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Abstract

Background: Association studies consist in identifying the genetic variants which are related to a specific disease
through the use of statistical multiple hypothesis testing or segregation analysis in pedigrees. This type of studies has
been very successful in the case of Mendelian monogenic disorders while it has been less successful in identifying
genetic variants related to complex diseases where the insurgence depends on the interactions between different genes
and the environment. The current technology allows to genotype more than a million of markers and this number has
been rapidly increasing in the last years with the imputation based on templates sets and whole genome sequencing.
This type of data introduces a great amount of noise in the statistical analysis and usually requires a great number of
samples. Current methods seldom take into account gene-gene and gene-environment interactions which are
fundamental especially in complex diseases. In this paper we propose to use a non-parametric additive model to detect
the genetic variants related to diseases which accounts for interactions of unknown order. Although this is not new to
the current literature, we show that in an isolated population, where the most related subjects share also most of their
genetic code, the use of additive models may be improved if the available genealogical tree is taken into account.
Specifically, we form a sample of cases and controls with the highest inbreeding by means of the Hungarian method,
and estimate the set of genes/environmental variables, associated with the disease, by means of Random Forest.

Results: We have evidence, from statistical theory, simulations and two applications, that we build a suitable
procedure to eliminate stratification between cases and controls and that it also has enough precision in
identifying genetic variants responsible for a disease. This procedure has been successfully used for the beta-
thalassemia, which is a well known Mendelian disease, and also to the common asthma where we have identified
candidate genes that underlie to the susceptibility of the asthma. Some of such candidate genes have been also
found related to common asthma in the current literature.

Conclusions: The data analysis approach, based on selecting the most related cases and controls along with the
Random Forest model, is a powerful tool for detecting genetic variants associated to a disease in isolated
populations. Moreover, this method provides also a prediction model that has accuracy in estimating the unknown
disease status and that can be generally used to build kit tests for a wide class of Mendelian diseases.

Background
One of the main objectives in studying the genetics of
complex diseases is not only the search of genetic var-
iants associated to pathologies [1], but also to build pre-
dictive models which help both their diagnosis and early
treatment. This problem can be formalized by expres-
sing the disease status, Y, of each subject as a Bernoulli

random variable Y = {0, 1} where Y = 1 indicates an
affected subject. The main quantity of interest, F(x) = Pr
(Y = 1|x), is the conditional probability of being affected
given a set x of genetic variants and environmental vari-
ables. Such variables form a huge set of potential predic-
tors, which we will refer to as omic profile. Essentially,
x ∈ X ⊂ IRP, where P is the number of considered
genetic variants and environmental variables. Specifi-
cally, we use a sample of N ≪ P where N is of order of
hundreds while P is thousands times larger. This setup
complicates the estimation of F(x), because, in absence
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of strong prior information [2] on the part of the omic
profile related to the disease, the data should allow us to
choose F(x) within a large class of models F . In order to
achieve this goal it is necessary to reduce the spurious
genetic variability not related to Y. For example, if we
were using logistic regression models, F(x) would be one
of these models selected between all the possible logistic
regression models, F , which are, at least, 2P. In this
paper we relax the assumption of a parametric model by
using non-parametric methods [3], which means that F
has infinite dimension. Such models are usually referred
as non-parametric models. The genomic profile, part of
the omic profile, consists of a large set of DNA markers,
say 500000 Single-Nucleotide Polymorphisms (SNPs),
while the set of environmental variables includes indivi-
dual anthropometric measurements and information
derived from a standardized interview collecting socio-
demographic, lifestyle, medical and pharmacological his-
tory data on many pathologies. We suppose that such
covariates may cause the outcome Y. In particular, for
certain types of diseases, it is possible to have prior
information about the environmental variables, but in
most cases there is no such information about the caus-
ing genes. The disease prediction model, F(x), for the
future outcome Y |x must take into account gene-gene
interactions and also their interaction with the environ-
ment. Such interactions, usually of unknown order, can
be multiplicative or additive [4]. Estimation of F (x) is a
primary concern in personalized medicine, because F(x)
can be used as the basis for early diagnosis of a disease,
permitting actions to prevent the pathology before its
insurgence, and to personalize treatments.
In order to estimate F(x), we consider a matrix of

omic profiles, XN × P, and the known disease status, yN
= (y1, y2, ..., yN ), measured on N ≈ 100 highly inbred
individuals that belong to an isolate population where
the genealogy is fully known.
The translation of this estimation problem into statis-

tical terms sounds as follows: given a huge set of covari-
ates, P ≈ 500000, we have to estimate a probability
model, F(x) ∈ F , using a sample of dependent observa-
tions, (yN , XN × P ), of size N ≪ P. The statistical analy-
sis of such problem presents the following critical
points:

