (local or disjoint rewired) patches. Disjoint and “rewired”

patches contain more diagnostic information and are expected

to perform best for expression, self-occlusion, and varying an-

gle and pose variability. Small-scale local features emerge and

are found suitable for recognition under varying illumination.

This is in agreement with the optimality of gradient-based

features for such tasks [24]. The multi-feature and rewired

based representations and exemplar-based components provide

added flexibility and should lead to enhanced authentication

performance. The mode-free and non-parametric approach

presented throughout this paper has handled so far only frontal

images possibly affected by adverse data capture conditions.

One can expand, however, on the feed-forward architecture

to include pose as another dimension that emanates from the

origin of the n-D biometric processing space and needs to

be addressed (see Sect. I). Layered categorization still starts

with face detection but now it seeks for one of three possible

poses using boosting driven by relevant components. The

poses contemplated are left, frontal, and right. Patches and

components are now described using an extended vocabulary

of “rewired” operators, both quantitative and qualitative in

design (see above).
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XI. CONCLUSION

Biometrics cannot continue to assume that the personal

signatures used for face authentication are accurate, com-

plete, constant, and time-invariant. Most clients are indeed

legitimate and honest. They have nothing to hide, and have

all the incentives to cooperate. The purpose of biometrics,

however, is to provide security from impostors seeking to

breach security and/or from un-cooperative subjects. Impostors

are well motivated to interfere with the proper acquisition of

their biometric signatures, and will do their best to hide and/or

alter the information needed for their authentication. This paper

expands the operational scope for biometrics and addresses

situations that involve adverse data capture conditions. The

approach taken is realized using boosting and transduction

that work together to implement feed-forward (hierarchical)

competitive architectures that support component-based (face)

recognition strategies. The conceptual framework comes from

forensic sciences, the Bayesian framework using the likeli-

hood ratio (LR) and cohorts for discriminative methods, and

statistical learning theory (SLT) for hypothesis testing and

weak learner selection during boosting. The common thread

throughout is the strangeness. It helps with both feature and

weak learner selection. The feasibility, reliability, and utility

of the proposed open set face recognition architecture vis--vis

adverse image capture conditions were illustrated using FRGC

data. Venues for future research include open set face selection

for video sequences to detect and authenticate subjects whose

appearance is sporadic across CCTV frames; and to expand the

scope for decision-level fusion to asynchronous multi-sensory

data integration. Additional challenges and venues for future

research include real-world visual search and categorization

(VSC) [25] within complex scenes and the small size problem.
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