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The connection between diffusion and solvent exchanges between first and second solvation shells
is studied by means of molecular dynamics simulations and analytic calculations, with detailed
illustrations for water exchange for the Li+ and Na+ ions, and for liquid argon. First, two methods
are proposed which allow, by means of simulation, to extract the quantitative speed-up in diffusion
induced by the exchange events. Second, it is shown by simple kinematic considerations that the
instantaneous velocity of the solute conditions to a considerable extent the character of the
exchanges. Analytic formulas are derived which quantitatively estimate this effect, and which are of
general applicability to molecular diffusion in any thermal fluid. Despite the simplicity of the
kinematic considerations, they are shown to well describe many aspects of solvent exchange/
diffusion coupling features for nontrivial systems. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1863172g

I. INTRODUCTION

Although we are close to the centennial of the first the-
oretical studies on molecular diffusion1 this fundamental pro-
cess is rich enough to constitute an area of active research for
years to come. While the subject has extended in many in-
teresting directions, here we revisit some not fully under-
stood features of diffusion in thermal fluids. In these condi-
tions the basic picture is one in which the diffusing molecule
shereinafter referred to as the soluted undergoes random col-
lisions which hinder its motion, and result in a mean square
displacement only linear in time. It is interesting to note that
the role and fate of the colliding neighborsssolvation mol-
eculesd tend to be often overlooked, as in most instances the
interaction is feeble and only coarse-grained aspectsssuch as
solute size and solvent viscosityd are considered to be of
relevance. The remarkable numerical success of the macro-
scopic Stokes law down to the atomic scale for a large vari-
ety of systems2 sincluding a prominent example such as liq-
uid water self diffusion3d might be taken as a reflection of the
unimportance of the neighbors dynamics, even when the
sizes of the solute and the solvent molecules are comparable.
However, it has been argued that microscopic aspects of dif-
fusion are in fact important.4,5 A particular instance in which
this Stokes–Einstein macroscopic approach is generally
agreed to fail qualitatively is that of ionic diffusionsof evi-
dent interest if taking place in waterd, where for instance an
increase of the diffusion coefficient with decreasing radius of
the ion is not observed,6 while it is a direct prediction of the
macroscopic theory. The qualitative explanation7,8 focuses on
the nature of the electrostatic interaction, which for the ion in
a polar solvent case is strong enoughsspecially for the

smaller ionsd so that the solvation molecules follow the ion
motion in time, with occasional exchanges between solvation
shells: one molecule from the first solvation shell escapes to
the second shell while a second shell molecule enters into the
immediate vicinity of the ionsboth events being simulta-
neous or asynchronous, with no general priority rule in the
latter cased. The increased drag on the ion exerted by this
cohort of nearest neighbors explains the breakdown of the
macroscopic approach, with a diffusion constant lower than
what should be expected for the bare ionic radius. Neverthe-
less, in the strong interaction limitssmall ionic radius and/or
high charge, so that the first shell solvation molecules do not
undergo any exchanged the macroscopic theory regains at
least its numerical validity, as applied to the complex defined
by the ion plus nearest neighborssan approach known as the
“solventberg” modeld.

The previous considerations highlight the potential role
of the exchanges for the diffusion process in what might be
called the intermediate regime, where the dynamics of the
solvation shell molecules is highly correlated with that of the
solute and yet, the exchanges are still not rareson the time
scale for diffusiond. We believe that in this scenario the effect
of the solvation shell exchange is not fully understood. Ac-
tually, not even the exchange process by itself can be re-
garded as a solved issue: although the exchange times for
ions in solution have been the subject of study for quite some
time6,9–12sby means of molecular dynamics simulationsd, the
mechanisms and stereochemistry of the exchange process are
just starting to be scrutinized,13–16 usually motivated by its
key role in other important processes such as ion reactivity.
To evidence some unclear aspects of the influence of ex-
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change on diffusion with an example, an issue such as a
characterization of the quantitative speed-up in diffusion in-
duced by exchanges remains unaddressed. Moreover, it is
known that the exchange times for ions in water are typically
larger thansroughlyd 10 ps sRef. 10d while the time span
required to obtain the diffusion coefficient with a high degree
of accuracysfrom the mean square displacement or from the
velocity correlation functiond is of the order of 1 ps. It is then
somewhat puzzling that the solventberg picture is not man-
datory in all cases, given that on the time scale required to
reach a diffusive behavior there seem to be no exchanges in
either casesas for a multiple charged iond. These questions
constitute a first topic of attention in this work.

The main line of study, though, will focus on the inverse
problem, namely, on the possible influence of diffusion on
solvation shell exchange. The basic question here is if a
given exchange event is conditioned in some way by the
instantaneous state of motion of the solute, what we believe
constitutes a rather new approach on this issue. At first sight,
it might be thought that any such effect should be feeble. To
start with, it is easy to show that exchanges are independent
of diffusion in some instances: in the simple case of a mas-
sive particlescompared with the solvent molecules’ massd,
there will be many exchanges occurring while there is almost
no diffusion of the solvated particle. In addition, these ex-
changes will obviously take place with asvery nearlyd sym-
metric distribution around the solute so that no correlation
will exist with its motion. Certainly this is a limiting case,
but if we consider for instance thesrandomd oscillatory mo-
tion of an ion inside its cage ofsfirst shelld solvating mol-
ecules while the whole complex diffuses, and that exchanges
are rather infrequent, a correlation of theinstantaneousion
velocity with the exchange between a second shell molecule
and a first shell one may not seem likelya priori. Remark-
ably, it will be shown within that an important aspect of this
problem allows for an exact analytical approach, which
should apply to any thermal fluid. It so happens that the
stereochemistry of the exchanges is effectively drivensin a
probabilistic wayd by the instantaneous velocity of the sol-
ute: the exchange events occur according to a nonsymmetric
probability distribution around this direction, the counterex-
ample starting this paragraph being a limitingssymmetricd
case. While most of the results presented to illustrate these
issues will correspond to the particular case of ionic diffu-
sion in watersselected both for its relevance as well as for
computational convenienced, given the general character of
the previous considerations, examples corresponding to
simple liquids will also be included for the sake of complete-
ness.