i) observations are not independent and conse-
quently all unconditional inference, with respect to
the genealogy, cannot be applied here. Differently
from usual association studies between genetic var-
iants and diseases, we have knowledge of such
dependency by means of the genealogical tree.
Moreover, the dependency is important in order to
gain precision in estimating F(x). In fact, two
affected brothers are more likely to share the same

part of x causing the disease with respect to two
unrelated subjects.
ii) the estimation of model F(x) would typically lead to
a sparse model because biological background suggests
that only a very small set of genetic variants interact in
order to produce the disease. The dimension of F
grows exponentially with P. For example, if SNPs con-
figurations were represented by categorical variables
with two levels the space F would have dimension 2P,
without considering interactions. Such dimension pre-
vents an exhaustive exploration of all possible models.
Moreover, as N ≪ P then classical multivariate analy-
sis techniques, such as multivariate regression, cannot
be employed here to make an exhaustive search of all
possible models. Finally, usual model selection
approaches are not feasible due to computational
costs.

In this paper, we aim to address the above critical
points. In particular, point i) is considered in the Meth-
ods Section by reducing the genetic variability not related
with the disease. We achieve this through an experimen-
tal design in which we choose, for each case, the most
related control, based on the known genealogy. Point ii)
is treated also in the Methods Section where Random
Forest, a non-parametric regression model based on
ensemble methods, is employed to estimate F(x). This
allows us to explore a wide region of F at the price of
reasonable computational costs.
For validation purposes, we present applications of the

method to two different phenotypes: Beta-Thalassemia
and common asthma. Beta-Thalassemia is a genetic dis-
order caused by a mutation inside the beta-hemoglobin
(HBB) gene [5]. Only homozygous individuals for the
mutation manifest the clinical traits of the disease. How-
ever, carriers, although completely sane, show a reduced
mean cell volume (MCV≤72) of red blood cells [6], and
this parameter can be used to identify them. In Sardinia
carrier of beta-thalassaemia are about 15% of the popu-
lation and a single mutation account for 95% of the
beta-thalassaemia mutations [7,8]. The main goal of this
analysis is to validate the method by tracing back the
position of the mutation in the gene.
Differently from Beta-thalassemia, the goal of analyz-

ing common asthma is to gain more biological insights
on this diffuse disease which may be caused by several
unknown variants on different genes.
Although the method here proposed is of general

applicability to any isolated population, we tested it on a
population located in one small village (Talana) in a
secluded area (Ogliastra) of Sardinia (Italy). Such popu-
lation is characterized by a great deal of homogeneity in
life style and eating habits and by a high endogamy and
consanguinity. Inhabitants of the village participated to
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an epidemiological survey assessing their health status,
so that a complete and standardized data set is available.
Thanks to the accessibility of complete municipal and
parish archives, going back to the seventeenth century,
it was possible to cluster all people living in the villages
into large familiar structures with common ancestor.
Data have been collected by Shardna Live Science
http://www.shardna.com within the Ogliastra - project
aimed at studying several genetic isolates of Ogliastra.

Results and Discussion
The following two sections present the application of
the method here proposed to beta-Thalassemia and to
common asthma.

Application to Beta-Thalassemia
One of the biggest issue in genome wide association stu-
dies is the number of false positive results due to the great
number of association tests performed. In case-control
studies it should be possible to reduce such number by
choosing the control subjects so that they are the most
genetically similar to the cases. We propose to apply the
Hungarian algorithm [9,10] to solve this problem by using
the known kinship coefficient [11] as a measure of the
genetic similarity between the subjects. The proposed
approach also works if the kinship were estimated
from the sample, which is however not the case here. The
details on how the choice of the controls is done are
described in the method section.
The aim of this application is to evaluate the power of

the Hungarian method in choosing the best set of con-
trols for a given sample of cases which correspond to all
the Beta-Thalassemia mutation carriers in the isolated
population we investigated. Such cases can be easily
identified, among the available data, through the use of
the MCV values measured for each subject in our study.
In fact Beta-Thalassemia mutation carriers are known to
show reduced MCV, namely we used MCV≤72 for cases
and MCV≥75 for controls. With such cutoffs there are
123 cases, over a data set of 805 subjects. We then
selected the subsample D, where 123 controls have been
chosen to be the most related to the I = 123 cases,
based on the kinship coefficient matrix of the 805 sub-
jects. Analysis of such data is compared against other 9
balanced subsamples, of size N = 246, where controls
have been assigned randomly from the available 682
controls. Such assignation, that ignore the relativeness,
is the usual one for observational studies from outbred
populations.
Usual association studies are of single-point type and

