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Molecular dynamics simulations of the di†usion of diatomic oscillators representing the halogen molecules
and of linear Ñexible triatomic species modelling and have been carried out in the zeolite silicalite.CO2 CS2
The main purpose was to compare the performance of the random walk model to that of its ““ two-stepÏÏ
extension in representing molecular migration inside such an interconnected 3-D pore network. The two-step
model always gives a better estimate of the elements of the di†usion tensor, and also provides some interesting
insight into the features of the molecular motion of the studied species. The analysis of the two-step event
probabilities is also applied to assess the extent of di†usive memory in each case.

1. Introduction

The special pore structure of the zeolite silicalite has deep
e†ects on the di†usive properties of guest molecules moving in
its cavities. The main consequence is that the one-dimensional
components and of the total di†usion coefficientD

x
, D

y
D

zmust depend on each other. By representing the motion of
sorbed molecules as a random walk between neighbouring
channel intersections, a simple correlation rule has been
obtained.1 This representation does not imply any assumption
about where the molecules spend most of their time. One is
simply approaching the real trajectory by a sequence of
straight lines connecting the channel intersections. For dis-
placements much larger than the distances between adjacent
intersections, this approximation does in no way a†ect the
resulting di†usivities. The basic assumption of the random
walk model is the quick loss of memory of the di†usants
between consecutive ““ jumpsÏÏ (i.e. on the way from one inter-
section to the subsequent one) ; this corresponds to a complete
randomisation of molecular migration, in such a way that,
after entering a channel intersection, a molecule will proceed
to any of the four adjacent intersections with a probability
independent of its previous ““history ÏÏ.

If this assumption is not entirely fulÐlled, one can expect
deviations from the behaviour predicted on the basis of the
random walk propagation. As these deviations are, at least
partially, due to the persistence of di†usive memory in the
sorbates, they can be taken into account by representing the
di†usive path as a sequence of two-step (instead of single-step)
events : each event is a pair of jumps between adjacent inter-
sections (see ref. 2). By considering only such coupled displace-
ments in the overall trajectory, as a Ðrst approximation, the
correlation between two subsequent displacements from
channel intersection to channel intersection can be directly
accounted for. Indeed, by expressing the components of the
mean square displacement on the basis of the observed
numbers of di†erent two-step events, we implicitly avoid the
assumption of complete randomisation between single jumps.
For example, the tendency of a molecule to continue (or not
to continue) in the same direction from which it came is
directly considered in the two-step model equations, which

include the numbers of coupled events in the same direction,
as well as the switches of direction, and so on. In other words,
the di†usive memory can (if present) a†ect the di†usion coeffi-
cients estimated through the two-step model, while in the
random walk model such inÑuence cannot be directly
included.

Both models are statistical tools to analyse and interpret
the data produced by molecular dynamics (MD) simulations ;
while in the random walk model the jump probabilities are
Ðxed a priori, the new model is built over two-step probabil-
ities derived from the MD trajectory, thus establishing a direct
link between ““experiment ÏÏ (i.e., the MD trajectory) and
theory (the model). The simulations provide the input data
needed to apply the statistical models, which can then be used
to study in detail the di†usive behaviour and dynamical phe-
nomena such as correlation e†ects. The investigation of the
existence and extent of correlation e†ects is an important
problem, for instance to test the applicability of stochastic
jump di†usion models (JDM)3h5 to study di†usive pheno-
mena in zeolites over much longer time scales than those cur-
rently accessible by standard MD simulations. JDM models
are based on the assumption of uncorrelated jumps between
sites ; however it is possible to include correlation e†ects in
such models by modifying them on the basis of correlation
factors determined analytically5 or by MD simulations.6 The
study of the deviations from the behaviour predicted by
random walk correlation rules may also highlight some par-
ticular aspects of the di†usive process. The observation that
the di†usion anisotropy experimentally determined in chaba-
zite is larger than expected on the basis of uncorrelated propa-
gation may suggest the existence of additional transport
barriers hindering di†usion along z.7

In a previous work2 we applied the two-step model to the
di†usion of ethane in silicalite ; the e†ect of varying the
sorbate loading and the system temperature was studied
through MD simulations. In this paper, the same analysis is
carried out to study the di†usive behaviour of diatomic and
triatomic linear species in silicalite at inÐnite dilution. There-
fore, here we test the e†ect of changing the sorbate mass and
size, while keeping constant the temperature (300 K) and the
loading (one molecule sorbed in two silicalite unit cells). The
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performances of the random walk and two-step models are
tested by comparing the corresponding mean square displace-
ments (MSD) and di†usion coefficients with those obtained
through the standard analysis of MD trajectories (see below).
The possible e†ect of a more complex internal structure, as in
the case of linear triatomic species, is also considered. The
diatomic species studied model the three halogen molecules,
chlorine, bromine and iodine, while the triatomic molecules
represent carbon dioxide and carbon disulÐde. Both the
zeolite framework and the sorbed molecules are considered as
fully Ñexible.

