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Summary 
 

Summary 
 
The magnitude and the frequency of extreme events are great concerns of our time in light of 
possible change or variability in climate. In recent years we are assisting in Alpine region to a 
profound change in rainfall typology and distribution. In particular, we can observe an increase in 
consecutive non-rainy days, and an escalation of extreme rainy events which are short and very 
intense. 
 
In this study, the historical extreme rainfall series with high-resolution from 5 to 45 min and above: 
1, 2, 3, 6, 12 and 24 h collected at different gauges located at representative sites in the watershed of 
Lake Maggiore, have been computed to perform regional frequency analysis of annual maxima 
precipitation based on the L-moments approach, and to produce growth curves for different return-
period rainfall events. 
 
Moreover, I used rainfall statistic methodology to check whether the automatic equipment (Tipping-
Bucket Rain Gauges) was working effectively during specific extreme events. In four selected 
stations in our study are (Pallanza, Domodossola Lunecco and Monte Mesma) we noticed an 
underestimation of extreme events due to the loss of rainwater during, because of the movement of 
the bucket blocked up. 
 
Then I carried out an automatic conversion of rain data from paper records into digital numerical 
format regarding four sites: Pallanza, Vercelli, Lombriasco and Bra. Using this method we obtained 
long time series of precipitation with high temporal resolution: 5, 10, 15, 20 and 30 minutes and 
above 1, 2, 3, 6 and 12hour. 
 
Finally I examined the long-term historical change in frequency and amplitude of extreme 
precipitation events collected and digitized in four stations situated in Piedmont region (the 
previous stations mentioned above). We adopted two indices of extremes and also Peaks-Over-
Threshold approach. The application of Mann-Kendall test showed that we have a statistically 
significant positive trend of the extreme frequency index and spring maximum precipitation for the 
station of Bra and Lombriasco. The temporal change of growth curve proved that extreme short 
rainfall events have risen during the last 20 years of our time series (1984-2003) in the station of 
Vercelli. 
 
 
KEY WORDS: extreme events, regional frequency analysis, Tipping-Bucket Rain Gauges, trend. 
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Riassunto 
 

Riassunto 
 
La grandezza e la frequenza degli eventi estremi sono una preoccupazione del nostro tempo alla 
luce del possibile cambiamento o variabilità del clima. Negli ultimi anni stiamo assistendo, nella 
regione alpina, a un profondo cambiamento nella tipologia e nela distribuzione delle precipitazioni. 
In particolare, si può osservare un aumento di giorni non piovosi consecutivi, e un incremento degli 
eventi estremi di pioggia brevi e molto intensi. 
 
In questo lavoro, le serie storiche di precipitazione estreme ad alta risoluzione da 5 a 45 min e oltre: 
1, 2, 3, 6, 12 e 24 ore raccolte in diversi sensori situati in siti rappresentativi nel bacino imbrifero 
del Lago Maggiore, sono state elaborate per eseguire l'analisi regionale di frequenza di 
precipitazioni intense in base all’approccio degli L-moments, e per produrre delle curve di crescita 
per i diversi periodi di ritorno. 
 
Inoltre ho usato una metodologia statistica per verificare l’accuratezza dei sensori automatici di 
misura di pioggia (Pluviometro a doppia vaschetta basculante) durante specifici eventi estremi. In 
quattro stazioni selezionate nella nostra area di studio (Pallanza, Domodossola Lunecco e Monte 
Mesma) abbiamo notato una sottostima degli eventi estremi a causa della perdita di acqua piovana 
durante il movimento delle vaschette che non riescono a basculare abbastanza in fretta. 
 
In seguito abbiamo eseguito una conversione automatica dei dati di pioggia da documenti cartacei 
in formato digitale numerico per quanto riguarda quattro siti: Pallanza, Vercelli, Lombriasco e Bra. 
Usando questo metodo abbiamo ottenuto una lunga serie di precipitazioni con alta risoluzione 
temporale: 5, 10, 15, 20 e 30 e sopra 1, 2, 3, 6 e 12 ore 
 
Dopo di che, ho esaminato il cambiamento a lungo termine in frequenza e in ampiezza degli eventi 
estremi di precipitazione raccolti e digitalizzati nelle quattro stazioni sopra citate utilizzando indici 
degli estremi e l’approccio dei Peaks-Over-Threshold. L'applicazione del Mann-Kendall test ha 
dimostrato che c’è una tendenza positiva statisticamente significativa del'indice di frequenza 
estrema e del massimo di precipitazione in primavera per le stazioni di Bra e Lombriasco. La 
variazione temporale della curva di crescita ha dimostrato che gli eventi estremi di pioggia di breve 
durata sono aumentati nel corso degli ultimi 20 anni della serie storica (1984-2003) della stazione di 
Vercelli. 
 
