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 Nickel has been shown to be an essential trace element involved in the metabolism of several species of  bacteria, 

archea, plant and may yet be found to play a role in the metabolism of higher organisms1 . However, the carcinogenicity of certain 

nickel compounds has been confirmed by the combination of epidemiological evidence in humans and carcinogenesis bioassays in 

animals 2. The molecular mechanisms of nickel-induced carcinogenesis include interactions of this metal with major chromatin 

components causing alterations in gene expression rather than by direct DNA damage. The nuclear proteins, and in particular the 

most abundant among them, the  histones, are able to compete for metal ions with even higher affinity for metal binding sites in 

other less abundant nuclear proteins or smaller molecules. Phagocytosis of insoluble particles of  NiS by either macrophages or 

epithelial cells causes buildup of very high levels of nickel inside the cells after its intracellular dissolution catalyzed by the acidic 

pH of endocytic vacuoles, thus providing a continuous source of Ni(II) ions 3.  

 

 

 

 

 

 

  We have previously reported that nickel is a potent suppressor of histone H4 acetylation, in both yeast and 

mammalian cells 4-6. It has preference towards Lys-12 (K12) in the N-terminal histone H4 domain, in which the sites of 

acetylation K5, K8, K12, K16 are clustered. 

We investigated the issue of Ni(II) binding within the histone octamer. The interaction of this metal with the N-terminal tail, 

Ac-SGRGKGGKGLGKGGAKRH18RKVL-Am, of Histone H4 was studied because of the potent inhibitory effect of Ni(II) 

on the acetylation of lysines residues near the histidine H18, and also because of the accessibility of the H4 tail in the histone 

octamer. 

The acetylation pattern and protein interactions of the N-termini of histone H4 in yeast telomeres were found to be crucial for 

the establishment of gene silencing.  

   By combined potentiometric and spectroscopic studies we verified,  that histidine H18 acted as an anchoring 

binding site for nickel ions 5-6.  

Superimposition of Tocsy spectra of free 30aa peptide (red) and the system 30aa peptide-Ni(II) (cyan) a) 

molar ratio 1-0.2; b) 30aa peptide-Ni(II) (green) molar ratio 1-0.4 and c) 30aa peptide-Ni(II) (blu) 

molar ratio 1-0.8, in which is showed the new spin systems for Lys16, Arg17 and His18 after nickel 

interaction.  

Phagocytosis of Nickel salts particles 

X-ray structure of histone H4. 

The blue color of the surface in  the tail  indicate the 

positive charge of  lysines    

a) Histone tails in nucleosomes can be acetylated (Ac) by HATs or deacetylated by HDACs. 

The acetylation state influences the chromatin architecture  

b) Inhibition in vivo of  histone H4 acetylation by Ni(II) 
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Schematic representation of Ni(II) 

ion bound through the imidazole 

nitrogen and deprotonated 

successive peptide nitrogens  

Species distribution curves for Ni2+ complexes of  

Ac-SGRGKGGKGLGKGGAKRHRKVL-Am:Ni2+ 

molar ratio 1:1 

UV-Vis  Spectra of   

Ac-SGRGKGGKGLGKGGAKRHRKVL-Am:Ni2+  1:1 

with changing the pH  

 

 

 

 

 

 

 

 

 

 The coordination ability of Ni(II) to the N-terminal tail of Histone H4 were studied using NMR spectroscopy. 

 

 

NMR Spectroscopy 

NMR experiments were performed on a Bruker Advance 600 or 700 MHz spectrometers equipped with 5 mm TXI 1H-13 probe. Samples 

used for NMR experiments were 5 mM concentration and dissolved in 90% H2O/10% D2O solutions. All acquisition were performed at the 

temperature of 298 K.  A series of 1D spectra of the free peptide was recorded at various pH values between 2.7 and 10.0 by step of 1.0 to 

provide a titration curve for imidazole protons. The sample pH was adjusted to the final pH by addition of 1 N NaOH or 1 N HCl. The 

titration experiments of Ni(II)-containing samples with ratios of 1:1 were performed at pH 8.7.  Nuclear Overhauser enhancement 

spectroscopy (NOESY) with mixing times of 500 ms and Total Correlation Spectroscopy (TOCSY)  with a mixing time of 50 ms were also 

performed. The  combination of  TOCSY and NOESY experiments was used to assign the spectra of both free and Ni(II)-bound peptide. 

