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Summary 

The research was conducted in an intensive dairy farming Nitrate Vulnerable Zone (NVZ) 

under irrigated Mediterranean conditions focusing on the irrigated maize-Italian ryegrass 

cropping system. The aims of study were i) quantification of the cropping system nitrogen 

use efficiency (NUE) of organic fertilizers in relation to the prescriptions imposed by the 

Nitrate Directive (91/676/CEE), ii) assessment of the nitrate leaching dynamics under the 

maize-ryegrass cropping system in relation to contrasting fertilization systems, iii) 

assessment of the relations, at territorial scale, between N surplus and NO3 concentration in 

groundwater. 

Four fertilization systems were compared at field scale: slurry+mineral, slurry, farmyard 

manure and mineral at a target rate of 315+130 kg ha-1 N for maize and ryegrass 

respectively. Fertilization rates of organic fertilizers varied according to their variable N 

content. NUE of organic fertilizers was not significantly different from that of mineral for 

maize if N rates were near to target. Organic fertilizers had very low NUE for the ryegrass. 

The soil water nitrate concentration was very variable in time with minimum in spring and 

maximum in autumn-winter. At district area, the average N surplus was closely correlated 

with the N input. 

The study provided sufficient evidence that N pollution of groundwater occurs in autumn-

winter and that there are margins to increase the crop N use efficiency by reducing the actual 

N inputs without significant reduction of crop yield, but with increased costs for the disposal 

of effluents outside the NVZ. 
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Introduction 

Until the 90s the objectives of the European Community and national policies have had as 

main objective the increase agricultural competitiveness, through the intensification of 

cropping systems, the modernization of the sector and the specialized company. This has 

resulted in a significant increase in the number of animals bred mainly in central and 

northern Europe, but not only, resulting in the development of the use of double-cropping 

maize-ryegrass especially in intensive systems of dairy cattle (Moreira, 1994). This cropping 

system has allowed important management options to increase the production of forage 

(Helsel and Wedin, 1981; Hughes, 1985) needed for animal feeding. These farming systems 

are characterized by keeping animals sheltered on barns equipped with concrete gratings, and 

they produce considerable amounts of slurry and manure widely available to any crop, but 

especially for maize (Zavattaro et al. 2012 a). In Italy dairy cattle livestock is represented by 

about 1.8 million animals (ISTAT, 2011) and maize is the most widespread cereal crop after 

wheat. The cultivated land increased by the end of 1980 until 2004, then, there was a 

decrease of about 400,000 hectares until 2009 but in recent years it has increased again 

(ISTAT, 2012), also in relation to the use of silage maize for the production of biogas. In 

fact the biogas plants increased from 273 to 521 in 2010-2011 (CRPA, 2010). Farmers often 

do not have enough land on which to dispose farm effluents, therefore this has led to the 

over-application of organic fertilizers in addition to the mineral fertilizers that are used to 

achieve high production of silage maize (20-25 t ha
-1

) and grass hay (7-10 t ha
-1

) (Giola et 

al., 2011; Trindate et al., 2008; Trindate et al., 1997 ). In this type of system, maintaining a 

high N use efficiency is crucial to obtain high yields and the nutritive value of forage 

(Neeteson, 2000; Aarts, 2003) but also to limit N losses in environment (Gourley et al., 

2012; VandeHaar and St-Pierre, 2006; Fageria and Baligar, 2005) with a consequent impact 

on water resources underground (Monaghan et al, 2007; Schroder et al 2004; Trindade et al., 

1997; Strebel et al., 1989). 

According to Giles (2005) nitrogen (N) pollution is the third largest threat to our planet after 

biodiversity loss and climate change. Specifically, nitrogen losses from agriculture are 

considered a major cause of pollution of surface and groundwater water (Ten Berge, 2002 

Behrendt et al., 2003; Delgado et al., 2008). The efficient N fertilization Nitrogen use 

efficiency is considered one of the most important management strategies for sustaining or 
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increasing crop yield and quality, and improving nitrogen use efficiency (NUE). The NUE 

defined as the ratio between the amount of fertilizer N applied and the amount of N removed 

with the harvest as reported by Brentrup and Palliere, 2010. Management strategies, 

adequate rate, appropriate source and timings of fertilizer application during crop growth 

cycle play an important role in reducing costs of production and environmental pollution 

(Abbasi et al., 2012; Fageria et al., 2006; Ruiz-Diaz and Sawyer, 2008). Such practices not 

only can increase yield but also contribute to the reduction of the cost of production and 

environmental pollution. Many studies have focused on split application of fertilizers as a 

way to reduce N losses and to improve NUE (Liu and Wiatrak, 2011; Sainz Rozas et al., 

2004; Garrido-Lestache et al., 2005). 

A nitrate directive (ND, 1991/676/CEE) was issued by the European Union in 1991 

concerning the prevention of diffuse nitrate pollution of water bodies. The underlying 

objective of the ND is to reduce water pollution caused by nitrates from agricultural sources 

and to further prevent such pollution. The implementation mechanisms of the ND involve, 

among other things, the designation of nitrate-vulnerable zones (NVZs), comprising of areas 

that drain into polluted or vulnerable waters and which potentially contribute to nitrate 

pollution. Designation of NVZs is determined in relation to the achievement of a quality 

state in ground and surface water. A threshold was set for nitrate concentration in ground 

and surface water (50 mg L
–1

) to designate NVZs. Barnes et al. (2009) show that NVZ‟s in 

Europe account for 38% of the total agricultural area, on which there are various constraints 

including the regulation of the maximum rate of organic fertilizers to be applied on 

agricultural land (170 kg N ha
-1

 year
-1

). The ND doesn't distinguish the territorial aspect and 

the determinants of the problem, but more and more studies reported that the Mediterranean 

area showed that pedo-climatic contexts and socio-economic development are markedly 

different and distinct, compared to the northern and central Europe areas. In some studies it 

can be stated that it is not sufficient only to limit the amount of total N from animal manure 

because nitrate leaching depends on the speed and the strategy of application of all forms of 

N (Van Der Meer, 2001) from climate and soil conditions and management practices 

(Meisinger e Delgado, 2002; Havlin, 2004). Furthermore, the attention only on nitrogen 

inputs, as well as a uniform threshold, has been criticized because it doesn't take into account 

the differences in N use or the fate of any N surplus (Schröder et al., 2004). Wallot et al., 
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2009 highlighted that the lack of objective success for NVZ designation suggests that nitrate 

pollution control strategies based on input management need to be rethought. 

Following a scenario analysis and the definition of the potential environmental impact of 

dairy operations, Zavattaro et al. (2012 a) concluded that the expansion of a low-input grass-

based farming type was the only solution that could significantly decrease N fluxes and 

achieve water quality targets. Moreover, the same authors stated that to define the scale of 

survey study more effective for understanding the system is highly complex: the choice of 

the scaling is critical because environmental processes are often non-linear and hence plot 

scale processes may not be useful to understand the catchment scale dynamics. When non-

linearity and spatial heterogeneity are not taken into account, a loss of information and/or 

bias in the results may occur (Oenema and Heinen, 1999; Scoones and Toulmin, 1998).  

Therefore, scaling requires an understanding of the dynamics of the processes (Haila, 2002). 

According to Pelosi et al. (2010), a discrepancy in the spatial scale limits the effectiveness of 

agri-environmental policies and mitigation practices (Kleijn et al, 2004;. Concepción et al., 

2008). Unfortunately, even after decades of studies, when mitigation of environmental 

impact of N use in agriculture is considered, the scaling issue is still unresolved (van Delden 

et al., 2011). Studies at the basin scale can allow to calculate the nitrogen surplus and 

quantify the importance of different input and output sources from the system to estimate the 

N losses (Leach et al., 2003). Since the 70s, the apparent N balance method was applied at 

different scales in France (Coppenet 1975), but this approach is applicable when sufficient 

information is available to reconstruct the flows in and out at farm, field or area scales. The 

method was designed to offer support to the farmer to calculate the optimal dose of nitrogen 

fertilizer to be distributed and was subsequently used to estimate the pollution potential of 

the crop (Simon and Le Corre, 1992). The apparent N balance method is currently applied at 

farm level to assess the potential for nitrate pollution of surface and ground water resources 

of different cropping or farming systems (Ventura et al., 2008; Simon, 1995). Balance sheets 

are widely used to study the flow of nutrients in agro-ecosystems, such as agro-

environmental indicators for the efficiency of use of nutrients, as well as tools in support of 

legislative policy (Oborn et al., 2003; Oenema et al., 2003). Several studies demonstrate that 

only holistic approaches can identify mitigation strategies that consider the whole farm 
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organization and sustainability and address both water and air quality protection (Zavattaro 

et al., 2012b; Collins et al. 2007). This involves the integration of different skills and levels 

of knowledge, both scientific and local, in order to contextualize effective actions. Nguyen et 

al. (2013) showed that the generation of „hybrid‟ knowledge (i.e. the integration of local and 

scientific knowledge), where integration of multiple views and methods in the framework of 

a carefully designed social learning process, can effectively contribute to better management 

of the nitrate issue. From the results of this study, we can argue that a prerequisite to trigger 

a new process towards the sustainable management of the N cycle in intensive dairy farming 

is the emergence of agreement on concerted actions among stakeholders. 

In addition to the complexity of the nitrate issue, European countries, and in particular 

southern Europe, are exposed to climate change (CC) impacts on geochemical cycles, with 

increased risk of nutrient leaching, soil salinization, soil loss water erosion (AEA, 2007), and 

on the hydrologic cycle. This will expose the ecosystems and human communities to 

substantial changes in the availability and the quality water (as well as the reduction of crop 

productivity, increase the risk of desertification and neglect of marginal lands) with 

consequences also on human health (Townsend et al., 2003; Powlson et al., 2008). The CC 

can increase the risk of nitrate leaching unless preventive measures are taken. Warmer 

temperatures and higher CO2 concentrations may lead to higher demands for nitrogen 

fertilizer (Olesen and Bindi, 2002; Olesen et al., 2007), but extreme weather events, such as 

heavy storms or droughts, will make fertilizer recommendations less reliable than under 

stable climate. Besides, a warmer climate may result in increased turnover of soil organic 

matter especially during winter (Olesen et al., 2004b), which may further increase the risk of 

nitrate leaching. Cost-efficient strategies to tighten the N cycle are therefore urgently needed. 

Such strategies should aim to minimize N availability when there is minimal root uptake and 

risk of percolation. 

The areas affected by intensive cropping systems are the areas most prone to this type of 

vulnerability and risk. Therefore, in order to identify nitrogen fertilization management 

options applicable and sustainable in irrigated forage systems in Nitrate Vulnerable Zones is 

necessary. 
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General hypothesis 

The identification of sustainable options for efficient nitrogen use and nitrate pollution 

mitigation in NVZ require an holistic approach, i.e. considering the agronomic, ecological 

and social dimensions as intertwined. In this research, new scientific knowledge was 

developed through a co-researching approach with stakeholders since the design of the 

experiments. A field scale experiment and a district scale survey were the core business of 

this research approach aiming to the deconstruction of the nitrate issue and the identification 

of new options for a more sustainable use of organic fertilizers. The data emerging from 

field experiments and surveys reported in this thesis were part of a wider process involving 

stakeholders in a learning process that led to the definition of the treatments to be compared 

in the field experiment and the integration of scientific and lay knowledge in the 

interpretation of results (Nguyen et al., 2013). This thesis reports only the results from the 

field experiment and territorial survey and related interpretations given by the researchers.  

 

Objectives 

The aim of the research was to collect data useful for the design of sustainable cropping 

systems in areas vulnerable to nitrate pollution in the context of intensive irrigated 

Mediterranean cropping systems, through the quantification of the nitrogen use efficiency of 

organic fertilizers and taking into account the specifications imposed by Nitrates Directive 

(91/676/CEE). The potential impact of nitrate leaching of an intensive cropping system is 

particularly relevant in areas where intensive dairy farming is practiced and excess farm 

waste is available for N fertilization.  