The outline of the paper is as follows. A summary of the
simulation details is given in the following section. The re-
sults and discussion on the influence of solvation shell ex-
change on diffusion are presented in Sec. III, while the in-
verse problemsthe influence of diffusion on the exchange
processd is addressed in Sec. IV. The main conclusions are
summarized in Sec. V. An Appendix is also included, with
the details of the derivation of some analytical expressions
used in the main text.

II. COMPUTATIONAL DETAILS

As just described most of the molecular dynamicssMDd
simulations correspond to single ions dissolved in water. The
simulated systems consist of an ionsLi+ or Na+d plus 215
water molecules in a cubic box with standard periodic con-
ditions. The water model is SPCsRef. 17d sif not stated oth-
erwised, keeping the water molecules rigid via the SHAKE
algorithm.18 The ion-water interaction parameters for ions
are those of Ref. 19 for sodium and those of Ref. 20 for
lithium. Long-range forces were computed by the Ewald
summation method,21 and a leap-frog integration algorithm
with coupling to a thermal bath22 has been used, with a 1 fs
time step, and the value of the coupling set to 0.1 ps.

A second set of simulations has also been done for pure
simple liquidssArgon at liquid conditionsd, with the interac-
tion parameters taken from Refs. 23 and 24. A leap-frog
integration algorithm has been used without thermal control
and with a time step of 5 fs. Periodic boundary conditions for
500 Ar atoms in a cubic box were applied.

III. EFFECT OF SOLVATION SHELL EXCHANGE ON
DIFFUSION

As previously described in the Introduction, within the
regime of interest the first solvation shell follows the solute
in its diffusive motion, with the exchange events being rela-
tively uncommon. Thus, we seek to connect two phenomena
that take place on rather different time scales, and which
consequently are usually studied with different tools. Diffu-
sion is usually addressed with longstypically hundreds of
picosecondd equilibrium runs, from which the mean square
displacementsMSDd is computed up to a certain time limit
smuch shorter than the total simulation timed: for ionic dif-
fusion in liquid water the typical length required for the
MSD is of substantially less than 10 ps, but certainlylonger
than <1 ps, in order to get a sufficiently accurate value of
the diffusion coefficientD. On the other hand, the onset and
completion of an exchange event last typically less than 1 ps,
so that exchanges must be studied with short runs starting
from properly selected initial conditions.13,15 These time
scales suggest that asking for instance about the value of the
diffusion coefficient during an exchange does not seem to be
meaningful, since the exchange event lasts less than the time
required to observe diffusive behavior in the MSD. Never-
theless, an indirect method is possible to study the signature
of exchanges on diffusion: the portions of the long equilib-
rium run during which no exchanges take place are used to
compute a new MSD functionsand a new velocity self-
correlation functiond, from which a different diffusion coef-
ficient resultssD8d. It should be obvious that the effect of the
exchanges on diffusion will be reflected in a quantitative
difference betweenD andD8: one should expect thatD is in
all cases larger thanD8, as the latter corresponds to the first
shell moving concertedly with the ion, with no exchanges.
Since it is only needed that the aforementioned portions have
a length of some 10 ps, and exchanges occur on this time
scale or longer,10 the computation ofD8 is perfectly feasible
from a statistical point of view. The interesting feature of this
simple approach is that, to our knowledge, it will provide the
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first quantitativeestimation on the effect of exchanges: al-
though, as argued in the Introduction, it is generally accepted
that diffusion is slower if no exchanges take place, the extent
of this slowdown is unknown.

We have first addressed the case of Na+ in liquid water,
a system for which kinetic13 and dynamic14 characteristics of
the exchanges have been studied in detail. The MSD and
velocity self-correlation functions have been computed in the
manner just described, from a run of 3 ns. Figure 1sad dis-
plays the results for the MSD obtained from the whole simu-
lation, together with the one obtained from trajectories with
no exchanges. As expected, the latter has a clearly smaller
slope, consistent with a slower diffusion, with the actual val-
ues of the diffusion coefficients beingD=1.37 in front of
D8=1.05 sboth in units of 10−5 cm2/sd. We see that ex-
changes increase the diffusion coefficient by 30% with re-
spect to the value obtained if exchanges do not occur, which
constitutes a basic result of this work. Identical results for the
diffusion coefficients are obtained from the velocity self-
correlation functions obtained in each case. The qualitative
differences between the latter functions are evident in Fig.

1sbd: the initial backscattering to negative values is stronger
if no exchanges occur, which can be understood considering
that in this case the ion is at all times constrained to an
oscillatory motion within the cage of first neighbors.

A second independent methodology has also been de-
vised to double check the previous results. The interaction
between the ion and its solvation molecules is altered in
order to preclude any exchange between first and second
shells, while trying to minimally alter other properties of the
system. The ion-oxygen interaction potential for water mol-
ecules initially within the first shell is augmented by a term

Vinsrd = beasr−r‡d, s1d

while for those molecules initially outside the first shell we
use

Voutsrd = be−asr−r‡d. s2d

Both contributions together establish a sort of “wall” be-
tween first and second shells, which effectively results in the
absence of exchanges. The parameters are chosen so that this
wall has a fairly short range,a=10 Å−1 and b=5 kJ/mol,
with r‡ corresponding to the limit of the first hydration shell
sr‡<3.2 Åd. The effect of these new potential contributions
can be graphically understood upon consideration of the ion-
water potential of mean forcespmfd defined as

Wsrd = − kBT lnfgsrdg, s3d

wheregsrd denotes the ion-oxygen radial distribution func-
tion. Figure 2 displays the pmf obtained for the Na+-water
pair for the case of free dynamicssno wall includedd. This
figure also displays the curves that result when the interac-
tions embodied in Eqs.s1d and s2d are added to the pmf. It
can be seen how the molecules within the first shellsr
,3.2 Åd are effectively constrained to a well with a wall
which raises steeply for increasing distance, while molecules
initially beyond r‡ cannot get inside the first shell due to a

FIG. 1. Na+ diffusion in ambient liquid water. Solid line, results from equi-
librium simulation; dashed line, results only including portions of equilib-
rium run without exchanges; points, results from simulations including an
effective “wall” between first and second hydration shells.sad Ion mean
square displacement;sbd ion velocity self-correlation function.

