
132 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL 12, NO. 5, OCTOBER 1996 

ust Visual Servoing in 3-D Reaching Tasks 
Enrico Grosso, Giorgio Metta, Andrea Oddera, and Giulio Sandini 

Abstract-This paper describes a novel approach to the prob- 
lem of reaching an object in space under visual guidance. The 
approach is characterized by a great robustness to calibration 
errors, such that virtually no calibration is required. Servoing 
is based on binocular vision: a continuous measure of the end- 
effector motion field, derived from real-time computation of  
the binocular optical flow over the stereo images, is compared 
with the actual position of the target and the relative error in 
the end-effector trajectory is continuously corrected. The paper 
outlines the general framework of the approach, shows how 
visual measures are obtained and discusses the synthesis of the 
controller along with its stability analysis. Real-time experiments 
are presented to show the applicability of the approach in real 
3-D applications. 

Index Terms-Visual servoing, 3-D reaching, robot manipula- 
tion, stereo vision. 

I. INTRODUCTION 

BASIC skill for a manipulating actor is the ability to 
reach an object in space. Apart from trivial cases, in 

which the position of the object to be reached is a-priori known 
in the arm coordinate system, the acquisition of some kind of 
sensory information is indispensable to guide the end-effector 
toward the target. This requirement becomes crucial whenever 
the system has to cope with moving objects, obstacles and/or 
unexpected events and in all cases where the kinematics andor  
the dynamics of the reaching device is altered (for example 
when the task requires the use of a hand-held tool). 

Because of its unique role during the “pre-contact” phases 
of manipulation, vision has been, and still is, considered 
crucial to acquire geometric and dynamic information about 
the environment and to guide motor and, particularly, reaching 
actions. 

Within this framework two main paradigms have been 
proposed: the so-called 3-0 metric paradigm and the visual 
sewoing approach. In the 3-D metric paradigm [l], [2] the 
control error function is built in the 3-D Cartesian space and, 
consequently, visual information has to be mapped from image 
space to the 3-D space on the basis of a precise camera 
model obtained through a calibration procedure. In the visual 
servoing approach [3], which is very much related to the active 
vision paradigm [4], [ 5 ] ,  [6], the error function is computed 
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in the image space [7]-[lo] and the calibration requirements 
are somehow less demanding allowing the synthesis of more 
robust control laws. 

The tradeoff between these two approaches is probably 
measured in terms of reaching strategy: if the reaching action 
has to be programmed as a single, ballistic motion of the arm, 
a very accurate calibration is required. On the other hand, 
if the reaching action can be controlled during its execution 
(allowing for “on-the-fly’’ correction of errors), the visual 
servoing approach may be more convenient because of its 
intrinsic flexibility to environmental as well as internal changes 
[ I l l .  

In the case of visual servoing, task completion in the image 
space must correspond to the correct task execution in the 
Cartesian control space and, therefore, designing a task requires 
the selection of a set of visual features and state variables 
which allow a complete and univocal description of the action 
to be performed. Depending on the specific task, on the 
camera-arm configuration, and on the available computational 
power, different visual measures have been proposed [ 121, 
[13]. They are mainly based on static features detected and 
tracked throughout the temporal image sequence. Among the 
techniques proposed to synthesize the control law, significant 
examples are the optimal control approach [9] or the task 
functions approach proposed by Espiau and his colleagues 

Extending ideas presented in some previous work [15], 
[ 161, this paper presents an original contribution to the vi- 
sual servoing paradigm based on object-centered static and 
dynamic visual features. The combined use of disparity and 
image velocity information virtually eliminates the need of 
calibrating the apparatus to the extent that the transformation 
between the camera and the arm coordinate systems need to 
be know only qualitatively, resulting in a very robust control 
law. In this respect, therefore, the approach presented here is 
more similar to the one proposed in [17] based on a rough 
calibration than to the one based on on-line calibration [18] 
because the only requirement in term of calibration is that 
both the intrinsic and extrinsic camera parameters, as well as 
the actual relative position between the arm and the vision 
system remain within given limits. For example, as to the 
stereo set-up, both cameras should mount the same kind of 
lens, their optical axes should lie approximately on a plane, 
and the field-of-view should be wide enough for the object 
and the end effector to be simultaneously visible during the 
reaching task. As to the transformation between the camera 
and the arm coordinate system the only requirement is a very 
rough knowledge of the relative orientation. Based upon these 
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loose calibration requirements a control law is synthesized and 
its stability demonstrated using a Lyapunov-like approach [ 191. 