The experimental research was framed in the context of international literature with regard 

to relations between agricultural activity and environmental quality with specific reference to 

the processes that control the nitrogen cycle in agro ecosystems. The study has been 

conducted at two different scales of investigation in a dairy farming context under 

Mediterranean conditions in which 80% of the agricultural area is occupied by a double 

cropping of maize and Italian ryegrass: 
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1. field scale: to evaluate the influence of the fertilization system on crop yield, nitrogen use 

efficiency of fertilizer and nitrate leaching potential, in order to support decisions on 

sustainable management strategies to be adopted; 

2. territorial scale: to quantify the field gate N surplus as proxy indicator of the leaching 

potential of nitrate leaching in relation to the actual groundwater pollution. 

The thesis was divided into three chapters, that were designed as independent papers that are 

intended to be submitted to a peer reviewed international journal. 

I. The first chapter of the thesis is focused on the assessment of the cropping system N 

use efficiency of different fertilization systems in intensive forage systems for dairy 

cattle, in order to test if the ND prescriptions are consistent to the objective of 

maximizing NUE and minimizing nitrate pollution under Mediterranean conditions. 

II. The second chapter is focused on the assessment of the nitrate leaching dynamics 

under the maize-ryegrass cropping system, in relation to contrasting fertilization 

systems. 

III. The third chapter is focused on the assessment of the field gate Nitrogen surplus as 

an indirect estimator of the nitrate leaching potential at district scale, determinate 

through apparent N balance in the context of the ryegrass-maize cropping system. 
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Chapter 1  

Nitrogen use efficiency of fertilizer in 

intensive forage systems under Mediterranean conditions 

 

Abstract  

Agricultural sustainability relies on Nitrogen Use Efficiency (NUE) where efficient N 

fertilization, soil and appropriate crop practices are among the most important management 

strategies for increasing crop yield and water quality either surface or groundwater. The 

experiment was conducted between June 2009 and September 2011 in a private farm. It was 

evaluated the effect of different types of N fertilization (cattle slurry, cattle manure, mineral 

and slurry plus mineral) on the DM yield of herbage and N use efficiency in intensive 

double-cropping forage systems for dairy cattle in Nitrate Vulnerable Zones (NVZs) in 

Mediterranean environment. The results of the field scale showed that in maize in the 

environmental conditions considered, the organic fertilization can achieve levels of NUE 

comparable to or slightly lower than those of mineral fertilizer. The Italian Ryegrass is 

exposed to massive leaching if fertilized before seeding and it showed a low efficiency of 

organic fertilizers.  

Keywords: Nitrogen fertilization, Silage maize, Italian ryegrass, intensive dairy farming, 

Nitrate Vulnerable Zones, dairy cattle effluents. 

Introduction  

The Europe Union (EU) governmental policies of last 20 years about livestock farming, have 

contributed to increase  the number of animals bred, in particular in dairy farms. The EU is a 

major player on world markets for most dairy goods and produces the largest single share of 

the global market. Dairying is one of the most profitable sectors of EU agriculture in 

particular in Germany, UK, France, Netherlands and North Italy. 

However, the high number of livestock has led mainly to the production of large amounts of 

cattle waste , available to any crop. Farmers often do not have enough land on which to 

dispose the waste products in the farm, therefore, this has led to the over-application of these 

organic fertilizers in addition to those of synthesis. 
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Excessive N feeding in this system can decrease the Nitrogen Use Efficiency (NUE) and this 

is crucial to maintain high yields, the nutritive value of forage  necessary for animal feed 

(Neeteson, 2000; Aarts, 2003), to reduce production costs and to limit N losses in the 

environment (Gourley et al., 2012; VandeHaar and St-Pierre, 2006; Fageria and Baligar, 

2005) with a consequent impact on underground water resources (Delgado et al., 2008; 

Monaghan et al, 2007; Schröder et al 2004; Trindade et al., 1997; Strebel et al., 1989). 

Moreover, the increase of fertilizer and feed costs, the product prices reduction and the 

implementing regulations environmental pollution reduction  have created new pressures to 

improve nutrient elements use in agricultural production. 

In fact, the EU issued the Nitrates Directive (ND) (91/676/CEE), with the objective of 

reducing water pollution caused or induced by nitrates and to identify the Nitrate Vulnerable 

Zones (NVZ) (CE, 1991). Barnes et al., 2009 showed that the NVZ in Europe account for 

38% of the total agricultural area, on which there are various constraints including the 

regulation of organic fertilizers (170 kg N ha
-1

 applied to agricultural land each year). 

Agronomic management practices on the use of organic fertilizers may transform the target 

from a waste to a resource product. To improve N efficiency in agriculture, N management 

strategies that take into consideration the  fertilizer improvement under soil and crop 

management practices, the application of adequate N doses and, the source and timing of 

fertilizer application during the crops growth cycle play an important role (Abbasi et al., 

2012; Nevens and Reheul, 2005; Borin et al., 1997). Split application of N fertilizer in 

different phenological stages are often recommended to improve NUE, increase yields 

(Sainz Rozas et al., 2004; Schröder, 1999; Dilz et al., 1982) and reduce the loss of N. 

However, there are other studies where it‟s showed that split application of N fertilizer to 

different crops did not affect their performance and productivity (Garrido-Lestache et al., 

2005; Zebarth et al., 2004). Abbasi et al., 2012 reported NUE of maize grown under 

different N fertilizer sources varied with both N sources and split application. Other studies 

reported that split application of N fertilizer to different crops did not affect their 

performance and productivity (Liu and Wiatrak , 2011; Garrido-Lestache et al., 2005). The 

form or the source of added N plays an important role in regulating N transformations, 

changing N loss patterns and influencing NUE (Ladha et al., 2005). However the effect of N 

fertilizer forms or sources on the growth, yield and NUE of maize under field conditions had 
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not been reported extensively. Van Groeniger et al. (2004) showed a lower NUE when using 

slurry than with mineral fertilizers on silage maize. Ryegrass showed a higher NUE when 

the N fertilization takes place as coverage (rielaborated data Trindade et al., 2008). Powell et 

al. (2010) and Aarts et al., 2000 denoted that manure/fertilizer-NUE varies from 16% to 77% 

and is very site-specific on dairy farms due to high dependence on climate, crops/pasture-soil 

and management variables. Further information about the environmental effects and 

management options for agricultural use of organic residues in Mediterranean areas are 

required.  

We hypothesized that under Mediterranean conditions, the NUE of cattle effluents used to 

fertilize a double cropping system based on grasses with high N uptake all year round can be 

of the same magnitude of that of mineral fertilizers at similar rates of total distributed 

nitrogen. We also hypothesised that the characteristics of the effluents (e.g. slurry or 

farmyard manure) would influence NUE. This may have implications on the implementation 

of policies to mitigate nitrate leaching in nitrate vulnerable zones. 

The aim of the research was to evaluate the effect of different types of N fertilization on the 

DM yield of herbage and N use efficiency in intensive double-cropping forage systems for 

dairy cattle in NVZ in Mediterranean environment. This in order to support and help farmers 

decisions on possible strategies management to adopt. In particular for recycle the different 

sources of farm available N and hence minimize off-farm mineral N fertilizer. The 

experiment was designed in a way to assess the influence of fertilization using cattle manure, 

cattle slurry, cattle slurry plus mineral-N and only mineral-N, on herbage dry matter , N 

uptake by the crop and NUE. 
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Materials and methods 

Study site and experimental conditions 

The case study is located in Arborea (Province of Oristano, Sardinia, Italy; 39° 46‟ N; 8° 37‟ 

E), that was improved and reclaimed in the 1930ies. The experiment was conducted between 

June 2009 and September 2011 in a private farm located inside the NVZ. The area is 

characterized by Mediterranean climate with the rainy period that occurs during autumn. 

Total average annual precipitation is 600 mm. The annual average temperature is 17° C, the 

coldest month is January with average around 10°C, while the warmer is August with about 

24° C. The soil is sandy (>90% sand) and according to Soils Classification Systems of 

United Sates Department of Agriculture (USDA) classification (2006), it is Psammentic 

Palexeralfs. Soil physical-chemical properties measured at the beginning are reported in 

Table 1. 

 

Experimental layout and crop management 

The experiment was done in a 3 ha field (100 x 300 m
2
). The crop rotation was based on the 

double–cropping forage system with maize silage (Zea mais L.) from June to September and 

Italian ryegrass (Lolium multiflorum Lam.) from October to May. This cropping system 

represents over 80% of the irrigated land in the case study area. Four fertilizer sources were 

compared at the same doses of N (316 and 130 kg N ha
-1

 for maize and ryegrass 

respectively), set on the basis of the N fertilization prescriptions for NVZ and on the crop N 

requirements and in accordance with local farmers:  

i) MA= manure (mature cattle farmyard manure applied before sowing with a 

conventional spreader and followed by rotary tillage);  

ii) SL= slurry (cattle slurry applied before sowing with a conventional spreader and 

followed by rotary tillage);  

iii) MI= mineral (mineral fertilizer (ENTEC 26®) applied at the end of tillering for 

ryegrass );  
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Table 1 Main soil proprieties at the beginning of the experiment (2009) 

 Orizzont  

Characterization  Ap C 2Btg1 2Btg2 

Depth, cm 45 77 99 124 

Clay, g kg
-1

  16 27 64 86 

Sand, g kg
-1

  970 960 932 899 

Silt, g kg
-1

  14 13 4 15 

Bulk density, g cm
-3

  1.59 1.39 1.55 1.80 

Water holding capacity, 

%Vol 0 kPa  

48.2 42.3 41.4 40.1 

Field capacity 

(%Vol 33kPa) 

7.5 3.8 5.9 8.1 

Field capacity 

(%Vol 23kPa) 

19.5 15.9 16.8 17.7 

Wilting point  

%Vol 1500 kPa  

3.4 1.1 2.2 4.2 

Organic Matter, g kg
-1

  26.8 2.0 1.3 1.3 

Organic Carbon, g kg
-1

  15.5 1.2 0.8 0.8 

Tot N, g kg
-1

  1.4 0.3 0.3 0.3 

 

iv) SM= control (slurry+mineral, i.e. slurry as above but at a target rate of 100 and 70 kg 

ha
-1

 N for maize and ryegrass respectively, and mineral fertilizer (ENTEC 26®) at a 

rate of 216 and 60 kg ha
-1

 N applied at maize emergence or the end of ryegrass tillering 

respectively. 

The experimental design was a 4x4 latin square design with a plot size of 12x60 m
2
. A 

mixture of four varieties and hybrids of Italian ryegrass (Lolium multiflorum Lam. cv 

Meritra, Ivan, Littorio and Mowester) was sown during the last ten days of October and 

organic fertilizer, harrowing and milling were applicated every year. The mineral fertilizer 
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was applied at half February. Auxiliary irrigation was provided to ryegrass when necessary 

to minimize crop water stress. Ryegrass hay was harvested in mid-May at early earing stage. 

Hybrid maize (Zea mays L.), cultivar Calcio (FAO 700), was sown during the first ten days 

of June and it was harvested between the 15th and the 20th of September at the dough stage 

(target of 33% DM for the whole plant). The sprinkle irrigation started in June until early 

August. Maize was treated with pre-emergence herbicides (Lumax®). Seedbed was prepared 

using a rotavator, ripper and harrow, while the harvesting was conducted during mid to late 

May at the earing stage. The silage maize and Italian-ryegrass were underwent the same crop 

management for each year and used the same hybrid or mixture respectively. All agro-

techniques were applied using business-as-usual machinery and modalities. The rate of 

organic fertilizers were supplied considering a N content of the organic fertilizers derived 

from previous analyses (Table 2). However actual rates were monitored by sampling the 

fertilizers spread on the field and analyzing it for the total and mineral N composition. The 

time of application of organic fertilizers is constrained by the on-farm available storage 

volume and NVZ prescriptions that forbid applications from November to 15 February to 

prevent leaching. A slurry sample per plot was collected from the tank before spreading it in 

the field. A total of 37 slurry samples were collected, frozen and stored for analysis of 

ammonium, total N and dry matter. Cattle manure, which is stored for five months before 

spreading, was collected before application. A total of 39 samples was collected for physical 

and chemical analyses. The mixture has been incorporated during day by ploughing to 

minimize the volatilization as ammonia. The N supplied to the plots (Table 2) was 

calculated from the amount of fertilizer distributed and the nutrient concentration of the 

fertilizer. 
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Table 2 N Input from organic and mineral fertilizes (average ± std error) of Maize and Italian 

Ryegrass from 2009-2012 (MA= Cattle Manure; SL= Cattle Slurry; SM= Cattle Slurry+ Mineral; 

MI=Mineral). 