FIG. 2. Solid line, potential of mean forcefEq. s3dg between Na+ and a
water molecule; dashed line, same plus the contribution ofVinsrdfEq. s1dg;
points, same plus the contribution ofVoutsrdfEq. s2dg.

114508-3 Molecular diffusion and solvation shell exchange J. Chem. Phys. 122, 114508 ~2005!

Downloaded 28 Oct 2008 to 192.167.65.24. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



second barrier, which also rises steeply when the distance is
reduced. The MSD and velocity tcf have been computed for
a system subject to the constraints described above. The re-
sults are included in Figs. 1sad and 1sbd: the new curves are
almost indistinguishable from those obtained from the subset
of trajectories which do not display any exchange, confirm-
ing the previous conclusions.

While exchanges around Na+ cannot be assigned to any
well-defined type,14 those around Li+ have in almost all cases
an associative character:15 a second shell molecule enters the
first shell, and after a shortsvariabled time a second molecule
leaves. Therefore, the exchange event is characterized by a
temporary hydration numberlarger than the mean. This be-
havior suggests that, contrary to the Na+ case, diffusion
might be slower during an exchange for Li+, considering the
larger radius of the complex formed by the ion plussfived
first shell molecules. To examine this point, calculations
similar to those described for Na+ have been performed for
Li+ in ambient water. The results displayed in Figs. 3sad and
3sbd indicate that, in line with the results for Na+, diffusion is
again faster if exchanges are includedD=1.2 in front of
D8=1.1 sagain in units of 10−5 cm2/sd. Although the effect
does not seem to be so marked, a 10% speed-up, it needs to

be considered that exchanges are more uncommon for Li+

than for Na+: while the lifetime of a first shell molecule is 57
ps for the former25 swith four hydration moleculesd, it is of
only 34 ps for the latter13 swith six hydration moleculesd.
Therefore, the small difference in this case is in part due to
the increased weight of trajectories which do not contain any
exchange. It is worth noting in this connection that this 10%
increases30% in the Na+ cased cannot be directly interpreted
in the sense that diffusion is faster by 10%sor 30%d during
an exchange: it should be recalled that the concept of diffu-
sion coefficient during an exchange is ill defined, given that
its duration is shorter than the time required for diffusive
behavior to become established.

A basic lesson to be learned, though, is that neither the
increased local density during the exchangesswhich in prin-
ciple should hinder the ion mobilityd, nor the larger volume
of the hydrated ion complexswhich again should produce a
slowdown, since, e.g., from a Stokes–Einstein point of view
diffusion is slower for larger radiusd are important factors. In
consequence, together with the previous analysis for Na+,
solvent structure disruption during the exchange seems to be
the basic factor explaining the increased mobility, due to the
more feeble interactions resulting from less than optimal sol-
vent molecule orientations. Finally, comparing the results for
Na+ an Li+ we see that certainly in the latter case, since the
effect of exchanges is scarce, it is a good approximation to
use a solventberg picture to understand its diffusion.

The previous results also answer one of the questions
raised in the Introduction: given that the exchange times are
typically longer than 10 ps and the diffusion coefficient is
well determined from a shorter portion of the MSD, it is, as
we remarked there, somewhat puzzling that the solventberg
picture is not mandatory in all cases. The answer is evident
in Fig. 1sad sNa+ diffusion in waterd, the MSD curves that
correspond to trajectories with no exchanges diverge from
the curve corresponding to all trajectories for times as short
as 0.2 ps. The explanation is rather simple, while it is cer-
tainly true that molecules take a mean time of some 34 ps to
leave the first shell, it is a key point that nothing prevents an
exchange to take place immediately after a new time origin
is set during the computation of the MSD. Again, Fig. 3sbd,
illustrates why the solventberg picture is more convenient in
the case of Li+: the curves only start tosslightlyd diverge for
times of the order of 2 ps, when a rather good approximation
of the diffusion coefficient can already be obtained.

IV. EFFECT OF DIFFUSION ON SOLVATION SHELL
EXCHANGE

We now turn to the inverse problem, summarized in the
present section title. As described in the Introduction, some
arguments suggest a negligible influence of the instantaneous
velocity of the solute on the onset of a solvent exchange
event and, actually, a thought example which supports this
view was detailed there. However, a simple link is uncovered
if we take upon consideration that the particle velocity and
the relative velocity between the particle and a solvation
molecule are correlated via simple kinematic considerations.
For a solute moving inside a solvent, and assuming random
directions of motion for each individual, it is evident that