make use of hypothesis testing to evaluate the associa-
tion between yN and each SNP [12]. In order to evaluate
if our subsample D would potentially provide a less

number of false positives, due to the elimination of
population stratification effect, we performed a genome
wide scan on each of the 10 samples using Fisher exact
test, that is, for each sample, we evaluate the evidence
of the hypothesis of independence between Y and each
one of P = 429378 SNPs. All tests are compared by
means of their corresponding p-values. Figure 1 reports
the most interesting part of the empirical cumulative
distribution function (cdf) of the p-values less than 0.01
for each one of the ten considered subsamples. Beta-
Thalassemia is a monogenic disease and therefore we
expect a small proportion of SNPs associated with the Y
status. We can see that, when using D, the proportion
of p-values below 0.001 is smaller than the correspond-
ing ones obtained with the other subsamples. This pro-
vides the first evidence of the reduction of the genetic
variability operated by the introduction of genealogical
information by means of the Hungarian method. We
note that the rank of SNPs produced by the very simple
Fisher test, used in the simulation study for Thalasse-
mia, is the same as the one produced by the Benjamini
Hochberg (BH) method discussed in [13]. This is
because ordered p-values are multiplied for the increas-
ing sequence i/P, i = 1, ..., P. As the BH method con-
trols the False Discovery Rate (FDR) under the
condition of positive dependence among tests discussed
in [14], this implies that the rank of SNPs obtained for
the Thalassemia is the same as those that we would
have obtained also considering the dependency among
tests. The analysis here performed can be also viewed as
a kind of multi-point analysis. We further pursue this
comparison by looking at the prediction errors, Λ, of
the estimated Random Forest (RF) model, F̂(x), based
only on the most important SNP and its distance from
the HBB gene. We have one important SNP for each
data set and this SNP has been selected using the Bag-
ging approach as detailed in the Methods Section. The
Bagging approach is enough in this application because
the Beta-Thalassemia is a monogenic disease. Prediction
errors and distances, for all samples, are reported in
Table 1. We can see that only using sample D, the pre-
diction error is the lowest (12%) and the selected SNP is
also one of the nearest SNP to the HBB gene. Using
other samples, we obtain larger prediction errors that
often point to SNPs that are farther from the HBB gene.
Comparing RF approach with the single-point analy-

sis, carried out with Fisher test on subsample D, we
obtain that SNP rs12271916 is the most significantly
associated according to the Fisher test, but it is also
located at 580 Kb from the HBB gene farther away from
the SNP obtained with RF .
The final message conveyed by Figure 1 and Table 1 is

that the subsample D has lower genetic spurious
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variability than other subsamples obtained ignoring the
genealogy. Finally, using RF with the genealogical tree
we are more likely to trace back the position of the
mutation point causing Beta-Thalassemia.

Application to Asthma
Over a data set of 208 genotyped subjects underwent clini-
cal and instrumental examination, we dispose of a total of

I = 57 asthmatic cases and J = 151 non asthmatic potential
controls. For each subject we measured breath nitric
oxide, forced expiratory volume (FEV1) and blood IgE
levels. Moreover a standardized epidemiological question-
naire was administered to all participants to the study.
The affection status has been then assessed by a clinician
according to the GINA (Global INitiative for Asthma)
guidelines. The total amount of considered SNPs is P =
500192, each of them with two or three configurations.
For each individual sex, age, smoking habits and degree of
physical and sport activity is known. The latter has been
classified in three categories: scarce, moderate and intense.
We also dispose of 561 further subjects who did not
undergo a clinical assessment for asthma but did partici-
pate to the epidemiological survey reporting their health
status for whom genotypes are available. This sample will
be used for validation purposes by looking at the associa-
tion of the asthma status, predicted by the RF method,
with asthma status self-reported by subjects.
The genealogical tree has been summarized into the

matrix of kinship coefficients, K*, showed in Figure 2.
High coefficients are symbolized by bright rectangles
that also indicate highly related individuals which con-
stitute the subsample, D, used to estimate F̂(x).

