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Efficient Known-Sample Attack for
Distance-Preserving Hashing Biometric

Template Protection Schemes
Yenlung Lai, Zhe Jin , Member, IEEE, KokSheik Wong, and Massimo Tistarelli , Senior Member, IEEE

Abstract— The rapid deployment of biometric authentication1

systems raises concern over user privacy and security. A biomet-2

ric template protection scheme emerges as a solution to protect3

individual biometric templates stored in a database. Among all4

available protection schemes, a template protection scheme that5

relies on distance-preserving hashing has received much attention6

due to its simplicity and efficiency in offering privacy protection7

while archiving decent authentication performance. In this work,8

we introduce an efficient attack called known sample attack and9

demonstrate that most state-of-art template protection schemes10

that utilize distance-preserving hashing can be compromised in11

practice (within few seconds), especially when the output is12

significantly smaller than the original input sample size. These13

findings further motivated our subsequent work in proposing14

a secure authentication mechanism to resist such an attack15

with proper study over the distribution of the input samples.16

Furthermore, we conducted revocability, unlinkability analysis17

to demonstrate the satisfactory of general biometric template18

protection requirements; and showed the resistance of various19

security and privacy attacks, i.e., false acceptance attack, and20

attack via record multiplicity.21

Index Terms— Biometric, Known-Sample attack, secure22

authentication.23

I. INTRODUCTION24

B IOMETRICS refers to the automatic verification or25

identification process using the physiological or behav-26

ioral characteristics of humans. Some typical biometric traits27

include fingerprint, face, and iris, which are inherently and28

permanently associated with individuals. Due to its attractive29

features such as token/ID card-free and ease of use (e.g.,30

no need to remember the complex password), the biometric31

authentication system is widely deployed in many applica-32

tions that demand identity management [1]. However, since33
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biometric is permanently associated with individuals, direct 34

exposure of personal biometric data to a third party may lead 35

to security and privacy issues. Specifically, once the database 36

that utilized to store individual biometric data (i.e., template) is 37

compromised, the attacker could transform the stored template 38

to its original form, which leads to severe privacy invasion and 39

permanent identity loss for individual users. 40

Therefore, the security and privacy issues of biometric 41

template storage are of great concern. As a remedy, biometric 42

template protection (BTP), which is a protection scheme, is put 43

forward by researchers to address the concerns mentioned 44

above [2]. 45

Briefly, BTP is designed with the primary goal of transform- 46

ing an unprotected biometric template into a protected biomet- 47

ric template using a parameterized function. An effective bio- 48

metric template protection scheme should satisfy the following 49

four requirements: non-invertibility, recovability, unlinkability, 50

and performance preservation [3]. 51

In this paper, we focus on distance-preserving hashing 52

BTP: a BTP scheme that utilizes a heuristic hash function 53

f : Rk → {0, 1}n , with distance-preserving property, to gen- 54

erate a hashed template over the hashed domain {0, 1}n . 55

Most conventional distance-preserving hashing BTPs fulfill the 56

properties of non-invertibility, revocability, and unlinkability. 57

However, to realize performance preservation, such BTP must 58

preserve the relative distance between different biometric 59

templates after the BTP applied. Such a goal is necessary 60

to ensure that similar templates render high similarity scores 61

for better recognition utility. Nonetheless, the distance pre- 62

serving property induces information leakage and jeopardizes 63

the system security. We introduce an efficient security attack 64

for existing distance-preserving hashing BTP. We show that 65

without proper designation of the hash function, such distant 66

preservation property could lead to a severe security breach, 67

hence leaving the security of the system in doubt for practical 68

use. Subsequently, we propose a countermeasure to resist 69

such an attack while preserving the original authentication 70

performance. 71

The rest of this paper is organized as follows: a literature 72

survey on existing research on BTP is covered in Section II. 73

Our motivations and contributions of this paper are highlighted 74

in Section III. An efficient attack, which is robust against 75

the current state-of-the-art distance preserving hashing BTP 76

schemes, is put forward in Section IV. A proposal of solution 77
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to resist against the attack is given in V. Our experiments and78

evaluations are covered in Section VI. A concluding remark79

is given in Section VII.80

II. RELATED WORK81

A. Distance-Preserving Hashing BTP82

One of the representative approaches to construct a83

BTP scheme is by ‘hashing’. In different with the con-84

ventional cryptographic one-way hashing, e.g., SHA-512,85

the term ‘hashing’ in BTP context relies on heuristic86

distance-preserving hash function f : Rk → {0, 1}n to gener-87

ate a hashed template y = f (x) ∈ {0, 1}n from its original88

biometric template x ∈ R
k . The hashed template obtains89

its non-invertible characteristic through information loss via90

dimensional reduction, where n < k. Follow the studies in [4],91

[5], reconstructing the input x from y is equivalent to solving92

an under-determined linear system, which is computationally93

hard if n � k.94

In general, there are two main categories where95

distance-preserving hashing is utilized for BTP in the liter-96

ature, namely, Bio-hashing and Locality Sensitive Hashing97

(LSH).98

1) Bio-Hashing: The earliest attempt of applying such99

technique to biometric is Bio-hashing [6] for protecting human100

fingerprint template. In Bio-hashing, the hashing operation is101

performed by using randomly generated orthogonal matrices102

which are implemented as dimension-reducing mapping to103

project the original fingerprint template to a random string of104

lower dimension. The projection supports distance-preserving105

property, where the pairwise distance of the fingerprint tem-106

plates is preserved in the hashed domain. There are some107

similar lines of work on Bio-hashing applied to different108

biometric modalities, including palm [7], iris [8], and human109

speech [9].110

2) Locality Sensitive Hashing (LSH): On the other hand,111

recent approaches (including the state-of-the-art works)112

[10]–[12] use LSH for BTP. Briefly, LSH refers to the use113

of multiple hash functions hi over a LSH hashing family114

H = {hi : R
k → U}ni=1, where individual hash function115

hi is designed to hash the input x, y ∈ R
k to an output116

hash space U = {0, 1} where n < k. LSH ensures the input117

pair x , y with small distance (viz., high similarity) renders118

a higher probability of collision in the hashed domain and119

vice versa. There are few reported ways for designing the120

hash function hi ∈ H . For instances, Lai et al. [11] construct121

a LSH family H = {hi : {0, 1}k → {0, . . . , q − 1}}ni=1122

for iris template protection, while Jin et al. [10] construct123

a LSH family H = {hi : R
k → {0, . . . , q − 1}}ni=1 for124

fingerprint template protection. Both constructions utilize a125

set of randomly generated projection matrices of dimension126

q × k for hi to project the input features into q dimensional127

subspace, where the index of maximum value selected over128

{0, . . . , q − 1} is returned.129

Formal speaking, Bio-hashing and LSH exploit the random130

projection process to preserve the original inputs’ distance in131

the hashed domain.132

Specifically, the random projection could be viewed as a 133

multiplicative data perturbation such that y = A · x for a 134

random matrix A and input x . 135

Theorem 1 [13]: Given two vectors x, x � ∈ R
k . Let A ∈ 136

R
n×k be a n × k random matrix whose elements A j i (where 137

j = 1, · · · , n and i = 1, · · · , k) are i.i.d. drawn from some 138

distributions with E
[

A ji
] = μ and V ar(A ji) = 1. Recall that 139

random projection computes y = 1
n A · x and y � = 1

n A · x �. 140

Then for x and x � such that �x� ≤ 1 and
∥∥x �

∥∥ ≤ 1, it follows 141

that 142

(1+ μ2) E

[∥∥y − y �
∥∥2

]
− ∥∥x − x �

∥∥2 ≤ 2μ2k. (1) 143

Eq (1) of the above theorem implies that regardless of 144

which type of random matrix, the corresponding output dis- 145

tance, i.e.,
∥∥y − y �

∥∥2, would inevitably increase with the 146

increment of the input distance
∥∥x − x �

∥∥2, and vice versa. 147

This demonstrates that the Bio-hashing and LSH distance 148

exhibit distance-preserving property, and they can be generally 149

named as distance-preserving hashing, categorized under the 150

distance-preserving transformation (DPT). 151

B. Related Works in Privacy Preservation Using DPT 152

The studies of distance-preserving property for 153

privacy-preserving data mining in a broad sense have 154

been an area of research since 1991 [14]. The main goal is 155

to protect user data privacy from a database via DPT. Some 156

notable literature refer to the works by Kim and Winkler [15], 157

Tendick [16], and Evans et al. [17]. However, the question 158

of how well is x being hidden in y remains unclear, which 159

deserves a careful study. Potential attackers without any prior 160

knowledge can only do very little (if any) in recovering 161

the original sample x . However, it is unrealistic for such 162

zero prior knowledge to happen in many practical situations. 163

Motivated by such reasoning, a lot of works have been 164

done by considering the vulnerability of distance-preserving 165

transformation. We briefly highlight some notable literature 166

as follow. For a more general survey, we direct the interested 167

reader to [18]. 168

First, Liu et al. [19] reported that the attacker could exploit 169

the distance-preserving property in reverting the original sam- 170

ple x . They realized the principal component analysis (PCA) 171

could be a useful tool for a reasonable estimation of the orig- 172

inal and transformed covariance matrices, which later leads 173

to the recovery of the original data. Their work has inspired 174

Turgay et al. [20] to recover the original data values with 175

very high confidence for PCA based attack. A more robust 176

type of attack extended from PCA based attack is proposed 177

by Guo et al. [21] to show security breach in projection-based 178

transformation (isometric). They applied traditional indepen- 179

dent component analysis (ICA) over a set of known samples 180

and perturbed samples. Information leakage allows the deriva- 181

tion of a transformation matrix that could lead to a close 182

approximation of the original sample. Chen et al. [22] have 183

also pointed out the security concern over distance preserving 184

transformation such as geometric data perturbation, including 185

random rotation perturbation, random translation perturbation, 186

and noise addition. Subsequently, Wong et al. [23] have shown 187
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that the original input data is uniquely recoverable when one188