FIG. 3. Li+ diffusion in ambient liquid water. Solid line, results from equi-
librium simulation; dashed line, results only including portions of equilib-
rium run without exchanges; points, results from simulations including an
effective wall between first and second hydration shells.sad Ion mean square
displacement;sbd ion velocity self-correlation function.
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there will be a higher probability for head-on collisions with
solvation molecules in front of the solute. It is important to
notice that this is a probabilistic statement; collisions from
behind the solute are not precluded, they are just less prob-
able. A different way to put it is that given an instantaneous
velocity for the solute, say to the right, then all molecules on
the right are approaching the particle on the averagesal-
though of course some of them might be getting farther
awayd. Note that this alternative formulation is not limited to
those molecules in the immediate vicinity of the particle,
molecules far away will be approaching or going away from
it sfor each given instantaneous particle velocityd. The for-
mulation also makes no reference to the phase of the solvent;
they also apply for a low density gas situation. Despite their
very general character, these simple kinematic considerations
have something to say about exchange for a translating sol-
ute in a solvent. If we particularize to second shell molecules
then we conclude that, for instance, those on the right of the
solute will on the average get closer to the first solvation
shell swith the maximum approach for those on the line of
motion of the particled. Therefore, we see that purely kinetic
considerations strongly condition the way in whichsat-
temptedd exchanges may start: molecules on the right side of
the second solvation shell will have a higher probability of
trying to enter the first solvation shell while, on the contrary,
those on the left side of thefirst solvation shell will have a
higher probability of attempting to leavesalways assuming
an instantaneous solute velocity to the rightd. The picture that
results is one in which, as the solute moves in one direction,
molecules in front of it try to enter the first solvation shell
and molecules behind it try to exit to the second solvation
shell. Of course, trying to enter or leave does not guarantee
the success of the exchange but as will be shown within this
is, de facto, a driving force.

A. Equilibrium contribution

The above ideas can be expressed in mathematical form
assuming thermal equilibrium and a homogeneous phase so
that, consequently, the formulas that result are of application
to any thermal fluid. Figure 4 sketches the typical configura-
tion in which the solute and one of the solvent moleculessof
a given solvation shelld have random velocities at a given
time. Taking the solute velocity direction as the origin for
angles, we ask about the probabilitysas a function ofu, see
Fig. 4d that a given solvent molecule has an approaching
relative velocityswhich we will define as positive and nega-
tive when the two particles tend to move awayd. This prob-
ability is given by the expressionssee the Appendix for
mathematical detailsd

p+sud =
1

p
Htan−1SÎm2

m1
cosuD

+
1

2
sinF2 tan−1SÎm2

m1
cosuDG +

p

2
J , s4d

wherem1 denotes the mass of the solute,m2 that of a solvent
molecule, and the angleu is defined over the intervalf0, 180g
deg. While we will mainly focus on this function, a parallel

study can be done for the probability of having a relative
velocity in the opposite directionfp−sudg, and appropriate
distinctions will be made where required.

A first notable feature is the lack of dependence on tem-
perature, which supports a similar behaviorsfor the attempts
of solvation shell exchanged at different temperatures, as
long as there exists a similar solvation structuresmeasured
for instance by the hydration numberd. This constitutes an
interesting aspect from a computational standpoint, since
simulations of the system at higher temperatures, where ex-
changes are not so rare, might be a convenient starting point
to gain some understanding for the behavior at lower ones
sas suggested in Ref. 25d, although we will not pursue this
possibility here.

The mass ratiosm2/m1d is the single parameter appear-
ing in p+sud and therefore it is relatively easy to understand
its effect. Figure 5 displays the behavior ofp+sud for three
selected valuesfcorresponding curves forp−sud can be con-
structed as a mirror image with respect to a vertical line at
90°g. The wiggling curve corresponds tom2/m1=1 sequal
masses for the solute and the solvent moleculesd, and is rep-

FIG. 4. Random velocities for solutesgray circled and solvent molecule
sblack circled. Also shown projections of both velocities on the intermolecu-
lar axis from whichvr fEq. sA4dg is defined.

FIG. 5. p+sud, probability for a solvent molecule to approach the solute.
Thick line, m2/m1→`; dashed line,m2/m1→0; thin line,m2/m1=1.
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resentative of the general situation. It illustrates how the
probability of having an approaching relative velocity is
larger atu=0° and attains its lowest value atu=180°, effec-
tively resulting in an asymmetric distribution around the in-
stantaneous solute velocity, which constitutes a central result
of this work. Two interesting limiting cases are also included.
For m2/m1→0 sparticle mass much larger than that of a
solvent moleculed we recover the limiting case that was
qualitatively discussed in the Introductionswith no real dif-
fusiond. We see how the probability distribution is flat
fp+sud=1/2g: all molecules around the central massive par-
ticle have an equalssymmetricd probability of attempting to
get into its vicinity sand similarly for the probability of at-
tempting to escaped. The second limiting case corresponds to
m2/m1→`, a very light solute in comparison with massive
sand slowd solvent molecules. Here we obtain the step func-
tion depicted in Fig. 5, defined by

p+sud = H1 for 0ø u , 90°

0 for 90 ° , u ø 180 ° ,
J s5d

which is easily interpreted: the solute undergoes a random
motion in a maze of static scatterers, which will never
“chase” it and therefore no approaching molecules can be
found for any angle greater than 90°fthe corresponding in-
verted behavior would be found forp−sudg.

Finally, it should be noted that the function just analyzed
corresponds to the probability for any given molecule to
have an approaching relative velocity with respect to the sol-
ute. A related, but different, function is the fraction of mol-
ecules found for each angle of all those that have inward
velocity fwhich will be denoted̀ +sudg. Given that there is
cylindrical symmetry around the solute velocity, more mol-
ecules are found for angles close to 90° than for smaller
sclose to 0°d or larger anglessclose to 180°d. On the contrary,
p+sud, as we have seen before, has a maximum atu=0°. In
consequence, the maximum of`+sud will be found some-
where between 0° and 90°. The result isssee the Appendix
for detailsd

`+sud =
sinsud

p
Htan−1SÎm2

m1
cosuD

+
1

2
sinF2 tan−1SÎm2

m1
cosuDG +

p

2
J , s6d

where the only difference withp+sud is the sine function
preceding the braces.

