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Abstract

Metaproteomics enables the investigation of the protein repertoire expressed by complex microbial communities. However,
to unleash its full potential, refinements in bioinformatic approaches for data analysis are still needed. In this context,
sequence databases selection represents a major challenge. This work assessed the impact of different databases in
metaproteomic investigations by using a mock microbial mixture including nine diverse bacterial and eukaryotic species,
which was subjected to shotgun metaproteomic analysis. Then, both the microbial mixture and the single microorganisms
were subjected to next generation sequencing to obtain experimental metagenomic- and genomic-derived databases,
which were used along with public databases (namely, NCBI, UniProtKB/SwissProt and UniProtKB/TrEMBL, parsed at
different taxonomic levels) to analyze the metaproteomic dataset. First, a quantitative comparison in terms of number and
overlap of peptide identifications was carried out among all databases. As a result, only 35% of peptides were common to
all database classes; moreover, genus/species-specific databases provided up to 17% more identifications compared to
databases with generic taxonomy, while the metagenomic database enabled a slight increment in respect to public
databases. Then, database behavior in terms of false discovery rate and peptide degeneracy was critically evaluated. Public
databases with generic taxonomy exhibited a markedly different trend compared to the counterparts. Finally, the reliability
of taxonomic attribution according to the lowest common ancestor approach (using MEGAN and Unipept software) was
assessed. The level of misassignments varied among the different databases, and specific thresholds based on the number
of taxon-specific peptides were established to minimize false positives. This study confirms that database selection has a
significant impact in metaproteomics, and provides critical indications for improving depth and reliability of metaproteomic
results. Specifically, the use of iterative searches and of suitable filters for taxonomic assignments is proposed with the aim
of increasing coverage and trustworthiness of metaproteomic data.
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Introduction

The interest in microbial communities has grown enormously in

the last decade, due to their relevance in numerous fields spanning

microbial ecology, agriculture, waste treatment, bioremediation,

renewable energy production, as well as for their importance to

human and animal health [1,2,3,4,5,6,7,8,9]. A significant boost to

the study of complex microbial communities has been provided by

the latest advances in metagenomic techniques, which have

allowed researchers to study a microbial population in its natural

milieu according to a holistic approach, and therefore to gather

information on interactions occurring among microorganisms and

with their environment [10,11,12,13]. Specifically, 16S (and 18S

for eukaryotic species) rRNA gene and whole metagenome

sequencing approaches can provide a snapshot of the entire

community complexity in terms of taxonomic composition and

genetic potential, respectively. However, expression data are

required in order to gain information on the pathways that are

actively functioning in a community, and on how expression of

specific proteins can change according to time, location, or

environmental stimuli [14]. In this respect, metaproteomics has

the ability to identify and quantify the protein repertoire

collectively expressed by microbes colonizing a given environment

[15,16,17,18].

Yet, the metaproteomic characterization of a microbial

community poses several challenges, particularly concerning data

analysis and interpretation, as recently reviewed [19,20]. Two

major issues affect metaproteome analysis: first, genome sequence

data might be unavailable for most of the species of the microbial

community under study, considerably reducing the chances for a

correct matching between the experimental spectra and the

theoretical spectra; second, a typical environmental sample

contains thousands of proteins belonging to up to thousands of
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different microbial species, often having a high level of homology,

making both peptide-to-protein and peptide-to-taxa assignments a

tremendous task.

In this context, the selection of proper protein databases (DBs)

represents an extremely critical step, especially when dealing with

poorly characterized microbiomes. When a novel microbial

community is subjected to metaproteome analysis, without further

genomic investigation, publicly available DBs have to be used for

peptide/protein identification, at least for a preliminary analysis.

Protein DBs can be generally distinguished into non-manually

annotated (with plenty of information, but huge dimensions, and

thus very high computing times, such as NCBI and TrEMBL) and

manually curated sequences (as SwissProt, with inverse pros and

cons when compared to the non-annotated ones) [21,22].

However, in spite of the great efforts made in the last years by

genome scientists, most uncultivable species have not been

sequenced yet, and therefore are not available in the public

resources. In this case, cross-species identification can occur when

genome sequences of closely related species, with large sequence

homology regions, are available [23]. Unlike ‘classical’ DNA

sequence homology search, in proteomics even slight differences in

amino acid sequences lead to significant variations in peptide

masses, making the proteomic characterization of unsequenced

organisms extremely difficult. A possible alternative is using de novo

sequencing, in which amino acid sequences are deduced directly

from fragmentation spectra, without the need for a protein DB,

followed by BLAST search for identification of candidate

homologous proteins [24,25]. However, manual inspection of

spectra is often required due to the error-prone nature of de novo

sequencing, and very high quality data are necessary for achieving

reliable results [26].

The integration of metagenomics and metaproteomics holds

promise to address the above issues, as described by an increasing

number of publications in the very recent past

[27,28,29,30,31,32,33]. Currently, such integration may occur at

different levels (ordered by increasing complexity): i) using 16S

(and/or18S) rRNA gene sequencing information to assemble a

customized DB (also named ‘pseudo-metagenome’) restricted to

the taxa which have been (or are expected to be) found within the

microbiome under study, saving up analysis time and minimizing

species misassignments [27,34]; ii) using translated and annotated

metagenome sequences as protein DB, ideally generated from the

same sample being analyzed with metaproteomics (a so-called

‘matched’ metagenome), but also retrieved from public metagen-

ome archives, which are expected to impressively grow in the years

to come [32,35,36]; iii) isolating further reference strains from the

microbiome under study and performing individual genome

sequencing, on the basis on a labor-intensive, in-depth approach

recently referred to as ‘microbial culturomics’ [37]. Furthermore,

according to a proteogenomic (sensu stricto) approach, metagenomic

and genomic sequences can also be translated in all six reading

frames (six-frame translation, 6FT), with the purpose of minimiz-

ing the inherent biases derived from gene prediction methods

[38,39]. However, metagenome-derived DBs may suffer from

technical issues in DNA extraction, affecting species with lower

abundance or higher resistance to lysis, as well as from

bioinformatic issues in sequence assembly and annotation. To

the best of our knowledge, no reports have been described so far

critically comparing the metaproteomic data which can be

obtained using different types of publicly available and matched

metagenome-derived DBs.