can solve the K -independent linear equation systems.189

For the biometric line of research, recent works by Gal-190

bally et al. [24] reported the utilization of some heuristic191

algorithms to revert the original biometric template (human192

iris) through the exploitation of the preserved distances among193

hashed template. Specifically, they utilized a genetic algorithm,194

which aimed to minimize the ‘fitness’ function corresponding195

to the pairwise hashed template distance. The minimization196

process performs iteratively with several guesses defined by a197

population of synthetic iris data. Apart from using a genetic198

algorithm, another attack carried out by Feng et al. [25]199

incorporated multiple layers of perceptron learning to mini-200

mize the hashed distance over the set of synthetic real-value201

templates. Their results demonstrated the close reconstruction202

of human face images from the synthetic real-value template203

by utilizing the hill-climbing technique [26]. Recent work by204

Kaplan et al. [27] have shown that any distance-preserving205

transformation is also relation-preserving. Even under the206

scenario where only the relative order of the distance or207

similarity is preserved, the data breach is still inevitable due208

to similarity information leakage.209

The schemes mentioned above have identified severe secu-210

rity threats to distance-preserving transformation, leading to211

doubts and curiosity about non-invertibility.212

C. Optimal Distance-Preserving Hashing213

Upon closer look, all the attacks mentioned in the previous214

sub-section rely on the information leakage due to DPT.215

Follow the works in [13], to resist this kind of attacks,216

one must reduce such information leakage, which can be217

described as the mutual information, denotes as I (DI |Do),218

where Do is the distribution of the original interclass distance,219

and DI is the distribution of the interclass distance dI after220

hashing with f (.). In our context, we refer the term dissim-221

ilarity when Do and DI are normalized to [0, 1]. Because222

optimizing the mutual information I (DI |Do) is NP-complete,223

it is more practical for one to optimize the upper bound224

of I (DI |Do). Specifically, let H (W ) denote the entropy of225

distribution W . It follows that I (DI |Do) ≤ H (DI ) ≤ H (Do).226

Then, by assuming that DI asymptotically follows unimodal227

distribution, where small distribution’s variance presumably228

leads to small entropy [28], the term H (DI ) can be replaced229

with the variance of DI , denoted as Var(DI ). Optimizing230

I (DI | Do) can be done via minimizing Var(DI ). In other231

words, the inter-class distance over the hashed domain shall232

be made as small as possible with equidistance to reduce the233

mutual information leakage. Doing this is sufficient to show234

the resistance against the aforementioned attacks over DPT.235

On the other hand, for good recognition utility, the system236

must ensure the samples sourced from similar subjects can237

match successfully with high probability. Given this, it is238

desirable that after hashing with f (.), there is a large gap239

between the distribution of the interclass’s distance (denoted240

as DI ) and the distribution of the intraclass’s distance (denoted241

as Dg). Ideally, we wish that E[DI ]→ 1 while E
[
Dg

]→ 0,242

where the similarity scores (1 − DI and 1 − Dg) obtained243

Fig. 1. Overview diagram illustrating the different relationships between the
hashed similarity scores and original similarity scores.

between the hashed templates shall remain insensitive up to 244

a threshold τ > 0 with respect to their original similarity 245

scores for both interclass and intraclass. The relation between 246

the hashed similarity scores (after hashing with f (.)) and the 247

original similarity scores is depicted in Fig. 1. Note that an 248

S-curve characterizes such a non-linear relationship, where 249

the hashed similarity score is shown to remain negligibly 250

small given the original similarity score is less than the 251

acceptance threshold, i.e., τ = 0.59 as depicted in Fig. 1. 252

Such a non-linear relationship is sufficient to ensure negligible 253

similarity information leakage over the hashed templates while 254

offering correctness (i.e., authenticity) for genuine users who 255

can present another biometric template w and show a similarity 256

score s(., .) of at least τ with the enrolled template w�, 257

i.e., s(w,w�) ≥ τ . 258

III. MOTIVATIONS AND CONTRIBUTIONS 259

Our motivations and contributions of this paper can be 260

summarized as follow: 261

A. DPT-Based Attacks on BTP Schemes 262

Liu et al. [19] have generalized two attacks over DPT, 263

namely, known samples attack (KSA), and known input-output 264

attack (KIOA). The former attack assumes the potential 265

attacker has acquired a small subset of the database sam- 266

ples, while the latter assumes that the attacker has the exact 267

knowledge over several pairs of input and their corresponding 268

output. The known input-output attack asserts a significantly 269

stronger assumption upon the attackers’ power in acquiring the 270

input-output pairs. Our work emphasizes on KSA due to its 271

popularity for DPT analysis [19]–[21], [27]. Here, we propose 272

an attack for the BTP scheme relies on distance-preserving 273

hashing, specifically for face biometric features. Compara- 274

tively, our attack only requires one known sample, which is 275

indeed more realistic and practical than the 5% of the whole 276

dataset requirement imposed by [19] and 4 ∼ 6 samples men- 277

tioned in [27]. Moreover, the attack carried out in [20] assumed 278
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that the attacker has a distance matrix of the private data,279

which directly implies that the attacker knows the original280

sample’s distribution. In our case, the attacker is considered281

much ‘weaker’ in that he/she has no prior knowledge of the282

original sample’s distribution. However, we allow the attacker283

to model and change the input distribution iteratively by284

introducing additional perturbation (i.e., adding noise). We285

shall show later that even under such ‘weaker’ attacking286

environment, our results of attacking the BTP scheme that287

adopted distance-preserving hashing is prominence, where the288

number of iterations required to produce a valid authentication289

result can always describe using some polynomial (poly (n ))290

in the hashed template’s length (n). These results lead to291

significantly less time required to launch a successful attack292

over a short template.293

B. Realization of Non-Linear DPT294

To resist against KSA, one should minimize the similarity295

information leakage between the original similarity scores and296

the hashed similarity scores [13]. To achieve this, an opti-297

mal, or at least non-linear, DPT is desired. As a metric for298

evaluation, the degree of minimization of leakage can be299

directly visualised from the gradient of the S-curve as depicted300

in Fig. 1. Clearly, steeper gradient over the S-curve indicates301

higher degree of minimization, hence better security and pri-302

vacy protection over the DPT transformed data. To realize such303

non-linear DPT, we therefore reformulate the design of the304

distance-preserving hashing for BTP. Specifically, we construct305

a new hashing family from the conventional locality sensitive306

hashing family to realize such non-linear relationship over307

the input and hashed domains. Besides, the new hashing308

family inherits the good properties of the conventional LSH309

hashing family such as efficiency and simplicity, and resistance310

against KSA as a secure distance-preserving hashing BTP311

scheme. Most importantly, we also conducted revocability,312

unlinkability analysis; and show the resistance of various313

security and privacy attacks, i.e. false acceptance attack, attack314

via record multiplicity.315

IV. OUR ATTACK316

A. New KSA Attack Formalization317

We begin with the intuition of the proposed KSA attack that318

incorporated the structure information of the input biometric.319

Attack Intuition: Let f : R
k → {0, 1}n be a convention320

distance-preserving hash function. Let w ∈ R
k be the enrolled321

biometric template. Given a targeted hashed template f (w) ∈322

{0, 1}n and a dissimilarity score ε� ∈ [0, 1], our goal is to323

find a sample w∗ ∈ R
k s.t. d( f (w), f (w∗)) ≤ ε�. Due324

to the distance-preserving property of f (·), if the dissimi-325

larity score (after transformation) is d( f (w), f (w∗)) ≤ ε�,326

then the original dissimilarity score (before transformation)327

d(w,w∗) ≤ ε should hold for arbitrary ε > 0. Using the328

naive brute-force search for w∗ is a practically infeasible or329

at least inefficient approach due to the field size |Rk |, which330

increases exponentially with k. However, if we are able to look331

for a noise distribution D and some noise samples we,i ∈ D332

(for i ∈ {1, 2, . . . , N }) s.t. d( f (w), f (we,i )) ≤ ε�, then the333

Algorithm 1 Proposed KSA

1: function ATTACK f (w∗, f (w), N, ε�, ε, λ,S)
2: χ←$ {0, 1}k
3: σ ← S � select σ from S without repetition
4: Set M = σ ·U � U ∈ 1k is vector of one
5: for i = 1 : N do
6: ei ←$ χ � select ei ∈ χ without repetition, where
∀ei ∈ χ , �ei� = �kε�

7: we,i = M ◦ ei +w∗ � where ◦ denotes the
Hadamard product of M and ei

8: Compute di = d( f (w), f (we,i )) and output
(d1, d2 . . . , dN ) � we refer d(x, y) = 1

π arccos(x · y).
9: end for

10: Set ε0 = min(d1, d2 . . . , dN )
11: if ε0 > λ/ε� then
12: Back to Step 3
13: else
14: Output we,i corresponds to min(s1, s2 . . . , sN )
15: end if
16: end function

searching can be reduced to look for any we,i ∈ D where 334

d( f (w), f (we,i )) ≤ ε� and d(w,we,i ) ≤ ε hold. This allows 335

us to reduce our search space for all we,i ∈ D (rather than deal 336

with w∗ ∈ R) over a smaller subspace parametrized by |D|, 337

which is relatively easier to be modelled compared to |Rk |. 338

Algorithmically, to look for such we,i ∈ D, we have to 339

first initialize a random distribution D over R
k . This can be 340

achieved by knowing at least one sample w∗ ∈ R
k . More 341

specific, we make use on the known sample’s distribution to 342

construct a smaller subset S, which later is used to realize D. 343

The noisy sample can be generated by perturbing the input 344

sample w∗ using a randomly selected real values σ ∈ S ∈ 345

D. Meanwhile, we also denote a distribution χ ∈ {0, 1}k s.t. 346

for all random sampled e ∈ χ , the weight �e� = �kε� is 347

parameterized by the original dissimilarity score ε > 0 s.t. 348

d(w,we,i ) ≤ ε. The sampled e will be used to determine 349

the position of w∗, over 0, . . . , k − 1, to be perturbed using 350

the randomly selected σ to model D precisely. More detailed 351

discussion on how we construct S and sample e are covered 352

in the next sub-section. 353

Let M ∈ R
k×k be a perturbation matrix. Given some 354

reference hashed dissimilarity d( f (w), f (w∗)) = ε�, the goal 355

of looking for we,i ∈ D can be achieved by minimizing 356

the dissimilarity score ε� using N number of noise samples 357

we,1, we,2, . . . , we,N until one yields a dissimilarity score 358

ε0 ≤ λε� with a ratio λ > 0. Clearly, λ > 0 means the 359

minimized dissimilarity score ε0 is desired to be lower than 360

the reference score ε� for meaningful minimization result. 361

Our attack algorithm with input N, ε�, ε, λ, f (w) and w∗ 362

depicted in Algorithm 1. The output of Algorithm 1 is a noisy 363

sample we,i that corresponds to the minimized dissimilarity 364

score ε0. 365

B. Attack Complexity and Efficiency 366

Note that the runtime complexity of Algorithm 1 is 367

bounded by O(|S|Nk2
)
. To look for |S|, we make use of the 368
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possibility of self-enrollment of a potential attacker. Hence369

at least one sample w∗ ∈ R
k can be obtained in reality.370

More precisely, the distribution of w∗ can be identified371

by looking at the minimum and maximum value of w∗,372

i.e., w∗ ∈ [min(w∗), max(w∗)]. We can define |S| to be373

the size of the subset S where S ∈ [min(w∗), max(w∗)].374

Doing this will narrow our focus to a smaller subset S,375

which is very much more manageable compared to R. For376

any value σ ∈ S (chosen uniformly at random from S),377

it should be noted that our attack is efficiently bounded over378

a subspace of size |2σ |k . Therefore, we should have the379

desired distribution D ∈ [2(min(w∗)), 2(max(w∗))]k for all380

σ ∈ S, and S ∈ [min(w∗), max(w∗)] should follow.381

Formally, the dissimilarity score minimization can be con-382

ceived as a process of searching for a similar point we,i ∈ D383

s.t. d(w,we,i ) ≤ ε given d( f (w), f (we,i )) ≤ ε� holds. For384

each iteration, a sample from D will be selected as we,i to385

minimize d( f (w), f (we,i )). Trivially, for any input sample of386

size k over R, there are at most R
k different samples over387

the input space. If a minimization solution exists, at most388

R
k random guesses are required. However, one needs to389

consider the exponentially large number of possibilities (of390

combinations) when k is increasing, e.g., long input length.391

Nonetheless, we will show that attack complexity can be392

relieved to O (
nk2

)
parametrized by an integer m > 0,393

the input length k, and the original dissimilarity score ε > 0394

as shown in below.395

For max(w∗) − min(w∗) ≤ 1, using a parameter (integer)396

m > 0, we could construct a subset S ∈ [min(w∗), max(w∗)]397

of size398

|S| = max(w∗)−min(w∗)
2−m

≤ 2m (2)399

For instance, given m = 2, max(w∗) = 2 and min(w∗) = 1,400

a subset S can be constructed as S = {1, 1.25, 1.5, 2} with401

|S| ≤ 22 = 4.402

Recall for any ε > 0, any random sampled ei should have403

weight equal to �ei� = �kε�. Hence, Step 7 of Algorithm 1 is404

equivalent to perturbing exactly �kε� locations of w∗ with M405

and ei . For an input w∗ of size k, it follows that by Stirling’s406

approximation, we can always set (for ε ∈ (1/k, 1/2)):407

N = 2�kh2(ε)� ≤
(

k

kε

)
, (3)408

where h2(ε) = −ε log(ε) − (1 − ε) log(1 − ε) is the binary409

entropy function.410

For any hashed template f (w) ∈ D f in some random411

distribution D f over ∈ {0, 1}n , let the total number of points412

over D f ∈ {0, 1}n be n = 2�kh2(ε)+m� − 1. We therefore413

have the intermediate results as follow 2�kh2(ε)�+m = n + 1 ≤414

2kh2(ε)+m , which leads us to the inequality below415

kh2(ε)+ m ≥ log(n + 1). (4)416

Follow Eq (4) above, to look for f (we,i ) (viewed as a point417

over D f ∈ {0, 1}n) and check whether d( f (w), f (we,i )) =418

ε0 ≤ λε� using Algorithm 1, the logarithm of the number of419

point can be found over D f ∈ {0, 1}n must be bounded at most420

kh2(ε)+ m. In other words, the overall attack complexity is421

asymptotically (for large m) described as O(
nk2

) = poly (n ), 422

which is polynomial time. Then, we have the following claim 423

for our attack efficiency. 424

Claim 1: Given ε ∈ (1/k, 1/2) and the subset S of size 425

|S| = 2m with an integer m > 0, for any targeted BTP 426

transformation function f : Rk → {0, 1}n with output template 427

over a random distribution D f ∈ {0, 1}n that consists of 428

2�kh2(ε)+m� − 1 = n number of points, the Algorithm 1 will 429

halt in O(
nk2

)
with N = 2�kh2(ε)�. 430

C. Acquiring the Pre-Images 431

Here, we discuss the capability of our proposed attack in 432

getting large number of similar points that are, contributed by 433

any noisy sample we,i ∈ D, close to the targeted sample w, 434

i.e., d(w,we,i ) ≤ ε. 435

Given the information of S and N , the distribution D 436

can be revealed and the number of points over D can be 437

known precisely. More specific, note that the perturbation 438

value σ is chosen uniformly at random from the subset 439

S ∈ [min (w∗), max (w∗)], and the random string ei is 440

chosen uniformly at random follows distribution χ of weight 441

�kε�. Every iteration in running Algorithm 1 will output a 442

random noisy sample we,i ∈ D (see Step 7 of Algorithm 1) 443

corresponding to the selected values of σ ∈ S and ei . Follows 444

Eq (2) and Eq (3), the number of possible values for we,i can 445

be expressed as n+1 = N |S| ≤ 2�kh2(ε)�+m . Note that a point 446

in D can be revealed as we,i ∈ D. Given the distribution D 447

with number of points not greater than 2�kh2(ε)�+m−1, at most 448

n iterations would suffice to try all the noisy samples over D 449

using Algorithm 1. In view of this, the proposed KSA attack 450

implicitly constructed a known distributions D of at most 451

2�kh2(ε)�+m − 1 number of points where each point, a.k.a. the 452

noisy sample we,i , should distribute randomly and uniformly 453

over D. Therefore, it is appropriate to treat the matching 454

in every single iteration to be independent and identically 455

distributed. To be specific, we define 456

X =
n+1∑
i=1

Xi , (5) 457

where Xi denotes the independent variable s.t. Xi = 1 if 458

d( f (w), f (we,i )) ≤ ε0 ≤ λε�. Hence, X follows binomial 459

distribution with Pr [Xi = 1] = pi and Pr[Xi = 0] = 1 − pi 460

for some probability pi ∈ [0, 1]. 461

Conceivably, X can be interpreted as the number of suc- 462

cessful minimization result over the known distribution D 463

that yields d( f (w), f (we,i )) = ε0 ≤ λε�. Without loss of 464

generality, since λε� ≤ ε�, hence, a successful minimization 465

result would mean that a similar point (we,i ) can be found 466

over D where d( f (w), f (we,i )) ≤ ε� holds, which implies 467

d(w,we,i ) ≤ ε. 468

Arguing that the number of similar points can be found 469

is different given different input samples w∗, the exact value 470

of X must be different as well. Hence, it is reasonable to 471

bound the number of similar points as a variable based on 472

their original similarity score 1− ε. Then by Chernoff bound 473

(for ε ∈ (1/k, 1/2)): 474

Pr [X ≤ n(1− ε)] ≤ exp (− nε2

2 ). (6) 475
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Based on the Eq (6) above, we can conclude that given an476