Table 1 Comparison of prediction errors for
Thalassemia’s analysis

Sample Id. First SNPs Error (%) Distance (in Kb)

Hungarian rs7124435 12 394

Random 1 rs12271916 32 581

Random 2 rs12271916 32 581

Random 3 rs16932946 33 278

Random 4 rs12271916 32 581

Random 5 rs12271916 32 581

Random 6 rs12271916 32 581

Random 7 rs1378738 32 316

Random 8 rs12271916 32 581

Random 9 rs12271916 32 581

Prediction error and distance from the HBB gene for the first important SNP
for all analyzed samples in Thalassemia’s analysis.
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Figure 1 Empirical distributions of the p-values for Thalassemia’s analysis. Empirical distributions of the p-values of Fisher test based on D
and on other balanced subsamples where controls have been assigned randomly to cases.
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After a first screening with the Bagging approach,
from P variables, we end up with a list of P’ = 200 vari-
ables. Such variables are all SNPs, while environmental
variables do not play almost any role in predicting
asthma if compared with these 200 SNPs.
From Figure 3 we can see how the estimated predic-

tion error, Λ, decreases when using RF with the first
most important SNPs, in particular with the first 100
SNPs, used for the final model, the estimated value of Λ
is about 15%. It is important to stress that 15% is almost
three times less than 50%, which is the initial classifica-
tion error of a balanced sample.
We further validate the estimated prediction model

F̂(x), with the first 100 most important SNPs, on the
561 genotyped individuals, not including in the previous
I + J = 208 subjects, by looking at the association of the
predicted asthma state, F̂(x), with the self-reported diag-
nosis. It is worth noting that comparing the clinically
assessed individuals to the self-reporting ones we
observed an agreement on the 90.9% of subjects. The
association between F̂(x) and the anamnestic data is
highly significative (p-value ≈ 10-6 ). Among the 68 asth-
matic, 52 have been correctly classified by F̂(x), while
the 493 non-asthmatic 271 have been correctly

classified. Essentially we have that individuals predicted
to be healthy and having an healthy anamnesi are more
than the number expected under the hypothesis of inde-
pendence between anamnesi and the predicted asthma
status, F̂(x). The same, but in the reverse, can be noted
for the frequency of those classified as asthmatic which
also exhibit an asthmatic anamnesi more than that
expected under the hypothesis of independence.
This evidence may suggest that the 100 SNPs, which

we claim to be important in classification, are function-
ally related to the biological processes underling com-
mon asthma. However, these results are speculatory and
would need further validation. The first ten most impor-
tant SNPs found with RF are reported in Table 2. The
most important SNP is inside P KNOX2, a transcription
factor which has been shown to be up-regulated in vas-
cular endothelial cells stimulated by interleukin 4 [15],
which is one of the most replicated gene in asthma [16].
This gene could act on asthma downstream the IL4 tak-
ing effect on the insurgence of the pathology. The sec-
ond SNP is inside Hs.462615, for which almost no
information is available, except that it is a sequence
found expressed in pulmonary artery endothelial cells
(human UniGene). The third most important SNP is
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Figure 2 Kinship matrix for Asthma’s analysis. Kinship matrix between cases and controls. Brightest rectangles define controls that are paired
with cases.
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inside gene ENST00000261401 that codifies the Coro-
nin of type 1. Coronin of type 1 binds the actin protein
which has been associated to non allergic asthma in rats
according to [17]. We further applied the Mixed Effect
(ME) model discussed in [18-20] to all 208 available
subjects and we end up with a list of the 10 most
important SNPs (Table 3) which differ from those
obtained with the F̂(x) as they are located on different
genomic regions. The main problem with ME model is
that we cannot regress the binomial response Y against

all P SNPs, but instead we have to regress each SNP
separately, thus losing interactions that may exists
between SNPs.

Simulation study
In this section we show the results of a small simulation
study with the main objective of studying differences
among Receiver Operating Characteristic (ROC) curves
when considering and ignoring the kinship among indi-
viduals. Beside RF we consider: the BH method for
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Figure 3 Out Of Bag prediction errors for Asthma’s analysis. Out Of Bag prediction errors of RF with the first 200 most important SNPs.

Table 2 Asthma’s analysis with RF model

Order SNPs Gene Chrom. Chrom. Pos.

1 rs12273350 PKNOX2 11 125241046

2 rs1254673 no 10 44473793

3 rs10861957 CORO1C 12 109056377

4 rs3105377 no 7 68837002

5 rs10004892 no 4 189872850

6 rs434949 no 11 29602274

7 rs9524111 GPC6 13 94169901

8 rs1918215 no 12 77750550

9 rs7958647 no 12 77747825

10 rs10746129 CORO1C 12 109091089

First 10 most important SNPs for Asthma’s analysis and their corresponding
location inside chromosomes.

Table 3 Asthma’s analysis with Mixed Effect model

Order SNPs Gene Chrom. Chrom. Pos.