Figure 6 displays the functioǹ+sud for each of the three
examples that were just discussed above in terms ofp+sud.
For m2/m1→0 the distribution displays a maximum at 90°,
showing that̀ +sud can be somewhat misleading about the
process: although all moleculessfor any angled have the
same probability of having an approaching velocitysin this
particular limitd, collecting all the molecules for a given
angle results in an apparent nonsymmetric distribution of
molecules trying to enter. With this cautionary note in mind,
we see how in the opposite limitsm2/m1→`d the distribu-
tion also peaks at 90°. Finally, all the intermediate cases are
characterized by a maximum at an angle lower than 90°,

which reflects that if the attempted exchanges are monitored
and collected as function ofu, a maximum at this angle will
be found, and not along the velocity directionfas might in
principle be expected fromp+sudg.

Given the probabilistic nature of the formulas just de-
rived, it is obvious that by themselves they cannot predict
when and how an exchange event will start, they should be
regarded instead as a sort of “sum rule.” As such, they can
help interpret averaged results for the stereochemistry of the
exchanges. We take the case of the hydration shell exchange
process around the lithium ion in ambient water as an illus-
trative example. This system, which has been recently
studied,15 is characterized by a tetrahedral equilibrium solva-
tion structure and a substantial variety of distinct exchange
classes.A priori arguments would suggest that when the ex-
change is simultaneoussone molecule entering the first shell
while another leavesd the mechanism should have atrans
character. This hypothesis is based on the well-known SN2
reaction mechanismsWalden inversiond, in which the attack-
ing and leaving groups form 180°. But in contradiction with
this hypothesis, it is found15 that the number ofcis ex-
changes is more than half of those assigned totrans ex-
changes. While a satisfactory explanation could not be given
in Ref. 15, it now seems clear that this finding is due to the
kinetic constraints just described. As we have seen,`+sud
peaks at an angle of<60°sapplying formula 6 to the pair
Li++H2Od, while `−sud would have a corresponding maxi-
mum at a value of 120°. This implies that the angle between
the entering and leaving water molecules may span the range
from 60° s=120°−60°, assuming a null dihedral angle be-
tween the plane defined by the ion velocity and the leaving
molecule velocity, and the plane formed by the ion velocity
and the entering molecule velocityd up to 180°sfor a dihedral
angle of 180°d. This broad range of possibilities results as-
suming the most probable entrance and exit angles, and thus
is further reinforced if we consider the broad dispersion of
angles apparent in Fig. 6. Therefore, we see thatcis ex-
changes are not precluded at all and that, instead, a con-

FIG. 6. `+sud, fraction of molecules having an inward velocity for eachu.
Thick line, m2/m1→`; dashed line,m2/m1→0; thin line,m2/m1=1.
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tinuum betweencis and trans is most probably the general
rule. In short, the substantial number ofcis exchanges found
in the simulations is due to the fact that more molecules are
available at angles larger than 0°. Actually, the consider-
ations above suggest that a classification in terms ofcis and
trans exchange classes is a concept which should not be
pursued for exchange processes, at least for the types of ex-
changes considered here.26 Finally, as explained above, if the
exchanges would be normalized by the number of water mol-
ecules available at each angle, then the distributionp+sud is
obtained for the entering molecules andp−sud for those leav-
ing swhich peak, respectively, at 0° and 180°d: in conse-
quence, the most probable exchange would have atrans
character as initially expected.

B. Nonequilibrium contribution

The previous discussion provides an “equilibrium” esti-
mation for the exchanges, in the sense that we have com-
puted the probability that a given second shell solvent mol-
ecule might attempt to enter the first shellfp+sudg, or the
fraction of molecules trying to enter for a given angle
f`+sudg. However, we now have to consider nonequilibrium
effects, meaning that the attempted exchange will fail or suc-
ceed depending on the detailed dynamics of the system. In
the end, the success or failure depends on the combination of
equilibriumsprobability of attempting an exchanged and non-
equilibrium contributionssdynamics starting at the attempted
exchanged. A pessimistic view would anticipate that the non-
symmetric distribution just discussed might get blurred by
this additional contribution so that, finally, no noticeable cor-
relation will be found betweenssuccessfuld exchanges and
the instantaneous solute velocity. However, there are strong
arguments in the opposite direction stemming from reaction
rate theory. The problem of solvation shell exchange, par-
ticularly in the vicinity of an ion, was first tackled from the
standpoint of activated reactive process for the Na+-water
system.13 There it was shown that the exchange ratesnote
that this is a quantity averaged over all anglesd can be ex-
pressed as the product of equilibrium contributionsfdeter-
mined from transition state theorysTSTdg and a nonequilib-
rium contribution dependent on the dynamicsstransmission
coefficientkd. This approach has been subsequently applied
to the aforementioned case of Li+saqd in a broad range of
thermodynamic conditions25 and, at a more detailed level, in
ambient water.15 A first lesson from this work is that TST
provides an acceptable estimation of the exchange rate, pre-
dicting at least the right order of magnitude, which is re-
markable if we consider that exchange rates span more than
15 orders of magnitude.27 TST assumes, as applied to the
present case, that all molecules crossing the transition state
sbasically the division between first and second solvation
shellsd with inward velocity will finally end up in the first
shell. We must conclude thatsin this approximationd p+sud
for `+sudg represents not only the probability of attempted
exchanges but the real distribution of successful exchanges
and, therefore, all exchangessfor any sort of solute or sol-
ventd obey exactly the same rules.

It must be said though that the transmission coefficient is

rather low in the cases that have been studied so far, with
values ranging from<0.4 sfor Li+ in supercritical water25d
down to 0.14sfor Li+ in ambient water15d, so that its effect
certainly has to be considered. However, this correction will
affect the estimated distribution of successful exchanges
fp+sud or `+sudg only if a sort of angle-dependent transmis-
sion coefficient is found, so that the probability for an at-
tempt of being successful would depend on the angleu. The
only way to ascertain this point seems to be a case by case
analysis, performed by MD simulation of the systems. In
principle, this could be done but it is a computationally dif-
ficult task, for example, the computation has to be performed
separately for each angle, so that it has to be lengthened
proportionally to the number of intervals in which the inter-
val f0°,180°g is divided sfor a given statistical toleranced.
With these considerations in mind we have chosen three ex-
amples where this study is still feasible.