Parole chiave: eventi estremi, analisi regionale di frequenza, Pluviometro a doppia vaschetta 
basculante, tendenza 
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Introduction 
 

In the recent past many analyses have claimed the possible presence of non-stationarity, 

produced by the presence of either trend or long-term climatic fluctuations, in some historical 

hydrometeorological records observed in Europe as well as in other countries. Such non-stationarity 

might exert a remarkable effect on the estimation of the frequency distribution of the extreme events. 

However, it is well known that a reliable assessment of the presence of non-stationarity in hydrological 

records is not an easy task, because of the limited extension of the available data sets. And this often 

does not allow a reliable identification of patterns in the data. 

 

These efforts have been mainly motivated by the results of some meteorological and 

hydrological research studies which claimed the possible presence of irreversible climatic change, due 

to global climate forcing, such as increasing atmospheric CO2. (Jones et al., 1986; Hansen and 

Lebedeff, 1987). The awareness of the significant effects that such a global change exert influence even 

at the optimal design of urban and land drainage networks and flood protection works has motivated a 

number of studies in order to detect evidences of climatic changes even at local scale. 

 

A significant number of rainfall series were recently analysed in Italy, where some long 

precipitation records are available such as, for instance, the daily rainfall series observed in Padova 

(Camuffo, 1984), which covers a very long observation period (since 1725) and is one of the longest 

daily rainfall record available in the world. Camuffo (1984) gave evidence that precipitation amount 

show a wavy trend of different period, not always in phase with the frequency trend and also a cyclical 

variation of the precipitation intensity. The periodic pattern of the oscillations found by Camuffo 
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(1984) highlights the particular care that should be taken when analysing short climatic records, since 

increasing or decreasing trends detected in a short series might be the effect of a longer cycle, thus not 

leading to irreversible changes. 

 

Burlando (1989) analysed the series of daily rainfall data observed in Florence (Italy). He 

collected data observed since 1813 (another of the longest daily rainfall records available today in 

Italy). He found significant changes along time of the extreme storms structure and, in particular, a 

decrease of the number of storm events and a corresponding increase of their intensity in the latter 

decades. Similar results were found by Montanari (1998) who analysed four long rainfall series 

observed in the cities of Sondrio, Milan, Florence and Genoa (Italy). These results might explain the 

apparent increase of the magnitude of the extreme storm events in the recent past. 

 

In order to verify whether or not the detected trends might be due to long-term climatic 

fluctuations, rather than non-stationarity, Montanari et al. (1996) performed a long-term analysis on the 

available data in Italy. They concluded that the detected trends in the precipitation amounts are never 

statistically significant. The results of this analysis highlighted that the estimation of trends and 

tendencies, when dealing with hydrometeorological variables, should always take into account the 

effects of the possible presence of long-term persistence. 

 

Recently, a decrease in total precipitation in Italy over the past two centuries has been 

highlighted in Brunetti et al. (2002) and Brunetti et al. (2006) from a dataset of 111 homogenised 

precipitation series. This decrease has become more accentuated, though less significant, in recent 
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decades. A final data set was clustered into regions and Italy was divided into six sub-regions: 

Northwest, Southeast, the southern part of Northeast, the northern part of Northeast, south and centre. 

 

In the world, extreme precipitation had increased in the US, China, Australia, Canada, Norway, 

Mexico, Poland and the ex-Former Soviet Union (Groisman et al., 1999). No clear tropics-wide trends 

have emerged in the number of tropical storms; Nicholls et al. (1998) found a slight increase in the 

number of intense tropical cyclones in the Australian region since 1969, while Landsea et al. (1996) 

reported a decline in the number of intense Atlantic hurricanes over a similar period. There is little 

evidence of a change in extra-tropical storms, but only a limited amount of data have been analysed. 