In the next section the proposed approach is described and 
put into context of a head-eye-hand system. Section 111 will 
describe the theoretical framework of the approach, followed 
by Sections IV and V presenting the synthesis and stability 
analysis of the controller. Visual processing is described in 
Section VI, followed by the presentation of the experimental 
results (Section VII). 

11. MOTIVATION OF THE APPROACH 

The starting point of the research results presented in this 
paper was a simple observation regarding human performance 
during thc cxccution of manipulative actions: the proprio- 
ceptive sensors (the “biological encoders”) as well as the 
internal kinematic representation of the human body are far 
less accurate than the accuracy observed in the execution of 
even simple reaching tasks. For example if you draw a point on 
a sheet of paper and than, after closing the eyes and moving the 
arm, you try to “redraw” the same point, you will experience 
the low accuracy in assuming the same posture. Or if you try to 
recap a pen you may easily verify how performance degrades 
with the closing of the eyes. Yet, all the information should 
be known to the system. 

Besides the interesting biological questions arising, which 
are outside the scope of this paper, our attempt has been 
devoted to try to identify possible solutions to reaching tasks 
which do not require an accurate metric estimation of the 
end effector position with respect to the cameras coordinate 
system. This requirement impacts not only on the estimation of 
the camera intrinsic parameters (which in the case of humans 
may be supposed to be known) but, more importantly, on the 
estimation of the spatial relationship between the head and the 
arm. Putting this observation in a more general perspective of 
an eye-head-hand robotic system, it is worth noting that when 
the complexity of the mechanical apparatus increases, any 
approach based on accurate calibration is bound to become less 
and less robust because even small errors in the computation 
of calibration parameters combines in a non easily predictable 
way. If we consider for example a system composed of a 
four degrees of freedom binocular head (vergence, pan and 
tilt) a metric approach requires very accurate intrinsic and 
extrinsic camera parameters to be computed, as well as a 
precise measure of all the angles and, consequently, imposes 
even stricter constraints on the allowable backlash of each 
degree of freedom. Moreover the transformation between the 
camera’s and the end-effector coordinate system has to be 
modified in the case of tasks performed by means of hand- 
held devices (such as a wrench or a special purpose gripper) 
requiring either pre-calibrated tools or on-line calibration 
procedures. Therefore, even if the current implementation has 
been experimentally tested only with static cameras, its validity 
is, at least in principle, even more interesting in a more 
complex manipulation set-up where the object to be reached 
can be actively tracked. 

A second observation which has triggered the choice of the 
visual features adopted in this paper, is the intrinsic richness 
of image velocity information during the execution of tasks 
involving “motions” in the visual field. Even if the visual 
servoing field is now far from the approach predominant a 
few year ago which was exclusively based on the measure of 
static features (like the position of objects in the 3-D space) 
and thus relying heavily on the knowledge of kinesthetic 
proprioceptive parameters, we believe that a much richer 
domain is open by the explicit measure and use of binocular 
disparity and image velocity information computed during the 
self-generated motion [ 1 11. 

111. GENERAL FRAMEWORK 
Reminding the Lyapunov theorem and its consequences, let 

X = f (X,  U) be a dynamic system, where X is the state 
vector and U is the control vector. Considering a Lyapunov 
function V(X) it is known that if V is negative definite the 
system is asymptotically stable. 

The designer task is to find a control vector U that assures 
the negativeness of V .  The normal choice is to design U 
so that V is a negative definite quadratic form but other 
functions can be properly chosen. Using this technique we 
are free to select a set of variables that describe at best the 
task with regard to simplicity and measure robustness. Even if 
the state vector is not directly measurable, stability holds until 
the Lyapunov function derivative remains negative definite. 