2. Details of the calculations
Silicalite is the all-silica analogue of the synthetic zeolite cata-
lyst ZSM-5. Two di†erent channel systems made of 10 oxygen
rings (with connecting Si atoms) with diameter of about 5.5 A�
are the main feature of its framework topology. Straight chan-
nels run parallel to [010] direction, while sinusoidal channels
have an average direction along [100]. The channel intersec-
tions, which allow the 3-D motion of sorbed molecules, are
elongated cavities of about 9 diameter. We represented theA�
silicalite crystal structure, according to X-ray di†raction
studies,8 in the Pnma space group (orthorhombic), with unit-
cell lattice parameters a \ 20.022 b \ 19.899 c \ 13.383A� , A� ,

Fig. 1 schematically shows the structure of silicalite ; theA� .
continuous lines represent the axes of the zigzag channels (in
x-direction) and of the straight channels (in y-direction)

Fig. 1 Schematic representation of the channels geometry in a sili-
calite unit cell ; channels are represented by continuous lines. The
three main coupled displacements are shown as thick lines : (sss), two
displacements in straight channels, in the same y direction ; (sw), a
switch from a straight to a zigzag channel, or vice versa ; (zzs), two
displacements in zigzag channels, in the same x direction.

respectively. The simulation box consisted of two silicalite unit
cells superimposed along z, resulting in 576 framework atoms
(192 Si and 384 O). The full Ñexibility of the silicalite lattice
was accounted for by a harmonic model, described in detail in
refs. 9 and 10.

A Morse potential always describes the intramolecular
bond of the diatomic species, with parameters derived from
spectroscopic data,11 while the harmonic intramolecular
potential of Zhu and co-workers has been adopted to model

and We veriÐed that this simple potential givesCO2 CS2 .12,13
an excellent reproduction of the vibrational spectra of both
triatomic molecules. The intramolecular potential functions
and parameters are reported in Table 1.

The Lennard-Jones (LJ) potential is used to model all the
intermolecular interactions between the atoms of the sorbates
and the silicalite oxygens (no interactions between the sorbed
species are present ; the interactions with the silicon atoms are
neglected, because they are well shielded by the oxygen atoms
covering the surface of the channels). For the diatomic species,
the ClÈO, BrÈO and IÈO parameters are the same as for
ArÈO, KrÈO and XeÈO.14,15

The self-interaction LJ parameters of Murthy et al.16 for
carbon and oxygen atoms in describe their interactionCO2with the oxygen atoms through the standard combining
rules,17 using the zeolite oxygens self-interaction parameters18
(p \ 2.529 e \ 1.51 kJ mol~1). The Murthy intermolecularA� ,
potential also includes a contribution due to the high quadru-
pole moment of In our case only one molecule isCO2 . CO2adsorbed and no intermolecular quadrupoleÈquadrupole
interactions are present. Moreover, in our harmonic model the
charges present on the framework atoms are not explicitly
considered, and thus there is no contribution to the intermo-
lecular energy arising from the e†ect of the intrazeolite electric
Ðeld on the molecular quadrupole moment. The inclusion of
this interaction would be essential if any Al atoms and
charged counterbalancing cations were present, or if a very
accurate representation of the motion was sought, faith-CO2fully describing, for example, the way in which the additional
attractive contribution may a†ect the e†ective pore size. In
this work such an accurate description is not required, as we
are interested in the e†ects of molecular shape, size and mass
over the di†usive behaviour, and the models we use are
mainly intended to represent diatomic and triatomic species of
di†erent size and mass. Therefore for we approximatedCO2the quadrupoleÈframework interaction by scaling the well
depths and by 1.5, so as to obtain a good repro-eOhOzeo eChOzeoduction of the experimental heat of adsorption19 of inCO2silicalite, which is about 28 kJ mol~1. This approximation
leads to di†usion coefficients consistent with experimental

Table 1 Intramolecular potential functions and parameters

(a) Morse potentiala parameters (diatomic molecules)

req/A� b/A� ~1 De/kJ mol~1

Cl2 1.988 2.037 242.19
Br2 2.28 1.964 192.044
I2 2.666 1.867 148.703

(b) Harmonic potentialb parameters (XÈCÈX triatomic molecules)

reqc /A� heqd /degrees k1/kJ mol~1 A� ~2 k2/kJ mol~1 A� ~2 kh/kJ mol~1

CO2 1.161 180 4664.7 782.4 231.3
CS2 1.56 180 2258.2 361.3 171.5

c Equilibriuma V (r)\ DeM[1[ exp([b(r [ req))]2[ 1N. b V \ k1[(rChX1[ req)2] (rChX2[ req)2]] k2(rChX1[ req)(rChX2[ req) ] kh(h [ heq)2.CÈX bond length. d Equilibrium XÈCÈX angle.
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Table 2 Intermolecular (guestÈhost) Lennard-Jones potentiala
parameters

Interaction p/A� e/(kJ mol~1

ClÈO 3.029 1.028
BrÈO 3.14 1.335
IÈO 3.2745 1.737

C(CO2)ÈO 2.657 0.739
O(CO2)ÈO 2.772 1.251
C(CS2)ÈO 2.940 0.8015
S(CS2)ÈO 3.025 1.516

a V (r)\ 4e[(p/r)12[ (p/r)6].