arbitrary random ε ∈ (1/k, 1/2), for sufficiently large n,477

the number of similar points s.t. d(w,we,i ) ≤ ε that can be478

found over D is unlikely to be smaller than n(1 − ε). From479

this point of view, after n number of iterations, the probability480

for Algorithm 1 in getting n(1 − ε) similar points is at481

least 1 − exp (−nε2/2), which is close to one if n is set482

to be large enough. These obtained similar points are also483

known as the pre-images of w where both d(w,w∗) ≤ ε484

and d(w,we,i ) ≤ ε should follow. The above results also485

indicate that any computational unbounded attacker in running486

Algorithm 1 must be able to obtain at least n(1 − ε) number487

of pre-images with high probability when n is large enough.488

Given n is large, it follows that m must be set sufficiently489

large as well s.t. n ≤ 2kh2(ε)+m − 1 in order to support the490

efficiency argument of Algorithm 1 follows Claim 1, especially491

under the case when ε is small. In other words, a larger m is492

necessary to provide more information, hence, more points can493

be found over D. Doing so is in our favor of looking for a494

similar point over larger distribution D, which contains more495

points within O(
nk2

)
operations.496

Indeed, Nagar et al. have demonstrated that acquiring497

the pre-images of the enrolled sample w is sufficient to498

compromise the BTP schemes, i.e., Bio-hashing. (see [29],499

Section 5). In their works, for any targeted sample w ∈ R
k ,500

they proposed to use t > 0 number of known biometric501

samples w∗i ∈ R
k (for i = 1, . . . , t), collected from a database502

s.t. di = d( f (w), f (w∗i )) ≤ δ, to estimate x ∈ R
k by503

minimizing the 2-norm distance follows argmin
∥∥x − w∗i

∥∥
2 ≤504

ε. The minimization is done by using the Matlab built-in505

isqlin function to obtain a series of estimated results xi , . . . xt506

equivalent to the similar points that are ε-close to w. Then,507

the pre-image of w, denoted as x̂ , is computed among xi , . . . xt508

follows x̂ =
∑t

i=1 xi/di∑t
i=1 1/di

.509

Our proposed KSA attack improved Nagar et al.’s approach510

in two perspectives. Firstly, the proposed KSA required only511

a single known sample of w∗, which can be trivially obtained512

through self-enrolment. Secondly, the proposed KSA has513

incorporated the input structure of the biometric distribution.514

Specifically, the number of pre-images obtained is described as515

a function of the points of distribution (D). The incorporated516

structural information of the biometric distribution offers a517

better attack efficiency guarantee in looking for the similar518

points that are ε-close to the original biometric sample w.519

V. COUNTERMEASURE FOR DPT-BASED ATTACKS520

In this section, first, we present a few definitions and briefly521

walk through the randomized strategy, which is a crucial522

background study in the following subsection. Then, we put523

forward a countermeasure for DPT based attack, particularly524

to resist against KSA. We reformulate the conventional LSH525

hashing adopted by the BTP scheme as proposed in [10]–[12]526

to construct a non-linear DPT for our goal.527

A. Definitions528

Definition 1 (Locality Sensitive Hashing): Let d1 < d2 be529

two distances of some distance measure d(·, ·). A family H530

of functions is said to be (d1, d2, p1, p2)-sensitive if ∀h ∈ H 531

then the following hold true: 532

Pr [h(x) = h(y)] ≥ p1, if d(x, y) ≥ p1, and 533

Pr[h(x) = h(y)] ≤ p2, if d(x, y) ≤ p2. 534

Given an (d1, d2, p1, p2)-sensitive family H, one can construct 535

another family H� where each member of H� consists of 536

exactly k members from H. We called such new family to 537

be (d1, d2, pk
1, pk

2)-sensitive, which is defined below: 538

Definition 2: Given an (d1, d2, p1, p2)-sensitive family H, 539

we say another family H� is (d1, d2, pk
1, pk

2)-sensitive if it 540

consists of members of a set {h1, . . . , hk} from H, where 541

h(x) = h(y) (over H) if and only if hi (x) = hi (y) for 542

i = 1, . . . , k (over H�). 543

B. Randomized Strategy for LSH Family 544

One typical way to construct an LSH family of 545

(d1, d2, p1, p2)-sensitive is by random projection. 546

Random projection has been used by Gormans et al. [30] 547

in solving the relaxed version of maximum cut problem. 548

In particular, given a graph G(V , E) and nonnegative weight 549

zi j = z j i on the edges (i, j) ∈ E , the max-cut problem is 550

a computational problem that aims to find the set of vertices 551

S ⊂ V follows a cut (S, S̄) where the weight of the edges 552

with one endpoint in S and the other in S̄ (the complement 553

of S) is maximized [31]. The relaxed version of max-cut 554

problem is to maximize the objective function described as 555

1
2

∑
i< j zi j (1−wi ·w j ) where wi and w j are two vectors 556

over R
k . Gormans et al. used a random vector r (uniformly 557

distributed on a unit sphere) to partition the set of vertices 558

S and its complement S̄ into those vectors w ∈ R
k that 559

lie above the hyperplane (i.e., the inner product r · w is 560

positive) and below the hyperplane (i.e., the inner product 561

r · w is negative) while maximizing the objective function 562

1
2

∑
i< j zi j (1−wi ·w j ). 563

The Lemma below characterizes the above randomized 564

strategy that renders a locality sensitive hashing family which 565

is (d1, d2, p1, p2)-sensitive with the distance measure referring 566

to the cosine distance (i.e., angle between w and w�) described 567

as d(w,w�) = 1
π arccos(w · w�). 568

Lemma 1 [30]: 569

Pr
[
sgn(ri ·w) �= sgn(ri ·w�)

] = 1

π
arccos(w ·w�). 570

In our case, we apply random projection to project the 571

input biometric template (a vector) w ∈ R
k using multi- 572

ple random Gaussian vectors with mean zero and variance 573

one, and a signum function sgn(r · w) ∈ {0, 1}, yielding 574

an output vector v ∈ {0, 1}n described as follow v = 575

[sgn(r1 ·w), . . . , sgn(rn · w)], where sgn(ri · w) = 0 if 576

ri ·w ≥ 0 and sgn(ri ·w) = 1 if ri ·w < 0. The output vector v 577

is a core element to be used in our proposed countermeasure 578

for DPT based attack, and to construct a new LSH family, 579

which are discussed in details in the next sub-section. 580

C. Formalization of the Proposed Technique 581

The formalization of our proposed countermeasure for 582

DPT based attack adopts the LSH family constructed via 583
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Algorithm 2 Proposed Transformation
1: function TRANS f ∈Hr (w, r, s, u, b)
2: n = s × u × b
3: for i = 1 : n do
4: vi = fi (w, ri )
5: end for
6: Set v = (v1, . . . , vn)
7: Reshape v → v ∈ {0, 1}s×ub

8: Convert every b bits into a unit of integer in range
{0, . . . , 2b − 1}

9: Output v ∈ {0, . . . , 2b − 1}s×u

10: end function

randomized strategy. We follow Definition 1 and 2 to construct584

a new LSH family derived from the randomized strategy,585

which offers non-linearity for our security goal.586

Notation: Suppose we are given an input sample w ∈ R
k

587

(for enrolment). Let f ∈ Hr denote the hashing function over588

the LSH family of randomized strategy Hr , where f : Rk →589

{0, 1}n . In particular, we have fi (ri , w) = sgn(ri · w) for590

i = 1, . . . , n with random Gaussian vector ri ∈ N (0, 1) and591

signum function sgn(.). We set n = s × b × u, and use s, b592

and u to denote stripe, bit and unit, respectively.593

Main Idea: Our core idea is to reformulate the LSH function594

to generate a fixed number of points that can be directly595

expressed using the number of stripes over the hashed domain.596

For high recognition utility, our formulation must ensure597

that similar points, that are ε-close together, i.e., d(w,w�) ≤598

ε, can be found with overwhelming probability given their599

hashed similarity is large (i.e., the matching score is high,600

close to one, after hashing). On the other hand, it should601

exhibit negligible probability to look for the similar points602

when the hashed similarity is small (i.e., the matching score603

is negligible small, close to zero, after hashing). To achieve604

this, we define a radius of τ for each stripe (point) over605

the hashed domain. Such radius could be quantified by the606

number of units in a single stripe, which consists of b number607

of bits. With an adequately selected τ , we can tolerate the608

errors in the similar input samples to ensure authenticity with609

overwhelming probability. It follows that a highly non-linear610

relationship between the original similarity scores and output611

hashed similarity scores can be obtained, hence establishing612

resistance against KSA while keeping high recognition utility.613

Overview Procedure (Transformation): Our procedure to614

generate the hashed template is quite simple and can be615

summarized as follow. First, the input template w ∈ R
k is616

being hashed by f1, . . . , fn with r1, . . . , rn to output a binary617

vector v of size n. Next, v will be reshaped into a 2-D matrix618

of size s × ub. We called the individual row of the resulting619

matrix - a stripe. Precisely, a stripe consists of u number620

of units, and every unit is represented by b binary symbols621

(bit). Each unit can be conveniently viewed as an integer622

over the set of {0, . . . , 2b − 1}. Let r = (r1, . . . , rn) be the623

collection of all random Gaussian vectors. The transformation624

takes (w, r, s, u, b) as input, and its pseudocode is presented625

as Algorithm 2.626

Algorithm 3 Proposed Authentication

1: function AUTH(v,w�, r, s, u, b, τ )
2: v � ← TRANS f ∈Hr (w

�, r, s, u, b)
3: Initialize score X = 0;
4: for i = 1, . . . , s do
5: if Each row of v � and v collided in at least τ positions