Fewer studies have examined trends in climate extremes, other than changes in mean values, largely a 

result of the extra demands of good quality and quantity data. 

 

The outcomes of this latter analysis highlighted that the detection of climate change at local 

scale, and therefore of non-stationarity in hydrological records, has relevant implications in the design 

of the river engineering and drainage facilities, and consequently is not only a matter of ecological 

concern. Although it is still not clear whether or not the detected tendencies are indication of global 

climate change, they are worth analysing and assessing from an operational point of view. 

 

The present study first of all performs a regional frequency analysis of extreme storm 

precipitation based on the L-moments approach and using historical series with high-resolution from 5 

minutes to 45 minutes and above: 1, 2, 3, 6, 12 and 24h collected at different gauges located at 
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representative sites in the watershed of Lake Maggiore. This helped to produce growth curves for 

different return-period rainfall events. 

 

The regional frequency analysis is generally based on (Caporali et al. 2008): (a) selection of the 

regionalization method, combining the extreme rainfall with geomorphological and meteoclimatic 

characteristics, (b) selection of the probability distribution of the annual maximum rainfall depth of the 

analyzed duration, relating to the extreme rainfall. We used data recorded in digital format regarding 

the last 20 years, selected from regional and CNR-ISE rain gauge networks 

 

Regional frequency analysis, using L-moment approach, assumes that the standardised variant 

has the same distribution at every site in the selected region, and that data from a region can thus be 

combined to produce a single regional rainfall frequency curve that is applicable anywhere in the 

region (Hosking and Wallis 1997; Gabriele and Arnell 1991). This method is widely used for the 

regional frequency analysis of extreme storm precipitation. Adamowski et al. (1996) applied L-moment 

for the regional frequency analysis of annual extreme series of precipitation for assumed durations of 5, 

10, 15, 30, 60 and 120min from 320 meteorological stations in Canada. Flower and Kilsby (2003) 

carried out a regional pooling of 1, 2, 5 and 10 day annual maxima for 1961 to 2000 from 204 sites 

across the United Kingdom and estimated maximum rainfall over different return periods. Lee and 

Maeng (2003) applied L-moments for the regional frequency analysis of annual maximum daily 

rainfall in 38 Korean stations. Di Baldassarre et al. (2006) used the L-moments method for the 

regionalization of annual precipitation from 15 min to 1 day in northern central Italy. 
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The study area is the Lake Maggiore watershed, which extends for 6599 km2 shared between 

Italy (3299 km2), in the two Region of Piedmont and Lombardy, and Switzerland (3369 km2) 

(Ciampittiello 1999). This zone is characterized by a distinctive climatic regime. The presence of the 

Alps causes heavy rainfall in the area, often with extreme events (Frei and Schär 1998). Indeed the 

average of precipitation is higher than the Italian average, 1700 mm as opposed to 940 mm. Numerous 

flood events have occurred since the 18th century with a frequency of minor event every 2-3 years; the 

most important happened in the years 1993 and 2000. 

 
In the second part we carried out an inter-comparison in the field to single out the counting 

errors associated with automated tipping-Bucket Rain (TBR) gauge (instrument used for precipitation 

measurement in the first part of this study), during extreme events, so as to help the understanding of 

the measured differences using as reference instrument the Bulk precipitation samplers (Vuerich et al. 

2009; Lanza and Vuerich, 2009) and also to understanding if data collected with this automatic  

instrument are valid and good enough correct to base our trend analysis of extreme rainfall and to use 

into long time series. Errors in measurements from traditional and recently developed rain gauges are 

reported by various authors (Habib et al. 2001; Calder and Kidd 1978; Marsalek 1981; Siek et al. 

2007). Over the last 50 years the World Meteorological Organization has launched many large-scale 

international programs to develop adjustments to regular precipitation measurements. Since 2006 this 

organization has studied rain gauges and worked on checking their good functioning (WMO report n° 

84 2006 and Report n°99 2009). 
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To check whether our automatic equipment was working effectively during specific extreme 

events, we confined our study to the Lake Maggiore region. Rainfall data from four (4) different 

stations was analysed over the course of approximately 20 years (1991-2010). 