 
Italian Ryegrass  Maize 

Treatments 2009-12  2009-2011 

MA  152 ±24 

 

378 ±38 

SL  305 ±115 

 

475 ±213 

SM  217 ±53 

 

369 ±60 

MI  130 ±0 

 

316 ±0 

 

 

Measurements 

Dry matter yield, N content and uptake  

Crop yield, aboveground biomass at harvest and N removal were measured every year. The 

aboveground maize biomass production at harvest was assessed by sampling 1 kg fresh 

weight that was immediately cooled in plastic bags and hence dried in a forced-air oven at 

65°C for 72 h to determine DM weight. The aboveground biomass production of Italian 

ryegrass was measured on sample areas of 1 m
2
 per plot by cutting the grass with grass 

shears. After the sample collection, the entire plots were harvested using farm machinery and 

these products (fresh maize or ryegrass hay) were weighted immediately using electronic 

weighing cells positioned in a flat place under the tractor cart were the biomass was 

accumulated. The crop nutrient uptake was measured on the basis of the N content 

determined on samples through Kjeldahl method. Both measures were determined annually. 
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Indicators of N use efficiency 

The N use efficiency of crops in the system were estimated as the amount of N removal by 

the harvested yield (N removal) divided by the total actual amount of fertilizer N supplied in 

each crop phase added to the estimated atmospheric N deposition: 

NUE = Nremoval / (Nfertilizer + N deposition) 

N deposition in the area was estimated as 2.4 kg N ha
-1

 year
-1

 (Markaki et al., 2010). 

NUE has a value of 1.0 when the amount of supplied N is equal to that removed at harvest. 

Statistical analysis 

Data were checked for normal distributions (Shapiro-Wilk W-test) and homogeneity of 

variance (Levene‟s Test) prior to submit them to the analysis of variance. Data on DM yield, 

herbage N content and N uptake for both crops for each treatment were treated with analysis 

of variance (ANOVA) using SAS/STAT® for Statistical Analysis V9 Package for Windows 

(1999). Tests of significance were made at a 95% confidence level. Regression analyses 

were performed between the amount of N applied to each crop (independent variable) and 

crop DM yield and N uptake (dependent variable). 

 

 

 

 

 

 

 

 

 

http://www.sas.com/technologies/analytics/statistics/stat/index.html
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Results  

Ryegrass hay production  

The DM yield of Italian ryegrass was significantly influenced by the fertilization system. The 

average annual DM yield of Italian ryegrass ranged from 2.35 (MA) to 7.94 t ha
-1

 (SM). The 

fertilization systems based just on organic fertilizers (MA and SL) showed an average of 

production 42% lower than that of SM and MI (Table 3). The analysis of variance showed a 

significant treatment X year interaction (P<0.05). In the first two years, the treatments 

including mineral fertilizers (SM and MI) have shown significant higher yield than organic 

treatment (MA and SL). In the third year, the SL treatment produced significantly more than 

in previous years at the same level of treatments including mineral fertilizers. High DM 

yields were obtained (c. 8.74 t ha-1 year-1) when 120-130 kg available N ha-1 were applied 

but rates above 200 available N ha-1 had relatively little effect on DM yield  

Silage maize DM production did not show a significant treatment X year interaction (Table 

3). The average DM yields ranged from 19.9 to 22.7 t ha
-1

 corresponding, respectively, to 

MA and SM treatments. The average maize DM yield showed significantly 15% lower 

production of MA fertilization system than all other treatments (Table 4).  
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Table 3 Mean Italian ryegrass hay and silage Maize yield (t ha
-1

 DM) as influenced by the N fertilization system (MA= Cattle Manure; 

SL= Cattle Slurry; SM= Cattle Slurry+ Mineral; MI=Mineral). 

 Italian Ryregrass 

 

Maize 

Treatments  2009-10  2010-11  2011-12  Average 

 

2009 2010 2011 Average 

MA 4.62 b  2,35 b  3.32 c  3.53 c  

 

22.3  20.8  16.7  19.9 B 

SL 4.13 b  2.40 b  5.34 b  3.96 b  

 

22.9  22.3  21.9  22.4 A 

SM  7.9 4a  5.07 a  5.54 b  6.18 b  

 

23.1  23.5  21.4  22.7 A 

MI 7.17 a  5.81 a  7.05 a  6.76 a  

 

24.1  23.4  19.5  22.3 A 

Means within a column followed by a different letter are significantly different at P < 0.05 according to Tukey‟s (HSD) test.
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N content of the aboveground biomass N uptake  

The total N content of Italian ryegrass hay at harvest was significantly higher (+1.9%) 

under the MI fertilization system than all other treatments. No significant treatment X 

year interaction was observed. In agreement with the values reported by Trindade et al., 

2008, the treatment with mineral fertilizer increased the content of N in the forage, but 

we found average N concentration clearly lower in all treatments. The total N content in 

silage maize at harvest, average across the 3 years, ranged from 9.3 to 10 kg t
-1

 DM with 

significantly lower N content under MA (Table 4). Also in this case, the average 

concentration of N found in the treatments turned out to be lower than what was 

observed by Trindade et al., 2007. 

Table 4 Effect of treatments on N concentration in silage maize and forage Italian ryegrass (kg 

t
-1

DM) on years for each treatments (MA= Cattle Manure; SL= Cattle Slurry; SM= Cattle 

Slurry+ Mineral; MI=Mineral). 

 Italian ryegrass  Maize 

Treatment Average 

2009-12 

 Average 

2009-11 

MA  9.2 b  9.3 b 

SL 8.9 b  10.0 a 

SM 8.6 b  10.0 a 

MI  10.8 a  9.6 ab 

Means within a column followed by a different letter are significantly different at P < 0,05 

according to Tukey‟s (HSD) test. 

 

The average N removal of Italian ryegrass (Table 5) was about 50 kg N ha
-1

yr
-1

, below 

average as reported by Trindade et al., 1997, ranging from a minimum of 20 kg N ha
-1

 to 

a maximum of 102 kg N ha
-1

 in MA and MI treatments, respectively. A significant 
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treatment x year interaction was observed only in the third year. A significantly higher N 

removal was observed with SL vs MA treatment in relation to the above mentioned 

higher DM production. The highest average values of N uptake were observed when the 

mineral fertilizer (SM or MI) was applied, but in the second year MI removal was 

significantly higher than SM. in according with the results reported by Perego et al., 

2012 and Trindade et al., 2008.  

In maize, the treatment x year interaction was not significant. The average N removal of 

silage maize ranged from 139 kg N ha
-1 

to 258 kg N ha
-1 

and showed significant lower 

removals (-15%) under MA than the other fertilization systems under comparison. The 

treatments MI, SM, SL removed an average of 221 kg N ha
-1

, slightly lower than that 

found by Trindade et al., 1997. 

N use efficiency  

The average NUE in maize ranged from a minimum of 0.51 to a maximum of 0.99 in 

the MA and SL treatments, respectively. In the case of fertilization systems based just 

on organic materials, the amount of N actually applied was greatly dependent on the 

variability of the N content of the fertilizer, which despite the homogenization of the 

sampled materials, varied greatly also between samples collected at the same sampling 

date. In fact, the average N concentration in slurry was 2.6 % but it showed a variability 

of 70 %, while in manure was 0.71 % with a variability of 21%. Besides, the average 

dry matter content was 7.3 and 28.5 %, respectively for slurry and manure, while the 

average C content was 28.7 % DM for slurry and 29.4% DM for manure as reported in 

Table 6. 

No substantial differences were observed between SL and SM treatments. The response 

of the crop was dose-dependent. The highest values of NUE were found in the SL 

treatment for dose about to 316 kg ha
-1

, significantly higher than that observed in MA 

treatment in which the NUE values were around 45% (Fig. 1).  

The Italian ryegrass showed a low efficiency of fertilizers with average NUE values 

ranged from 0.17 to 0.56 in the three years, corresponding to MA and MI treatments, 

respectively (Fig 2). 
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Table 5. N removal of silage maize and Italian ryegrass hay crop (kg N ha
-1

) in relation to years and fertilization treatments (MA= Cattle Manure; 

SL= Cattle Slurry; SM= Cattle Slurry+ Mineral; MI=Mineral). 

 Italian Ryregrass   Maize* 

Treatments  2009-10 2010-11 2011-12 Average  2009 2010 2011 Average 

MA 35 ab 20 c 29 b 28 c 

 

219 207 139 188 B 

SL 30 b 26 c 47 a 34 c 
 

225 250 190 219 A 

SM 64 a 46 b 49 a 53 b 

 

227 258 199 228 A 

MI  56 a 102 a 62 a 71 a 
 337 254 161 

217 A 

Means within a column followed by a different letter are significantly different at P < 0,05 according to Tukey‟s (HSD) test. 
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Integration with mineral fertilizer at rates around 130 kg ha
-1

 in total coverage, resulted 

as significant in increasing NUE and reached average values of more than 59% higher 

than the only organic fertilizers. This was associated to the fact that the mineral 

fertilization was applied at the beginning of "tillering" stage, when the crop, fertilized in 

pre-sowing with only organic fertilizer, showed obvious signs of stress from N. There 

were no substantial differences between only SL and only MA. 

 

Table 6. Organic fertilizers characterization: average 2009-2012 (coefficients of 

variation) 

 Cattle Slurry Cattle Manure 

N tot (%) 0.26 (70%) 0.71 (21%) 

C tot (% DM) 28.7 (63%) 29.42 (40%) 

Dry matter (%) 7.3 (76 %) 28.5 (27%) 

P (% DM) 3.68 (16%) 0.49 (78%) 
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Figure 1. Relation between N input and NUE for organic and mineral fertilizers in Maize 

 
Figure 2 Relation between N input and NUE for organic and miner fertilizers in Italian 

ryegrass. 
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Discussion 

Ryegrass hay production  

The mineral fertilization of ryegrass in spring had a considerable importance on the 

production. At the end of the winter – beginning of spring, the ryegrass sward treated 

with just organic fertilizers clearly showed symptoms of N deficiency (light green 

foliage, yellow leaf tips, reduced growth) when compared with the one where mineral N 

was supplied. An exception was of the SL treatment in the third year, that was 

characterized by a relatively dry winter. We think that this is due to synchrony between 

uptake and supply of N, according to Trindade et al., 2008, in similar intensive system 

in North west of Portugal. High DM yields were reported also by Zavattaro et al., 2012 , 

Trindade et al., 2008 and Macoon et al. 2002 for intensive forage cropping systems 

under Mediterranean climate. In silage maize, Zavattaro et al., 2012, reported that the 

organic fertilizers performed similarly to Urea in different systems and Nguyen et la., 

(2013) and Kayser et al.(2011) indicated that the form of N input had no significant 

effect on the dry matter yields. 

N content of the aboveground biomass N uptake  

In agreement with the values reported by Trindade et al., 2008, the treatment with 

mineral fertilizer increased the content of N in the fodder , but we found average N 

concentration clearly lower in all treatments. The average concentration of N found in 

the treatments is turned out to be lower than what was observed by Trindade et al., 

2008. The average N removal of Italian ryegrass was below average as reported by 

Trindade et al., 1997. Besides, Perego et al., 2012 and Trindade et al., 2008 had found 

highest average values of N uptake when the mineral fertilizer was applied. In silage 

maize, we observed N removal values slightly lower than that found by Trindade et al., 

1997. 