Interestingly, each of the above mentioned DB types exhibits

specific features, mainly in terms of overall size and sequence

redundancy, that might in turn considerably affect two of the main

issues in proteome bioinformatics, namely false discovery rate

(FDR) assessment and protein inference, respectively. FDR

calculation applies a probabilistic method that inherently takes

into account the effects of multiple testing, by estimating the

proportion of peptide-spectrum matches (PSMs) that are incorrect

among all significantly identified PSMs. Several computational

approaches have been developed to estimate the FDR at both

peptide and protein level, usually exploiting the well-established

target-decoy approach [40], although alternative statistical mod-

eling approaches have also been developed [41,42]. Advantages

and limitations of the FDR approach in terms of quality, accuracy,

and resolution have been critically discussed elsewhere [43,44,45].

The FDR applies globally to a set of PSMs, but single PSMs can

also be associated with a q-value, defined as the minimal FDR of

any PSM set that includes the given PSM [44]. Even though FDR

estimation can be quite accurate and reproducible when a limited

search space is concerned (e.g., a protein DB from a single

organism), its resolution may significantly deteriorate when the

search space complexity increases, as it occurs in proteogenomic

and metaproteomic experiments, with a consequent reduction in

sensitivity [19,45,46]. FDR accuracy and sensitivity are expected

to be strongly influenced by the protein DB used [46], but this

aspect has not been fully elucidated so far regarding metapro-

teomic data.

The second bioinformatic concern, which may have a

considerable impact on metaproteome analysis, is represented by

the ‘protein inference problem’, that is, how to assemble a list of

peptides into a (reliable) list of proteins [47,48]. When analyzing a

single organism’s proteome, ambiguities in peptide-to-protein

assignment can be generally due to the presence of different

splice variants or cleavage products. Unfortunately, this scenario is

even more complicated when dealing with a metaproteome. In

fact, many peptides (called degenerate peptides) can be shared

among homologous proteins from different species, or even among

recurring functional domains [19]. Under a DB perspective, a

higher redundancy or homology in protein sequences corresponds

to a higher degeneracy in peptide identification, and thus to

harder issues in protein inference. Additionally, most of the

widespread software suitable for protein/peptide identification

usually display only a subset of all possible protein identifications;

therefore, a tedious manual inspection for protein assignment is

required in order to not over- or under-report important

functional and taxonomic information [49].

A simple but quite robust strategy to infer taxonomic

information from (DNA or protein) sequence data is the so-called

lowest common ancestor (LCA) approach [50]. According to this

algorithm, a sequence is assigned to a given species only if it does

not match with any other species contained in the sequence DB;

conversely, if the sequence is shared among several species

contained in the DB, all belonging to the same genus, the sequence

is unambiguously assigned only to the genus level. Generally

speaking, widely conserved sequences are always assigned to high-

order taxa. When analyzing metaproteomics data, the LCA

approach is clearly to be preferred over retrieving the taxonomic

information using ‘classical’ protein inference algorithms, as

usually these systems select arbitrarily only one among the diverse

taxonomic possibilities, with consequent loss of information [49].

The LCA algorithm can be theoretically applied either at the

peptide or protein level: in the first case, LCA analysis should

provide the most accurate results, in view of the peptide-centric

nature of shotgun mass spectrometry (MS); in the second case, as

discussed above, the previous application of a protein inference

algorithm not specifically suited for metaproteomics might

introduce significant biases. The forerunner of LCA software,
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MEGAN, was originally developed for metagenomic data, but it

can also be extended to metaproteomics [51,52,53]. Usually, in a

preprocessing step, protein/peptide sequences are compared

against the NCBI database using BLAST, and MEGAN is then

used to compute and explore the taxonomical content of the data

set. A recent achievement of the metaproteomics research

community is the Unipept web application, which supports

biodiversity analysis of metaproteome samples using tryptic

peptide information obtained from shotgun MS/MS experiments,

by retrieving all occurrences of the given peptides in UniProtKB

records; taxon-specificity of the tryptic peptide is successively

derived from these occurrences using a novel LCA approach [54].

To date, a critical evaluation of Unipept and/or MEGAN for the

taxonomic profiling of metaproteomic data has not yet appeared

in the literature; furthermore, a possible influence of the DB choice

on LCA results has not been investigated so far.

In this work, we aimed to assess the impact of different protein

DBs on the metaproteomic investigation of a lab-assembled

microbial mixture, composed by bacterial and eukaryotic species

with various structural features and different levels of previous

genomic characterization. In fact, the use of an ‘artificial

microbiota’ enables to assess the reliability and completeness of

metaproteomic data, thanks to the a priori knowledge of the exact

species composition of the mixture. Total genomic extracts from

the microbial mixture and from each of the cultured species were

subjected to next generation sequencing (NGS) in order to obtain

metagenomic- and genomic-derived DBs, which were interrogated

along with publicly available DBs, parsed according to different

taxonomy filters, to analyze shotgun metaproteomic data. The

results obtained were evaluated by performing: i) a quantitative

comparison of peptide identifications; ii) a critical assessment of

FDR behavior and peptide degeneracy; iii) an in-depth analysis of

taxonomic attribution reliability, carried out with MEGAN and

Unipept software.

Materials and Methods

Microbial samples
Identity and features of the microbial strains used in this study

are detailed in Table 1. P. multocida was kindly provided by Dr.

Gavino Marogna (Istituto Zooprofilattico Sperimentale della

Sardegna), R. glutinis by Prof. Ilaria Mannazzu (Department of

Agricultural Sciences, University of Sassari), L. casei, L. acidophilus,

P. pentosaceus and S. cerevisiae by Dr. Pasquale Catzeddu and Dr.

Manuela Sanna (Porto Conte Ricerche), B. laterosporus by Dr. Luca

Ruiu (Bioecopest Srl), whereas E. faecalis and E. coli were available

in the laboratories of the Department of Biomedical Sciences,

University of Sassari. When this study was performed, none of the

specific microbial strains listed in Table 1 had its genome

sequenced and deposited, except B. laterosporus. Microbial cultures

were grown at 37uC to stationary phase using the appropriate

standard medium for each microorganism, and colony-forming

units (CFU) counting was used to estimate the amount of viable

microbial cells. The microbial cultures were divided into aliquots

(approximately 109 CFU each), which were washed three times in

PBS, pelleted, and stored at –80uC until used. A nine-organism

microbial mixture (9MM) was then assembled by merging an

aliquot of each microbial pellets according to the procedures

described below.

DNA extraction and sequencing
DNA of single bacterial species was extracted according to a

procedure hereafter called method A, based on detergent lysis and

lysozyme treatment according to the DNeasy Blood & Tissue Kit

protocol (Qiagen, Hilden, Germany), whereas yeast DNA was

extracted according to a procedure hereafter called method B,

comprising a strong detergent pretreatment combined with freeze-

thawing and bead beating steps (as previously described by Harju

and coworkers [55]) followed by the Gentra Puregene kit protocol

(Qiagen). Furthermore, two identical replicates of the 9MM were

assembled by merging 109 CFU cell pellets from the nine

microorganisms mentioned above. Then, the first 9MM replicate

was subjected to extraction according to method A (9MM-A),

while the second according to method B (9MM-B). The extracted

DNA was quantified using the Nanodrop 2000 (Thermo Scientific,

Waltham, MA, USA), and quality was assessed by agarose gel

electrophoresis.