1 rs2505506 CSGALNACT2 10 43645854

2 rs2813829 no 7 24253168

3 rs739854 no 7 24257317

4 rs7559302 PARD3B 2 205951603

5 rs16218 no 7 24257655

6 rs16212 no 7 24264661

7 rs2642265 no 7 24253062

8 rs16997879 no 20 51909584

9 rs16217 no 7 24257706

10 rs94967 no 21 41195307

First 10 most important SNPs for Asthma’s analysis using all samples n = 208
with Mixed Effect model.
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multiple testing [13,14], the Q-values described in [21],
the Efron’s procedure in [22] and the ME model also
applied for the asthma. It is worth to mention that the
comparison of different methods is very difficult and
not clear, because each method is specific and tailed for
certain desirable features. For instance, among the
methods that control an error rate for multiple testing,
different methods claim to control the FDR. However,
they indeed control different definition of the FDR,
because the BH method [13] controls a FDR whose defi-
nition differs from the positive FDR of the Q-values in
[21] and the local FDR in [22]. We left to the reader to
look at [23] for a general discussion on comparison
among these methods. Further more, the three men-
tioned methods differ from the RF in that they do not
explicitly estimate the F(x) model, while they just
assume that there exists one that belongs to a certain
class of models as the one specified in [14] for the BH
procedure. Moreover, the comparison between the
importance of a predictor with RF and the correspond-
ing significance of a regression coefficient is challenging
because they belongs to different metrics as illustrated
in [24]. In particular, comparison against the GEE logis-
tic regression discussed in [25] and [26] is left as further
interesting work. However, the main advantage of RF ,
against regression models, is that nonlinearities and
interactions can be learned from the data without any
need to be specified beforehand.
Although an extensive comparison of the RF with

other classification methods is beyond the scope of the
paper (on this purposes see, for instance, [27]), we con-
sider a small simulation study were we compare the
area under the ROC curve of RF and the three men-
tioned multiple testing approaches with the primary
intention of assessing the differences under two scenar-
ios: when the kinship is taken into account, as the case
of this paper, and when it is ignored.
Here we simply assume that each method under com-

parison is able to sort P variables according to their
level of association, whether or not this is significative.
Considering P cut points on each list of important vari-
ables, we are able to build a ROC curve and measure
the corresponding area.
In this simulation study consider N = 50 subjects and

P = 1000 SNPs randomly drawn from the 805 subjects
and the 429378 SNPs available from the data set of Tha-
lassemia study where kinship between subjects is known.
We assume that only a subset of p = 5 SNPs are related
to Y by a random configuration of the 5 SNPs. This
configuration changes for every one of the 1000 draws
and cases are assigned to the 10 subjects where Pr(Y =
1|x1, ..., xp) is the highest. Probabilities are obtained
according to the logit transformation of the number of
the p SNPs that satisfy the random configuration. In

this way we always have I = 10 cases and 40 controls to
be used to form a sample with 2I = 20 subjects. Box-
plots in Figure 4 illustrate the sample distribution of the
area under the ROC curve for the 1000 replications. For
each method under comparison we have two sets of
box-plots: the grey one where N - I controls are ran-
domly assigned to cases I and the other where they are
assigned according to the Hungarian method. Although
the limitations of the simulation study, results reflect
what found with empirical evidence: RF tends to per-
form better with respect to other methods. It improves
when the subjects are selected according to the Hungar-
ian method because of the reduced amount of noise on
P - p non important SNPs. The local false discovery rate
and the Q-values perform worse than RF and the BH
method because they are adaptive methods in the sense
that they make an estimation of the null distribution of
the p-values, while the BH method is not adaptive (for
more details see [28]). Estimating the null distribution
may be problematic because the sample size is quite
small and the observed p-values from the Fisher test
either concentrate on 0 or on 1. This result validates the
choice of the comparison between RF and Fisher test
made for the application to Thalassemia illustrated in
the above section. ME model performs similarly to the
BH method. For larger samples, namely N > 100, all
methods performs equally in terms of ROC curves.
Another message conveyed by Figure 4 is that

improvement of methods, under the Hungarian sample,
it is not specific to the RF , but it may be also substan-
tial for other genome-wide scanning methods.

Conclusions
We propose a strategy analysis that leads to a statistical
procedure which allows us to estimate the status of
genetic disease, based on the omic profile, and also pro-
vides more insights on the biological background of the
disease.
Differently from usual methods, we make a multipoint

analysis where interactions among all genes are consid-
ered and estimated. The method also provides a way to
reduce spurious genetic variability by introducing the
genealogical information into the analysis through a sui-
table experimental design.
We think that this strategy may be a reference one for

analyzing data from genetic isolated populations, where
the degree of relativeness is known.