N use efficiency  

The low NUE of organic fertilizers on ryegrass has been associated with leaching in 

autumn-winter, the distribution of pre-sowing fertilizer and possible losses due to 

volatilization, according to several studies (e.g. Trindade et al., 2008 reported ammonia 
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volatilization losses from organic fertilizers rather variable, Fageria and Baligar, 2005; 

Sommer et al., 1991 showed 10% gaseous-N forms lost; pointed out 30%ammonia lost; 

Schröder et al., 2007 estimated N losses due to ammonia volatilization for 

injected/incorporated manure at 5% and for mineral fertilizer at 1%.). As also observed 

by Carneiro et al., 2012, mainly when the autumn–winter crops sowing is delayed, 

mineral N should be applied only through top-dressing application(s), and not as usually 

occurs at crop sowing. It was observed that N applied at tillering was recovered more 

efficiently than that applied at emergence (Kirda et al., 2001; López-Bellido et al., 

2005). Moreover, NUE decreased with increasing doses of organic fertilizer and varied 

a little among treatments at equal N doses as found also by van Groenigen et al., 2004. 

Several studies (Bertora C. et al 2008; Kayser M. et al.., 2011) reported a similar N 

concentration in cattle slurry and in manure fertilizer in similar systems, but nobody has 

emphasized the large variability in N content in organic fertilizers that we observed 

clearly. This makes it very difficult to define a suitable fertilization plan for the crops in 

pre-sowing. 

 

Conclusions 

The NUE in the maize-ryegrass double cropping system under Mediterranean conditions 

is significantly influenced by the fertilization system and the type and time of 

distribution of organic and/or mineral fertilizers. The amount of total N distributed with 

slurry or manure is very uncertain in relation to the very wide range of concentration of 

N and water content in this effluent independently of the time of distribution. This is a 

major source of space and time variability of the N distributed with the slurry and make 

it difficult to design a precise distribution of N at field scale farmyard manure and 

particularly mineral fertilizers allow to design a more precise rating of the N fertilizer. 

During the Maize crop phase, the NUE of organic effluents was not significantly lower 

than mineral fertilizers, as almost no rain falls during summer and hence the water 

balance can be managed through irrigation, which therefore can allow almost complete 
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control of the water percolation and hence nitrate leaching. The average NUE during the 

maize phase was 0,65 in SM, 0,67 in SL, 0,69 in MI and 0,47 in MA.  

The fertilization system based just on farmyard manure was the least effective in terms 

of maize yield, but was whereas no differences were observed between mineral 

fertilizers, slurry or slurry + mineral. In the case of Italian ryegrass the response of 

organic effluent was the least effective. The pre-seeding distribution of these fertilizers, 

in October-November, combined with the relatively low ryegrass growth rates as 

constrained by short day length and low temperature, led to an unbalanced nutrition, 

with excess of soil mineral N for the early stage of ryegrass establishment and a deep N 

deficit in early spring, following the winter leaching of the mineral N fraction available 

soon after the effluent spreading, leading to a significant reduction of the spring ryegrass 

yield at hay harvest. The distribution of mineral fertilizers at the end of the winter is able 

to cover this N plant deficit resulting in significantly higher hay yields. The combination 

of slurry and mineral fertilizers was also effective in terms of crop yield, but the NUE 

was seriously constrained and inversely proportional to the effective amount of N 

distributed with slurry, in relation to the total N content of the effluent. 

The optimization of the cropping system NUE, in the context of intensive dairy farming 

under Mediterranean irrigated conditions implies the use of organic effluents just for the 

maize fertilization, while the ryegrass should only be fertilized with top dressing of 

mineral fertilizers in late winter. Such practice is expected to minimize nitrate leaching 

and fertilization costs and hence can provide the scientific evidence supporting a site-

specific implementation of the nitrate directive. 

The environmental conditions considered in this study, the organic fertilization can 

achieve levels of NUE comparable or slightly lower than those of mineral fertilizer 

when applied to maize, while massive nitrate leaching were found under Italian ryegrass 

in winter because of the natural water surplus associated to high nitrate concentration 

independently of the fertilization management system. Therefore, we conclude that to 

mitigate nitrate pollution in these areas it is not sufficient to limit the amount of total N 

provided by animal manure, as many other factors can contribute to the nitrate leaching. 
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The dynamics of nitrate concentration It is necessary to reduce organic fertilizers and 

distribute mineral fertilizers at the beginning of the nitrogen stress of the crop.



 

Clara Ella Demurtas. 

Sustainable management of nitrogen fertilization in irrigated forage systems in nitrate vulnerable zones. 

Tesi di Dottorato in Scienze e Biotecnologie dei Sistemi Agrari e Forestali e delle Produzioni Alimentari. 

Università degli Studi di Sassari  

Pagina 36 

 

References 

Abbasi M. Kaleem , Majid Mahmood Tahir, Nasir Rahim, 2013. Effect of N fertilizer 

source and timing on yield and N use efficiency of rainfed maize (Zea mays L.) in 

Kashmir–Pakistan. Geoderma 195–196, 87–93. 

Aaets H.F.M., 2003. Strategies to meet requirements of the EU-nitrate directive on 

intensive dairy farms. Proceedings No. 518, International Fertilizer Society, York, UK, 

pp 1-27. London. Fertilizer Society. 

Barnes A.P.,  Willock J , C Hall C., Toma L., 2009. Farmer perspectives and practices 

regarding water pollution control programmes in Scotland. Agricultural Water 

Management 96, pp1715–1722. 

BertoraC., Zavattaro L., Sacco D., Monaco S., Grignani C., 2008. Soil organic matter 

dynamics and losses in manured maize-based forage systems. European Journal of 

Agronomy 30, pp 177–186. 

Borin M., Giupponi C., Morari F., 1997. Effects of four cultivation systems for maize 

on nitrogen leaching 1. Field experiment. European Journal of Agronomy 6, pp 101-l 12. 

Carneiro J.P., Coutinho J., Trindade H., 2012. Nitrate leaching from a maize ×oats 

double-cropping forage system fertilized with organic residues under Mediterranean 

conditions. Agriculture, Ecosystems & Environment .160, pp 29–39. 

Delgado JA, Shaffer M, Hu C, Lavado R, Cueto-Wong J, Joosse P, Sotomayor D, Colon 

W, Follett R, DelGrosso S, Li X, Rimski- Korsakov H., 2008. An index approach to 

assess nitrogen losses to the environment. Ecological Engineering 32 pp108–120. 

Dilz K, Darwinkel A, Boon R & Verstraeten LMJ., 1982. Intensive wheat production as 

related to nitrogen fertilisation, crop production and soil nitrogen: experience in the 

Benelux. Proceedings 211, pp 93–124. Fert Soc, London. 

Fageria N.K.,. Baligar V.C, 2005. Enhancing Nitrogen Use Efficiency in Crop Plants. 

Advances in Agronomy, 88, pp 97-185.  

http://www.sciencedirect.com/science/article/pii/S0167880911003264
http://www.sciencedirect.com/science/journal/01678809
http://www.sciencedirect.com/science/journal/01678809/160/supp/C
http://www.sciencedirect.com/science/article/pii/S0065211305880046


 

Clara Ella Demurtas. 

Sustainable management of nitrogen fertilization in irrigated forage systems in nitrate vulnerable zones. 

Tesi di Dottorato in Scienze e Biotecnologie dei Sistemi Agrari e Forestali e delle Produzioni Alimentari. 

Università degli Studi di Sassari  

Pagina 37 

 

Garrido-Lestache, E., López-Bellido, R.J., López-Bellido, L., 2005. Durum wheat 

quality under Mediterranean conditions as affected by N rate, timing and splitting, N 

form and S fertilization. European Journal of Agronomy 23, pp 265–278. 

Ladha, J.K., Pathack, H., Krupnik, T.J., Six, J., van Kessel, C., 2005. Efficiency of 

fertilizer nitrogen in cereal production: retrospects and prospects. Advances in 

Agronomy 87, pp 85–156. 

Liu, K., Wiatrak, P., 2011. Corn production and plant characteristics response to N 

fertilization management in dry-land conventional tillage system. International Journal 

of Plant Production 5, pp 405–416. 

López-Bellido, L., López-Bellido, R.J., Redondo, R., 2005. Nitrogen efficiency in wheat 

under rainfed Mediterranean conditions as affected by spilt nitrogen application. Field 

Crop. Res. 94, pp 86–97. 

Kayser M., Benke M., Isselstein J., 2011. Little fertilizer response but high N loss risk 

of maize on a productive organic-sandy soil. Agronomy for Sustainable Development. 

Volume 31, Number 4, pp 709-718. DOI: 10.1007/s13593-011-0046-9. 

Kirda, C., Derici, M.R., Schepers, J.S., 2001. Yield response and N-fertiliser recovery of 

rainfed wheat growing in the Mediterranean region. Field Crop. Res. 71, pp 113–122. 

Macoon B., Woodard K.R., Sollenberger L.E., French E.C. Iii, Portier K.M., Graetz 

D.A., Prine G.M. And Van Horn H. Jr.,2002. Dairy effluent effects on herbage yield and 

nutritive value of forage cropping systems. Agronomy Journal, 94, pp 1043– 1049. 

Markaki Z., 2010. Variability of atmospheric deposition of dissolved nitrogen and 

phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio. 

Marine Chemistry, 120, pp187-194.  

Monaghan, R.M., Wilcock, R.J., Smith, L.C., Tikkisetty, B., Thorrold, B.S., Costall, D., 

2007. Linkage between land management activities and water quality in an intensively 

farmed catchment in southern New Zealand. Agric. Econ. Environ. 118, pp 211–222. 



 

Clara Ella Demurtas. 

Sustainable management of nitrogen fertilization in irrigated forage systems in nitrate vulnerable zones. 

Tesi di Dottorato in Scienze e Biotecnologie dei Sistemi Agrari e Forestali e delle Produzioni Alimentari. 

Università degli Studi di Sassari  

Pagina 38 

 

Neeteson J.J., 2000. Nitrogen and phosphorus management on Dutch dairy farms: 

legislation and strategies employed to meet the regulations. Biology and fertility of soli, 

30, pp 566-572. 

Nevens F., Reheul D., 2005. Agronomical and environmental evaluation of a long-term 

experiment with cattle slurry and supplemental inorganic N applications in silage maize. 

Europ. J. Agronomy 22, pp 349–361. 

Nguyen T.P.L., Seddaiu G., Roggero P.P., 2013. Hybrid knowledge for understanding 

complex agri-environmental issues: nitrate pollution in Italy. International Journal of 

Agricultural Sustainability. http://dx.doi.org/10.1080/14735903.2013.825995. 

Perego A., Basile A., Bonfante A., De Mascellis R., Terribile F., Brennac S., Acutis M., 

2012. Nitrate leaching under maize cropping systems in Po Valley (Italy). Agriculture, 

Ecosystems and Environment 147, pp57– 65. 

 

Powell J.M.,. Gourley C.J.P, Rotz C.A., D.M. Weaver, 2010. Nitrogen use efficiency: A 

potential performance indicator and policy tool for dairy farms. Environmental science 

& policy 13, pp217–228 

Sainz Rozas, H.R., Echeverría, H.E., Barbieri, P.A., 2004. Nitrogen balance as affected 

by application time and nitrogen fertilizer rate in irrigated no-tillage maize. Agronomy 

Journal 96, pp 1622–1631. 

S.A.S. Institute, 1999. SAS/STAT User‟s Guide, vol. 8. SAS Inst, Cary, NC.  

Schröder J.J. Aarts H.F.M., van Middelkoop J.C., Schils R.L.M., Velthof G.L., Fraters,  

Willems W.J., 2007. Permissible manure and fertilizer use in dairy farming systems on 

sandy soils in The Netherlands to comply with the Nitrates Directive target. Europ. J. 

Agronomy 27, pp102–114 

Schröder JJ, 1999. Effect of split applications of cattle slurry and mineral fertilizer–N 

on the yield of silage maize in a slurry-based cropping system. Nutrient Cycling in 

Agroecosystems 53, pp209–218, 1999. 



 

Clara Ella Demurtas. 

Sustainable management of nitrogen fertilization in irrigated forage systems in nitrate vulnerable zones. 

Tesi di Dottorato in Scienze e Biotecnologie dei Sistemi Agrari e Forestali e delle Produzioni Alimentari. 

Università degli Studi di Sassari  

Pagina 39 

 

Schröder, J.J., Scholefield, D., Cabral, F., Hofman, G., 2004. The effects of nutrient 

losses from agriculture on ground and surface water quality: the position of science in 

developing indicators for regulation. Environ. Sci. Policy 7, pp15– 23. 