of units then
6: Set X = X + 1
7: end if
8: end for
9: Output X/s

10: end function

Overview Procedure (Authentication): Given another input 627

template w� ∈ R
k , using the same published parameters 628

(r, s, u, b), the same transformation (Algorithm 2) is utilized 629

to generate its corresponding hashed vector v � ∈ {0, 1}s×ub. 630

Authentication can then be viewed as a score counting process 631

as follow: For each stripe (i = 1, . . . , s) in v and v �, 632

a score count Xi is recorded if there is at least τ number 633

of colliding units. The total score count is simply X =
s∑

i=1
Xi . 634

Then, X is normalized and outputted as the similarity score, 635

i.e., X/s ∈ [0, 1]. The authentication mechanism, which takes 636

(w�, r, s, u, b, τ ) as the input, is presented as Algorithm 3. 637

D. Non-Linearlity Derivation 638

Here, we derive the non-linearity property of our proposed 639

algorithm pair (TRANS, AUTH). 640

Let d(w,w�) = arccos(w·w�)
π be the dissimilarity between w 641

and w�, which corresponds to their distance measured by the 642

angle between them. Therefore, p = 1 − d(w,w�) refers to 643

the similarity measure. By Lemma 1, we have the colliding 644

probability of single bit over a single stripe to be: 645

Pr
[

fi (ri ·w) = fi (ri · w�)
] = 1− d(w,w�) = p. 646

Recall that each unit consists of exactly b number of bits. 647

We shall see that for each single unit, it should come from 648

a (d1, d2, pb
1, pb

2)-sensitive family H� (see Definition 2). It 649

follows that the colliding probability for one single unit is 650

equivalent to colliding exactly b number of bits. This can be 651

expressed as: 652

Pr
[

fi (ri · w) = fi (ri ·w�)
∣∣ i = 1, . . . , b

] = pb. 653

The probability of no unit colliding is 1− pb. Let z be number 654

of colliding units. Clearly, z follows a binomial distribution 655

and we denote pc the probability of at least τ number of 656

units colliding. Therefore, 657

pc(u, b, τ, p) = Pr[z ≥ τ ] =
u∑

i=τ

(
u

i

)
(pb)i (1− pb)i . (7) 658

By Eq (7) and Definition 2, each stripe is considered as an 659

(d1, d2, pc1, pc2)-sensitive LSH family H�� constructed from 660

an (d1, d2, pb
1, pb

2)-sensitive LSH family H�. 661
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The derived pc has direct effect on the final computed662

authentication score X =
s∑

i=1
Xi , where Xi = 1 if the663

i−th stripe has at least τ number of colliding units. Given664

all stripes are independent, then X should follows i.i.d with665

Pr [Xi = 1] = pc and Pr [Xi = 0] = 1 − pc. Therefore we666

shall have the expected score count expressed as E [X ] =667

spc and variance Var(X) = s(pc)(1 − pc). Follows Eq (5),668

one shall notice that our proposed transformation offers669

well-defined number of stripe s which can be interpreted as670

the number of points over the hashed domain {0, 1}n .671

Note that the score count X is highly non-linear with672

respect to the original dissimilarity d(w,w�) measurement673

(see the functionality of pc in Eq (7)). Fig. 2 depicts the674

non-linear relationship between the derived pc and the input675

dissimilarity score d(w,w�). Observe that a larger number of676

bits b and τ would lead to a greater degree of non-linearity,677

where the gradient of the S-curve becomes steeper. Besides,678

a larger number of u promotes more colliding units. Therefore,679

the input templates with small dissimilarity d(w,w�) can680

easily attain overwhelming value for pc (i.e., close to one).681

The argument above gives rise to our correctness claim for682

the genuine user with a higher value of τ .683

VI. EXPERIMENTS AND EVALUATION684

Experiments Set-up and Protocol: For input biometric tem-685

plates, we adopt a pre-trained convolution neural network dedi-686

cated to face recognition, namely InsightFace [32]. InsightFace687

employs a loss function named additive angular margin loss for688

learning. With InsightFace that is pre-trained with MS-Celeb-689

1M, a face vector with a size of k = 256 can be obtained.690

Besides, we adopt the Labelled face in the wild (LFW)691

dataset [33], which consists of 7,701 images of 4,281 sub-692

jects. We follow the protocol outlined in [33], where a total693

number of 6,000 face pairs are divided into ten disjoint sub-694

sets for cross-validation. Each subset contains 3000 genuine695

pairs and 3000 impostor pairs, resulting in a total number696

of 3000 genuine matching scores and 3000 imposter matching697

scores. All the while, we only consider single set of random698

Gaussian vector (r1, . . . , rn) for random projection used in699

(TRANS, AUTH). Equal error rate (EER) is considered as the700

performance metric, which is the error rate when the false701

acceptance rate (FAR) and false rejection rate (FRR) are equal.702

For attacks using Algorithm 1, for each imposter matching,703

we can conveniently set the distance between the hashed tem-704

plates as ε0 = 1. If such distance is at most λε�, Algorithm 1705

will halt and stop in Step 4. Otherwise, Algorithm 1 will706

continue to minimize ε0. The minimization process intending707

to achieve ε0 ≤ λε� for all imposter matching, yielding a total708

number of 3000 minimized dissimilarity score ε0, namely the709

KSA attack scores, for performance evaluation of the proposed710

KSA attack. All experiments are conducted by using PC with711

processor core i5-2.50 GHz with 8GB RAM, graphic card712

GTX 1050 Ti, and with MATLAB Ver. R2018a.713

A. Evaluation of Proposed Attack on Bio-Hashing and LSH714

We evaluate the proposed known sample attack in this715

section. Our attack focuses on Bio-hashing and conventional716

LSH. In particular, for LSH, we refer to the randomized 717

strategy in generating the hashed vector v. Note that the 718

randomized strategy can be viewed as a special case of the 719

recently proposed hashing scheme [10] when the output is in 720

binary, i.e., q = 2. 721

Parameters Control: Among all the necessary inputs 722

(w∗, f (w), N, ε�, ε, λ), there are only four parameters, 723

namely, N, ε�, λ, and m, to be adjusted. Here, we set ε = 724

10/256, λ = 1/4, and limiting N = 800. The value of m = 7 725

is chosen by computing |S| = |0.2178− (−0.1978)|/2−8 = 726

106.4 ≤ 27 to get a set of values for S over the range of 727

[−0.1978, 0.2178]. Follow Eq (4), |S| ≤ 27 < 28. Considering 728

the attack efficiency (see Claim 1, Eq (4)), the logarithm of the 729

number of point can be found over the hashed domain’s dis- 730

tribution D f ∈ {0, 1}n must be bounded at most kh2(ε)+ m. 731

However, without proper designation of the transformation 732

function, one could not assure the number of points over 733

D f ∈ {0, 1}n will be at most 2�kh2(ε)+m� − 1. This means if 734

Eq (4) does not hold, then the derived KSA attack efficiency 735

is obsoleted and no guarantee on n(1 − ε) (follows Eq (6)) 736

number of similar points can be found over D by using 737

Algorithm 1. Nevertheless, a straightforward way to ensure 738

efficiency of Algorithm 1 is to reduce the hashed output length 739

n. In light of this, our proposed attack is highly efficient for 740

the conventional Bio-hashing and LSH with security relying 741

on dimensional reduction, i.e., n < k. Thus, our evaluation 742

only focuses on small n. 743

Fig. 3 and 4 depict the results for Bio-hashing and LSH 744

for output length of n = 40, 60, 80, and 100. The average 745

time taken for obtaining a single dissimilarity attack score is 746

observed to be 1.942851 secs and 2.04068 for Bio-hashing and 747

LSH, respectively. Our results show that for fixed parameter 748

m and ε�, smaller output length would lead to better attacking 749

result in the sense that the mean of the KSA attack scores 750

follows closer to the mean of the genuine score distribution. 751

B. Performance Evaluation of Proposed Transformation and 752

Authentication 753

This section presents the performance evaluation of 754

(TRANS, AUTH). With reference to (TRANS, AUTH), there are 755

four parameters to be considered, namely s, u, b and τ . Noting 756

the proposed authentication algorithm AUTH records the num- 757

ber of stripes that have at least τ number of colliding units. 758

The authentication procedure can be perceived as a similar 759

point searching process, where the adversary is required to 760

look for an arbitrary number of similar points, close to w s.t. 761

d(w,we,i ) ≤ ε, where ε > 0 corresponding the minimum 762

number of colliding units between different stripes (τ ). It 763

should be noted that the generated stripes are independent of 764

each other. Thus a larger value of s will offer higher confidence 765

to the final score count X , where X → spc should converge 766

by law of large number. 767

Parameters Control: Recall that, pc(u, b, τ, p) is parame- 768

trized by u, b, and τ where p = 1−d(w,w�) = 1− arccos(w·w�)
π 769

(follows Lemma 1). Let ε = arccos(w·w�)
π . It is convenient to 770

define the original dissimilarity follows d(w,w�) = ε, which 771

means pc(u, b, τ, 1−ε) is now a function of ε. The value of ε 772
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Fig. 2. Non-linearity relation parametrized by (a) b = 5, 10, 15, 20 (fixed τ = 5, u = 50), and (b) τ = 5, 10, 15, 20 (fixed b = 10, u = 50), and
(c) u = 40, 60, 80, 100 (fixed τ = 10, b = 2).