In each case we have computed the previously defined
function `+sud sthe fraction of molecules found for each
angle of all those with inward velocityd, which as previously
explained takes into account the equilibrium effects. To scru-
tinize the nonequilibrium effects we have also computed the
fraction of molecules found for each angle of all those that
finally become stabilized within the first shellfdenoted as
`+

delaysudg. It is important to note that̀ +
delay is not the fraction

of successful molecules fromall those that tried to enter
initially. If defined that way, because of the strong reduction
embodied ink stransmission coefficientd, `+

delaysud would be
very low for any angle and not easily comparable with`+sud.
With these definitions, the basic idea is that, ifk is not de-
pendent onu, then we should obtaiǹ+sud=`+

delaysud, i.e., all
the molecules trying to enter have the same chance of being
successful irrespective of the attack angleu. Any dependence
of k on u will show up as a difference betweeǹ+sud and
`+

delaysud.
First, we have addressed Na+ in ambient water, a case

characterized by a low transmission coefficients<0.21d and
a first solvation shell of six molecules.13 A long run of 14 ns
has been performed at 298 K, during which<10 000 at-
tempts by second shell water molecules to enter the first shell
have been recorded. The angle between the relative velocity
and the instantaneous ion velocity has been computed in
each case, which allows us to estimate`+sud. As it can be
seen in Fig. 7sad, this numerical estimation nicely matches
the theoretical prediction of formulas4d. In order to ascertain
the nonequilibrium contribution, each of these attempts has
been followed during 1.5 ps. This time is chosen in accor-
dance with the reactive flux function computed in Ref. 13,
where it was shown that after<0.5 ps it levels off and
reaches a plateau, from which its mean value can be identi-
fied with the aforementioned transmission coefficientsk
=0.21d. It has been found that, consistently with the latter
valueswhich can also be interpreted as the ratio of successful
exchanges over total number of attemptsd, a total of<2100
second shell molecules become stabilized within the first sol-
vation shell. If these successful attempts are assigned to the
corresponding angleswith an angle interval of 1°d, it results
in the curve depicted in Fig. 7sbd. Despite the substantial
amount of noise, it is rather clear that this curve is rather
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similar to the theoretical curve for attempted exchanges, al-
though it seems slightly higher at small angles and closer to
zero at larger angles. In conclusion, the probability of at-
tempted exchanges is,de facto, the one that conditions the
distribution of successful exchanges, with a possible small
correction from the nonequilibrium contribution.

Li+ in supercritical water is the second case that has been
analyzed numerically. While in ambient water the transmis-
sion coefficient seems to be rather low for the systems ana-
lyzed so far,13,15,25 it has been found that in supercritical
water it can exceed by 0.4.25 Together with the lower number
of hydration moleculessfourd, these constitute interesting
differences with the preceding case. Simulation runs of 6 ns
were performed during which,4000 trajectories of water
molecules entering the first solvation shell were followed
sfor the simulations of Li+ in supercritical water we have
used the same ion-water interaction parameters as in Ref. 25,
where a detailed study of lithium diffusion in this phase was

performed, and the SPC/E model for water28d. Three differ-
ent densities were chosen at the temperature of 683 K: 0.20,
0.31, and 0.48 g cm−3. The time interval over which the tra-
jectories are followed before deciding if the attempt is suc-
cessful has been chosen as in the previous case. Figures 8sad
and 8sbd display the corresponding results. Again, the results
are rather similar to the case of Na+ in ambient water.

Despite their differences, the previous examples are both
representative of ionic diffusionsalbeit in different phasesd,
sharing some important common characteristics such as low
hydration number and strong interactions. Since the formulas
have general applicability, it is of interest to examine systems
that differ markedly as far as these aspects are concerned. We
have addressed a neat simple liquid, the much studied liquid
argon,23,24,29,30which has the following interesting character-
istics: a solvation number substantially largers<12d and al-
most no free energy barriers to exchangessee belowd. Fur-
thermore, it constitutes a computationally convenient system:

FIG. 7. sad Thick line, theoretical̀ +sud for Na+ in ambient liquid water; thin
line, computed from MD simulation;sbd thin line, computed̀ +

delaysud for
Na+ in ambient liquid water; thick line, theoretical curve for`+sud.

FIG. 8. sad Thick line, theoretical̀ +sud for Li+ in supercritical watersT
=683 K,r=0.20 g cm−3d; thin line, computed from MD simulation;sbd thin
line, computed̀ +

delaysud for Li+ in supercritical water; thick line, theoretical
curve for `+sud. Similar results are found atr=0.31 g cm3 and r
=0.48 g cm−3.
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it is easier to obtain good statistics since now all the atoms
can be used, instead of a single ion as before. The system is
composed of 500 Ar atoms at a temperature of 112 K and a
density of 1.479 g cm−3. We have performed an analysis on
the solvation shell exchange process.