Sommer, S.G., Olesen, J.E., Christensen, B.T., 1991. Effects of temperature, wind speed 

and air humidity on ammonia volatilization from surface applied cattle slurry. J. Agric. 

Sci., Cambridge 117, pp 91–100. 

Strebel O, Duynisveld WHM, Bo¨ttcher J (1989) Nitrate pollution of groundwater in 

Western Europe. Agriculture, Ecosystems & Environment 26, pp189–214. 

Trindade, H., Coutinho J., Van Beusichem M.L., Scholefield d., and Moreira N., 1997. 

Nitrate leaching from sandy loam soil under a double-cropping forage system estimate 

from suction-probe. Grass and forage, 64, pp 2-11. 

Trindade, H., Coutinho J., Jarvis J., and Moreira N, 2008. Effects of different rates and 

timing of application of nitrogen as slurry and mineral fertilizer on yield of herbage and 

nitrate-leaching potential of a maize ⁄ Italian ryegrass cropping system in north-west 

Portugal. Grass and forage Science, 64, pp 2-11.  

VandeHaar, M.J., St-Pierre, N., 2006. Major advances in nutrition: relevance to the 

sustainability of the dairy industry. J. Dairy Sci. 89, pp 1280–1291. 

van Groenigen J.W., Kasper G.J., Velthof G.L., van den Pol-van Dasselaar A., Kuikman 

P.J., 2004. Nitrous oxide emissions from silage maize fields under different mineral 

nitrogen fertilizer and slurry applications. Plant and Soil, 263, pp 101–111. 

Zavattaro L, Monaco S., Sacco D., Grignani C., 2012 . Options to reduce N loss from 

maize in intensive cropping systems in Northern Italy. Agriculture, Ecosystems and 

environment 147, pp24– 35. 

Zebarth, B.J., Leclerc, Y., Moreau, G., 2004. Rate and timing of nitrogen fertilization of 

Russet Burbank potato: nitrogen use efficiency. Canadian Journal of Plant Science84, 

pp 845–854. 

 



 

Clara Ella Demurtas. 

Sustainable management of nitrogen fertilization in irrigated forage systems in nitrate vulnerable zones. 

Tesi di Dottorato in Scienze e Biotecnologie dei Sistemi Agrari e Forestali e delle Produzioni Alimentari. 

Università degli Studi di Sassari  

Pagina 40 

 

Chapter 2  

Fertilization management and nitrate leaching in irrigated forage crops for 

Mediterranean dairy farming systems. 

 

Abstract 

The research aims at evaluating at field scale the relationships between the agronomic 

management of the animal effluents and the nitrate losses in intensive Mediterranean dairy 

farming systems. The experiment was conducted between June 2009 and September 2011 and 

was carried out in a private farm with a highly intensive dairy cattle production, within the 

Nitrate Vulnerable Zone (ZVN) located in the Central-Western Sardinia, Italy. This area is 

characterized by a shallow water table and sandy soils. A monthly monitoring of the soil water 

nitrates concentration was measured by 10 cm diameter disc lysimeters installed at at 60-80 cm 

depth in relation to four N fertilization systems (SM: slurry + mineral fertilizer; MI: mineral N 

fertilization only; SL: slurry only; MA: manure only) at a target N rate of 315+130 kg ha
-1

 for  

maize and Italian ryegrass respectively. Organic fertilizers were spread 2/3 and 1/3 at maize and 

ryegrass seeding  respectively. Actual N rates of organic fertilizers depended on the wide 

variability of the effluent water and N content. A clear seasonal pattern of nitrate dynamics was 

observed in the three years. The nitrate concentration dynamics was relatively independent of 

the treatments, with top leaching occurring in autumn-winter because of the natural water 

surplus and the low N uptake from the ryegrass seedlings. Soil water nitrate concentrations 

were significantly influenced by the fertilization system, MI being on average intermediate 

(151mg L
-1

) between SL or SM (205 and 169 respectively) and MA (78 mg L
-1

). Exchanging 

mineral nitrogen for manure or slurry enabled higher precision in terms of actual rate of N 

fertilization but did not reduce the high soil water nitrate concentration observed in autumn-

winter. Farmyard manure proved to be the most conservative fertilization system. 

Key words: Maize silage, Italian Ryegrass, mineral nitrogen, slurry, manure, Nitrate 

Vulnerable Zones.  
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Introduction 

Nitrogen (N) is a very mobile element in the soil as is easily transported in depth outside the 

root zone of plants (leaching) in the nitric (NO3
−
) form. NO3

−
 leaching is an undesirable process 

which can result in adverse effects for both economic reasons and the degradation of surface 

and groundwater resources, that may ultimately result in eutrophication and non-drinkable 

water (OECD, 1982; Smith, 1998; Barton and Colmer, 2006; Wendland et al., 1993, Ten Berge, 

2002, Delgado et al., 2008). To improve N use efficiency in agriculture, integrated N 

management strategies that take into consideration improved fertilization along with soil and 

crop management practices are necessary. Several efforts to develop improved management 

strategies for the application of N fertilizers have been made with particular attention to better 

utilization of mineral N fertilizers in Mediterranean areas. Mediterranean climate is 

characterized by cool, wet winters and hot, dry summers. In these conditions, NO3
−
 losses by 

leaching are at risk particularly between October and January. Management and control of NO3

-

  

leaching is difficult because NO3 losses are often intermittent and linked with seasonal land 

management, irrigation practices and fertilizer applications and/or irregular events, such as rain 

(Carpenter et al., 1998; Barton and Colmer, 2006). 

Several studies carried out in Spain and Portugal showed that 50-90% of total N losses by 

leaching were measured during October-February (De Paz et al., 2009; Trindade et al., 1997; 

Goss et al., 1988). The N applied in autumn and during spring–summer, contributes to the high 

amounts of available N in the soil at the start of the rainy period (Trindade et al., 2009), 

conditions that promote significant N leaching (Trindade et al., 1997). In intensive dairy 

farming systems based on silage maize (Zea mays L.) and forage ryegrass (Lolium multiflorum 

Lam.) double cropping, organic fertilizers (slurry and manure) are applied regularly prior to 

sowing of each crop. Mineral fertilizer are often applied to compensate for the insufficient 

mineral N availability in particular at the end of the winter and to ensure high maize yields. The 

transport and leaching mechanism of N from manure application is more complex than that of 

inorganic fertilizers because manure application results in altered soil properties and involves 

concurrent mineralization, nitrification and denitrification of nitrogen (Geohring et al., 1998). 

Results from field experiments carried out in a Mediterranean area showed that the NO3
- 

leaching potential from the application of slurries could be lower than those from N mineral 

fertilizer application (Daudén and Quílez, 2004; Trindade et al., 2009). It has also been 

recognized that NO3
-
 leaching can be a common and sometimes serious problem when such 

effluents are used (Trindade et al., 1997; Daudén et al., 2004). 
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The Nitrate Directive (ND, 1991/676/EEC) was issued by the European Union in 1991 to 

prevent diffuse nitrate pollution of water bodies. The underlying objective of the ND is to 

reduce water pollution caused by nitrates from agricultural sources and to further prevent such 

pollution. The implementation mechanisms of the ND involve, among other things, the 

designation of Nitrate Vulnerable Zones (NVZs), which include areas that drain into vulnerable 

water bodies and which potentially contribute to nitrate pollution. Designation of NVZs is 

determined in relation to the achievement of a quality state in ground and surface water. A 

threshold was set for nitrate concentration in ground and surface water (50 mg L
–1

) to designate 

NVZs.  

The initial hypothesis of the work had concerned two aspects: i) in the Mediterranean intensive 

grassland systems, the seasonal dynamics of the concentration of nitrates is very wide and ii) 

the nitrates concentration in water percolation depends on the fertilization systems.  

In this paper we quantified and evaluated the dynamics of nitrate leaching and the effects of N 

fertilization systems under a Maize-ryegrass cropping system in order to identify sustainable 

management options for enhancing N use by annual crops and mitigate nitrate pollution of 

water bodies. 

 

Material and methods 

Site and crop management 

The experiment was conducted between June 2009 and September 2011 in a private farm 

located inside the NVZ in the dairy district of Arborea, Italy (39°47‟ N 8°33‟ E, 3 m asl). In this 

area the most diffuse cropping systems is based on a double cropping of silage maize and 

Italian ryegrass. The climate is Mediterranean and the mean annual temperature and 

precipitation are approximately 17°C and 600 mm, respectively. The soil were classified as 

Psammentic Palexeralfs (USDA, 2006). The soils properties were reported in Table 1 chapter 1 

and Lai et al., 2012. 

The experimental design was 4x4 latin square with a plot size of 12 x 60 m. We compared four 

fertilization systems at the same N target rate (316 and 130 kg N ha
-1

 for maize and ryegrass 

respectively), set on the basis of the N fertilization prescriptions for NVZ which are linked to 

the crop N requirements and in accordance with local farmers. These were: 
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i) MA= manure: the crop was fertilized only with mature cattle farmyard manure that was 

applied before sowing with a conventional spreader and followed by rotary tillage. Some 60% 

of the total amount was spread to maize at the end of May and 40% to ryegrass in October; 

ii) SL= slurry: the crop was fertilized only with cattle slurry that was applied before sowing 

with a conventional spreader and immediately incorporated in the soil with rotary tillage; 

iii) MI= mineral; the crop ewas fertilized only with a mineral fertilizer (ENTEC 26®) applied 

at the end of tillering for ryegrass and before sowing for maize); 

iv) SM= control slurry+mineral: slurry at a target rate of 100 and 70 kg ha
-1

 N for maize and 

ryegrass respectively additioned with mineral fertilizer (ENTEC 26®) at a rate of 216 and 60 

kg ha
-1

 N applied at maize emergence or the end of ryegrass tillering respectively.  

All information on management practices in Maize-ryegrass cropping system are reported in 

chapter one. The rate of N actually supplied with organic fertilizers (Table 2, chapter 1) was 

calculated ex post from the volume of fertilizer distributed and the actual nutrient concentration 

of the fertilizer, that was sampled from the field spreader.  

The cattle slurry was obtained from concrete slurry-storage pits at the farms and was well 

agitated prior to surface application using a vacuum-tank spreader. A total of 37 slurry samples 

were collected and stored frozen for analysis of ammonium, nitrate, total N content and dry 

matter.  

The cattle manure is stored for five months before spreading and was sampled just before 

application. A total of 39 manure samples were collected for physical and chemical analyses.  

The slurry or manure was incorporated into the soil within one day to minimize the N 

volatilization as ammonia. The time of application of organic fertilizers was constrained by the 

on-farm available storage volume and NVZ prescriptions that forbid applications in the 

November-February period to prevent leaching. 

 

Water sampling and analysis 

At the beginning of the experiment 36 "sucking" porous cups or lysimeters were installed in the 

16 plots below the plowed layer at depths between 50 and 90 cm (average depth: 68 cm). They 

were placed in each plot in correspondence of the maximum depth of the “Ap” soil horizon in 
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each profile. Special care was taken in repacking the soil from different layers in the original 

position. The lysimeters were connected to aboveground with plastic pipes at the border of each 

plot. Near the soil surface a rubber collar (20 cm diameter) was put around the plastic pipe to 

prevent water from seeping from the surface down through the pipe and to minimize the risk of 

preferential flow. The lysimeter discs were sampled at monthly intervals. Soil solution samples 

were obtained by applying a suction of -70 kPa for about 45 minutes using an electric pump. 

Before collecting the sample to be analyzed, pipes were clean out of the water left from the 

previous sampling in the connecting pipe and lysimeter. Collected samples were stored at 4°C 

until analysis. The samples were analyzed for the main chemical characteristics and the nitrate 

concentration was determined through ion chromatography. In this chapter we only report 

nitrate concentrations. 

 

Water Percolation  

The water balance in Maize-Italian ryegrass cropping system was estimated using the EPIC 

model (Williams, 1995) that had been previously calibrated and validated with field data. 

Weather data were collected from the station of Santa Lucia (OR, Italy) which is less than 20 

km away of the experimental field.  