The 11 DNA extracts (9 individual microbes, 9MM-A and

9MM-B) were then subjected to NGS. Libraries were generated

using the IlluminaH TruSeqTM DNA Sample Preparation Kit (San

Diego, CA, USA) according to the manufacturer’s protocol with

minor modifications. Briefly, genomic DNA was fragmented in an

ultrasonic bath (Elmasonic S, Elma, Singen, Germany). After

ligation to the adapters and gel purification of DNA ranging

between 300 and 400 bps, the libraries were subjected to 15-20

PCR cycles to enrich the DNA fragments with adapters ligated to

both ends. The PCR products were purified and evaluated using

the High Sensitivity DNA chip on an Agilent Technologies 2100

Bioanalyzer (Santa Clara, CA, USA). Normalized sample libraries

were pooled and subjected to hybridization and cluster generation

step on a v1 flow cell using the cBOT cluster generation station,

according to the Illumina TruSeq PairedEnd Cluster Kit protocol.

Libraries were sequenced (six samples per lane) with an expected

coverage of at least 40X for each single microorganism except for

R. glutinis (about 12X). The 9MM extracts were sequenced with a

higher coverage (only two samples per lane) to achieve a better

sequencing depth. DNA sequencing was performed with the

Illumina HiScanSQ sequencer, using the paired-end method and

76 runs of sequencing. The 9MM-A and 9MM-B metagenome

sequences have been deposited in the NCBI BioSample repository

(http://www.ncbi.nlm.nih.gov/biosample), with the accession

numbers 2352454 and 2352511, respectively.

Genome/metagenome gene finding, annotation and
six-frame translation

Reads were assembled de novo into scaffolds using Velvet 1.2

[56], choosing the best K-mer values for each assembly to obtain

nine genome drafts and two metagenome drafts. As detailed in

Data S1, all the de novo drafts of the single microorganisms showed

a N50 length .30 kbp and a coverage higher than 39X, except for

R. glutinis (4910 bp and 12.6X, respectively, probably due to its

wider genome); 9MM-A metagenome reads showed an assembly

quality equivalent to the single genome sequences, whereas N50

length of the 9MM-B draft was significantly lower (, 1000). The

putative coding sequences (CDS) were identified with Prodigal

2.60 [57]. Each CDS was annotated evaluating the homology by

BLAST search against TrEMBL Protein Database Release

2012_10 (E-value # 1028) [58]. Moreover, each genome draft

was translated in all six frames using the perl script translate-

WholeGenomeMultiChromosome.pl available at http://

proteomics.ucsd.edu/Downloads/.

Protein extraction and shotgun MS analysis
The 9MM was assembled as follows: the first microbial pellet

was resuspended in 500 ml of pre-heated (95uC) extraction buffer

(2% SDS, 20 mM Tris-HCl pH 8.8); after careful pipetting, the

microbial suspension was then added to a second microbial pellet,

and the procedure was sequentially repeated until the ninth pellet

The Impact of Databases on Metaproteomic Analysis
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was resuspended and mixed. The 9MM was incubated at 95uC for

20 min in agitation (500 rpm) in a Thermomixer. Next, a stainless

steel bead (5 mm diameter, Qiagen, Hilden, Germany) was added.

The sample was then subjected to sequential incubations (5 min at

–80uC, 5 min at 95uC, 1 h at –80uC) followed by bead beating (10

min at 30 cycles/s in a TissueLyser mechanical homogenizer,

Qiagen), further incubations (5 min at –80uC, 5 min at 95uC), and

a final bead beating step (3 cycles of 3 min each at 30 cycles/s in

the TissueLyser). The sample was centrifuged at 14000 rpm for 10

min at 4uC and the whole supernatant was collected. Protein

quantification was carried out by means of the 2-D Quant Kit (GE

Healthcare, Little Chalfont, UK).

According to previous studies [59,60,61,62], two complemen-

tary approaches were chosen for sample preparation prior to MS,

namely filter-aided sample preparation (FASP) [63] and protein

precipitation followed by in-solution digestion (PPID). Two

aliquots of the 9MM protein extract were therefore processed in

parallel according to these two procedures, as described previously

[62].

The two derivative peptide mixtures were then analyzed by LC-

MS/MS using an LTQ-Orbitrap Velos (Thermo Scientific)

interfaced with an UltiMate 3000 RSLCnano LC system (Dionex,

Sunnyvale, CA, USA, now part of Thermo Scientific), according

to a previously described method [64]. Briefly, four micrograms of

each peptide mixture were separated at 35 uC using a 75-mm ID6
25 cm C18 column (Acclaim PepMap RSLC C18, 75 mm15 cm

nanoViper, 2 mm, 100 Å, Dionex) at a flow rate of 300 nL/min,

using a 280 min gradient from 1 to 50% eluent B in eluent A,

where B is 0.2% formic acid in 95% acetonitrile, and A is 0.2%

formic acid in 5% acetonitrile. Full-scans were performed in the

Orbitrap with resolution of 30,000 at 400 m/z, and the 10 most

intense ions of every scan were selected and fragmented. Higher

Energy Collisional Dissociation (HCD), performed at the far side

of the C-trap, was used as fragmentation method by applying a

40% value for normalized collision energy, an isolation width of

m/z 3.0, a Q-value of 0.25, and an activation time of 0.1 ms.

Finally, the two Thermo raw files obtained from the two peptide

mixtures were merged in order to maximize protein sequence

coverage and thus metaproteome analysis depth. Individual

peptide/PSM identification values from FASP and PPID analyses

are shown in Data S2. Technical reproducibility among runs,

measured by performing an additional experiment (data not

shown) and calculating the R-squared value by plotting the

number of PSMs for a given protein in run 1 against the number

of PSMs for the same protein in run 2, was 0.9954.

Protein database construction and metaproteome
bioinformatics

Thirteen protein DBs were used for protein/peptide identifica-

tion from MS data, as described in Table 2.