Fig. 3. Proposed KSA on Bio-hashing (a) n = 40, (b) n = 60, (c) n = 80,
(d) n = 100.

follows various distributions according to the input biometric773

template or input types, which is hard to predict. Therefore,774

choosing a set of values u, b, τ with optimal authentication775

performance and security for arbitrary value of ε > 0 will be776

our main interest. Based on Fig. 2, we know that the increment777

of b and τ would yield the same non-linearity effect by shifting778

the S-curve to the left with steeper gradient. On the other hand,779

the increment of u would shift the S-curve to the right with a780

steeper gradient. Therefore, we can choose b to be a constant781

to adjust the shifting of the S-curve to the left or right by782

increasing τ or u, respectively. Doing so would allow us to783

examine the non-linearity effect over the authentication perfor-784

mance and select the optimal parameter set corresponding to785

the original input distribution. All the while, we set s = 50 as786

the constant with different combinations for u, b, and τ . We set787

u = 40, 60, 80, 100, τ = 10, 12, 14, . . . , 30, and repeat each788

setting with b = 1, 2, 3, and 4.789

The authentication performance (in term of EER) for various790

settings of u, b and τ is recorded in Table I. The original791

performance of the input sample (without transformation)792

is recorded to be 0.73% of EER. The best authentication793

performance we could obtain after applying our proposal is794

Fig. 4. Proposed KSA on LSH (randomized strategy) (a) n = 40, (b) n = 60,
(c) n = 80, (d) n = 100.

0.75% of EER. Clearly, this authentication performance is 795

closely preserved by referring to its original one. Given 796

s = 50, b = 2 and u = 50, the output score distributions for 797

genuine and imposter authentication with different value of τ 798

is shown in Fig. 5. In general, given (u, s, b), a right choice 799

of value τ could lead to large separation between the genuine 800

and imposter score distributions. This scenario is mainly due 801

to the non-linearity effect derived in Section V-D. 802

C. Security Evaluation of Proposed Transformation and 803

Authentication 804

Here, we show how our proposal can resist against KSA. We 805

adopt the newly proposed KSA (Algorithm 1) for our security 806

evaluation of (TRANS, AUTH). 807

Recall that the matching (similarity) score outputted by 808

AUTH (Algorithm 3) can be interpreted as the number of 809

similar points or the amount of pair of stripes that have at least 810

τ unit colliding. The applied KSA would have to maximize 811

such a similarity score to compromise the system. In this 812

sense, we have to reverse the stopping criteria of Algorithm 1 813
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TABLE I

EER (%) RECORDED FOR DIFFERENT VALUE OF u, b, AND τ

Fig. 5. Genuine and Imposter score distributions of proposed scheme with
fixed s = 50, b = 2.

(i.e., line 11) and change it to ε0 < ε�/λ. Doing that ensures814

the Algorithm 1 will output meaningful maximization result815

for all reference similarity scores εi (for i = 1, . . . , N)816

obtained by using AUTH.817

Let v = TRANS f ∈Hr (w
∗, r, s, u, b) be the transformed818

known sample. Our proposed KSA (Algorithm 1) can be819

adopted in an reverse manner with (TRANS, AUTH) described820

in Algorithm 4. Remark that incorporating (TRANS, AUTH)821

into Algorithm 4 explicitly allows the attacker to have com-822

plete knowledge over the designed system as follow the823

Kerckhoffs’s principle.824

Parameters Control: For evaluation, we use the same KSA825

setup for Bio-hashing and LSH with N = 800, ε = 10/256,826

λ = 1/4 and m = 7. The parameters considered for827

(TRANS, AUTH) are s = 50, and b = 1. The above setup828

Algorithm 4 KSA for Proposed Scheme

1: function ATTACKTRANS,AUTH(w∗, v, N, ε�, ε, λ, s, u, b, τ,S)
2: χ←$ {0, 1}k
3: σ ← S � select σ from S without repetition
4: Set M = σ ·U � U ∈ 1k is vector of one
5: for i = 1 : N do
6: ei ← χ � select ei ∈ χ without repetition, where
∀ei ∈ χ , �ei� = �kε�

7: we,i = M ◦ ei +w∗ � where ◦ denotes the
Hadamard product of M and Vi

8: Compute si = AUTH(v,we,i , r, s, u, b, τ ) and output
(s1, s2 . . . , sN )

9: end for
10: Set ε0 = max(s1, s2 . . . , sN )
11: if ε0 < λ/ε� then
12: Back to Step 3
13: else
14: Output we,i corresponds to max(s1, s2 . . . , sN )
15: end if
16: end function

is used for different output stripe size of u = 40, 60, 80, and 829

100, and τ = 18, 24, 26, and 30 with respect to their best 830

authentication performance for b = 1 (see Table I). Fig. 6 831

depicted the result of KSA for (TRANS, AUTH) as described 832

in Algorithm 4. As expected, the non-linearity property of 833

(TRANS, AUTH) offers a strict constraint in looking for a 834

similar point over the hashed domain. This can be explained 835

with the function of pc(u, b, τ, 1 − ε) (see Eq (7)) where 836

only input with small cosine dissimilarity ε = arccos(w·w�)
π 837

can show at least τ colliding units in the hashed domain 838

with overwhelming probability. Therefore, the observed KSA 839

attack scores follow the imposter score’s distribution with 840

small variance. 841
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Fig. 6. Proposed KSA on algorithm pair (TRANS, AUTH).