Statistical analysis 

The NO3
−
 concentration data were submitted to an ANOVA test according to a 2 factor 

factorial design considering dates and treatments as fixed factors and dates as a sub-plot of a 

split plot design in randomized complete blocks (Gomez and Gomez, 1981). A Bartlett test was 

performed to test homoschedasticity of within sampling dates error variances. In case of 

eteroschedasticity, sampling dates bearing the highest or lowest variances were progressively 

excluded by the pooled analysis until the homoschedasticity test was not significant. The data 

collected in the sampling dates where variances were outliers were analyzed separately. The 

NO3
−
concentration data were transformed into log values prior to submitting to the parametric 

statistical analysis to meet the assumption of normality. The mean comparison were performed 

on transformed values but results were presented as means of the original data. A one-tailed t 

test was performed to check if at each sampling date treatments significantly exceed the 

threshold of 50 mg L
-1

 of NO3
-
 concentration. Data analyses were performed using Microsoft 

Excel® and SAS (Sas institute, 1999). 
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Results 

Nitrate concentration  

The dynamics of NO3
−
concentration (mg L

-1
) in the water percolation during the maize-Italian 

ryegrass rotation from 2009 to 2012 showed a strong seasonal pattern that was conserved across 

years. NO3
−
 concentration dynamics was relatively independent of the treatments and seasonal 

averages exceeded 50 mg L
-1

 in most cases. The NO3
−
concentrations dynamic showed typically 

two maximum values: one in the summer, during the maize phase, and one in the winter, during 

the ryegrass phase (Figure, 1 a, b, c ). Minimum values were typically observed at maize 

harvest in September and in late spring. The highest NO3
− 

concentrations were observed in the 

autumn and winter period (from November to January) in all years and treatments. In all 

treatments, the NO3
−
concentrations increased progressively from the early Autumn to January 

and then decreased to reach a minimum in April and May, with the exception of spring 2012, 

when the observed NO3
−
concentrations remained almost steady until the end of April in all 

treatments.  

The annual average concentration of nitrates from June 2009 to May 2012 fluctuated from 6 ± 3 

to 593±104 mg L
-1

 in SL, from 0,8 ±0,3 to 586 ± 122 mg L
-1

 in MA, from 13 ± 3 to 460 ± 54 

mg L
-1

 in SM and from 2,6 ± 0,4 to 390 ± 25 mg L
-1

 in MI (Figure 2). In the 3-years 

experimental period, the average (n = 4 reps x 33dates) NO3
−
 concentration in SL, MA, SM and 

MI treatments was 202 ± 11,3 mg L
−1

, 78 ±4,9 mg L
−1

, 164 ±9,4 mg L
−1

 and 146 ± 10,4 mg L
−1

, 

respectively.  

The statistical analysis showed a high variability of NO3
−
concentration in soil water on all 

treatments. Heteroschedasticity was also observed between the error variances of each sampling 

date. For this reason, four dates corresponding to the two highest and the two lowest error 

variances were excluded from the pooled analysis between sampling dates, while the remaining 

29 dates had homogeneous variances (Table 1). The four outlier dates were highlighted in 

Table 1 and corresponded to the sampling dates with highest (Feb and Mar 2012) and lowest 

(Nov Dic 2011) variances. 

Considering the above mentioned 29 dates, the date x treatment interaction was not significant 

while highly significant effects between dates and between treatments were found on 

NO3
−
concentration in soil water. The overall mean soil water NO3

−
 concentrations of SM and 

SL were significantly higher than MI, that was significantly higher than MA.  

In the remaining four dates only one (Nov 2010) showed significant differences between 

treatments: the NO3
−
 concentration of SL and MI was significantly higher than SM, that was 
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significantly higher than MA. On this sampling date, mineral fertilizers for the winter crop were 

not yet distributed, as by experimental design. 

Due to very high variability of the NO3
-
 concentration between replicates of the same 

treatment, high mean values sometimes were not significantly higher than the 50 mg L
-1

 

threshold. In the three years the mean NO3
−
 concentration significantly eceeded the 50 mg L

-1
 in 

12, 10, 5 and 4 out of the 33 sampling dates in SL, SM, MA and MI respectively. Of these 7/12, 

7/10, 4/5 and 4/4 respectively in SL, SM, MA and MI occurred in the November-February 

interval and the remaining occurred in the spring 2012.  

The MA treatment showed the lowest average nitrogen concentration of all other treatments. In 

2009 and 2010 MA showed an average annual NO3
−
concentration of about 40 mg L

-1
, but in 

2012 the dynamics was similar to that of the other treatments. 

Water percolation  

Cropping systems showed an average yearly percolation of 308 mm , 362 mm, 170 mm and 123 

mm in 2009, 2010, 2011 and 2012 respectively. In all years, percolation events mainly occurred 

during October to January (Figure 1, a, b, c) with a strong influence of precipitation (y) on 

percolation (x) being observed, since the linear regression between these two variables was: = 

1,256x + 27,55 (r
2
 =0,78). In three years experimental period, the average water percolation in 

autumn was about 190 mm and it has  represented the 78% of total annual percolation. The 

month that showed the highest percolation was November, corresponding also to the rainiest 

month, and the average value was 77 mm. While in summer the percolation was near the zero, 

in fact, the irrigation water supply rarely exceeded crop transpiration demands. The rainfall in 

year 2010 was considerably higher than the long term average recorded for the region and this 

was reflected in the calculated drainage volumes.  
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Fig 1, a. Dynamics of the NO3
−
 concentration (mg L

–1
) in the percolation water during the silage maize – Italian ryegrass rotation (2009–2010). Error 

bars indicate standard errors. Vertical arrows indicate the dates of fertilizers distribution. The horizontal dotted line indicates the legal threshold of 50 

mg L
-1

 for drinkable water and the vertical dotted line indicates the end of cropping cycle. 
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Fig 1, b. Dynamics of the NO3
− 

concentration (mg L
–1

) in the percolation water during the silage maize – Italian ryegrass rotation (2010–2011). Error 

bars indicate standard errors. Vertical arrows indicate the dates of fertilizers distribution. The horizontal dotted line indicates the legal threshold of 50 

mg L
-1

 for drinkable water and the vertical dotted line indicates the end of cropping cycle. 
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Fig 1, c. Dynamics of the NO3
−
 concentration (mg L

–1
) in the percolation water during the silage maize – Italian ryegrass rotation (2011–2012). Error 

bars indicate standard errors. Vertical arrows indicate the dates of fertilizers distribution. The horizontal dotted line indicates the legal threshold of 50 

mg L
-1

 for drinkable water and the vertical dotted line indicates the end of cropping cycle. 
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Figura 2. Dynamics of the average NO3
−
 concentration (mg L

–1
) in the percolation water during the silage maize – Italian ryegrass rotation in three 

years (2009–2012). Error bars indicate standard errors. Vertical arrows indicate the dates of fertilizers distribution. The horizontal dotted line indicates 

the legal threshold of 50 mg L
-1

 for drinkable water and the vertical dotted line indicates the end of cropping cycle. 
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Table 1 Average NO3
−
 concentration (mg L-1) in sampling date for each treatments (SM= Slurry +Mineral, SL= Slurry, MA= Manure, MI=Mineral) 

and the statistical analysis. 

Date SM SL MA MI error MS* d.f. P*  CV%* 

30_06_2009 13 61 23 3 1.91 6 0.60 63 

09_07_2009 108 43 10 45 1.85 4 0.69 53 

31_07_2009 237 38 39 150 2.07 9 0.20 37 

02_09_2009 66 29 16 75 1.07 9 0.13 30 

05_10_2009 65 33 51 41 1.47 9 0.59 36 

04_11_2009 80 111 36 98 2.47 9 0.16 44 

09_11_2009 59 147 93 n.a. 0.59 2 0.73 18 

16_12_2009 229 325 261 199 2.24 9 0.50 31 

19_01_2010 167 297 85 357 1.79 8 0.29 28 

02_03_2010 34 46 14 87 1.47 8 0.73 38 

07_04_2010 27 6 1 24 2.80 8 0.46 114 

06_05_2010 31 6 4 10 1.72 9 0.14 89 
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Date SM SL MA MI error MS* d.f. P*  CV%* 

23_06_2010 22 6 1 4 1.62 9 0.16 63 

07_06_2010 23 17 1 24 1.80 9 0.21 119 

21_07_2010 117 128 52 246 1.72 9 0.64 39 

15_09_2010 53 69 3 38 2.77 9 0.16 65 

11_11_2010 203 365 137 296 0.15 9 0.01 7 

15_12_2010 309 443 164 390 0.30 9 0.10 10 

20_01_2011 219 281 44 188 1.83 9 0.24 30 

17_02_2011 148 180 16 70 3.11 9 0.16 49 

22_03_2011 147 86 5 62 5.09 9 0.17 86 

19_04_2011 90 47 1 16 2.54 9 0.05 74 

24_05_2011 68 34 5 13 0.37 8 0.00 21 

28_06_2011 282 140 42 237 0.46 9 0.01 15 

26_07_2011 195 290 99 141 2.15 9 0.40 31 

30_08_2011 183 255 32 191 2.89 9 0.20 41 
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Date SM SL MA MI error MS* d.f. P*  CV%* 

         

27_09_2011 131 141 3 101 2.43 8 0.07 47 

10_11_2011 400 554 586 332 0.47 9 0.79 12 

13_12_2011 461 541 274 294 0.45 9 0.43 12 

23_01_2012 417 593 191 298 0.68 9 0.31 15 

08_03_2012 326 547 123 316 0.87 8 0.15 17 

11_04_2012 281 431 109 177 1.79 9 0.37 27 

15_05_2012 232 374 44 143 1.10 8 0.03 23 

Media 164 202 78 146 1.91    

*values calculated on log transformed data 

 



 

Clara Ella Demurtas. 

Sustainable management of nitrogen fertilization in irrigated forage systems in nitrate vulnerable zones. 

Tesi di Dottorato in Scienze e Biotecnologie dei Sistemi Agrari e Forestali e delle Produzioni Alimentari. 

Università degli Studi di Sassari  

Pagina 54 

 

Discussion  

Nitrate concentration in water percolation 

Nitrate dynamics concentration in the suction lysimeters water was very variable in relation to 

the meteorological factors and the N uptake dynamics by crops. Under the climatic conditions 

of the region, we observed that NO3
− 

leaching was very high in autumn and winter as reported 

Trindade et al., 2008, corresponding to the rainfall period and low N uptake by Italian Ryegrass 

in this time. The leaching process, in Mediterranean condition, begins on average in middle of 

October, after an accumulated precipitation of about 100 mm (Carneiro et at 2012). The 

magnitude of the losses is mainly determined by the NO3−-N amount in the soil at the start of 

the leaching period. We observed that the fertilizer mode didn't affect the NO3
−
 concentration in 

autumn. The mineral treatment, unfertilized in this time, could be considered a control 

treatment. It assumes that the NO3
−
 concentration peak was due a high organic matter 

mineralization in the pre-sowing period of the  Italian ryegrass, favored by silting of crop 

residues and by the high temperatures in this period that can promote soil microbial activity in 

agreement with those reported by Liang, et al (2010). Furthermore, Trindade et al., 2008 

showed that residual amounts of NO3
−
 -N in soil in October after the maize harvest ranged from 

48 kg NO3
−
 -N ha

-1
 in the control treatment to 278 kg NO3

−
-N ha

-1
 in the heavily fertilized 

treatment. The N mineralized between October and March may have represented an important 

NO3
−
-N source. This N can contribute to high leaching losses even when the NO3

− 
amount that 

remained in the soil after the maize harvest is small (Trindade et al., 2008). Vert`es and Decau 

(1992) estimated leaching losses of about 100 kg N ha
-1

 during autumn and winter after maize 

crop that had left NO3
− 

small quantities in the soil; they estimated that 90% of the leaching 

losses originated from N mineralization. Measures that could reduce nitrogen concentration in 

the soil profile at the beginning of autumn should be taken. The rational fertilization and 

cropping practices of the summer culture to avoid high residual-NO3
−
 values, the early 

establishment of the autumn–winter crops or a reduction in the amount of N applied at the late 

sowing of those crops could be an example of measures that could be taken (Carneiro et al., 

2012). 