Fig. 2 Mean square displacement curves obtained according to two-
step model (dashed line), one-step model (dot-dashed line) and eqn. (1)
(solid line), for the halogen molecules : (a) (b) (c)I2 , Br2 , Cl2 .

Fig. 3 The same as Fig. 2, for the triatomic molecules : (a) (b)CS2 ,
CO2 .

data (see below). However it is likely that at Ðnite loadings,
with important quadrupoleÈquadrupole interactions, this kind
of approximation may lose its validity. Our model should be
considered as representing a linear triatomic molecule, compa-
rable to carbon dioxide only at inÐnite dilution, in a neutral
environment.

On the other hand, the TildesleyÈMadden20 LJ parameters
for carbon and sulfur in have been taken without modiÐ-CS2cations, as in their paper is modelled through a non-CS2quadrupolar, e†ective three-site potential. All the
intermolecular LJ parameters are reported in Table 2.

In each case the system was equilibrated in the micro-
canonical ensemble at T \ 300 K for 900 ps, then a pro-
duction run of 20 ns was carried out using a time step of 1 fs.
The guest coordinates and velocities were stored every 32 fs.

The di†usion coefficients were calculated in the standard
way17 by Ðtting the MSD curves, calculated by eqn. (1), to a

Table 3 Di†usion coefficients (10~8 m2 s~1) calculated through : (a) the standard MD method ; (b) the random walk model and (c) the two-step
model

D D
x

D
y

D
z

Cl2 (a) 0.67^ 0.09 0.73^ 0.14 1.1^ 0.3 0.14^ 0.04
(b) 0.87 1.15 1.2 0.27
(c) 0.70 0.81 1.1 0.19

Br2 (a) 0.22^ 0.04 0.22^ 0.06 0.37^ 0.09 0.062^ 0.02
(b) 0.44 0.70 0.49 0.13
(c) 0.30 0.39 0.42 0.083

I2 (a) 0.11^ 0.01 0.095^ 0.02 0.22^ 0.04 0.027^ 0.006
(b) 0.327 0.337 0.55 0.0955
(c) 0.155 0.16 0.261 0.0452

CO2 (a) 0.66^ 0.11 0.58^ 0.12 1.25^ 0.3 0.16^ 0.03
(b) 1.17 1.64 1.5 0.36
(c) 0.85 0.99 1.3 0.24

CS2 (a) 0.28^ 0.05 0.19^ 0.04 0.59^ 0.15 0.06^ 0.01
(b) 0.656 0.84 0.92 0.20
(c) 0.386 0.44 0.62 0.10
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straight line in the 50È500 ps region and then applying the
Einstein equation (2) :

*r2(t)\
1

N
;
i/1

N
o r(t

i
] t)[ r(t

i
) o2 (1)

D\ lim
t?=

*r2(t)
2dt

(2)

N in eqn. (1) is the total number of time origins spaced by t ; in
eqn. (2), d is the corresponding dimensionality, i.e., 3 for the
total di†usion coefficient, and 1 for its components.

The MSD estimated by the one- and two-step models are
given by eqns. (3)È(5) and (6)È(8), respectively, as a function of
the observed numbers of single and double displacements
between neighbouring intersections :2

S*x2(t)T \ nz(t)(a/2)2 (3)

S*y2(t)T \ ns(t)(b/2)2 (4)

S*z2(t)T \ ns(t)nz(t)/n(t)(c/2)2 (5)

and

S*x2(t)T \ nzzs (t)a2 ] nsw(t)(a/2)2 (6)

S*y2(t)T \ nsss (t)b2 ] nsw(t)(b/2)2 (7)

S*z2(t)T \ nsw(t)(c/2)2 (8)

Here : n(t) is the total average number of single steps observed
in an interval t ; is the average number of single steps innz(t)the zigzag channel ; is the average number of single stepsns(t)in the straight channel ; is the average number of doublenzzs (t)
steps in the zigzag channel (and in the same direction) ; isnsss (t)
the average number of double steps in the straight channel
(and in the same direction) ; and is the average numbernsw(t)
of straight-to-zigzag, or vice versa, double steps, i.e., nsw(t) \

Examples of such coupled displacements arensz(t) ] nzs(t).shown as thick lines in Fig. 1.
The MSD curves are shown in Fig. 2 for the halogens and

in Fig. 3 for and while the calculated di†usion coef-CO2 CS2 ,
Ðcients are reported in Table 3. The errors reported in Table 3
for the di†usion coefficients obtained by the standard method
have been calculated from a block analysis of data,21 by divid-
ing the trajectory in 20 blocks of 1 ns each and computing the
percent error according to the formula :

dD%\
A 1

m(m[ 1)
;
i/1

m
(D

i
[ D1 )2

B1@2 100

D1
, (9)

where m is the number of blocks, and is the di†usion coeffi-D
icient relative to the ith block. The computed errors vary

between 13 and 28%, being usually lower for the total D
values.