The first nine DBs were assembled starting from publicly

available sequences derived from NCBI, UniProtKB/SwissProt

(hereafter simply called SwissProt), and UniProtKB/TrEMBL

(hereafter simply called TrEMBL) records, using the Database

Manager tool included in Mascot Server (version 2.4, Matrix

Science, London, UK), and applying one of the three following

taxonomy filters: Bacteria, Fungi, Viruses (BFV, corresponding to

NCBI taxonomy IDs 2, 4751, and 10239), selected genera

(Brevibacillus, Escherichia, Enterococcus, Lactobacillus, Pasteurella, Pedio-

coccus, Rhodotorula, and Saccharomyces, corresponding to NCBI

taxonomy IDs 55080, 561, 1350, 1578, 745, 1253, 5533, and

4930), or selected species (B. laterosporus, E. coli, E. faecalis, L.

acidophilus, L. casei group, P. multocida, P. pentosaceus, R. glutinis, S.

cerevisiae, corresponding to NCBI taxonomy IDs 1465, 562, 1351,

1579, 655183, 747, 1255, 5535, 4932). The taxonomy L. casei group

was preferred to L. casei (species) due to the very high level of

sequence similarity and some ambiguity in taxonomic boundaries

within the species comprised in this taxonomic group.

The remaining four DBs were constructed from genomic and

metagenomic data experimentally obtained in this study. Specif-

ically, the single predicted and annotated (PA) genomes assembly

DB (SGA-PA) was obtained by concatenating in a single FASTA

file the protein sequences obtained from each individual microbe

upon CDS prediction and TrEMBL annotation, while the PA

metagenome DB (Meta-PA) was obtained by concatenating in a

single FASTA file the protein sequences obtained upon NGS of

the two 9MM extracts, CDS prediction and TrEMBL annotation.

Finally, the genome drafts of the nine sequenced microbes and the

9MM metagenome draft were also processed in an alternative way

based on naı̈ve six-frame translation, thus generating SGA-6FT and

Meta-6FT DBs, respectively. As expected, the number of amino

acid residues of the 6FT DBs was almost six time bigger than that

of the corresponding PA DBs (specifically, 4.2 million residues for

Meta-PA versus 26.1 for Meta-6FT, and 12.9 million residues for

SGA-PA versus 84.2 for SGA-6FT). Features and composition of

the in-house Meta-PA and SGA-PA DBs were as follows. The

percentage of annotated proteins were 71% and 54% of the

overall protein sequences, and the number of non-redundant

protein sequences within each DB amounted to 13270 and 27164

for Meta-PA and SGA-PA, respectively. Among these, 96% and

91% were correctly attributed to the species actually present in the

9MM, respectively. Concerning the species distribution of the

Table 1. Microorganisms used in this study.

Species Cell type Source Genome size

Escherichia coli Gram-negative bacillus Field isolate 4600 Kb

Pasteurella multocida Gram-negative coccobacillus Field isolate 2250 Kb

Brevibacillus laterosporus Gram-variable bacillus LMG 15441 5180 Kb

Lactobacillus acidophilus Gram-positive bacillus LMG 9433 1993 Kb

Lactobacillus casei Gram-positive bacillus LMG 6904 2900 Kb

Enterococcus faecalis Gram-positive coccus Field isolate 3218 Kb

Pediococcus pentosaceus Gram-positive coccus Field isolate 1832 Kb

Rhodotorula glutinis Yeast Field isolate 20300 Kb

Saccharomyces cerevisiae Yeast CBS 1171 12068 Kb

doi:10.1371/journal.pone.0082981.t001

The Impact of Databases on Metaproteomic Analysis

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e82981



protein sequences contained into the two DBs according to

TrEMBL annotations (Data S3), in the Meta-PA DB over 90% of

protein sequences were from only 4 species (B. laterosporus,

P.multocida, L. casei group, and L. acidophilus, representing 36%,

27%, 22% and 9% of the total, respectively), with a significant

depletion in yeast sequences (e.g. only 1 from S. cerevisiae), whereas

in the SGA-PA DB the abundance of the 9 actually present species

ranged from 3 to 21% of the overall protein sequences.

Finally, a DB containing common contaminants (available at

http://maxquant.org/contaminants.zip) was also used as a control

for environmental and trypsin contamination.

The Proteome Discoverer platform (version 1.3.0.339, Thermo

Scientific), interfaced with an in-house Mascot server, was used for

data parsing and protein identification, according to the following

criteria: Enzyme Trypsin, Maximum Missed Cleavage Sites 2,

Precursor Mass Tolerance 10 ppm, Fragment Mass Tolerance 0.2

Da, Cysteine Carbamidomethylation as Static modification, N-

terminal Glutamine conversion to Pyro-glutammic Acid, Methi-

onine Oxidation and N-terminal Acetylation as Dynamic Mod-

ifications. The Percolator algorithm was used to calculate a q-value

for each peptide/PSM, and then an FDR threshold was set at

peptide level (generally ,1%, see Results for details) based on

Percolator q-value, according to Proteome Discoverer’s peptide

confidence filtering. Peptides with rank .1 were not considered

for analysis. Peptide and protein grouping according to Proteome

Discoverer’s algorithms were allowed, applying strict maximum

parsimony principle.

Peptide sequences were imported on Unipept (http://unipept.

ugent.be/) [54], in order to infer taxonomic information about the

identified peptides, and subjected to multi-peptide analysis setting

the following parameters: ‘‘Equate I and L’’ and ‘‘Filter duplicate

peptides’’. Peptide sequences were also subjected to standard

protein BLAST search against the NCBI-nr DB using blastp

(http://blast.ncbi.nlm.nih.gov) with default parameters (included

the automatic adjustment for short input sequences). BLAST

output files (in xml format) were uploaded in MEGAN

(MEtaGenome ANalyzer, version 4.70.4) to perform taxonomic

analysis [52]. MEGAN parameters were left as default, except

‘‘Min support’’ which was set as needed (see Results for details).

Data elaboration was carried out using Microsoft Excel (Red-

mond, WA, USA). Venn diagrams were designed by means of

Venny (http://bioinfogp.cnb.csic.es/tools/venny/index.html) or

Venn Diagram Plotter (http://omics.pnl.gov/software/

VennDiagramPlotter.php). MS data, protein/peptide identifica-

tions list and other supplementary material are available in the

Peptide Atlas repository at http://www.peptideatlas.org/PASS/

PASS00194.