As reported by Carneiro et al., 2012 the mineral N should be applied only though top-dressing 

application(s) mainly when the sowing of autumn–winter crops is delayed, and not as usually 

occurs at crop sowing. Otherwise, the N losses by leaching would be significant. This may 

explain why in similar agro-environmental conditions, it was observed that N applied at 
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tillering was recovered more efficiently than that applied at emergence (Kirda et al., 2001; 

López-Bellido et al., 2005). Nevertheless, we think that the no use of fertilizers in autumn can't 

be considered a valid solution to mitigate significantly the leaching of nitrates in the autumn-

winter period. Also, compared with the other treatments, mineral fertilizer did not mitigate 

significantly the nitrates leaching in the autumn-winter as reported ND. Leaching losses are 

linearly related to N inputs, over-simplifying a complex N loss function which depends on the 

interactions between over-winter rainfall, soil type, cropping, and the rate/timing of 

fertilizer/manure applications (Silgram et al., 2001). 

In addition, to make a fertilization plan with the organic fertilizer use is very difficult because 

the slurry is a source of NO3
−
-N through mineralization during the autumn and winter (Cameron 

and Haynes, 1986). Due to the difficulty in predicting the slurry N availability, the amounts of 

fertilizer N applied frequently exceed the crop requirements leading to the accumulation of high 

levels of NO3
−
-N in the soil after harvest.  

In contrasting to Morari et al., 2012 (different cropping rotation, Maize- Wheat -Maize) we 

observed that the NO3
− 

dynamics concentration was very low at the end of winter (period April-

May) except for the dry years. This has been attributed to the low winter rainfall of that 

particular period. While, highest concentrations were recorded after fertilization and irrigation 

in according to Perego et al., 2012, in summer in maize, 

 

Conclusion 

In the Mediterranean intensive grassland systems, the seasonal dynamics of the concentration 

of nitrates is very wide. In Autumn, the nitrates concentration in water percolation didn‟t 

depends on the fertilization systems. In summer the water balance can be managed through 

irrigation because in this time no rain falls and therefore can allow almost complete control of 

the water percolation and NO3
− 

leaching. While the Autumn is a critical period where there 

were highest peaks of rain, water percolation and NO3
− 

concentration in the soil. Exchanging 

mineral nitrogen for manure or slurry does not reduce nitrogen leaching and other nitrogen 

management strategies are necessary to address nitrogen losses. We propose that check era of 

early sowing of ryegrass to promote nitrates absorption (Brinsfield and Staver 1991) or insert 

another crop in this system that can uptake the nitrate that there is in the soil in autumn is 

necessary. 
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Chapter 3 

Assessment of the potential nitrate leaching from agricultural sources in a 

Mediterranean NVZ 

 

Abstract 

The research aims to assessment of the relations, at territorial scale, between nitrogen 

balance and nitrate concentration in groundwater in an Nitrogen Vulnerable Zone in 

intensive dairy farming systems under Mediterranean conditions. A pilot area, 

designated as "transect", was identified through underground flows and the spatial 

distribution of the nitrates concentration in groundwater. Nitrogen surplus was 

calculated for the agricultural years from January 2007 to May 2011 in 102 fields and it 

is computed as total nitrogen inputs minus total nitrogen outputs. The average N surplus 

in the transect was related to the water surplus determined with EPIC model for the 

principal cropping systems. The results showed that the high nitrate concentration in 

groundwater were clearly associated to a high nitrogen surplus at field scale in this 

specific contest, though only some 15-20% of the N surplus was found as nitrate in 

groundwater. The water balance indicated that most of the leaching occurs between 

November and February. 

Key words: N surplus, N loss, double cropping, Silage maize, Italian ryegrass, 

groundwater, intensive dairy farming, Nitrate pollution. 

Introduction 

Nitrogen (N) losses from agriculture are negatively impacting a, air, and surface water 

quality (Wendland et al., 1993, Ten Berge, 2002, Delgado et al., 2008) especially in 

intensive cropping systems that are located in Nitrates Vulnerable Zones (NVZs) as 

defined by the EU nitrate directive. Nitrate pollution is often related to intensive 

agricultural systems, however the relationships between nitrogen inputs and nitrate 

concentration in groundwater are site-specific as they depend on a number of local 

factors influencing the processes of the nitrogen cycle (Morari et al., 2012). Predicting 
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the movement of solutes through soil is difficult due to the heterogeneous nature of soils 

(Addiscott, 1996), of climate characteristics and management practices (Meisinger and 

Delgado 2002; Havlin 2004). To define the N balance (Nbal) for determine the N 

surplus in soil system considering all input components (mineral and organic fertilizers 

application, atmospheric deposition, mineralization, N from crop residues) and output 

(N uptake through harvested crops, soil leaching, immobilization, volatilization, 

denitrification, erosion and surface runoff), is rarely feasible, because the necessary data 

are not often available and the date collection is costly. Leach et al., 2003 reported that 

studies at the watershed scale can allow to calculate the N surplus and quantify the 

importance of the different input and output sources from the system, moreover these 

are able assess the potential impact of cropping systems on quality of surface and 

groundwater water (Osborne e Wiley, 1988; Rossi Pisa et al, 1996;. Gardi, 2001). The  

N balance represents a tool capable of identifying potentially critical situations and it 

can help to support more sustainable management of the N cycle. The Nbal method is 

widely used as a synthetic indicators of N use efficiency in agro-ecosystems to support 

the implementation of agro-environmental policies (Öborn et al., 2003; Oenema et al., 

2003) and as a performance indicator (Bassanino et al., 2011). In general, it can be 

calculated at the farm scale (Ventura et al., 2008; Grignani and Acutis 19944; Simon e 

Le Corre 1992; Simon, 1995; Argenti et al., 1996) for the soil surface or at the territorial 

scale (Sacco et al., 2003) and its versatility is well documented. The OECD indicates the 

gross nitrogen balance methodology as the appropriate indicator to calculate comparable 

Nbal on a regional or national scale (OECD, 2007). Nevertheless, when Nbal are 

calculated as the difference between N application rate and N uptake by harvested crops 

(e.g.,Bach 1987; Sieling and Kage 2006), without accounting for mineralization and 

immobilization (Lord et al., 2002; Oenema et al., 2005), the Nbal proves to be a poor 

estimator of N amounts lost to the environment on a single year basis, and it is only 

weakly correlated with actual measured N losses (Schröder et al., 2004; Sieling and 

Kage 2006; de Ruijter et al., 2007; Rankinen etal.,2007). Buczko et al. (2010) tested 

four simple N loss indicators to assess their predictive properties and highlighted that 

Nbal indicator, for long term-averaged data, is better suited as indicated by also Sieling 

and Kage, 2006. Schroder et al., 2009 have shown that effective N surplus, based on the 
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difference between the summed inputs of the plant available N and harvested N, proved 

to be the best indicator of leaching (R
2
= 0,86) of cut grasslands. We hypothesized that 

the Nbal is a good indicator of the potential leaching of nitrate in the NVZ at territorial 

scale. The Nbal can effectively complement the territorial monitoring identifying 

management systems more sustainable and to formulate efficient hypotheses of process 

for the mitigation of nitrate pollution in this area. The study aimed to contribute to the 

quantitative assessment of the relations between Nbal and nitrate concentration in 

groundwater in an NVZ in a Mediterranean context of intensive agriculture, which can 

be considered representative of the Mediterranean irrigation districts. 

 

Material and Methods 

Survey site 

The study at territorial scale was carried out over an area of about 425 ha located in 

central west of Sardinia (Arborea, Province of Oristano, Italy; 398 46‟ N; 88 37‟E) 

(Figure 1) a Nitrate Vulnerable Zone (NVZ). The climate is typically Mediterranean and 

the specific characteristics are given in the previous chapters. The soil was characterized 

by sandy texture (90% CV=11%), sub-acid pH (6.7 CV=13%) and variable organic 

matter content (1.0% CV=47%) (data from Regional Agency for Environmental 

Protection of Sardinia, ARPAS). The production systems are based on intensive dairy 

cattle, with about 35,000 animals in an area of 5500 ha (ISTAT, 2010), making it the 

leading dairy producer in Sardinia and one of the most important dairy district in Italy. 

The forage cropping systems for the dairy livestock are based on the double cropping of 

silage maize (Zea mays) and Italian ryegrass (Lolium multiflorum) for hay or a winter 

cereal for silage, representing over 80% of the irrigated land, and with the remaining 

area being used to grow alfalfa (Medicago sativa) and horticultural crops.  

A hydrogeological study allowed us to characterize the multi-layered aquifer hosted in 

the quaternary outcrops sands throughout the area. This aquifer was characterized by a 

low depth to groundwater and it was the most vulnerable to pollution. Nitrate 

concentrations in groundwater in mg l
-1

 were obtained from ARPAS's available on a 
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quarterly basis from 2007 to 2009. Nitrate concentration data of 34 wells relative to the 

aquifer surface in NVZ area were spatialized using the Kriging method but only 11 

wells have concerned the survey (Figure 2). The pilot area, indicated as transect, has 

been identified through to underground flows and spatial distribution of the nitrates 

concentration in sandy aquifer (Figure 3) from area to high nitrate concentration to very 

high concentration. Land use in the transect was considered representative of whole 

NVZ area. In this areas were conducted interviews to farmers on agronomic 

management to cultivation systems in for each of the fields (102 fields in total) in study 

area. The survey involved 25 farms and including 22 dairy cattle farms, 2 horticultural 

farms and 1 nursery. Data collection were related to time 2009-2011 and have 

contributed to the calibration of simulation EPIC model (Williams, 1995). Land cover 

for the main cropping systems in rotation, has been computed as a proportion of total 

size of the transect and was reported in Table 2. 

 

Figure 1. Study area 
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Figure 2. Average annual nitrate concentration in NVZ from 2007 to 2011. 

 

Water balance 

The average N surplus in the transect was related to the water surplus determined with 

EPIC model for the principal cropping systems (Maize-Italian ryegrass and Alfalfa) to 

order to calculate the amount of N potentially leachable, assuming zero the other losses. 
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N balance and N surplus 

A soil surface budget methodology was adopted for calculating the Nbal; this ensured 

all major fluxes were accounted for, especially those potentially affected by mitigation. 

The Nbal was calculated for the agricultural years from January 2007 to May 2011. 

 

 

 

Figure 3. Transect area and underground flows. 

 

The Nbal was determined in according to the methodology proposed by Grignani and 

Acutis (1994) adapted to the scale of the field. A soil surface budget methodology was 

adopted for calculating the nitrogen balance; this ensured all major fluxes were 

accounted for, especially those potentially affected by mitigation. The Nbal is computed 

as total nitrogen inputs minus total nitrogen outputs. Inputs to the Nbal are (i) biological 
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N fixation in the soil -Nfix, (ii) atmospheric deposition- Ndep (iii) livestock manure and 

mineral fertilizer-Nfert. Moreover, output elements was considered the amount of N 

removed (N removal) per tonne of crop yield Nremoval by harvested products: 

Nbal = (N fert + N fix + N dep) - N removal 

N fixation data in the literature reported values of 2.7% shoot dry matter in lucerna (e.g. 

Kristensen et al 1995).We estimate that in relation to the specific local conditions in the 

presence to sandy soil with a high organic matter content and views to the crops 

management practices (organic fertilization with cattle slurry in pre-sowing) 2% is more 

reliable. Due to the lack of official data, we assumed that the wet and dry N depositions 

were 2.4 kg ha
-1

 yr
-1

 (Markaki et al., 2010). Loss of nitrogen so determined was selected 

from IRENA (Indicator Reporting on the Integration of Environmental Concerns into 

Agriculture Policy), European Project coordinated by the European Environmental 

Agency (COM, 2000), as a nutrient budget indicator among 35 Agro-Enviromental 

indicators AEIs, calling Gross Nitrogen Balance.  

N inputs from fertilizers were calculated from the amount of fertilizers applied and the 

forms and concentrations of nutrients present. The main fertilizers used in study transect 

were cattle slurry, cattle manure, Entec 26, urea, ammonium nitrate, Ca nitrate, 

potassium nitrate, potassium sulphate compound or mixed fertilizers. N inputs from 

organic manures was calculated by chemical physical analyzed data on 56 samples 

collected in three different years pre-fertilization in experimental field as reported in 

first and second chapter. N inputs from irrigation water were calculated and the N total 

amount was 4,5 mg L
-1

 and it was considered negligible. Data of N output were based 

on data of crop yields provided by interview to farmers and on N concentration data 

obtained by literature dates and in the experimental fields reported in table 1. The 

interview to farmers had including data relative to land use, soil management, fertilizer 

amounts and timings as reported in a specially designed data collection sheet 

(Attachment a). 
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Table 1 N (% DM) used for the calculation of the N removed by crops. 