The number of events as a function of the time has been
calculated as described in ref. 2. After mapping the sequence of

intersections visited by the molecule, the trajectory wasN
ithen analysed in the following way :
(1) The index j run from 2 to N

i
.

(2) All the sequences of j intersections included in the full
one were separately studied, so as to obtain the average(N

i
)

number and duration of each kind of event observed in a
typical sequence of j intersections.

(3) The time q needed to cross j intersections was simulta-
neously averaged over all such sequences, and the average
numbers of events found in the path along intersectionsN

iwere then assigned to the time q.
In this way it was possible to account for the time depen-

dence of the event numbers, required in order to apply eqns.
(3)È(5) and (6)È(8). Table 4 reports the number of events and
their relative probabilities, while in Table 5 the mean time
lengths of each event are shown.

The numbers reported in the tables correspond to qD 1 ns ;
while in such a time interval the number of two-step events
observed may be rather low, in particular for iodine, we veri-
Ðed that the calculated MSD and the main conclusions drawn
below do not change appreciably when taking, for example,

Table 4 Event numbers and probabilities (after qD 1 ns) ; probabilities are shown as bold italic numbers

ns nz nsss nsso nzzs nzzo nsw nsz nzs n1 n2
Cl2 26.223 23.777 3.790 4.888 1.968 5.487 8.866 4.433 4.434 50.0 25.0

0.52 0.48 0.15 0.20 0.08 0.22 0.35 0.175 0.175
Br2 10.761 14.239 1.335 2.148 1.030 4.192 3.795 1.897 1.898 25.0 12.5

0.43 0.57 0.11 0.17 0.88 0.34 0.30 0.15 0.15
I2 11.977 7.023 0.908 4.042 0.303 2.169 2.078 1.041 1.037 19.0 9.5

0.63 0.37 0.097 0.42 0.033 0.23 0.22 0.11 0.11
CO2 32.154 32.846 4.215 6.37 2.193 8.738 10.985 5.494 5.491 65.0 32.5

0.49 0.51 0.13 0.196 0.067 0.269 0.338 0.169 0.169
CS2 19.896 17.104 2.218 5.466 1.16 5.128 4.528 2.263 2.266 37.0 18.5

0.54 0.46 0.12 0.295 0.063 0.28 0.245 0.122 0.122

Table 5 Event time lengths (picoseconds)

ts tz tsss tsso tzzs tzzo tsw tsz tzs t1 t2
Cl2 19.3 21.9 37.7 38.8 46.4 41.2 42.6 41.2 44.0 20.6 41.1
Br2 36.7 42.9 72.9 64.8 111.5 76.6 88.2 80.6 95.7 40.3 80.6
I2 47.5 66.0 101.4 88.9 122.2 133.8 122.4 104.6 140.4 54.4 108.9
CO2 14.6 16.4 28.5 26.5 38.8 29.3 34.4 32.9 35.9 15.5 31.0
CS2 26.4 28.8 60.0 46.9 78.0 50.7 61.5 57.4 65.6 27.5 55.0
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qD 5 ns. Indeed, as in a typical correlation function calcu-
lation, the number of sequences accounted for decreases with
increasing time, becoming one for (i.e., andq\ qRUN j\ N

i
),

the statistical accuracy gets worse. Therefore, the advantage of
working on a greater number of events is counterbalanced by
a worse statistics. The superscript ““ s ÏÏ is used in Table 4 and
Table 5 to identify consecutive events in the ““ sameÏÏ direction,
while ““o ÏÏ stands for ““opposite ÏÏ direction. Notwithstanding
the fact that the latter events do not take part in the overall
motion of the molecule [indeed, they are not included in eqns.
(6)È(8)], they are important for a qualitative discussion of the
di†usive motion. The last two columns report the total
number (time length) of single- and two-step events, respec-
tively. The overall time length of single jumps was calculated
as :

t1 \ ps ts ] pz tz (10)

while for the coupled events we have :

t2\ psss tsss ] psso tsso ] pzzs tzzs ] pzzo tzzo ] psw tsw (11)

where the symbols are as in eqns. (3)È(8) ; and are thepsss tsssprobability and mean time length of double steps in the
straight channel (and in the same direction) ; and so on.