Considering the reaching task, we define the goal of the 
system in this way: the controller must keep the end-effector 
on an ideal linear trajectory connecting, at each instant of time, 
the end-effector and the target point. If the target is moving, 
this linear trajectory is, of course, time-varying. However, at 
each instant of time, it can be identified segmenting in the 
visual field the target and the end-effector. 

Referring to Fig. I ,  motion of the end-effector along the 3- 
D trajectory can be constrained by nulling the angle B between 
the end-effector velocity vector v and the ideal trajectory path, 
denoted by x. Analytically, the angle 0 is defined by the 
expression 

(1) 

where h = JL is the unitary vector along the velocity llvll 
direction and n = is the unitary vector along the ideal 
trajectory. The unitary vector r, defining the axis about which 
a rotation aligns the velocity vector with the ideal trajectory 
direction, is defined by the vector product between h and n 

h x n = r sin 0. 

h .  n = cos B 

IIXII 

(2) 

In order to control the reaching task, variables 0 and r 
must be derived computing, from visual information, the end- 
effector velocity, its position in space and the position of 
the target point. A third variable, the Euclidean distance lixil 
between the end-effector and the target point, is used to 
control the approaching velocity (e.g., the amplitude of the 
end-effector velocity) and to stop the arm when the target 
point is reached. 
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Fig. 1. Frame positions and state variables used in the control task. 

that 

. 

. 

Before proceeding to a detailed system description and 
analysis it is worth to summarize some general assumptions 

characterize the proposed approach: 
The robot manipulator is considered as an ideal position- 
ing device, with negligible dynamics. 
The binocular system is "well posed" with respect to 

time derivative of x depends on v 

x = -v. ( 3 )  

The rotation needed to align the end-effector velocity with the 
ideal trajectory must be performed about the r axis. To this 
purpose, the dynamics of 0 can be computed by differentiating 
(1) with respect to time 

h . n + h . r i =  -)sing. (4) 

If the velocity vector maintains a constant direction (h = 0)  in 
frame ( e )  we obtain, with respect to an inertial reference frame 

and, substituting expressions (3 ) ,  (1) and (2) 

llvll 

llxll 
0 = - r . w +  -sin6'. 

The dynamics of r can be obtained in a similar way by differ- 
entiating (2); this gives, after some algebraic manipulations 

. w'n cos0 r = --h- -r x (w x r). 
sin 6' sin 6' (7) 

Now, reordering (3 ) ,  (6) and (7) and eliminating spurious 
variables, a complete description of the system is obtained 

4 = -r. w + sin 0 llxll 
j : = - N ( x x r s i n ~ + x c o s ~ )  IIXII (8) 
i- = q ( x  x r) + -x W ' X  cos 0 - s r  x (w x r)  

IIXII llxll s*n 

the arm, meaning there is a rough knowledge of the 
orientation of the control space with respect to the camera 
frames. Explicit bounds to this knowledge will be derived 
by stability analysis. 
The stereo system verges approximately on the target; the 
field of view is wide enough to make both the target and 
the end effector visible during the reaching action. 
The arm moves slowly enough for the system to compute 
image features (velocity in particular) reliably. 

where 8 E ( -T.  T ) ,  x E R3, r unitary E R3. 
In order to control the reaching task, state variables are 

estimated from visual information, computing on the image 
plane the velocity of the end effector, its position in space and 
the position of the target point. Then, the following control 

Finally it is worth noting that the control strategy adopted is 
aimed at reaching the target with the desired orientation of the 
end effector; to this purpose, the controller rotates the frame 
attached to the end-effector while maintaining the direction 
of the velocity vector (in the same frame) and modulating 
its amplitude. This is also a major issue in the derivation of 
the system equations, as pointed out in the next section. The 
analysis presented is related to the case of a static target: 
therefore, in the current implementation the manipulator is 
unable to reach the target point until it reaches a complete 
stop while it moves. 