Crop removal  N (% DM) Literature  

Alfalfa forage 3.0 USDA hay quality guidelines  

Italian Ryegrass forage  1.1 Misurated at field scale 

Triticale forage  1.4 Licitra et al., 1996 rielaborated  

Maize silage  1.1 Misurated at field scale 

Italian Ryegrass silage  1.5 Licitra et al., 1996  

Triticale silage  1.4 Giola et. al 2012  

Grass-silage of Italian  

ryegrass  
2.6 Licitra et al., 1996 rielaborated  

Italian ryegrass dry forage  1.7 Licitra et al., 1996  

Maize mash  1.4 http://alimenti.vet.unibo.it  
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Results 

Water balance 

The water balance is reported in figure 4. In the studied period, rainfall occurred in 

almost every month, but rain events were more frequent and intensive in autumn and 

spring. Extraordinarily heavy rainfall occurred in autumn 2010 (240 mm between 

October and November), while autumn 2007 were characterized by amounts of rainfall 

below the average of the period. Summer storms occurred almost every year. The higher 

total average precipitation was 810 mm and it was verified in 2010, while the drier year 

was 2007 where the total average precipitation recorded was 490 mm. The average 

annual N surplus was 236 mm. Major water surplus occurred in autumn–winter during 

each year. The water surplus was the lowest in 2007, about 60 mm, while in 2010 we 

observed the highest values, about 316 mm. The linear regression showed a strong 

influence between precipitation (y) and water percolation (x) observed in this time: y = 

1,158x + 30,24 (r
2
 = 0.76). Every year, irrigation started at the end of May but water 

fluxes increased in June, reaching a maximum daily value of around 470 m
3
 ha

−1
 in 

2010 in August 2007, and about 360 m
3
 ha

−1
 in 2008-2011 in July and August. In 

summer, during the irrigation period there weren't significant fluxes of water leaving the 

system. The water balance for double crop maize-ryegrass showed that in five years 

about 65% of the percolation occurred in the period from October to January where the 

rainfall in general exceeding the ET by more than 270 mm averagely . 

 

Nitrogen balance and N surplus 

The area study of transect has affected average Agriculture Land Used (ALU) of 337 ha 

divided in the crop rotations reported in Table 2. In the 5 -years that have involved the 

agronomic survey from 2007 to 2011 land use in the transect has not changed much. 

The rotation maize-ryegrass has represented 80% of the surface ALU considered in the 

transect, while the rotation maize-triticale and maize- vegetable crop (mainly potatoes 

and carrots) have represented 5% and 2% respectively. The lucerne cultivated in the 

transect covers an area of hectares 30 (about 9%) while ALU area that remainder was 
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cultivated by strawberries, zucchini, eggplants, tomatoes, watermelons, melons. The 

maize-ryegrass system showed the average annual N surplus higher than the other, about 

twice that found under maize-triticale system about 380 kg N ha
-1

 and 180 kg N ha
-1

, 

respectively (Table 2). Only Italian ryegrass crop has showed a N surplus of about 190 

kg N ha
-1

 against the 180 kg N ha
-1

 of maize. 

The major N inputs by fertilizers were applied in maize and Italian ryegrass and the 

respectively doses were 375 kg N ha
-1

 and 290 kg N ha
-1

, while the N inputs in Triticale 

and Alfalfa were 212 kg N ha
-1

 and 186 kg N ha
-1

(Table 3). In all crops the N fertilizer 

inputs were higher than N removals from crops, except in Alfalfa. Nitrogen fertilizers 

were mainly applied in early fall months as organic fertilizers for winter crops and end 

May early June for maize. The mineral fertilizers were applied in February for Italian 

ryegrass and spilt in two rate in June for Maize (one dose in pre-sowing and one about 

after 20 days). Major N output was represented by crop harvest (Table 3). The Lucerne 

crop showed the major N removal (270 kg N ha
-1

), followed by Maize crop (197 kg N 

ha
-1

). 

 

Table 2 Average N surplus (kg N ha
-1

) per the principal crop rotation and Agricultural 

land use (in hectares and in percentage on total acreage) in the transect. 

Cropping 
ALU  

 (ha) 

ALU 

(%) 

Average N surplus 

(kg N ha
-1

)  

2007-2011 

Maize-Italian ryegrass  271 80 384 

Maize-Triticale  15 5 181 

Maize–horticulture crop  6,6 2 233 

Alfalfa  30 9 2 

Other crop  17 5 165 

Total  340 100 328 

ALU= Agricultural Land Used 
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Table 3 N balance of representative crops in the transept (average kg N ha
-1

±St. err. )  

Culture Input  Output N Surplus 

Maize  375± 9.2 197±1.4 180±9.4 

Italian Ryegrass  279±6.2 91±2.0 191±6.2 

Triticale  212±19.3 114±9.4 101±21.4 

Alfalfa  186±8.4 271±10.8 3±3.6 

 

 

The N surplus in the transect showed a decreasing trend from 351 kg N ha
-1

in 2007 to 

291 kg N ha
-1

 in 2011. In the transect was observed a high nitrate potential leaching 

when there was higher N surplus and the lowest water surplus. The average nitrate 

concentration was estimated and was average 671 mg L
-1

, five-six times higher than that 

found in groundwater. 

The N surplus was significantly correlated with N application rates, in fact the linear 

regression analyses (figure 4) showed a strong influence (r
2
= 0,80 ). Besides, the nitrate 

concentration estimated by cropping systems in the transect from 2007 to 2011, had 

showed strong relation between the N surplus and nitrate concentrations found in 

groundwater in the transect wells (r
2
=0,80) (Fig. 5). The distribution of nitrates in 

groundwater does not match the distribution of N surplus data by field figure 6. 
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Figure 4. Dynamic of water balance in Maize-Ryegrass system from 2007 to 2011. Error bars indicate standard errors. 
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Figure 4 Correlation between N surplus (kg ha
-1

) and N input (kg ha
-1

) by fertilizer in cropping 

systems in transect. 

 

 

 

Figure 5 Correlation between N surplus (kg N ha
-1

) estimated by cropping systems in the 

transect and the average annual NO3concentration (mg L
-1

) founded in groundwater in the wells 

transect.
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Figure 6. N surplus (kg N ha
-1

) by fields in the transect area and spatialization of groundwater nitrate concentration. 



 

Clara Ella Demurtas. 

Sustainable management of nitrogen fertilization in irrigated forage systems in nitrate vulnerable zones. 

Tesi di Dottorato in Scienze e Biotecnologie dei Sistemi Agrari e Forestali e delle Produzioni Alimentari. 

Università degli Studi di Sassari  

Pagina 73 

 

Discussion  

Despite the ND specifications in this area and the presence of fertilization plans on the 

territory we have observed clearly that there was high N surplus mainly in Maize-

ryegrass system, despite high crop yields. Several studies observed average N surplus 

lower values than those observed in this area in only silage Maize or Maize -Italian 

ryegrass rotation (Zavattaro et al., 2012; Bassanino et al., 2011; Grignani et al., 2007). 

Grignani and Zavattaro (2000) reported surplus was 128–335 kg N ha
−1

 year
−1

 and 

Mantovi et al. (2006) calculated similar values in the Emilia-Romagna Region, 

Northeastern Po Valley, in cropping system based on silage maize and other cereals 

(grain sorghum and winter wheat). 

High N surplus in Maize-Italian ryegrass system was due mainly to the high organic 

fertilizer doses distributed in pre-sowing of ryegrass, which is followed by the wettest 

period and N removal from crop is minor because it is in early stages of development. 

Synchrony of N supply with crop demand is essential in order to ensure adequate 

quantity of uptake and utilization and optimum yield (Fargeria and Baligar 2005). The 

triticale appears more conservative than the ryegrass. The fertilizers input in Maize-

Triticale system were the same or minors respect with ryegrass system, but with higher 

N removal.  

Numerous studies have shown that yields do not increase significantly when N fertilizer 

application rate exceeds a certain value, but N losses increases sharply (Raun and 

Johnson, 1995; Porter et al., 1996; Bhogal et al., 2000; Zhong, 2004).Several studies 

observed that annual N surpluses in different systems were significantly and positively 

correlated with N fertilizer application rate (Ju X.T et al., 2006, Grignani et al., 2007).  

In this study the N surplus can be a useful indicator for understand the N load in each 

system but the apparent poor match between the N surplus at field scale and nitrate 

concentration in groundwater indicates that is not appropriate to predict the level and 

entity of nitrate pollution of groundwater under the specific conditions. In fact, N 

surplus is not all lost through leaching but is particularly important for denitrification 

and volatilization losses. The ammonia volatilization likely contributed to N gaseous 

losses, since several studies estimated around 10% of the N added with urea and 
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ammonium nitrate (Puckett et al., 1999; Ventura et al., 2008) and 35% of NH3–N added 

with manure (Hansen, 2006) as reported by Morari et al. 2012. 

Moreover several studies showed that shallow water tables are frequently associated 

with poorly drained soils and anaerobic conditions. Under these conditions, nitrate 

denitrification can occur in the presence of organic carbon and denitrifying bacteria 

Morari et al., 2012. Moreover several studies showed that shallow water tables are 

frequently associated with poorly drained soils and anaerobic conditions. Under these 

conditions, nitrate denitrification can occur in the presence of organic carbon and 

denitrifying bacteria (Morari et al., 2012). Sacchi et al., 2013, reported that the 

distribution of nitrates in groundwater does not fully match the distribution of any of the 

identified N sources and that the denitrification is estimated to remove about 40–60% of 

the initial nitrates from groundwater in maize fields. 

 

Conclusions 

High nitrate concentration in groundwater were clearly associated to a high nitrogen 

surplus at field scale in the context of intensive dairy farming systems under 

Mediterranean conditions, dominated by silage maize and Italian ryegrass double 

cropping system. The N surplus was closely related to the high N input, which in turn is 

associated to the high farm gate nitrogen surplus of the dairy farming. The water 

balance of these farms indicated that most of the leaching occurs in the cold season 

(Nov-Feb), when the natural water surplus represent 72% of the total annual surplus 

even if only 29% of the total (rainfall+irrigation) annual water input. This is because of 

the typical Mediterranean winter season temperature and short daylength that constrains 

evapotranspiration and plant N uptake and the relatively high rainfall. The natural water 

surplus leading to N leaching cannot be controlled by farmers, as soil saturation occurs 

in winter almost independently of summer irrigation in summer, when rainfall is 

negligible. Therefore, an average high N surplus makes these farmlands very vulnerable 

to nitrate leaching. Only some 15-20% of the N surplus was found as nitrate in 

groundwater, assuming that it was diluted by just the percolation water. The remaining 

excess N would be immobilized as organic N, volatilized, denitrified or diluted by 

groundwater fluxes. Further studies are needed to make a quantitative assessment of the 
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contribution of denitrification to the reduction of nitrate concentration in groundwater 

or N2O emissions. It is likely that the increase in crop N use efficiency and the reduction 

of N inputs could effectively contribute to mitigate nitrate pollution without significant 

reduction of crop yield, but with increased costs for the disposal of effluents outside the 

NVZ. 
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Attachment 

Transect n°__________ Message n°_______________location_______________________Owner_________________________  

Type farms____________________________________________ Members Family _____  Septic tank □  Sewerage□  

Field n° ___________Coordinates__________________Sup.(ha)_________________  

2012  Culture  

Hybrid

/ 

Variety 

Tipe 

Fertilizers  
Dose Time 

Yield 

(t ha
-1)

 

Sowing 

Date 

Harvesting 

Date 

Water 

consumptio

n 

Carrying 

capacity 

n° 

interv. 

n° 

hours 

C1              

C2              

C3              

2011              

C1              

C2              

C3              

Attachment a. Template used in interview to farmers
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