3. Discussion of results
Qualitative analysis of the molecular motion

Table 4 and Fig. 4 show that in general coupled displacements
in the opposite direction (““bouncing-backs ÏÏ) are more likely
than those in the same direction ; the switches (sÈz or zÈs) are
roughly half-way between these two events. Two di†erent
trends are observed :

pzzo [ psso [ psz[ psss [ pzzs for Cl2 , Br2 and CO2 (12a)

psso [ pzzo [ pszD psss [ pzzs for I2 and CS2 (12b)

The longer molecules (iodine and carbon disulphide) have a
lower tendency to switch direction ; this could be connected to
the greater di†usive memory for such species. In order to
highlight possible memory e†ects, we could ignore the dis-
placements in opposite directions and directly compare the psssand numbers, as well as and ones. If the propaga-psz pzzs pzstion is completely uncorrelated, the following expressions2
must hold :

psz \ ps pz \ pzs psss \ 12ps2 pzzs \ 12pz2 (13)

hence :

psss /psz
ps/2pz

\
pzzs /pzs
pz/2ps

\ 1 (14)

Any deviation from unity of the ““ randomisationÏÏ ratios in
eqn. (14) is to be ascribed to correlations in the di†usive

Fig. 4 Histograms of the two-step event probabilities for diatomic
and triatomic molecules.

motion ; a ratio [1 denotes a tendency to keep the direction
of motion, while a ratio \1 denotes a preference to ““ turn the
corner ÏÏ. With the separate analysis of the two ratios we can
independently investigate the di†usion in the two channel
systems, so as to avoid confusions due to the di†erent
numbers of straight or zigzag sections visited. At the same
time, not including the bouncing-backs in the comparison, we
are somewhat isolating the other two kinds of events, allowing
a better comparison, which would otherwise be obscured by
the overwhelming number of displacements in opposite direc-
tions. [We are implicitly assuming that the only role of the
““bouncing-backs ÏÏ is to uniformly reduce the total numbers of
continuations and switches, which actually are the only rele-
vant events (eqns. (6)È(8)).]

Table 6 shows that in the straight channel the
““continuations ÏÏ are usually more probable than the switches,
while in the zigzag channel there is a better randomisation of
the motion. Obviously, the channels shape is involved in this
phenomenon. The motion of the heaviest molecule, iodine, is
practically uncorrelated in both channel systems, probably due
to the longer residence times that allow a better thermalisa-
tion. On the other hand the longest molecule considered, CS2 ,
shows considerable di†usive memory in both channels,
tending to maintain the direction of motion : the longer
molecular axis acts as an e†ective guide to direct the molecu-
lar propagation. When moving in the zigzag channel no mol-
ecule except shows any preferential tendency to continueCS2its motion along the channel, and bromine and actuallyCO2prefer to ““ turn the corner ÏÏ. Clearly, correlated jumps must
arise from an insufficient thermalisation between jumps, but
this lack of thermalisation may in turn be strongly a†ected by
some further parameters, such as the molecular shape and
dimensions, as well as the intermolecular interactions.

From this perspective it is remarkable that the trend in eqn.
(12a) is the same as previously found for ethane at di†erent
loadings ;2 furthermore, the di†usion coefficients obtained2 for
ethane at 1 molecule per unit cell and for chlorine and carbon
dioxide at inÐnite dilution (Table 3) are quite comparable, in
spite of the di†erent masses and sizes. Several factors, with
opposite e†ect, could be involved in this point, such as the
higher loading for ethane, and the di†erences in the single LJ
parameters for the interaction with the zeolitic host. The cal-
culated heats of adsorption are reported in Table 7, while for
ethane we found, at 1 molecule per unit cell, q \ 30 kJ mol~1.
The observed trend, may partiallyq(Cl2) \ q(CO2) \ q(C2H6),counterbalance the (inverse) order of the masses, leading to

Table 6 Randomisation ratios in the two channel systems

(psss /psz)/(ps/2pz) (pzzs /pzs)/(pz/2ps)

Cl2 1.59 1.00
Br2 1.92 0.80
I2 1.03 1.03
CO2 1.60 0.77
CS2 1.66 1.24

Table 7 Calculated heats of adsorptiona

q/kJ mol~1

Cl2 25.1
Br2 37.6
I2 58.4
CO2 27.3
CS2 45.2

a q \ [(SUghhT[ RT ).
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very similar di†usion coefficients. However, a simpler line of
reasoning could take into account only the molecular length,
deÐned as (X being Cl, Br or I) for the diatomicreq ] pXhOzeomolecules and as (X being O or S) for the tri-2req] pXhOzeoatomic species. One obtains D5 for ethane and 5.1A� Cl2 , A�
for 5.4 for 5.9 for and 6.1 for OnCO2 , A� Br2 , A� I2 , A� CS2 .
the basis of the molecular length alone, and ethaneCl2 , CO2may be put roughly on the same level. The above observations
seem to indicate that the e†ective length of the molecule can
play an important role in determining the di†usive properties
of linear molecules in silicalite.