Solvent suppression for 1D, TOCSY and NOESY experiments was achieved using WATERGATE pulse sequence or using excitation 

sculpting with gradients. All NMR data were processed using  XWINNMR (Bruker Instruments) software on a Silicon Graphics Indigo 

workstation and analyzed using the Sparky 3.11 program  
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Changes in intensity and chemical shift of the 

histidine aromatic proton (HE1 and HD2) by 

increasing nickel concentration 

a) Comparison of aromatic region of 1D H NMR 

spectra of 30aa peptide Cap43-Ni(II) in the molar 

ratio  1-0, 1-0.4. 1-0.6, 1-0.8 and b) 

superimposition of aromatic region of 2D Tocsy of 

free 30aa peptide (red) and the system 30aa 

peptide-Ni(II) molar ratio 1-0.8 
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 A comparison of the 1D, 2D 1H homonuclear TOCSY and NOESY NMR spectra of 30aa H4 free peptide and of peptide-Ni(II) 

species  was performed at pH= 8.7. This pH was chosen to approach maximum formation of the major planar diamagnetic species, as 

evidenced by potentiometric and spectroscopic measurements. The resonances belonging to the 30 residues of the free peptide were assigned 

on the basis of 1D NMR spectra and 2D 1H homonuclear TOCSY and NOESY experiments. In the region between 6.6 and 8.5 ppm, only the 

aromatic resonances of histidine HE1 and HD2 at 7.595 and 6.862 ppm, respectively, were present. All the amide resonances were in a fast 

exchange with water at this pH and their resonances were lost. In the aliphatic region,  the H  of histidine appeared at 4.513 ppm. Its 

assignment was based on the analysis of the TOCSY spectrum, where a correlation between H  histidine and its H was visible ( 3.042

ppm  2.970  ppm). The TOCSY and NOESY spectra also allowed the assignment of the entire spin system of every amino acid.  

The binding mode of Ni(II) to the H4 sequence was studied at the same pH=8.7 with increasing nickel concentration to the final molar ratio 

1:1 peptide-Ni(II). Unfortunately, in the final molar ratio of 1:1 precipitation was observed, nevertheless, clearly information on the binding 

mode of peptide- Ni(II) can be obtained from a series of 1D 1H,  2D TOCSY and NOESY complex spectra until molar ratio 1-0.8. A minor 

shift of the two histidine aromatic residues (at 7.472 ppm, Δ = 0.123 and at 6.837 ppm, Δ = 0.025 for HE1 and HD2, respectively), as well as 

strong shifts involving the H   and H  proton regions were clearly observed (H 3.481 ppm, Δ = 1.032; H 2.840 ppm, Δ = 0.202, H 2

2.709  ppm, Δ = 0.261).  A new spin system appears in the TOCSY and NOESY spectra for R and K residues, attributable to K16 and R17, in 

which strong shifts resonance at  ppm belonged to the protons of K (at  3.937, Δ = 0.281 ppm)  and R (at  3.565, Δ = 0.695 ppm), were 

identified. The values of chemical shifts of the new system identified for K16 , R17  and H18 and the differences with the resonances of  free 

peptide are reported in Table 1.  
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Table 1. Chemical shift assegnment for the residues 

involved in the complex formation, before and after 

nickel interaction. The differences of chemical shifts 

are reported in the plot (absolute values). 

Scheme of the Ni(II)-peptide complex. The circle indicate 

the most affected proton in the interaction, the hardeness 

of the color are proportional to the shift’s changes  
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