Methods
The two critical points of genetic association studies
of isolated populations with known genealogy are
addressed here. In particular, dependency among sub-
jects is accounted in the following section with a
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suitable experimental design, based on Hungarian
method. The prediction model F(x) and its estimation,
based on Random Forest (RF), is described in the
Model Section.
The Hungarian method has been implemented in R

(library clue, http://www.r-project.org) while for the RF
we recurred to the open source project named PArallel
Random Forest (PARF, http://code.google.com/p/parf).
The latter is implemented in Fortran 95 and compiled
with Open MPI libraries http://www.open-mpi.org.

An experimental design that accounts for genealogy

Estimation of model F(x), F̂(x), is based on a subset, D, of

the available random sample of size N , D′ ≡ {yn, xn}N
n=1.

Variable yn represents the disease status of the n-th sub-
ject, where yn = 1 if the subject n has been diagnosed
with the disease and yn = 0 otherwise. Suppose to have

I =
∑N

n=1 yn < N cases and J = N - I controls, where cases
and controls have been labeled according to the medical
diagnosis of the disease. Vector xn is of size P and con-
tains SNPs configurations and covariates that resemble
habits and individual characteristics of subject n. The

vector xn defines the omic profile of subject n which we
use to predict the disease status Y.
We are interested in using a balanced sample of size

2I where the genetic variability, exogenous to the dis-
ease, is reduced. The idea to obtain such sample consists
in accounting for relatedness among individuals of dif-
ferent disease status, which we can do taking advantage
of the availability of the entire genealogy of the investi-
gated isolated population. For instance, if we consider
two individuals, one affected and one not, we are more
likely to identify disease predisposing variants if they
were brothers rather than if they were unrelated.
The genetic variability, between two individuals,

increases with the number of meiotic steps that separate
them into the genealogical tree. Such number define relat-
edness among two individuals. The most common used
measure of relatedness between two individuals i and j, is
the kinship coefficient [11], kij, which represents the prob-
ability that two genes, sampled at random from each indi-
vidual, are identical because inherited from the same
ancestor (IBD). For instance kij = 1/4 if i is the parent of
individual j, while kij = 0 zero if i and j are not related.
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Figure 4 Results of simulation study. Each Box-plot represents the sampling distribution of the area under the ROC curve for each considered
classification method for 1000 replications. Here RF represents RF , Qv the Q-values, lFDR the local false discovery rate, FDR the False
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Let K′
I×J be the matrix of kinship indexes between

cases and controls, whose generic entry is kij, the kin-
ship index between case i, i = 1, ..., I and control j, j =
1, ..., J. Finding a subset of size I of controls most
related to the I cases corresponds to find a sub-matrix
KI × I of K’ with the I columns made by a set of indexes
J ≡ {j∗i }I

i=1 such that
∑I

i=1 kij∗i is maximized over all pos-
sible sets of indexes J .
This is an assignment problem, which is typical of

combinatorial optimization area, and that has been
solved with the well known Hungarian algorithm. This
method was, for many years, attributed to H. Kuhn who
developed and published it in [9]. However, in 2006, it
was discovered that Carl Gustav Jacobi solved the
assignment problem in the 19th century, and published
posthumously in 1890 in Latin [10].
In the sequel, we assume that the prediction model F

(x) is estimated on the sub-sample D ⊂ D’ where con-
trols correspond to the columns of K.
The design of such experiment provides a balanced

case/control study with 2I individuals, where spurious
genetic variability is supposed to have been reduced.

Model
In order to obtain the prediction model, F(x), for a cer-
tain omic profile, x, we propose a procedure based on
Random Forest (RF) described in [29]. RF is a non
parametric regression model and its use in genetic asso-
ciation studies grows only in the very recent years. In
particular, [27] and [30] use it with expression data,
where the considered values of P are of order of a few
thousands and the observations are assumed indepen-
dent. On the contrary, most genetic association studies
consider only one genetic variant at time and rarely take
into account the interactions between them [12]. Other
papers, based on multiple testing [23,31], take into
account interactions among genes, but they do not
explicitly model such dependency as done in this paper.
We briefly describe RF with particular emphasis to

those variations of the algorithm proposed in this work.
RF is an additive model given by the ensemble of M =
106 non-parametric classifiers. In our case these are
classification trees, {hm(am) ∈ {0, 1}}M

m=1, with the usual
Bernoulli deviance, where am denotes the regions of the
space spanned by the P variables. For more details see
[32]. Each hm is based on a random sample of size
p =

√
P of the P variables and a corresponding random

sample of size [I/2] individuals. This sample is called the
in bag sample, denoted by Dib in order to be distin-
guished by the out of bag (OOB) sample denoted with
Doob = D\Dib. Both sets, Doob, Dib represent the m-th
random partition of D and the classification error of hm
is always estimated with Doob sample of size I - [I/2].