The average event time lengths, reported in Table 5 and as
histograms in Fig. 5, give further insight into the di†usion
mechanism. Clearly, the absolute values of these propagation
times are mainly determined by the masses, but the relative
speed of the di†erent events for each species can in any case be
of some interest. The fastest events are always the bouncing-
backs along the straight channels, while the slowest are the
consecutive displacements in the same direction along the
zigzag channel, except for iodine, whose slowest two-step
event is the bouncing-back along the zigzag channel. CS2(whose trend of event probabilities was similar to shows aI2)trend closer to the smaller species than to iodine, reÑecting the
greater importance of the molecular weight in determining the
event time lengths. It is worth noting that in all cases,tzs [ tszwith larger di†erences for the longer species, while as shown in
Table 4, as to be expected on the basis of the timepzsD psz ,
reversibility.

This point deserves some comments. The time length of a
two-step event is calculated as the di†erence between the time
of access to the last intersection (C in Fig. 6) minus the time of
access to the starting (A) intersection. Therefore the ““ forwardÏÏ

Fig. 5 Histograms of the two-step time lengths for diatomic and tri-
atomic molecules.

Fig. 6 Schematic representation of a switch of channel ; the shaded
regions represent the intersections crossed by the molecule.

zÈs event, starting at and ending at is distinct from thet0 t2 ,
corresponding ““backwardÏÏ sÈz sequence of jumps, which
starts at and is completed at Time reversibility strictlyt3 t1.applies only to the fragment of trajectory between andt1 t2 ,
and we have indeed veriÐed that the time length of sÈz and zÈs
events would be the same if calculated in such a region, i.e.
between the access to the last intersection and the exit from
the Ðrst one.

These phenomena can be further investigated by looking at
the decay of the autocorrelation function of the end-to-end
versor directed along the molecular axis :uü (t)22,23

C(t) \ Suü (t) É uü (0)T (15)

In silicalite, decorrelation of the and components canu
x

u
yonly come about through interconversions from one channel

type to another, while the component is usually decorrelat-u
zed in a shorter time, due to the rattling motion of the mol-

ecules in the channels, corresponding to fast oscillations of u
zaround zero. We calculated the decorrelation times by Ðtting

a straight line to the logarithm of the normalised autocorrela-
tion function of the components of Assuming an exponen-uü (t).
tial relaxation, the slope of the straight line matches [1/qd , qdbeing the decorrelation time.

Actually, this method gives good results only for the longer
species, iodine and The total correlation functions areCS2 .
shown in Figs. 7 and 8 ; the slow decay of the iodine and CS2functions is due to the slow decorrelation of their x and y

Fig. 7 Total autocorrelation functions of the end-to-end versor for
the halogen molecules.

Fig. 8 The same as Fig. 7, for the triatomic molecules.
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components. For the shorter species the decay is so fast, even
along x and y, that it should be almost completely ascribed to
the hindered rotations in the channels, rather than to actual
straightÈzigzag (or vice versa) migrations, and it could not
provide reliable information about such processes. For the
longer species the librations are less important and the orien-
tational decorrelation is mostly determined by the switches of
channel. Therefore, we report in Table 8 the values obtained
for bromine, iodine and only. For the longer species isCS2 q

xconsiderably greater than in agreement with the previousq
y
,

discussion and with the results of earlier MD simulations of
n-butane and n-hexane in silicalite,22,23 while for bromine q

yis slightly larger than Recall that and are solelyq
x
. tzs tszdetermined by the migrations between di†erent types of chan-

nels, while the decay of C(t) can also be brought about by the
librations in a single channel or intersection. Therefore it
seems that only for the longest molecules, and is theI2 CS2 ,
decorrelation of the end-to-end versor completely determined
by the channel interconversions.

Comparison of the di†usion models

As shown in Figs. 2 and 3, the MSD curves reproduced by the
two-step model are always considerably closer to the
““ standardÏÏ one than those obtained by the random walk
model. As already found in the ethane case,2 Table 3 shows
that both jump models always overestimate the standard
values of the di†usion coefficients ; however, those predicted
according to the two-step model are in much better agreement
with the reference equations (1) and (2), which in turn should
provide a good estimate of the ““ real ÏÏ (experimental) values.
For example, in recent uptake measurements to complete
loading, et al.24 estimated the lower limit of the di†u-Kocir•� k
sion coefficient of iodine in silicalite as 10~12 m2 s~1, which is
clearly not in contrast with our results. The di†usion coeffi-
cient for in silicalite at 300 K and D12 molecules perCO2unit cell has been determined through pulsed Ðeld gradient
nuclear magnetic resonance (PFG-NMR)25 and frequency
response26 methods ; the measured values (0.2 and 0.3] 10~8
m2 s~1, respectively) are of the same order of magnitude as
ours (0.66 ^ 0.11] 10~8 m2 s~1). The di†erence could be
entirely ascribed to the considerable loading present in the
experimental measure, since the NMR self-di†usivity of small
molecules in silicalite usually shows a decreasing trend with
increasing concentration,27 due to the increasing mutual hin-
drance of the molecules. The di†usion anisotropy is not well