Results

Global experimental design
The study was designed as schematized in Figure 1A. As a first

step, a nine strains microbial mixture (9MM) was assembled,

including seven prokaryotes and two eukaryotes with heteroge-

neous structural features, as summarized in Table 1. In order to

simulate the variability in the level of sequence information that

might be encountered in environmental microbiomes, the selected

microorganisms were either whole-genome sequenced reference

strains, unsequenced field isolates, or belonging to species lacking a

previous genomic characterization (i.e., R. glutinis). As a second

step, genomes extracted from the 9 individual strains and from the

9MM were subjected to Illumina NGS, in order to generate

genome- and metagenome-derived protein DBs (see Materials and

Methods for details). As a third step, the 9MM metaproteome was

analyzed by shotgun LTQ-Orbitrap MS, and MS data were

searched against publicly available and matched experimental

DBs. As a fourth step, the information achieved interrogating a

total of 13 different DBs was comparatively evaluated in respect to:

number and overlap of peptide identifications; FDR behavior and

peptide degeneracy; and reliability of taxonomic attribution (using

MEGAN and Unipept software).

Specifically, four main DB classes were considered for

comparison, each one corresponding to a different experimental

approach that might be used in a metaproteomics study (as

depicted in Figure 1B): i) public DBs (namely, NCBI, SwissProt

and TrEMBL) with generic taxonomic indications (all microbial

sequences, i.e. those belonging to Bacteria, Fungi, and Viruses,

abbreviated as BFV), an approach needed when no precise

taxonomic information and/or matched genome sequencing data

are available for the microbiome under study; ii) protein sequences

selected from the above mentioned public DBs, based on

Table 2. Database used for peptide identification from MS spectra.

Database acronym Original database
Version/
update

Taxonomy/
Processing

Number of
sequences

Average computing
time per run (min)

NCBI-BFV NCBI Dec 2012 Bacteria, Fungi, Viruses 16,175,389 817

TrEMBL-BFV UniProtKB/ TrEMBL 2012_10 Bacteria, Fungi, Viruses 21,602,141 1002

SP-BFV UniProtKB/ Swiss-Prot 2012_11 Bacteria, Fungi, Viruses 375,700 28

NCBI-G NCBI Dec 2012 8 selected genera 895,743 213

NCBI-S NCBI Dec 2012 9 selected species 554,718 219

TrEMBL-G UniProtKB/ TrEMBL 2012_10 8 selected genera 2,622,251 269

TrEMBL-S UniProtKB/ TrEMBL 2012_10 9 selected species 2,198,849 247

SP-G UniProtKB/ Swiss-Prot 2012_11 8 selected genera 37,708 9

SP-S UniProtKB/ Swiss-Prot 2012_11 9 selected species 33,130 8

Meta-PA Matched metagenome CDS prediction + TrEMBL annotation 24,673 10

Meta-6FT Matched metagenome six-frame translation 90,306 17

SGA-PA Single genomes assembly CDS prediction + TrEMBL annotation 52,455 10

SGA-6FT Single genomes assembly six-frame translation 54,948 28

doi:10.1371/journal.pone.0082981.t002
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taxonomic information (referred to as ‘taxonomy-restricted’ DBs,

parsed at genus, G, or species, S, level) which may derive from

previous 16S rRNA gene sequencing or metaproteomic informa-

tion; iii) matched metagenome sequence DBs (named ‘Meta’ DBs),

experimentally obtained from whole metagenome sequencing of

the same microbiome subjected to metaproteomic analysis; iv)

assembly of experimentally obtained individual genome sequences

from the main species included in the microbiome (named ‘single

genomes assembly’, SGA), an approach that requires isolation of

each strain of the culturable microbiome. A further distinction

must be made concerning genome data processing: both the

metagenome and the single genomes were subjected either to

coding sequence prediction and annotation (PA) or to naı̈ve six-

frame translation (6FT), thus generating four different experimen-

tal DBs.

Comparison of metaproteomic data obtained using
different protein databases

Figure 2A illustrates the comparison among the peptide

identification data achieved by searching the MS spectra against

the 13 DBs described above, using FDR,1% as a threshold. The

use of SGA-PA led to the identification of the higher number of

peptides (left), while SwissProt-based DBs provided the least

satisfactory results. Similar results were obtained according to the

number of peptide-spectrum matches (PSMs; right). The amount

of peptide identifications achieved with the metagenome-derived

DB was slightly higher than with SwissProt, but clearly lower than

with public non-manually annotated NCBI and TrEMBL DBs.

Furthermore, ‘taxonomy-restricted’ DBs from NCBI and

TrEMBL performed better than the corresponding DBs with

wider taxonomy. It should also be noted that, as indicated in Table

1, the average computing time needed for the DB search differed

Figure 1. Schematic illustration of the study workflow. A) Experimental design. B) Database classes examined.
doi:10.1371/journal.pone.0082981.g001

The Impact of Databases on Metaproteomic Analysis

PLOS ONE | www.plosone.org 6 December 2013 | Volume 8 | Issue 12 | e82981



dramatically among the DBs, proportionally to each DB size. On

the whole, 12911 different peptide sequences were identified by

searching MS spectra against all DBs described above.

Four DBs were then selected as representative of the four main

DB classes described above. Specifically, two were TrEMBL-based

DBs, and two were (meta)genome-based DBs annotated against

TrEMBL. The intersections among the peptide sequences

identified with each DB were calculated and illustrated by means

of a Venn diagram (Figure 2B, left). Surprisingly, only about one-

third of the identified peptide sequences were common to all DBs,

while 22% were unique to a single DB (of which nearly 90% were

unique to TrEMBL-BFV or SGA-PA). Meta-PA identifications

were common to SGA-PA at 98%, whereas the specific increment

obtained with Meta-PA compared to the public DBs (given by the

peptide sequences found only using Meta-PA and not detected

using any publicly-available DB) could be estimated at 6%.

Furthermore, 68% of peptide sequences were in common between

TrEMBL-BFV and TrEMBL-G.

When comparing DBs according to the public DB of origin

(Figure 2B, center), approximately half of the peptides were

common to NCBI, TrEMBL and SwissProt; NCBI and TrEMBL

shared over 90% of the identified peptides, while about 8% of

SwissProt peptide sequences (5% of the total) were not identified in

the other DBs. As far as different taxonomy filters are concerned

(Figure 2B, right), 70% of peptide identifications were common to

all DBs, but the use of genus/species-specific DBs led to a 17%

increase in identifications compared to search against a general

microbial taxonomy (BFV).

The performances of 6FT DBs were also evaluated. A total of

5337 peptides were identified by searching MS spectra against

Meta-6FT, of which 117 (2%) were unique when compared to the

corresponding annotated DB (Meta-PA); SGA-6FT allowed the

detection of 8333 peptides, of which 757 (9%) had not been found

using SGA-PA. On the whole, the employment of 6FT DBs

enabled 783 additional identifications (6% increase).