D. Potential Security Attacks842

In this subsection, we review the potential security attacks843

on BTP and demonstrate how our scheme resists against these844

attacks.845

False Acceptance Attack: One of the major issues for BTP846

schemes relies on the false acceptance attack [34], [35]: a847

biometric system with high false acceptance rate is deemed as848

a low performing and insecure system and the transformed849

template stored in this system thus cannot be considered850

secure. False acceptance attack has been rigorously investi-851

gated in the recent works [10], [36], [37] to design a secure852

BTP scheme.853

To be specific, let m0 be the (minimum) entropy of a854

biometric source in a random distribution W . For two random855

k bits samples (w,w∗) ∈ W derived from the same subject856

(genuine case), where w is the enrolled sample, and w∗ is857

the query sample. To show meaningful security, the matching858

mechanism must only accept w∗ given the hamming distance859

�w ⊕ w∗� ≤ m0, which means that the original dissimilarity860

score d(w,w∗) ≤ ε ≤ m0/k must hold for any ε ≤ m0/k,861

where m0/k denotes the (minimum) entropy rate of W . Oth-862

erwise, the system would accept another query sample w� ∈863

W � over a random distribution W � with dissimilarity score864

d(w,w�) = ε > m0/k, which leads to a false acceptance.865

It should be noted that a false acceptance would imply that866

the biometric source has lost all its entropy and shows no867

security, i.e., m0/k − ε < 0.868

A typical way to evaluate the false acceptance attack869

security is by measuring FAR. However, such measurement870

is crude in the sense that it does not consider the input distri-871

bution of the biometric source and cannot show meaningful872

security to any source that consists of a large number of873

errors. To further explain this, note that the FAR is depend874

upon the dissimilarity score of ε. Any source with a large875

number of errors will introduce a high dissimilarity score,876

which means the matcher that accepts w∗ s.t. d(w,w∗) ≤ ε877

must set large ε to reduce FRR which subsequently increases878

FAR. Biometric traits typically demonstrate “more error than 879

entropy", for instance, the human iris [38]. The human iris is 880

believed to offer high entropy, i.e., m0 = 249 bits. However the 881

k bits binary template, namely Iriscode, generated from human 882

iris usually contains error (kε) that is more than 249 bits, 883

i.e., kε > m0.1 Given above discussion, it is inevitable 884

that a false acceptance is expected given any two Iriscodes 885

(w,w�) derived from different subjects with dissimilarity 886

score d(w,w�) = ε > m0/k. Moreover, it is imprudent to 887

believe that the distribution of the biometric source W can 888

be modeled precisely, especially for high entropy source. The 889

attacker might have higher computation power to model W 890

and lead to lower attack complexity, i.e., a lower value of m0. 891

Nevertheless, we can conveniently bound the entropy rate of 892

distribution W follows m0/k ≥ ε for all w� ∈ W � that comes 893

with a maximum dissimilarity score equal to ε. Since m0 ≥ kε 894

is necessary to prevent a false acceptance given any sample 895

w� ∈ W �, it follows that the false acceptance security can be 896

claimed given the system knows the value of ε. 897

Based on the above reasoning, to show meaningful false 898

acceptance security for larger class of biometric sources 899

(including more error than entropy sources), it is desirable 900

to design a BTP transformation as a function of the input 901

distribution where the knowledge on the original dissimilarity 902

score ε is perceived as a necessity. In fact, it is easy to verify 903

that the proposed transformation and authentication algorithm 904

pair (TRANS, AUTH) enjoys such property with the denoted 905

pc known as the probability of at least τ number of units 906

colliding expressed as pc(u, b, τ, p) where p = 1−d(w,w�), 907

and d(w,w�) = ε = arccos(w·w�)
π corresponds to the original 908

dissimilarity score (cosine dissimilarity) of the input samples 909

(w,w�). Moreover, because the generated stripes (after trans- 910

forming using TRANS) are independence to each other The 911

output score X/s should asymptotically converge to pc by 912

law of large number (for value of s � 1). In other words, 913

the relation in between pc and d(w,w�) shown in Fig. 2 is 914

asymptotically good for false acceptance security evaluation 915

of (TRANS, AUTH). 916

Generally, by using Bayes’s theorem, the relationship of the 917

probability Pr [z ≥ τ ] = pc given the input dissimilarity score 918

d(w,w�) ≤ ε can be described as: 919

Pr
[
z ≥ τ

∣∣ d(w,w�) ≤ ε
]

920

= Pr [z ≥ τ ] Pr
[
d(w,w�) ≤ ε

∣∣ Pr[z ≥ τ ]
]

Pr[d(w,w�) ≤ ε ]
. 921

The term Pr
[
d(w,w�) ≤ ε

∣∣ Pr[z ≥ τ ]
]

is the accep- 922

tance rate, i.e., a person is identified as a valid user. 923

In reality, the person in performing the authentica- 924

tion should be random (either genuine user imposter), 925

therefore we shall let Pr
[
d(w,w�) ≤ ε

] = 0.5 and 926

Pr
[
d(w,w�) ≤ ε

∣∣ Pr[z ≥ τ ]
] = 0.5, yielding 927

Pr
[
z ≥ τ

∣∣ d(w,w�) ≤ ε
] = Pr[z ≥ τ ] = pc. (8) 928

It should be noted that Eq (8) reduces the worst-case sce- 929

nario, with referring to the maximum value of ε, to the 930

1We direct the interested reader to refer to [39], [40] [41] for more details
regarding the issues on “more error than entropy” biometric sources.
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average-case false acceptance security of (TRANS, AUTH)931

depending on the average selection of parameter u, τ, b with932

arbitrary value of ε > 0. Recall that we can bound the (mini-933

mum) entropy m0 of the biometric sources of distribution W934

follows m0 ≥ kε. In such a case, it is convenient to define935

�kε� = − �log(1/pc)� , as the false acceptance complexity,936

which leads us to the following claim to show meaningful937

false acceptance security for large classes of biometric sources938

with (minimum) entropy at least equal to the false acceptance939

complexity.940

Claim 2: 2 Given any attacker is able to sample w� ∈ W �941

over some random distribution W � ∈ R
k s.t. the original942

dissimilarity d(w,w�) is at most ε, where w ∈ R
k is the943

targeted attack biometric template. The average-case false944

acceptance security of (TRANS, AUTH) is pc(u, τ, b, 1 − ε)945

for any ε > 0. In particular, the input distribution W ∈ R
k

946

for all w ∈ W must possess (minimum) entropy equal to947

m0 ≥ kε ≥ �kε� = − �log(1/pc)� .948

Attack via Record Multiplicity (ARM): ARM refers to a pri-949

vacy attack, which utilized multiple compromised hashed tem-950

plates with and without the associated information, i.e., helper951

data, parameters, etc. to reconstruct the original biometric952

template [42], [43]. For a biometric recognition system to953

be useful, it should allow the user to enroll in multiple954

applications. These enrolled templates shall store in different955

data storage, which can be easily compromised and make956

available to the third party. Because of this, ARM is conceived957

as a highly practical attack given a large deployment of958

biometric recognition systems.959

In reality, to get access to the biometric system, potential960

attackers need not invert the hashed template completely;961

instead, only a close approximation of the original biometric962

template is necessary and sufficient [29]. Hence, it is desirable963

to analyze the ARM security in terms of the attack complexity964

to reconstruct a fraction of the original template, which is965

sufficient to get access to the system by using an arbitrary966

number of the hashed templates.967

To show that the proposed algorithm pair (TRANS, AUTH)968

resist against the ARM, we can reduce ARM to false accep-969

tance attack: for any random sample w� ∈ W � efficiently970

reconstructed via ARM, i.e., within polynomial time, that is971

ε-close to the enrolled template w, the attacker can get access972

into the system by a false acceptance in polynomial time.973

The above statement clearly described that if the attacker974

can launch a successful false acceptance attack, then he/she975

can also launch a successful ARM attack efficiently if the976

reconstruction of the sample w� can be done efficiently, i.e., in977

polynomial time.978

In fact, given the proposed KSA attack, we have demon-979

strated that the sampling process for the noisy sample we,i ∈980

D where d(w,we,i ) ≤ ε can be done in polynomial time981

(see Section IV) by only using one known sample w∗982

2Note that the derived false acceptance complexity does not assert any
computational assumption over the attacker site. In other words, we allow the
attacker to have unlimited computation power to model the biometric input
distribution W and assume he/she is able to sample a w� ∈ W � from W � where
d(w,w�) ≤ ε holds under such information-theoretical (computationally
unbounded) setting.

that is trivially obtained through self enrolment. Therefore, 983

the proposed KSA attack can be considered as a more robust 984

notion of ARM attack without the need for the attacker to 985

compromise multiple template storages. Argued in this way, 986

to show resistance against ARM, a non-linear DPT is desir- 987

able, which can be accomplished using the proposed algorithm 988

pair (TRANS, AUTH) for transformation and authentication. 989

Non-Linear to Liner Mapping on the DPT Curve: Here we 990

also explore the possibility of any attacker could perform a 991

mapping from the non-linear DPT curve to a more linear one 992

(see Fig. 1), which leads to the dispute against a system that 993

exhibits a non-linear DPT curve looking close to the optimal 994

DPT need not be necessarily better in security as compared to 995

the linear case. 996

To support the justification that a non-linear DPT offers 997

better security guaranty, we first note that the knowledge 998

of the non-liner DPT curve need not to be kept in secret. 999

We also note that the proposed transformation and authen- 1000

tication (TRANS,AUTH) functions are only useful when the 1001

value of τ is known, means a proper value of τ must be 1002

selected to show meaningful non-linear property in such a way 1003

that the gap between the genuine and imposter distribution is 1004

maximized. Therefore, any attacker and system provider must 1005

know the DPT curve, i.e., the parameter set (u, τ, b) while 1006

designing the biometric system. 1007

Since the mapping from a non-liner DPT curve to more 1008

linear one implies the changes in the S-curve and its gradient, 1009

which is parameterized by the parameters (u, τ, b). In such a 1010

case, mapping from non-linear DPT curve to linear is possible 1011

if there are multiple systems, say q number, where a targeted 1012

user has generated his/her biometric samples (w1, . . . , wq) ∈ 1013

W (e.g., generated from the user’s face biometric) over a 1014

random distribution W , and enrolled wi into the i -th system. 1015

Clearly, a non-linear mapping would succeed if one of the 1016

available systems (among q) behaves a linear DPT curve. 1017

On the contrary, such mapping can be avoided if all the 1018

systems have a proper choice of (u, τ, b) that renders a 1019

non-linear DPT curves. Doing this is necessary to ensure the 1020

security of the biometric samples (w1, . . . , wq ) ∈ W to be 1021

enrolled into different systems for personal authentication. 1022

E. Revocability and Unlinkability 1023

Revocability Evaluation: To evaluate the revocability of 1024

the algorithm pair (TRANS, AUTH), we follow the same 1025

protocol mentioned in Section VI (first paragraph) to generate 1026

3000 mated-matching scores, which are the matching scores 1027

between different hashed templates, generated using different 1028

set of random Gaussian vectors (r1, . . . , rn), over the same 1029

subject. We evaluate the revocability of the algorithm pair 1030

(TRANS, AUTH) under different values of b = 1, 2, 3, 4 with 1031

respect to different parameter settings of (u, τ, b) that render 1032

the lowest EER as tabulated in Table I. The genuine and 1033

imposter scores’ distributions (both involved in only single 1034

set of random Gaussian vectors) are plotted together with 1035

the mated-scores’ distribution (involved 3000 different sets of 1036

random Gaussian vectors) in a graph. Fig. 7 depicted four 1037

different graphs of different parameter settings with constant 1038
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Fig. 7. Revocability evaluation: the graphs of the genuine, imposter, and
mated-matching scores’ distributions.