This is done in order to avoid overoptimistic prediction
errors. The parameter am contains splitting variables
that are supposed to be the part of the omic profile
related to the disease according to the m-th tree. The
prediction model is given by the mean prediction of the
M trees:

F̂(x) =
1
M

M∑
m=1

h(x; am).

In this application, each hm(am) estimates part of the
complex relation between the omic profile and the dis-
ease, while the whole estimation of such complex model
is given by F̂(x).

If F̂(x) > 0.5 then the profile x belongs to an ill indi-

vidual otherwise to a healthy one. Note that F̂(x) > 0.5
is also the Bayes rule under prior probabilities Pr(Y = 1)
= Pr(Y = 0) = 0.5. The threshold, 0.5, may be changed
according to different prior probability for the disease of
interest. Such prior may be suggested by the prevalence
of the disease in the population of interest.
The validation of F̂(x) is made by means of the pre-

diction error for the outcome Y of the m-th tree, lm
(see [29]), estimated over Doob. Let ΛM be the expected
prediction error of M trees, where expectation is calcu-
lated for the joint distribution of (Y, x). According to
Theorems 1.2 and 2.3 in [29], as M ® ∞,

�M → � ≤ ρ(1 − s2)/s2 > 0, almost surely,

where s = 1 - E(Y,X) (lm), is the classifier’s strength,
and r is the correlation among classifiers, also known as
classifier’s diversity. Under conditions of Theorems 1.2
and 2.3, RF does not over-fit if we arbitrary increase
M. A more general discussion on consistency of RF
and other classification methods can be found in [33].
Using RF we obtain a non-parametric regression

model that we can use to make prediction and variable
(SNP) selection at the same time. Variable selection is
performed by means of each hm, because am is obtained
by using only those variables that assure the largest
decrease of the Bernoulli deviance.
Therefore, for each of the P variables we can con-

sider its importance according to the total amount of
decreasing of the Bernoulli deviance induced in all M
trees, say {ηj}P

1. We can then produce a rank of the P
variables by sorting them into a decreasing order
according to their respective hj. The interpretation of
the set {ηj}P

1 is that each genetic variant contributes to
the complex genetic model, but some of them are
more important than others. The greater the hj the
more likely is that variable (SNP) j is a risk or protec-
tive factor for the disease.
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Another advantage of RF is that it is highly paralle-
lizable, in fact we implemented it for running in a clus-
ter of CPUs, but it could also be implemented to run on
GPUs (Global Processor Units, gpu.sourceforge.
net). This approach makes RF a suitable approach for
association studies with high numbers of combination of
genetic variants that interact one with the other. More-
over, the simulation study in [34] showed that RF is
able to detect true associations under a purely interac-
tive model.

A Bagging strategy for genome-wide association studies
Alleles of a specific genetic variant are usually associated
to the alleles of the neighboring variants due to the lack
of recombination between them. This effect is referred
to as Linkage Disequilibrium (LD) [35]. LD usually
decreases as distance between markers increases. Trans-
lating this into statistical terms we have that variables of
the omic profile are not independent, but they rather
show a clumpy dependence as illustrated in Figure 5(a).
Moreover, as the whole genome is not accessible, we
exploit LD in order to know the configuration of the
variables surrounding the one we have genotyped. This
means that, although we do not observe mutations
responsible for the disease we can still catch this infor-
mation through LD as illustrated in Figure 5(b).
Association studies aim at discovering causal variants

that are responsible for the disease and these can be
located by those SNPs that are nearest to the causal var-
iant. In order to have a good prediction model, we

should exclude all SNPs that, although having some pre-
dictive power on the outcome Y, are far from the causal
variant and they are essentially false positives. Statisti-
cally speaking, we have to make a screening among all
SNPs before proceeding to estimate the final model F
(x). After the screening phase we construct the final
model, by selecting the most associated SNPs. These
two phases are related to the screening and cleaning
procedures advocated in [36]. The work of [36] shows
the consistency of this strategy in the context of classical
regression models.
For the screening procedure we noted that each hm

makes the subset of the p variables randomly chosen to
compete, by using, as splitting variables, only those that
are most associated with Y (i.e. the highest decrease in
the Bernoulli deviance). Therefore, only SNPs most
related to I are chosen in each tree. If p ≪ P then each
am is estimated by the competition between only p vari-
ables. For this reason it is likely that in M trees there
would be many different SNPs that are selected to form
the final F̂(x). This approach, which is the usual one in

RF , may produce a final model in which many SNPs
are included just because each am refers to different sets
of predictors. In order to avoid such false positives, we
start by running RF in Bagging mode, that is with p =
P, implying that all Dib in M trees differ only for indivi-
duals but not for variables. The set {ηj}P