Iv. CONTROL SYNTHESIS AND STABILITY ANALYSIS 

Consider the configuration depicted in Fig. 1. The frame 
( e )  represents the end-effector; the movement of the end- 
effector with respect to the external reference frame (R)  is 
characterized by a translational velocity v and a rotational 
velocity w .  The state variables used for the system description 
are 8, r and x, defined in the previous section. In order to 
derive the system description we first observe that being the 
target stationary with respect to an inertial reference frame, 

law is applied 

(9) 

It is straightforward to verify that in case of perfect measure- 
ments, the closed loop system is described by 

(10) 
r = 0.  

Concerning the asymptotical stability of the subsystem 

(1 1) 
0 = -kQ + ysin6' 
x = -r(x x r sin 8 + x cos 0) 

we can observe that r is an unknown constant value. Therefore 
the following Lyapunov function can be considered 

(12) 
v = 6 + fi = -82 1 1  + -ilx112 

2 2  
and its derivative 

v = + v 2  

- /lvll llxll cos8. (13) 
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The application of the stability criterion yields 

V = -ko2 + 70 sin 0 - yllx112 cos 0 (14) 

which negativeness in a neighborhood of the equilibrium point 
(8 1 0. x = 0) can be easily proved. 

V. USING VISUAL FEATURES 
Using two cameras it is possible to estimate spatial po- 

sitions and velocities starting from their projections in the 
image planes. However, the computation of precise metric 
positionshelocities requires calibration of both intrinsic and 
extrinsic parameters. In other words, the relation among frames 
(R) .  (1) and ( T )  must be estimated with a sufficient accuracy. 

A key point in this work is the demonstration that mea- 
surements performed in the image space can be used directly 
inside the control loop without any explicit calibration pro- 
cedure. Intuitively, this approach relies on the knowledge of 
binocular disparity, which monotonically maps distance from 
the observer. As a consequence, even though the camera 
parameters are completely unknown, state variables can be 
observed through a "visual space" which fully maps the 3-D 
Cartesian space. To define the visual space (VS) let us first 
introduce the well known pin-hole model (Fig. 2) for the left 
and right cameras 

where ( ~ 1 ,  vl) and ( U,, U,) represent the image coordinates and 
cli takes into account the focal length and the pixel resolution. 
Also suppose that the cameras have coplanar optical axes, as 
in Fig. 3, and the VS frame is centered in the fixation point, 
with the z axis parallel to 2. 

The position of a generic point in the frame (VS) is 
described by the following equations 

ab1 - ~ l b 3  

sin$(ulu, + a 2 )  + cli cos$(ul - U,)  

ab1 - u l b y  

sin$(ulu,, + a2)  + mcos,$(?~l - U,) 

a b 3  tan?/iwl - bl  tan$uriL, - bla(ul ~ u..) 
tan $[sin $ ( u ~ u ,  + a 2 )  + cos ~ ( 1 1 1  - 71, )] 

vs.r = ' U7 

3 ' U ,  VS Y =  

(16) 

where the vergence angle $ and the interocular baseline b = 
( b l ,  0, b ~ ) ~  define the relative position of the cameras. Visual 
information appears as the point position (71,, 7 1 r )  and the 
binocular disparity (u1 - u ~ ) .  In a neighborhood of the fixation 
point equations (16) can be drastically reduced, imposing 
K($,b) = & and obtaining 

" S Z  

'7l T 
L r s x  e ~ K($, b) , 

N 

' 71, YC- vs j{($>b) 
a 

Equations (1 7) define a Cartesian space in which state variables 
Q and r can be estimated independently of the parameter a and 

Fig. 2. Pin hole model. 

Fig. 3. Location of the visual frame (VS) in the coplanar case 

the function K ( $ ,  b). The ratio acts as a proportional 
factor in the estimate of the state variable x, but this effect can 
be compensated by an appropriate choice of the control gain y. 

Still, with reference to (17) it is worth noting that the 
vergence angle ,t,h can be related to the position of the ma- 
nipulation space. If an estimate of $ is not available, the 
visual space will not be Cartesian and the estimate of the state 
variables will be affected by errors. Moreover, due to the fact 
that the control of the arm is performed in the control space 
(R) ,  the relative rotation between the (I?) and the (VS) frames 
will induce a further error on the estimate of r. 