Table 8 Decorrelation times of the end-to-end versor and of its com-
ponents

q/ps q
x
/ps q

y
/ps q

z
/ps)

Br2 11.5 9.3 13.1 3.5
I2 123.1 183 101.5 11.8
CS2 31 41.8 26.4 3.4

accounted for by the random walk model, which gives con-D
ysiderably larger than only for actually, the two-stepD

x
I2 ;

model also fails to reproduce well such e†ect in the bromine
case, where it gives (but the random walk model inD

y
D D

xthis case behaves even worse, predicting D
x
[ D

y
).

The application of the random walk correlation rule, eqn.
(16), and of the modiÐed correlation rule,2 eqn. (17),

a2/D
x
] b2/D

y
\ c2/D

z
(16)

a2
D

x

A
1 ]

4*nzzs
nz

B
]

b2
D

y

A
1 ]

4*nsss
ns

B
\

c2
D

z

A
1 ]

2*nsw
n
B

(17)

to the calculation of from the and values obtainedD
z

D
y

D
xthrough the standard method [i.e., those denoted as (a) in

Table 3], gives rise to the values reported in Table 9. The *n
in eqn. (17) are the di†erences between the observed two-step
event numbers and their values predicted according to a
random walk (uncorrelated) propagation ;2 they are reported
in Table 10. The * values are always non-zero, thus the
random walk assumption of uncorrelated propagation is not
fulÐlled. Nevertheless, both correlation rules are always fairly
adequate : the smaller and species give higher errors ;Cl2 CO2in the other cases the agreement is satisfactory. At the same
time, we saw before that the direct calculation of total and
one-dimensional di†usion coefficients through the two-step
model gave much better results than the one-step model. This
apparent discrepancy needs an explanation.

The random walk equations (3)È(5) considerably overesti-
mate the one-dimensional MSDs. The MSD of a molecule
after N jumps is :

S*r2(N)T \
TK

;
n/1

N
r(n)
K2U

\ ;
n/1

N So r(n) o2T ] 2 ;
n/1

N~1 ;
n/1

N~nSr(n) É r(n ] n@)T, (18)

and the random walk model neglects the cross terms in eqn.
(18), assuming that the loss of memory is complete before each
jump. However, Table 3 shows that :

Sx2(nz)TMD \
T

;
n/1

nz
x(n)2

U
\ nz

Aa
2

B2
(19)

(the same is found for the other components), revealing that
the contribution of cross terms in eqn. (18) is non-negligible

Table values (10~9 m2 s~1) obtained by the standard method,9 Dzby the Ðrst correlation rule [eqn. (16)] and by the modiÐed correlation
rule [eqn. (17)]

D
z

[standard] D
z
[eqn. (16)] D

z
[eqn. (17)]

Cl2 1.38 2.00 1.83
Br2 0.62 0.62 0.60
I2 0.27 0.30 0.29
CO2 1.57 1.77 1.75
CS2 0.59 0.64 0.57

Table 10 Deviations of the two-step event numbers from their theoretical (uncorrelated) values ; relative deviations are in parentheses

*nzzs *nzzo *nsss *nsso *nsw
Cl2 [0.86 2.66 0.35 1.45 [3.6

([0.44) (0.48) (0.09) (0.30) ([0.41)
Br2 [1.0 2.16 0.18 0.99 [2.33

([0.97) (0.51) (0.13) (0.46) ([0.61)
I2 [0.34 1.52 [0.98 2.15 [2.35

([1.12) (0.70) ([1.08) (0.53) ([1.13)
CO2 [1.956 4.59 0.24 2.39 [5.26

([0.89) (0.52) (0.05) (0.37) ([0.48)
CS2 [0.817 3.151 [0.457 2.791 [4.67

([0.70) (0.614) ([ 0.205) (0.51) ([1.03)
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and negative. In other words, if two consecutive jumps in
either channels follow opposite directions, the net displace-
ment is clearly zero. Therefore, such a pair of jumps should be
excluded from the total number, but a single step modelns(nz)cannot take into account two consecutive jumps. However,
when eqns. (3)È(5) are combined to obtain the Ðrst correlation
rule, eqn. (16), one takes the ratio of the one-dimensional
MSDs, and this operation partially corrects the over-
estimation. As a consequence, the correlation rule between D

x
,

and may often be adequate, even when the one-D
y

D
zdimensional MSDs are not.