s = 50: (a) u = 80, τ = 26, b = 1, (b) u = 40, τ = 22, b = 2,1039

(c) u = 40, τ = 30, b = 3, and (d) u = 40, τ = 30, b = 41040

respectively. Note that a large degree of overlapping occurs1041

between the imposter and mated-matching scores’ distributions1042

are observed. This result implies that the refreshed templates1043

are sufficiently distinctive, albeit they are generated from the1044

same subject. Indeed, the new transformed sample generated1045

with a different set of random Gaussian vectors acts as an1046

’imposter’ to the old one since they are uncorrelated. This1047

verifies the revocability of (TRANS, AUTH) in generating new1048

templates to replace the old one with a different set of random1049

Gaussian vectors.1050

Unlinkability Evaluation: To evaluate the unlinkability of1051

the algorithm pair (TRANS, AUTH), we dopted the framework1052

proposed by Gomez et al. [44]. Let Pr [s |Ms ] be the prob-1053

ability densities of a given similarity score s ∈ [0, 1] that1054

belongs mated-matching group. On contrary, let Pr
[
s

∣∣ M �s
]

1055

denote the probability densities of score s belongs to the1056

non-mated group M �s : the matching scores generated with1057

(TRANS, AUTH) over different hashed templates generated1058

using different set of random Gaussian vector (r1, . . . , rn)1059

under the different subjects. The unlinkability property can1060

be characterized by the local linkability defined as D(s) =1061

2 ωL R(s)
1+ωL R(s) − 1 given ωL R(s) = Pr[s |Ms ] / Pr

[
s

∣∣ M �s
]

> 1,1062

where L R(s) is the likelihood ratio and ω = Pr [Ms ] / Pr
[
M �s

]
1063

which can be conveniently set equal to one. The system’s1064

linkability is then defined as Dsys =
∫

D(s) Pr [s |Ms ] ds.1065

Specifically, Dsys ∈ [0, 1] and the system is completely1066

linkable given Dsys = 1. Therefore, to attain unlinkability of1067

a BTP scheme, it is desirable to show that Dsys is negligible1068

small. Referring to the same parameter settings in revocability1069

evaluation, Fig. 8 depicted four different graphs, each contains1070

3000 mated-matching scores and 3000 non-mated matching1071

scores. The results show that the mated and non-mated scores’1072

distributions are significant overlapping (for all four graphs)1073

with small value of Dsys . Therefore we assert that the algo-1074

rithm pair (TRANS, AUTH) supports unlinkability.1075

Fig. 8. Unlinkability evaluation: the graphs of the mated-matching and
non-mated matching scores’ distributions.

Fig. 9. Comparison of the non-linearlity DPT curve of proposed technique
to (a) Bio-hashing, (b) IOM-hashing, (c) IFO-hashing, (d) proposed.

F. Comparison With Existing Approaches 1076

Non-Linearlity: We compare our proposal (best performance 1077

setting s = 50, u = 40, b = 2, τ = 22) with the best per- 1078

formance setting for Bio-hashing [4] (0.73% EER) and other 1079

notable LSH scheme such as Index of Max hashing (IOM) [10] 1080

(0.75% EER) and Indexing First One hashing (IFO) [11] 1081

(1.38% EER). Fig. 9 depicted the comparison results. Our 1082

proposal yields a highly non-linear relationship between the 1083

original similarity scores versus the hashed similarity scores 1084

in comparison to others. 1085

Decision Environment: The degree that one can confidently 1086

decide whether the observed sample belongs to the gen- 1087

uine (red) or imposter distribution (blue) is as shown in Fig. 5. 1088

Note that the error rate is proportional to the over- 1089

lapped region between the genuine and imposter distributions. 1090
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The decision environment for dual distributions reveals the1091

extent to which the genuine and imposter distribution can be1092

separated, thus determining how reliable the decision can be1093

made for individual authentication. Following the works by1094

Daugman [38], for two-choice decision task such as biometric1095

decision making, we can measure the separation of these two1096

distributions by their decidability d � defined in Eq (9), where1097

(μ1, μ2) and (σ1, σ2) refer to the two means and standard1098

deviation, respectively, of two different distributions.1099

d � = |μ1 − μ2|√
(σ 2

1 + σ 2
2 )/2

. (9)1100

The measure of d � is independent w.r.t. any acceptance thresh-1101

old. Instead, it reflects the cost for the system in reducing1102

the FAR via increasing FRR, or vice versa. Therefore, one1103

can succinctly use d � to calibrate the performance of every1104

biometric technology.1105

Based on the studies in the previous Section II-C, to opti-1106

mize the mutual information leakage, the best is to hope for1107

achieving E [DI ] → 1 and E
[
Dg

] → 0 with Var(DI ) is1108

minimized. Therefore the gap between the distribution of the1109

interclass’s distance and the distribution of the intraclass’s1110

distance must be large enough.1111

Note that a large gap between the distribution of the inter-1112

class’s distance DI (imposter distribution) and the distribution1113

of the intraclass’s distance Dg (genuine distribution) implies1114

high decidability. More precisely, the decidability can be1115

described in term of E[DI ], E
[
Dg

]
, Var(DI ), and Var(Dg)1116

as d � = |E[DI ]−E[Dg ]|√
(Var(DI )+Var(Dg)/2

. Since our optimization goal is to1117

minimize Var(DI ) while keeping E[DI ]→ 1 and E
[
Dg

]→1118

0. Therefore, such goal can be achieved by maximizing d �,1119

which suggests a steeper gradient of the S-curve (highly non-1120

linearity) depicted in Fig. 1.1121

Follow Fig. 5 (d), the computed decidability in our proposal1122

is 10.03. Besides, in our experiment, the measured d � for Bio-1123

hashing, IOM-hashing and IFO-hashing are 4.92, 5.32, and1124

2.52 respectively. The comparison on the recorded d � with1125

the recent proposed state-of-the-art BTP schemes [37], [45],1126

[36], [46], [47] is tabulated in Table II. Such comparison1127

is performed under the scenario when the user and attacker1128

have complete knowledge on the transformation function and1129

parameters used.1130

Observe that our proposal can achieve a higher d � value1131

among most of the state-of-the-art BTP schemes. The achiev-1132

able d � = 10.03 is higher as compared to a non-ideal (crossed1133

platform) iris recognition system, which is 7.3 as reported1134

in [38]. It is also worth highlighting that the non-linearity1135

between the original similarity scores and the hashed similarity1136

scores can be strengthened by increasing the parameter u1137

with a proper selection of b and τ , which promotes the1138

maximization of the system’s decidability d �. This is in our1139

favor of reducing the mutual information leakage (i.e., min-1140

imizing Var(DI )) to show resistance against the DPT based1141

attacks, while maintaining a good recognition utility (keeping1142

E
[
Dg

]→ 0) as discussed in Section II.1143

Last but not least, we examine the performance in terms1144

of FRR against FAR for various distance preserving hashing1145

TABLE II

COMPARISON OF SYSTEM’S DECIDABILITY WITH OTHER EXISTING BTP
SCHEMES BASED ON THEIR RECORDED (HIGHEST) d �

Fig. 10. DET curves for various distance preserving hashing BTP schemes.

BTP schemes using the detection error trade-off (DET) curve, 1146

as shown in Fig. 10. As it can be observed, the proposed 1147

scheme achieved superior performance with the lowest FRR 1148

(4.4%) at zero FAR (0 %). On average, this implies only about 1149

4 rejections (i.e. 4.4% FRR) over 100 trials of a genuine 1150

user to be authenticated, while no unauthorized persons is 1151

accepted incorrectly (i.e. zero FAR). This result suggests that 1152

the proposed scheme is feasible in real application scenarios. 1153

VII. CONCLUSION 1154

In this work, we explore the vulnerability in the existing 1155

distance-preserving hashing BTP scheme. We demonstrate an 1156

efficient security attack, i.e., KSA, for distance-preserving 1157

hashing BTP. Our results show that the potential attacker 1158

can model the input samples’ distribution and obtain the 1159

pre-images of the enrolled biometric sample. This scenario 1160

is worse when the hash function’s output length is set to 1161

very small, that is preferred by most distance-preserving 1162

hashing BTP schemes for irreversibility purpose via dimension 1163

reduction. We also provide some discussions over the mutual 1164
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information leakage due to the published distance-preserving1165

hashing BTP. Noticing the non-linearity relationship between1166

the input distance and hashed distance is crucial to provide1167

authenticity for similar subjects while avoiding false match-1168

ing for distinct subjects. The above reasons motivated our1169

work on a pair of transformation and authentication algo-1170

rithm (TRANS, AUTH) to give a highly non-linear relationship1171

between the input and hashed domains. The algorithm pair1172

(TRANS, AUTH) offers efficiency and simplicity for fast and1173

secure authentication with a biometric template (we used1174

face vector in our experiment). Most importantly, it showed1175

resistance against KSA for polynomial-time bounded attackers1176

under known distribution D scenario and satisfied the four1177

criteria to be used as a secure BTP scheme.1178
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