The image coordinates of the target and the end-effector 
are shown in Fig. 11. The effect of the control applied is in 
this case the superposition of the image coordinates of the 
end-effector and the target. 

The aspects outlined above can be formalized in more detail 
under form of measurement error. Suppose the control U is 
designed so that the Lyapunov stability condition is satisfied. 
If U is the estimated control vector, built using the form of 
U as guideline, then the crcm condition to keep stability is 

. f ( X , U )  f ( X . 6 )  > 0 (18) 

with 

U =  0 e U = 0. (19) 
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llxll increase 

I 
Stability 

Fig. 4. The space state defined by 6’ and llxll 

These are additional conditions on the estimation of the control 
vector which must be satisfied by the visual system. 

In the case presented the estimated quantities become 

Therefore the condition for stability of the subsystem given 
in (11) is 

~ I I X I I ~  V = -k ( r  . r)6’6’ + y- sin 6’ 6’ - rllxlliixll cos 0 < 0. 
llxll 

(21) 

The negativeness of the term VI is controlled choosing y and 
k and imposing the following conditions 

and 

In our case (22) and (23) always hold, while (24) implies that 
the angle between the estimated value and the actual value 
should not exceed :. 

Negativeness of V, is not guaranteed because it depends 
on the sign of cos 8. However, considering that VI < 0 , 8  is 
asymptotically stable and convergent to zero. Therefore, the 
sign of cos0 will become positive for t > t* 

lim ((x(t)I( = 0. (25) 
t++m 

The behavior corresponding to the outlined solution can be 
associated to the sign of V in the space state as sketched in 
Fig. 4. In Fig. 5 a possible trajectory for the system in the 
space state is also shown. Finally, it is important to note that 
the dynamics of r does not affect the stability of the system; 
what matters with regard to stability is the estimation of the 
vector r in order to apply the control law (9). 

Due to the error on the estimate of q dynamics of r is 
perturbed but the stability of the subsystem (1 1) is preserved 

\ 
\ 

IIxII decrease 

Fig. 5.  An hypothetical trajectory in the space state 

until the sign of the dot product r . r is positive, in order to 
prevent positive feedback. 

In summary, the stability analysis demonstrates that for the 
system described by (8), by using the proposed control law 
the state variables d and x asymptotically converge to the 
equilibrium point (0 = 0, x = 0) .  Quantities measured on the 
image planes (U and U coordinates, binocular disparity and the 
corresponding time derivatives) are the result of a projective 
mapping of the physical quantities through the camera model. 
Because this mapping is well formed in Lyapunov sense 
system stability is preserved. The only restrictions concern 
the translational velocity of the end effector, which must 
preserve a constant direction in the ( e )  frame, and the relative 
orientation between the vector r and the estimate ? (depending 
on $ and on the relative orientation between the visual frame 
(VS) and the control frame (R) )  which must not exceed ?j. 
In other words this is the reason why we define this approach 
“uncalibrated”. The accuracy required in the estimate of r is 
so low that calibration techniques are not required anymore; 
simply we have to take care that upldown and leftlright 
movements (and consequently closer/farther) have a common 
meaning in the visual and control spaces. If a good estimate 
of the vergence angle and of the relative orientation between 
the visual frame and the control frame is available, the system 
will perform better but this is not a strict requirement and it 
has never been used in our experiments. The system must also 
be coplanar but this is a weak constraint, in the sense that a 
set of equations similar to (17) can be rewritten for a generic 
fixating stereo setup. Finally it is worth noting that the choice 
of the visual features has great importance in this framework. 
In particular, state variables must be completely independent 
on the position of the visual system. This is the case for r; 0 
and x, all of which depend on the mutual position of visible 
points. 

VI. VISUAL PRQCESSING 
The position of the target t and the end-effector e in the 

visual space is given by (17). Therefore, the state variable x 
is 
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Fig. 6. 
the timing of the control loop. 