First, from the radial distribution function we find that
the barrier to exchange, viewed in a unimolecular dissocia-
tion perspective sas done for ions in water13,15,25d, is
<1.6 kBT fcomputed from the free energy defined in
Eq. s3dg. This low barrier shows that the process is not well
described as an activated one, even though we have chosen a
state point where the barrier is probablysclose tod the highest
possible in liquid argon.29 Since the velocity time correlation
function is known to decay in less than 1 psscomparable to
the case of an ion in liquid water and to the corresponding
reactive flux functiond, we have also followed the incoming
atoms during 1.5 ps before checking if they end up in the
first shell. The results, at each state point, correspond to
equilibration runs of 50 000 stepsswhere the velocities were
rescaled to get the reference temperature of the simulationd
followed by production runs of 1 000 000 steps. Figures 9sad
and 9sbd display the corresponding results. Again, there is a
perfect match with the theoretical curve for`+sud fFig. 9sadg.
Thanks to the better statistical sampling the deviation of the
distribution of successful exchangesf`+

delaysudg from the the-
oretical curve is now perfectly discerniblesFig. 9d, and con-
firms the deviation hinted in the plots corresponding to Na+

and Li+. We see that head-on collisionsssmall anglesd have a
sslightlyd higher probability of being successfulfvalues
above`+sudg in comparison with those at large anglesfcurve
closer to zero thaǹ +sudg. A simple explanation suffices to
account for this: the meansapproachingd relative velocity is
larger at small angles rather than at angles close to 180°
sanother reflection of the fact that solvent molecules at small
angles are approaching the solute, on the average, and those
at large angles are departing from it, on the averaged. This
higher velocity should facilitate the success of the exchange
at small angles, and this is what is actually found for liquid
argon, and is hinted at in the plots for the cations in water.
Evidently, the nonequilibrium contribution slightly enhances
the difference between entering and leaving angles.

C. Effect on the exchange rate

The previous sections have addressed the effect of the
instantaneous diffusive state of the solute on the mechanism
of the exchange process. It has been shown that a symmetric
distribution of enteringsand leavingd solvent molecules for a
static solute turns into an asymmetric one if the solute is
allowed to diffuse. Since exchanges occur in both cases, we
are led to also ask whether the kineticssexchange timed is
affected as well when the solute mass is increased or de-
creasedswithout altering the force fieldd. It will be shown
that this effect actually exists and can be understood from
purely equilibrium considerations. To illustrate this point we
have extended our simulations for Li+ by artificially increas-
ing its mass so that, everything else unchanged, the lithium
ion is effectively static. In particular, we have taken Li+ in
water atT=683 K andr=0.2 g cm−3. We adopt the usual

definition of exchange time9,13,25as the time constant of the
exponential fit to the survival function defined

nstd =
1

Nh
o
i=1

Nh

uisr,tduisr,0d, s7d

whereusr ,td is 1 if the molecule is within the first hydration
shell sdefined by a maximum separationr‡ between the ion
and the water molecule center of massd, and 0 otherwise.Nh

denotes the number of water molecules initially within the
first shell, and a molecule is considered to have left the first
shell only if it has been out for more thant* =2 ps.

Obviously, we now find that for an ion of infinite mass
the distribution of exchanges is symmetric and, what is of
interest here, that the exchange time has a value oft`

=10.8 ps, to be compared with a faster exchange time oft
=6.9 ps if the lithium ion is assigned its correct mass,25 so
that a ratio oft /t`=0.6 results. To understand the origin of

FIG. 9. sad Thick dashed line, theoretical̀+sud for liquid Ar sT=112 K,r
=1.479 g cm−3d; thin line, computed from MD simulation;sbd thin line,
computed̀ +

delaysud for liquid Ar, thick line, theoretical curve for̀ +sud.
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this effect we will adopt the approach that has been cursorily
described within the previous sections, namely, to view the
exchange as an association-dissociation process.13,15,25From
this standpoint the exchange rate is written, following the
usual reaction rate theory formulas, as a productk=kTSTk,
wherekTST is obtained from

kTST =Î kBT

2pm

sr‡d2e−bWsr‡d

E
0

r‡

dr r2e−bWsrd

, s8d

whereWsrd has been defined in Eq.s3d.
Equation s8d shows that the equilibrium contribution

kTST depends on the square root of the inverse reduced mass,
the only varying parameter sinceWsrd will remain un-
changed even if the masses are variedsas the force field has
not been alteredd. If an infinite mass is assigned to the
lithium ion, we will havem`=mwater, i.e., the reduced mass is
that of the water molecule, whereas for real masses we will
havem,m`. Therefore, together with Eq.s8d and assuming
that k is the same in both cases, we have the following the-
oretical sequilibriumd estimation for the ratio of exchange
times:

t

t`

=
k`

TST

kTST =Î m

mwater
= 0.5, s9d

rather close to the previous value of 0.6sobtained from direct
simulationd. Given the indeterminacy in the fits of the sur-
vival function, we conclude that the fundamental explanation
lies in the variation of the reduced mass: exchanges are
slower if the solute mass is increased due to the concomitant
larger reduced mass of the pair, with a possibly null effect of
the dynamic correctionk. Indeed, the present example con-
stitutes an extreme case as far as ionic diffusion in water is
concerned; for more massive ions the difference betweenm
andm` is smaller and therefore the ratio will become closer
to unity sas it is obvious that the larger the ion mass, the
closer we are to the static solute limitd. Finally, it is impor-
tant to note how useful the association-dissociation perspec-
tive has been in order to easily understand this particular
issue. Although the existence of a more optimalsi.e., with a
higherkd reaction coordinate for the exchange process would
be of interest, it has been just shown that the ion-water dis-
tance results in simple analytical formulasfEq. s8dg which
provide usefulsquantitatived understanding on the trends.