1, corresponding
to the bagging, allows us to select those SNPs that are
most related to Y by eliminating all variables with hj =
0. We actually expect many variables with zero impor-
tance, because such variables have never been used in
any of the M trees. We then repeat the bagging proce-
dure on the remaining set of variables until all hj > 0.
This screening phase eliminates all those false positives
due only to LD while retaining those SNPs that bear
important information. For example, in the case of an
association to an haplotype instead of a single SNP on a
gene, we expect that only SNPs important to the haplo-
type would be retained.
We end up, with the screening phase, with a set of P’

variables and the corresponding model F̂(x) has a high
Λ just because trees only differs for individuals and not
for the used variables, therefore its correlation r ® 1.
In order to make r ® 0, we run again RF with the k
most important variables among the selected P’ using
the rule suggested in [29], that is p = [

√
k] for k = 1, ...,

P’, and [
√

k] denotes the nearest smallest integer to
√

k.
We start estimating F̂(x) with all the elements in the list

according to {ηj}P′
1 and we subsequently remove one

variable at a time until the estimated value of Λ starts
to increase. The final list of variable (SNPs) is the one
obtained by running the RF on the increasing sets of

(a)

Normal Muted

(b)

Normal Muted Observed Muted

Figure 5 Clumpy dependence. (a) Genome configurations if the
whole genome were observable: the lower row locates the
theoretical mutation points related to the disease, while the upper
row locates the mutation points due to Linkage Disequilibrium. (b)
Genome configurations when the whole genome is not observed:
the lower row locates the theoretical mutation points related to the
disease, while the upper row locates the observed points. The
triangle corresponds to an observed mutation that able us to trace
back the theoretical mutation point.
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most important variables obtained with Bagging. This
set is the smallest one that produces the lowest predic-
tion error. This is also the set of variables supposed to
be most associated with Y and that produces the smal-
lest classification error with RF .

Remarks
As final remarks, we would like to comment some
aspects of the methods we used:

• all covariates in X have almost the same number of
categories, 2 or 3, both for SNPs and environmental
variables. This is important because it is known that
if the number of categories are very different among
predictors, or if continuous covariates are mixed
with categorical ones, then the latter would result to
be most important than categorical variables with a
small number of categories. Essentially, there would
be a BIAS in assessing variable importance with RF
as noted in [37]. The BIAS is due to the fact that a
variable with more levels or a continuous variable is
more likely to be a splitting variable with respect to
another discrete variable with a lower number of
levels. This could affect situations in which there
variables with different number of levels, however it
is not the case in our applications. Finally, it would
be interesting to compare variable importance by
looking at their distance from the root node of the
tree as recently proposed in [38] for survival analysis.
At the moment, this is beyond the scope of the
paper;
• the huge number of predictors, say P ≈ 500000
(but P ≈ 106 is on the wing), requires parallel com-
puting and huge amount of storage and fast access
memory. Therefore, it is difficult to manage the kind
of analysis, here discussed, by classical regression
methods which usually require to calculate (XTX)-1.
Other alternatives to RF , based on ensemble meth-
ods, could be the gradient boosting algorithm [39]
or its stochastic version [40]. From a Bayesian per-
spective, we note that the Bayesian Additive Regres-
sion Trees (BART), proposed in [41], could be an
alternative because it allows to draw explicit causal
relations among genetic variants and disease status.
In our study, we rather draw simple associations.
Unfortunately, BART is much more difficult to be
parallelize than RF and the computational e ort
would be not affordable with a standard machine
used for the present study;
• the kinship coefficient is a first attempt to sum-
marize the genealogical tree and some information
may be lost. To avoid this, it would be possible to
directly use the genealogy in the construction of
each classification tree hm. This would be in line

with the Breiman’s prescription which requires that
all aspects of growing a random forest take into
account the outcome.
• the proposed design consisting in selecting the con-
trols most inbred with cases could be potentially
applied to other methods for association studies, begin-
ning with the very simple Fisher-test as done in the
simulation study of Figure 1 for the Thalassemia
and also in the simulation study where alternative
approaches to the RF are compared. At the moment,
we have no evidence for stating that the combination of
the design and Random Forest has unique advantages;
• rare causal variants, which have a very small effect,
can be a problem for RF because each of the M trees
are grown until the subjects in the final node are less
than a specified quantity which is 2 subjects in the
present study. Therefore, if there are rare causal var-
iants and they have an effect so small that less than 2
individuals are affected, these cannot be detected
with the proposed RF approach. However, such var-
iants are, in general, very difficult to be detected.
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