Evaluation of FDR behavior and peptide degeneracy
across different databases

Another aim of this study was to investigate how FDR behavior

and peptide degeneracy are influenced by the particular DB used

for metaproteome analysis. To evaluate FDR behavior, the

number of peptides (Figure 3A, left) and PSMs (right) identified

with each DB were plotted as a function of FDR thresholds based

on the Percolator q-values, as previously described by Spivak and

colleagues [65]. As a result, DBs could be distinguished into two

groups based on the typical trend of their q-value curves: the first

Figure 2. Comparison of metaproteomic data obtained with different databases. A) Number of peptide sequences (left) and peptide-
spectrum matches (PSMs, right) identified in the 9MM using different sequence databases (FDR,1%). B) Left, Venn diagram illustrating the peptide
distribution among four different DB classes. Center, Venn diagram illustrating the peptide distribution among all NCBI-, TrEMBL- and SwissProt-
based DBs used in this study. Right, Venn diagram illustrating the peptide distribution among all DBs with generic microbial taxonomy (BFV), genus-
specific taxonomy (G), and species-specific taxonomy (S).
doi:10.1371/journal.pone.0082981.g002

The Impact of Databases on Metaproteomic Analysis

PLOS ONE | www.plosone.org 7 December 2013 | Volume 8 | Issue 12 | e82981



comprising all publicly available DBs with generic taxonomy

(NCBI-BFV, TrEMBL-BFV and SP-BFV), whose curve kept on

rising much longer compared to the remaining DBs, that tended

considerably more rapidly to a plateau. Interestingly, the FDR

evolution was quite different if either peptide sequences or PSMs

were considered. For instance, SGA-PA achieved the higher

number of peptide identified at any FDR, whereas in terms of

PSMs the same DB passed from giving the best results at 1% FDR

to being only the fourth best DB at 5% FDR. The increment in

peptide/PSM identifications when increasing the FDR threshold

from 1 to 5% was also evaluated (Figure 3B), and it was observed

that the public DBs with generic taxonomy consistently yielded the

highest percentage of additional hits when increasing the FDR

threshold. Another significant observation could be made

concerning 6FT DBs, which showed a two-fold percentage

increase compared to the corresponding PA DBs when the FDR

threshold was raised to 5%.

Furthermore, the degree of peptide degeneracy related to each

DB was estimated by calculating the percentage of shared (or

degenerate) peptides/PSMs. According to Proteome Discoverer’s

algorithms, after protein identities are deduced from a set of

identified peptides, proteins are grouped according to the peptide

sequences identified for the proteins (in this case allowing the

‘‘Strict Maximum Parsimony Principle’’ option), and a master

protein is reported for each protein group, which has been

identified by a set of peptides that are not included (all together) in

any other protein group. Each identified peptide can be therefore

matched either with a single protein group (called ‘unique

peptide’) or with multiple protein groups (called ‘shared peptide’).

In this context, the percentage of shared peptides out of the overall

identifications gives an indication of the degeneracy associated to a

particular DB. As shown in Figure 3C, in general the percentage

of shared PSMs (right) was higher when compared to the

percentage of shared peptides (left) measured for the same DB

(with FDR,1%). Moreover, experimental DBs exhibited signif-

icantly lower percentages of shared peptides (and even lower for

PSMs) when compared to publicly available DBs. Among the

latter, the peptide degeneracy decreased, as expected, according to

the following order: NCBI.TrEMBL.SwissProt and

BFV.G.S.

Reliability of taxonomic attribution by Unipept and
MEGAN analysis of metaproteomic data

The metaproteomic data generated in this work were then used

to evaluate the reliability of the taxonomic attribution of peptide

identifications, with the aim of assessing the influence exerted by

the DB choice in this type of investigations. Such evaluation was

possible due to the a priori knowledge of the taxonomic

composition of the lab-assembled 9MM. Specifically, the peptide

sequences identified using the different DBs were parsed by means

of two software enabling taxonomic analysis according to the LCA

approach, namely Unipept [54] and MEGAN [52]. It is worth

noting that MEGAN requires a preliminary BLAST search of the

identified peptide (or protein) sequences, since a BLAST file is

needed as the input. Furthermore, MEGAN ‘‘Min Support’’ filter

(that is, the number of reads/peptides that must be assigned to a

taxon so that it appears in the results) was initially set to 1,

according to Rudney et al. [53].

Figure 4 comparatively illustrates the number of peptides

detected as specific to family (top), genus (middle) or species

(bottom) level upon Unipept (left) or MEGAN (right) analysis,

identified with five different DBs. Peptide distribution among the

prokaryotic (blue) and eukaryotic (green) strains included in the

9MM was also taken into account, as well as the incorrect

attributions (denominated ‘misassignments’, in red). Further details

are available in Data S4-S5. Genus/species-specific DBs were

excluded from this comparison because it would have been

superfluous to assess taxonomy attribution reliability when a

specific ‘‘taxonomy filter’’ had been already set a priori, and

therefore the number of misassignments had been ‘‘forced’’ to be

zero. In general, the number of taxon-specific identifications

decreased proportionally to the degree of taxonomic detail (for

instance, nearly 4500, 3500, and 2000 peptides could be found

with family, genus, and species specificity with NCBI-BFV,

respectively). Moreover, a higher amount of taxon-specific

peptides could be yielded with Unipept analysis compared to

MEGAN (e.g. up to over 4500 family-specific peptides with

Unipept versus less than 1800 with MEGAN). The impact of

taxonomic ‘misassignments’ was also evaluated. As a result,

Unipept demonstrated a higher reliability, since the average

percentage of incorrect attributions was 3%, 5% and 9% (at the

family, genus and species level) compared to respective percent-

ages of 7%, 17% and 32% with MEGAN. Among DBs, Meta-PA

provided the most specific results, due to the lowest rate of

misassignments, whereas NCBI-BFV and TrEMBL-BFV per-

formed worse in this respect. With regard to the distribution of the

taxon-specific peptides among the different microbial strains, no

yeast-specific peptides could be identified using Meta-PA, because

of the total lack of eukaryotic sequences in this DB. Bacterial

family distribution was instead comparable among all DBs. Going

down to the species level, the best coverage was achieved by SGA-

PA, followed by NCBI-BFV and TrEMBL-BFV which provided

similar results. Conversely, SP-BFV failed to detect peptides

belonging to the species with lower level of genomic character-

ization (as B. laterosporus and R. glutinis, since no protein sequences

from these species were included within SwissProt records at the

time of this study). E. faecalis and E. coli were significantly

underrepresented with all DBs.

