

Societa' Chimica Italiana

Dipartimento di Chimica e Farmacia Università di Sassari Istituto di Chimica Biomolecolare del CNR di Sassari

Comitato Scientifico

Prof. Paolo Scrimin
Prof. Raffaele Riccio
Prof. Roberto Ballini
Prof. Valeria Conte
Prof. Marco D'Ischia
Prof. Gianluca Farinola

Conferenze Plenarie:

Dott. Catia Bastioli, Matrica/Novamont

Dott. Walter Cabri, Indena

<u>Prof. Cinzia Chiappe,</u> Uni Pisa

Prof Antonella Dalla Cort Uni Roma 1

Prof. Bartolo Gabriele, Uni Calabria

Prof. Cesare Gennari, Uni Milano

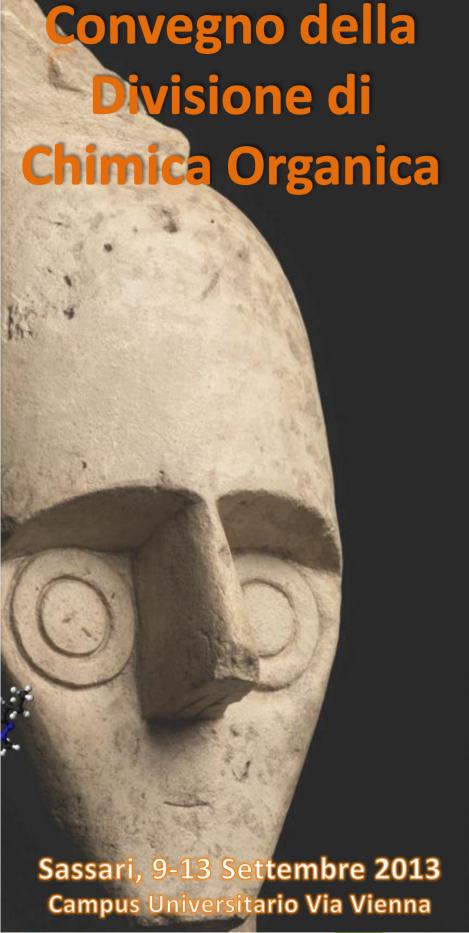
Prof. Andrea Mazzanti, Uni Bologna

Dott. Alessandro Mordini, CNR Firenze

Prof. Carmen Nàjera, Uni Alicante

Dott. Vincenzo Palermo, ISOF CNR Bologna

Dott. Stefano Protti, Uni Pavia


Dott. Haymo Ross, EurJOCWiley

Prof. Claudio Trombini, Uni Bologna

Dott. Antonio Zanotti-Gerosa, Johnson Matthey

Comitato Organizzatore

Prof. Ugo Azzena
Dott. Massimo Carraro
Dott.ssa Giovanna Delogu
Dott.ssa Lidia De Luca
Dott. Davide Fabbri
Dott. Mauro Marchetti
Dott.ssa Luisa Pisano
Dott. Andrea Porcheddu
Dott.ssa Gloria Rassu

EdiSES

Agilent Technologies

Synthesis and Study of Polyhydroxylated Phenol Derivatives with Potential Cosmetic and Phytoiatric Applications

¹Maria Antonietta Dettori, ¹Davide Fabbri, ²Xenia Fois, ¹Roberto Dallocchio, ¹Alessandro Dessì, ³Pier Andrea Serra, ²Roberto Pantaleoni, ³Gaia Rocchitta e ¹Giovanna Delogu

¹CNR-Istituto di Chimica Biomolecolare, UOS Sassari, Traversa La Crucca 3, 07100 Sassari. ²CNR-Istituto per lo Studio degli Ecosistemi, Traversa La Crucca 3, 07100 Sassari. ³UNISS-Dipartimento di Medicina Clinica e Sperimentale, V.le S. Pietro 43/b, 07100 Sassari

a.dettori@icb.cnr.it

Tyrosinase (polyphenol oxidase, E.C. 1.14.18.1) and laccase (phenol oxidase, E.C. 1.10.3.2) are multifunctional copper-containing enzymes, that are keys in melanin biosynthesis, melanisation in animals and browning in plants. Tyrosinase inhibitors can therefore be clinically useful for treatment of some dermatological disorders associated with melanin hyperpigmentation, these inhibitors are also known to be useful in cosmetics as whitening agents (1). The involvement of laccase in cuticle sclerotization or tanning is essential to insect survival (2). In the past few decades, a number of polyphenols tyrosinase inhibitors and laccase inhibitors from both natural and synthetic sources, including polyhydroxylated flavonoids, stilbenes and terpenoids have intensively investigated (3). To our knowledge, however, only few biphenyl inhibitors have been reported to date (4).

Our study is aimed to prepare new monomer and dimer phenol derivatives as potential inhibitors of melanin production starting from natural hydroxylated aromatic units. In the figure are reported some of the new synthesized derivatives (1, 2 and 3) representative of gingerdiones, chalcones, and *C*-prenylated biphenols classes, respectively.

Docking studies of the new compounds with crystal structure of tyrosinase and laccase, were carried on, respectively. Most of the compounds were prepared according to the guidelines of Sustainable Chemistry and they were tested as inhibitors in tyrosinase and laccase assays for potential cosmetic and phytoiatric applications.

- (1) Chang. T. S. Int. J. Mol. Sci. 2009, 10, 2440-2475.
- (2) Dittmer, N. T.; Kanost, M. R. Insect Biochem. Mol. Biol. 2010, 40, 179-188.
- (3) Khan, M. T. H.; Khan, S. B.; Ather, A. Bioorg. Med. Chem. 2006, 14, 938-943.
- (4) Kai, B. et al. Bioorg. Med. Chem. 2010, 18, 6708-6714.

This work has been supported by Sardinia Autonomous Region - L.R. 7 August 2007, n. 7