V. CONCLUSIONS

The link between exchange events and the diffusive pro-
cess has been studied from two different perspectives. First,
two independent methods have been devised to quantita-
tively estimate the commonly accepted diffusion speed-up
induced by exchanges. This methodology has been applied to
Li+ and Na+ in liquid water, finding that diffusion increases
by 10% and 30%, respectively. The former case is particu-
larly interesting: although exchanges are characterized by
larger than average hydration shellssassociative processd,
mobility is still faster. Therefore, it is reasonable to infer that
solvent structure disruption during the exchange, with its

more feeble concomitant interactions, is a key factor explain-
ing the increased mobility. Moreover, it shows that neither
the increased local density nor the larger volume of the hy-
drated ion complexsin principle relevant from a Stokes
theory point of viewd are decisive factors for this particular
issue, as they would both predict a mobility slowdown. In
this work only the Li+ and Na+ cations have been addressed,
as for these cases the kinetics and dynamics of the exchange
have been studied in detail.13–15,25It would be interesting to
extend the present study to anions,6,10,31–33especially in wa-
ter where hydrogen bonding effects could introduce new fea-
tures. In this connection it is important to note that a proper
modeling of the hydrogen bonds for anions most probably
requires the inclusion of polarizability,33 as first shell struc-
ture seems to be critically dependent on this effect. An as-
sessment of the different methods available to this end is
currently underway.34

The influence of the instantaneous diffusive state of the
solute on the exchange properties has constituted the second
main focus of interest in this work. It has been shown that
purely kinematic considerations, together with the assump-
tion of thermal equilibrium, are sufficient to derive analytic
laws for the probability of entrance to the first solvation shell
and, similarly for that of escape. These expressions are of
general applicability and imply that, as a rule of thumb, the
majority of the solvent molecules will be found entering at
an angle of some 60° with respect to the instantaneous solute
velocity, while those leaving will be mostly found forming
an angle of some 120°. Despite the generality and purely
kinematic character of these considerations, they have shown
to be extremely useful in characterizing the results for the
nontrivial cation in water systems, as well as for liquid argon
sas noted above, the case of anions in water remains to be
investigatedd. Furthermore, it has been shown that dynamical
corrections to these expressions, while being of secondary
importance, tend to slightly increase the difference between
entrance and exit angles, with the former becoming closer to
0° sand to 180° the latterd. Finally, it has been argued that the
distinction betweencis and trans exchanges, for exchanges
involving the instantaneous exchange of two molecules, is
probably not possible for simple ionic exchange processes.
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APPENDIX
We first derive the probabilitysp+d for a solvent mol-

ecule to have an approaching relative velocity with the sol-
ute. According to the generic configuration depicted in Fig.
4, the solute velocity defines the origin for angles. The
modulus of this velocity will have thesnormalizedd probabil-
ity density
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psvd =
4

Îp
S m1

2kBT
D3/2

v2e−sm1v2d/2kBT, sA1d

wherem1 denotes the solute mass, and the function is defined
over f0,`g.

The velocity distribution function for the solvent mol-
ecule velocity along the axis joining the solute and the sol-
vent molecule is given by

psv2d =Î m2

2pkBT
e−sm2v2

2d/2kBT, sA2d

where m2 is the mass of a solvent molecule. It should be
noted that, in contrast with the previous case, now this func-
tion is defined over the intervalf−` ,`g.

It follows from the previous considerations that the prob-
ability density that the modulus of the solute velocity isv
and the solvent molecule has a velocityv2 along the line
joining both particles is

psv,v2d = psvdpsv2d

=
m1

Îm1m2

pskBTd2 v2e−sm1v2d/2kBTe−sm2v2
2d/2kBT. sA3d

A simple projection of the modulus of the solute velocity
ssee Fig. 4d on the intermolecular axis shows that the relative
velocity is given by

vr = v cosu − v2, sA4d

the difference defined so that, when both particles approach
each other,vr is positive.

Finally, the probability we are seeking can be found in-
tegrating the two-dimensional distributionpsv ,v2d fEq.
sA3dg under the constraintvr .0, i.e.,

sA5d

Changing variables fx;vsm1/2kBTd1/2, y;v2sm2/
2kBTd1/2g, Eq. sA5d can be rewritten as

sA6d

The domain of integration is depicted in Fig. 10, which
suggests a change to polar coordinatessx; r cosf ,
y; r sinfd. After this change the 2D integral is separable

p+ =
4

p
E

0

`

dr r3e−r2E
−p/2

arctansÎsm2/m1dcosud
df cos2f, sA7d

both integrals are trivially done, and the final result is

p+sud =
1

p
Htan−1SÎm2

m1
cosuD

+
1

2
sinF2 tan−1SÎm2

m1
cosuDG +

p

2
J . sA8d

We see how the result automatically contains a dependence
on u. As a first trivial check, in the limit casem2/m1→0 the
result isp+=1/2,that is, all molecules have equal probability

FIG. 10. Domain of integration indicated by shaded area.

FIG. 11. Sketch of the volume of the ring at angleu.
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of getting closer or further from thesstaticd solute, as ex-
pected.

Another function of interest, directly related to the
former, answers the following question: of all the molecules
having inward velocity, which fraction can be found at angle
u? It will be denoted as̀ +sud and, according to this

definition, it can be foundsexcept for a normalization factord
from the relation

`+sud ~ sfraction of molecules at angleudp+sud. sA9d

The term in bracketsfnsudg can be expressedssee Fig. 11d as

nsud =
number of molecules in a ring defined bysu,u + dudand thicknessdr

number of molecules in a special shell of thicknessdr
. sA10d

Again, from inspection of Fig. 11, it is clear thatsif r denotes
the number densityd

nsud =
r2pr2 sinu dr du

SE
0

p

sinu duDr2pr2dr

=
sinu

2
du, sA11d

so thatsin units of rad−1d

`+sud ~
sinsud

2p
Htan−1SÎm2

m1
cosuD

+
1

2
sinF2 tan−1SÎm2

m1
cosuDG +

p

2
J . sA12d

Note that a proper normalization is still required as, accord-
ing to its definition, it should satisfy

E
0

p

`+suddu = 1. sA13d

If this closure relation is imposed for the simple case
m2/m1→0, we obtain the final result

`+sud =
sinsud

p
Htan−1SÎm2

m1
cosuD

+
1

2
sinF2 tan−1SÎm2

m1
cosuDG +

p

2
J . sA14d
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