In addition, when considering the overall number of families,

genera, and species found with the different DBs, results were very

far from the expected value. As an example, Unipept analysis of

peptides identified using TrEMBL-BFV revealed the (purported)

presence of 124 different families, 215 different genera, and 249

different species within the 9MM (as detailed in Data S4; in this

case, MEGAN did generally provide a lower number of false

positives when compared to Unipept). This, together with the non-

negligible percentage of misassignments described above, demon-

strates that taxonomic information gathered without adequate

filtering can provide confounding results, dramatically decreasing

the reliability of metaproteomic data. In keeping with this, an

empirical filter was devised with the aim of eliminating false

positive attributions and making the final result as similar as

possible to the actual 9MM composition. Upon iterative analyses,

a threshold corresponding to 0.5% of the total number of taxon-

specific peptides was set, thus defining the taxa exhibiting a

number of peptides below such value as false positives. As shown

in Figure 5 (‘u’ indicates unfiltered data, whereas ‘f’ indicates

filtered data), in most cases the application of this filter allowed the

elimination of all incorrect taxa (in red) without (or with only

slight) loss of information about the actually present strains (in

green). Distribution of taxon-specific peptides and misassignments

after filtering is illustrated in detail in Data S5.

We also sought to investigate the taxonomic features of 6FT-

unique peptide sequences. In fact, 783 peptides were identified

only using 6FT DBs (Meta-6FT or SGA-6FT), since their

sequence was absent from the corresponding predicted and

annotated DBs. To this aim, the 6FT-unique sequences were

classified based on the individual genome of origin (this
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Figure 3. Evaluation of FDR behavior and peptide degeneracy using different databases. A) Diagram plotting the number of peptides
(left) and PSMs (right) identified with each database as a function of FDR thresholds based on the Percolator q-values. B) Bar graph showing the
percentage increment in peptide (left) and PSM (right) identifications achieved with each database when increasing the FDR threshold from 1 to 5%.
C) Bar graph illustrating the percentage of shared peptides (left) and PSMs (right) identified with each database at FDR,1%.
doi:10.1371/journal.pone.0082981.g003
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information was available only for SGA-6FT), as well as subjected

to BLAST sequence similarity analysis (both Meta-6FT and SGA-

6FT). As a result, among 675 6FT-specific peptides detected using

SGA-6FT, 77% matched with sequences belonging to R. glutinis

genome, followed by 12% from S. cerevisiae (thus nearly 90% were

from yeast sequences), about 4% each from P. multocida and L. casei,

and an additional 4% from the remaining microbes. This result

was confirmed by BLAST analysis, since 72% of the aligned

sequences were found as significantly homologous to yeast

sequences (21 to R. glutinis, 10 to S. cerevisiae and 34 to other Fungi).

Discussion and Conclusions

A formidable effort is currently being made to develop

bioinformatic strategies able to tackle issues in metaproteomic

data analysis [19,20,30,31,66]. The results presented here further

highlight that the use of large and complex DBs required for

multispecies samples (such as microbial communities) poses

significant challenges in the implementation and optimization of

search-decoy approaches for FDR calculation. Our data also

suggest that peptide/PSM identification significance thresholds are

strongly influenced by DB size and redundancy, even when a post-

search algorithm using semi-supervised machine learning (such as

Percolator) is used. In fact, the use of ‘taxonomy-restricted’ DBs

led to a higher number of peptide identifications when compared

to those obtained with the same DBs with wider taxonomy (and

thus larger size). This may seem quite surprising, given that

‘taxonomy-restricted’ DBs were just a subset of the corresponding

‘general’ DBs, containing no additional sequences when compared

to the latter. Specifically, most of the peptide sequences uniquely

detected with ‘taxonomy-restricted’ DBs were not identified using

the corresponding ‘general’ DB, since these were discarded being

below the 1% FDR threshold. Also the poorer performance of

6FT DBs when compared to the corresponding PA DBs may be

explained in a similar way, since the former are almost six time

bigger than the latter. In this respect, the use of alternative search-

decoy strategies as those described by Blakeley et al. [46] and, even

more recently, by Jagtap et al. [66] might partially address this

problem and lead to an increase in peptide identifications, and

may be the target of future studies. The same phenomenon could

be observed for SwissProt when compared to TrEMBL (Figure

2B): TrEMBL provided a much higher absolute number of

identifications (mostly due to the lack of less characterized species

within SwissProt), but the parallel use of SwissProt gave additional,

unique information. Manually curated DBs offer also further

advantages, including a higher level and quality of annotation

concerning protein functions, processes, and localizations, which

can be extremely useful in the functional perspective allowed by

metaproteomics. It should also be noted that the results presented

here were obtained using Percolator’s and Proteome Discoverer’s

algorithms for FDR calculation and protein grouping, respectively.

Several alternative, more sophisticated approaches are available to

perform these post-processing operations [48,67,68,69,70] (and

metaproteomics-targeted software will be hopefully developed in

Figure 4. Reliability of taxonomic attribution using Unipept and MEGAN. Bar graphs showing taxonomic distribution of family (top), genus
(middle) and species (bottom) specific peptides identified with different DBs, according to Unipept (left) or MEGAN (right) LCA analysis. Red
rectangles illustrate misassignments (i.e. attributions to taxa not actually present in the 9MM), with indication of their percentage for each DB.
Bacterial taxa are represented by shades of blue, whereas yeast taxa by shades of green.
doi:10.1371/journal.pone.0082981.g004
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the near future), which might deliver significantly different data.

Furthermore, the complexity of the lab-assembled microbial

mixture used in this study was far from that of a typical ‘‘real-

world’’ microbiome. This suggests that caution is required before

extending the conclusions described here to the most heteroge-

neous environmental samples, and that further validation studies

are needed to define an optimized pipeline for metaproteomic data

analysis.

The information needed for generating a ‘taxonomy-restricted’

DB can be easily gathered by 16S-18S characterization, but a

metaproteomic iterative approach can be also proposed, compris-

ing a first search using a generic DB, sequentially followed by the

identification of the main taxa of the microbiome of interest from

metaproteomic data (using proper filters to improve reliability, as

described in this work and discussed below), the construction of a

customized, smaller DB, and a second search with this latter DB to

improve metaproteome coverage. This iterative metaproteomic

strategy (which differs from the ‘two-step method’ proposed by

Jagtap and coworkers [66] in that the former is taxonomy-based)

might be therefore successfully implemented without the need for

additional genomic or metagenomic surveys.