The setup used for the experiments and a xhematic diagram showing 

The estimate of 0 and r requires the computation of the motion 
field. Again from (17) we have 

cy 

that is the direction of v can be derived directly from image 
information, by optical flow computation in the image space. 
At this point Q and r are given by (1) and (2), respectively. 

A. Optical Flow 
The optical flow estimation algorithm belongs to the class 

of the differential techniques, involving the computation of the 
spatio-temporal derivatives of the image intensities. Using the 
fundamental optical flow constraint [21] 

d 
-I = 0 
d t  

only the field component normal to the local intensity (e.g., 
I) gradient can be extracted. Tretiak [20] proposes an addi- 
tional constraint based on second order differential operators. 

frame 11.25 

Fig. 7. Few frames from the pen capping experiment. 

Deriving (28) and making the hypothesis that the velocity is 
locally constant 

d -VI = 0. 
d t  

The set (28) and (29) of 3 linear equations in 2 unknowns can 
be solved [22] computing the image velocity V = (h,  c). 

B. Target and End-Effector Position Estimation 

The end-effector position estimation algorithm is based on 
velocity segmentation in the image space. Both images are 
processed simultaneously. The end-effector is located during 
the first few frames because it is the only moving object in 
the scene. In order to increase computational speed optic flow 
computation is limited, after the bootstrap phase, to a window 
of attention positioned around the end effector (see Fig. 8). 
The position of the window of attention is predicted applying 
Kalman filtering to a simple discrete-time dynamic model, on 
the image plane 
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Fig. 8. The result of optical flow computation on frame n. 17 (right camera); 
the window of attention (white frame) defines thc position of the end-effector. 

V 
0 10 20 30 40 50 60 70 

The state variable 4 (in degrees) measured during the pen capping 

Frame 

Fig. 9. 
experiment. 

where et is the end-effector position at instant i and V, is 
the velocity at the same time instant. The term Ct represents 
measurement noise while At is the sampling interval. 

The position of the target can be located and tracked by 
using a similar approach or by using a correlative approach. 
However, due to time constraints in the control loop, the target 
point is currently segmented by a thresholding procedure. 

VII. EXPERIMENTAL RESULTS 
The experimental setup is composed of a manipulator and 

a perceptual component. The manipulator is an Unimation 
PUMA260 Robot controlled by a HP 743 VME board running 
RCCL [23]. A parallel interface provides the high-speed 

0 '  
0 

I 
10 20 30 40 50 60 70 

Frame 

Fig. 10. 
pen capping experiment (peaks correspond to target movements). 

The norm of the state variable x (in pixels) measured during the 

40v 30 

20 

0 10 20 30 40 50 60 70 
Frame 

Fig. 11. 
the visual process in the image space. 

End-effector and target position (ur, U?.) (in pixels) measured by 

communication between the VME bus and the Unimation 
Controller. 

The vision system consists of an EISA frame grabber board, 
plugged into a HP 747 workstation and connected to a pair of 
CCD cameras. 
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frmie n.18 

Fig. 12. Few frames from the spoon experiment. 

In Fig. 6 a picture of the setup is shown, together with a 
schematic diagram of the control loop. The innermost loop 
is the hardware joint controller located inside the Unimation 
Controller and working at 1 kHz rate. A RCI/RCCL process 
runs on the HP board taking care of the inverse jacobian com- 
putation needed to translate Cartesian space commands into 
joint space commands. At this level the control loop is closed 
at 40 Hz. The outermost loop is based on visual information. 
The HP 747 performs the required image processing steps 
at the approximate rate of 5 Hz. In order to speed up the 
computation, the original 512 x 512 images are subsampled 
down to 80 x 80 pixels. 

In all the experiments performed the stereo cameras were 
static and their position was manually adjusted to cover the 
required work space (i.e., both the target and the arm should be 
present in the field of view when the experiment is initiated). 
Vergence was also manually adjusted before the experiment 
started in order to keep the fixation point close to the target. 