The random walk equations can be in error, as shown in
Table 3, as well as in Figs. 2 and 3, but they are still fairly
valid when combined to give eqn. (16). The two-step model
expressions perform much better in the prediction of one-
dimensional MSDs, because they exclude all the pairs of con-
secutive events in opposite directions : indeed, they
overestimate the ““ real ÏÏ MSDs to a much lesser extent.
Roughly speaking, the two-step model includes in the sum of
eqn. (18) the cross products r(n) É r(n ] 1), which have the
largest weight in the overall sum. Actually, it cannot account
for some higher order events which also give no net contribu-
tion to the overall motion, as for example two subsequent
pairs of displacements in opposite directions. Therefore the
two-step model also slightly overestimates the ““ true ÏÏ MSDs.
Clearly, a higher order N-step model, with N [ 2, would give
an almost perfect match with the standard MSD. However, as
long as the correlation rules are concerned, it is not surprising
that the modiÐed correlation rule, eqn. (17), does not always
improve the Ðrst rule, eqn. (16). In both rules, overestimation
errors are partially cancelled out ; these errors are much higher
in the random walk expressions.

4. Conclusions
The MD trajectory of a molecule adsorbed in the zeolite pores
provides a complete description of the di†usive event, through
the MSDs and di†usion coefficients. The statistical models we
considered are simple and e†ective tools to extract from the
full trajectory the basic features of the di†usive behaviour,
giving a more general and schematic description, where the
molecular trajectory is separated into a series of jumps
between neighbouring intersections. The validity of each
model, and possibly of the underlying assumptions, can be
assessed through the corresponding MSD curves determined
on the basis of the event numbers extracted from the MD
trajectory. These numbers are the input data needed by the
models ; they are inserted into the equations pertaining to a
model, trying to reproduce the original MSD curves : a tight
Ðt indicates that the description of the model is adequate.

The application of the two-step model to the di†usion of
Ñexible, linear diatomic and triatomic species in silicalite at
inÐnite dilution highlighted some interesting points. The e†ec-
tive molecular length is the main factor determining the two-
step jump sequence. Indeed, iodine and show a di†erentCS2trend in the event probabilities, compared to the shorter
species. Furthermore, molecules with di†erent characteristics
but similar lengths, such as and ethane, give rise toCl2 , CO2comparable behaviour and di†usion coefficients. On the other
hand, the observed event time lengths closely follow the order
of the molecular masses. However, for the longer species, it is
possible to associate the decorrelation times of the end-to-end
versor along x and y with the channel interchange time
lengths, while the considerable librations of the shorter species
do not allow such comparison.

It is often assumed that correlation e†ects should be impor-
tant only for relatively long molecules, which can extend over
the full channel length (D10 tending to maintain the align-A� ),
ment for long times. Nevertheless, we found that a random
walk description may be inaccurate even for linear, 5È6 A�

long, molecules, as it is already evident, for example, from the
non-negligible deviations of Table 10. The one-dimensional
MSDs (and the corresponding di†usion coefficients) calculated
according to the two-step model are always in better agree-
ment with the ““ real ÏÏ values (obtained by the standard
analysis of MD trajectories), compared to the predictions of
the random walk model. We emphasised the importance of
consecutive displacements in opposite directions in determin-
ing such improvements. The two-step model, by excluding
such ine†ective displacements, can better reproduce the actual
path of the molecule through the and eventnsss , nzzs nswnumbers, instead of the single-step numbers and whichns nz ,
unavoidably include pairs of consecutive steps in opposite
directions.

In other words, the overestimation of the simulated MSDs
is due to negative correlation e†ects. While the random walk
equations (3)È(5) do not consider such correlations at all, the
two-step equations (6)È(8) take into account any possible
correlation between two consecutive jumps. The fact that the
two-step model still gives a non-negligible overestimation of
the MSDs may suggest that the di†usive memory does not
vanish completely after two jumps, but even for the short mol-
ecules studied three or more jumps (spanning over 30 A� )
might be needed before they completely lose the di†usive
memory. It is interesting to note that negative correlation
e†ects emerge only at high loadings in Na-Y zeolites, where
each jump leaves behind a vacancy which is likely to be
reached again at the successive jump.5,28 The present paper
shows that the very di†erent structure of silicalite (entailing
di†erent di†usive mechanisms and time scales) makes such
negative correlations non-negligible even at inÐnite dilution.

On the other hand, the uncorrelated correlation rule is
scarcely a†ected by such imperfection of the random walk
expressions : both rules turn out to be fairly adequate in most
studied cases. For this reason, the validity of eqn. (16) does
not necessarily imply that the molecular propagation in sili-
calite may be described as a series of uncorrelated jumps. The
large applicability of such a rule between the components of
the di†usion coefficient arises from compensating mechanisms
that seemingly extend the range of validity of the random
walk rule.
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