Another issue that we chose to address is the critical comparison

of the two main software, available to date, suitable for the

taxonomic classification of metaproteomic data, namely Unipept

and MEGAN. To the best of our knowledge, the data presented

here represent the first comparative evaluation of tools enabling

biodiversity analysis of metaproteome samples. For this purpose,

Unipept appeared to be more straightforward (in terms of user-

friendliness, speed of analysis, and output reliability). On the other

hand, MEGAN can additionally provide functional and pathway

information which are key for metaproteomic studies (but beyond

the scope of this work). More specifically, two parallel MEGAN

analyses were carried out (as suggested by MEGAN developers

[51]): the first using peptide sequences as BLASTP input, and the

second using the inferred protein sequences to avoid issues due to

the extreme shortness of peptide sequences. The second analysis

produced a higher amount of information, but reliability of

taxonomic attributions was rather poor (Data S6), consistently to

the protein inference issues that have to be expected in a

metaproteomic experiment; therefore, we chose to use only the

data obtained using peptide sequences for comparison with

Unipept data, also taking into account the peptide-centric nature

of shotgun proteomics. It has to be mentioned that modifying the

MEGAN parameter ‘‘Min Score’’ (which was not changed from

the default settings in this study) may have led to different results,

especially when dealing with peptide sequences. In addition, an

empirical threshold was established to filter taxonomic classifica-

tion, in order to discard false positive attributions. In our case, this

has been possible by analyzing a simple microbial community of

known composition, and then searching for an optimized filter

allowing the maximization of the real positive attributions and the

minimization of the false positive ones. Specifically, the current

version of Unipept does not allow the user to set a threshold (it

should be done manually by parsing the csv output file);

conversely, MEGAN includes a ‘‘Min Support’’ filter that can

be easily modified according to the user’s need. In particular, only

two interesting reports (from the same research group) described

the use of MEGAN for metaproteomic data analysis [53,71], and

the first clearly stated that ‘‘because the number of reads in this

proteomic dataset was considerably smaller than the thousands

usual in a metagenomic dataset, the number of reads required for

a taxon assignment was set to one’’. Here, we demonstrate that

using such a low threshold can give rise to a significant percentage

of misassignments. Clearly, the particular threshold adopted in this

study might not be adequate for more complex environmental

samples; however, our results underline that the raw taxonomic

data may contain a significant share of false positives, and

therefore strongly suggest a critical examination of the results.

These incorrect species attributions might be generally due to the

incompleteness of the genomic characterization of the species

contained in a given microbial community. For instance, several

strains of species ‘‘A’’ have been sequenced, and therefore different

sequence variants are available in a DB. Conversely, species ‘‘B’’,

related to species ‘‘A’’, has been less studied, and a single strain has

been sequenced. As a consequence, an unknown sequence

polymorphism (or even an inaccuracy in the deposited genome

sequences) for species ‘‘B’’, which is shared with a species ‘‘A’’

strain, causes the erroneous attribution of its peptides to species

‘‘A’’, just because of the differences in the degree of information

available for the two related species.

Differently from most of the published studies regarding

integration between metagenomics and metaproteomics, the

9MM assembled in this work included also two fungal species.

This was to acknowledge the importance of Fungi as relevant

members of microbial communities. Specifically, the great interest

on commensal fungi and their key functions for health and disease

is opening the way to the study of the so-called ‘‘mycobiome’’

[72,73,74,75]. The data presented here highlight that further

efforts are needed to optimize characterization of fungal species,

and in particular to enable an efficient extraction of yeast DNA

together with the more accessible bacterial DNA. As mentioned

above, the metagenome-derived DB displayed an almost complete

lack of eukaryotic sequences, thus impairing the identification of

the corresponding peptides upon shotgun MS analysis. When

considering only bacterial data, results attained using Meta-PA

were comparable to those obtained with the remaining DBs (e.g.,

3729 bacterial peptide identified with Meta-PA versus 4698 with

SGA-PA and 4601 with TrEMBL-BFV). On the contrary, the

exploitation of a proteogenomic approach can be useful to

increase yeast metaproteome coverage (rather than for the

bacterial counterpart), most likely in view of the presence of

alternative or non-conventional splicing forms in eukaryotes [76].

It has also to be recognized that different bioinformatic strategies

could have been alternatively used for genome sequence assembly,

CDS finding, and gene annotation, especially to improve the

quality of the 9MM-B metagenome draft which was not

satisfactory (perhaps due to the extreme harshness of the

extraction conditions used to improve yeast DNA yield). There-

fore, we cannot rule out that the application of data analysis

approaches different from the ones chosen in this work might have

led to a higher metagenome, and consequently metaproteome,

coverage.

Figure 5. Improvement of the reliability of taxonomic attribution upon data filtering. Histograms showing the number of families (top),
genera (middle) and species (bottom) detected upon Unipept (left) or MEGAN (right) LCA analysis using different DBs, before and after the
application of a filter based on the number of taxon-specific peptides (u, unfiltered; f, filtered). The threshold was set to 0.5% of the overall number of
peptides unambiguously assigned to a taxon at a particular taxonomic rank level (family, genus or species). Correct and incorrect attributions are
represented in green and red, respectively. The light blue lines and numbers correspond to the number of families, genera or species actually present
in the 9MM.
doi:10.1371/journal.pone.0082981.g005
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Finally, it should be noted that the number of peptides (for

metaproteomics), as well as the number of reads (for metage-

nomics), attributed to each of the 9MM microbes was far from

being equal, although these were theoretically present in

comparable amounts based on CFU counting. This might be

explained by the fact that the nine microbial species exhibited

significant differences in size and cell structure. In turn, such

differences are in agreement with different amounts of proteins per

cell between the nine microorganisms.

In conclusion, the results of this work confirm that DB selection

is not a trivial issue in metaproteomics: data quality and quantity

can vary dramatically depending on this factor. Based on our data,

the following critical consideration and suggestion can be made: i)

when possible, the parallel use of multiple DBs has to be

encouraged, as different DB types can lead to highly complemen-

tary results; ii) the use of iterative metaproteomic searches with

DBs of decreasing size, based on protein identification data

obtained with relaxed FDR thresholds [66] or on taxonomic

information obtained using generic DBs (as proposed in this work),

can be key to achieve a wider metaproteome coverage; iii)

especially when dealing with poorly characterized microbial

community samples, metagenomics (and, in some cases, sequenc-

ing of individual genomes) can help investigate less characterized

species; however, special care needs to be taken in metagenomic

data processing to ensure an adequate quality of the derived DBs

[30]; iv) software enabling LCA analysis of metaproteome data

(namely, Unipept and MEGAN) can provide reliable results even

at the species level, but proper filters with specific thresholds (e.g.

based on the total number of taxon-specific peptides, such as the

one proposed in this work) have to be set to reduce false positive

attributions. On the whole, these data may be useful for all

researchers dealing with microbiome characterization, and pro-

vide critical and concrete suggestions to improve reliability and

analysis depth of metaproteomic results.
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