A. The Capping Experiment 

In this experiment a pen is attached to the end-effector while 
the cap is manually moved up and down. The robot must reach 

the target, continuously correcting its trajectory in order to 
react to the movements of the cap. 

In order to better illustrate the behavior of the system, the 
motion vector v and the target are constrained to stay on a 
fixed plane. Therefore, the visual system simply estimates 6' 
and IlxII, applying the computed rotation about an axis normal 
to the motion plane. 

Fig. 7 shows few frames of the sequence, lasting about 15 
s. Images are captured by the right camera. 

Fig. 8 shows the optical flow computed for frame 17 and the 
window of attention used for target segmentation. The position 
of the target and the projection of the vector x are also shown. 
Figs. 9 and 10 show the state variable 8 and the euclidean norm 
ilxll estimated during the experiment; jerky movements of the 
target are clearly visible at frames 5,  20 and 35. Also, it is 
clear that the control applied zeroes the state variables 0 and 
x, stopping the arm when ~~x~~ becomes smaller than 4 pixels. 

B. The Spoon Experiment 

This experiment is fully three-dimensional. A teaspoon of 
sugar is attached to the end-effector and a cup is placed on 
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Fig. 14. 
experiment. 

The norm of Etate variable x (in pixels) measured during the spoon 

the desk. The robot must bring the teaspoon over the cup and 
pour the sugar once the target is reached. 

Fig. 12 shows few stereo frames of the sequence. The 
experiment lasts 43 frames and the robot spends about 9 
seconds to reach the target point. In Figs. 13 and 14 the state 
variable 8 and the norm llx(l estimated during the experiment 
are shown. As before, the control applied zeroes the state 
variables 19 and x, stopping the arm when / (x((  becomes smaller 
that 4 pixels. In this case, however, the target is clearly 
stationary, and this appears particularly in Fig. 14. Also, in this 
figure the slope of the plot indicates how the velocity changes 
over time, according to (9). Fig. 15 shows the trajectory in 
the image space of the target and the end-effector. Again the 
effect of the control applied i s  the zeroing of the difference 
between the image coordinates of the tool and the target. 

VIII. CONCLUSION 

This paper shows how the visual servoing paradigm can be 
effectively used to control a reaching task in a simple and reli- 
able manner. An appropriate choice of visual features and state 

I 
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Frame 
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'spamtargetz' ---- 

-5 t 1 

-15 
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15. End-effector and tarEet tralectory measured in the image space 
~~ 

( U ~ . .  7'7- and disparity in pixels). 

variables allows to avoid any calibration procedure for a wide 
range of configurations of the head-arm system. This aspect 
is discussed in detail and a stability analysis is presented to 
motivate the experimental results. From a general point of view 
the proposed approach has the peculiarity of being based on 
a continuous use of visual information. The trajectory and the 
velocity of the arm are continuously controlled on the basis of 
few dynamic visual features. The experiments presented show 
the behavior of the system for 2-D and 3-D reaching tasks. 
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The approach presented here is still limited by the fact that 
we only partially exploit the knowledge of the self-generated 
motor act (the direction of the translational velocity) to tune 
the visual processing and by the fact that the position of the 
cameras in space cannot be actively controlled. Interesting 
extensions (and possibly simplifications) can be achieved by 
controlling, not only the motion of the arm, but also the 
position and orientation of the cameras. It is worth noting, 
in fact, that our calibration-less approach will hold also if the 
camera moves simultaneously with the arm (apart, of course, 
the non trivial added problem of segmenting a moving object 
from a moving camera). This potentiality can be of great 
importance to keep the visual field oriented toward the target 
in case of moving targets and/or if the cameras are mounted 
on a moving platform. 

In terms of potential applications, the proposed approach 
could be very interesting, particularly in all cases in which 
accurate calibration is impossible or time consuming. For 
instance, in all applications in which the vision system and 
the arm are not rigidly connected (mobile vehicles under visual 
surveillance, docking stations for carry and load systems). 

Work is in progress for the implementation of a fully 
integrated head-arm system, in which the reaching task will 
exploit basic eye-head movements like tracking, vergence and 
saccades. 
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