 

Finally in the third part we have tried to understand if the extremes rainfall are changing in the 

last 20 years, respect to the past. One of the major problems examining the climate record for changes 

in extremes is a lack of high-quality long-term data (Easterling et al. 2000). According to the World 

Meteorological Organisation (WMO) climatic observations of at least thirty years are needed in order 

to obtain representative climatic data (Peterson et al. 2001). It was not simple to found this data; in the 

catchment of Lake Maggiore, only for one station (Pallanza). So we investigated the variability of 

precipitation data collected also in other three different sites in the Piedmont region–Italy (Lombriasco, 

Vercelli and Bra). The historical extreme rainfall series with high-resolution from 5 minutes to 30 

minutes and above: 1, 2, 3, 6, and 12h collected at different gauges have been computed to perform a 

statistical analysis to determine whether the recent changes in frequency and magnitude of the rainfall 

extremes can be considered statistically significant. Trends are analysed both at the annual and at the 

seasonal scale. Current interest in trends of extreme weather phenomena relates to their potential for 

severe and adverse impacts on human life, civil infrastructure, and natural ecosystems. 

 

References 
 
Adamowski K, Alila Y, Pilon JP (1996) Regional rainfall distribution for Canada. Atmospheric 

Research 42: 75-88. 



Introduction 

 
Helmi Saidi 

Extreme Storm Precipitations Events in a Changing Climate: How to Define and Analyze  
(Case of the Lake Maggiore Watershed) 

Ph.D Thesis in Natural Sciences – University of Sassari, 2012 – XXIV cycle 
 

7

Brunetti M, Maugeri M, Monti F, Nanni T (2006) Temperature and precipitation variability in Italy in 

the last centuries from homogenised instrumental time series. International Journal of climatology 26: 

345-381. doi: 10.1002/joc.1251. 

Brunetti M, Maurizio M, Nanni T, Navarra A (2002) Droughts and extreme events in regional daily 

Italian precipitation series. International Journal of climatology 22: 543–558. doi: 10.1002/joc.751. 

Burlando, P. 1989. Stochastic models for the prediction and simulation of precipitation in time (in 

Italian), Ph.D. Dissertation, Politecnico di Milano. 

Calder, R. Kidd, C.H.R. 1978 A note on the dynamic calibration of tipping-bucket gauges. J. Hydrol. 

39, pp. 383–386. 

Camuffo, D. Analysis of the series of precipitation at Padova, Italy, Climatic Change, 1984, 6, 55-77. 

Caporali E, Cavigli E, Petrucci A (2008) The index in the regional frequency analysis of extreme 

events in Tuscany (Italy). Environmetrics 19:714-724. 

Ciampittiello M (1999) I livelli del Lago Maggiore: una grande risorsa da gestire un problema da 

affrontare. Alberti Editore: 203 pp. 

Di Baldassarre G, Castellarin A, Brath A (2006) Relationships between statistics of rainfall extremes 

and mean annual precipitation: an application for design-storm estimation in northern central Italy. 

Hydrology and Earth System Sciences 10: 589–601. 

Flower HJ, Kilsby CG (2003) A regional frequency analysis of United Kingdom extreme rainfall from 

1961 to 2000. International Journal of Climatology 23: 1303-1334. doi: 10.1002/joc.943. 

Frei C, Schär C (1998) A precipitation climatology of the Alps from the high-resolution rain-gauge 

observations. International Journal of Climatology 18: 873-900. 



Introduction 

 
Helmi Saidi 

Extreme Storm Precipitations Events in a Changing Climate: How to Define and Analyze  
(Case of the Lake Maggiore Watershed) 

Ph.D Thesis in Natural Sciences – University of Sassari, 2012 – XXIV cycle 
 

8

Gabriele S, Arnell NW (1991) A hierarchical approach to regional frequency analysis. Water 

Resources Research 27: 1281-1289. 

Groisman, P.Y, Karl T.R, Easterling D.R, Knight R.W, Jamason P.F, Hennessy K.J., Suppiah R., Page 

C.M, Wibig J, Fortuniak K, Razuvaev V.N, Douglas A, Forland E, and Zhai P.M, 1999. Changes in the 

probability of heavy precipitation: Important indicators of climatic change, Clim. Change, 42, 243–283. 

Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability 

and trends in extreme climate events: A brief review. Bulletin of the American Meteorological Society 

81 (3) : 417-425. 

Habib, E. Krajewski, W.F. Kruger, A. 2001 Sampling error of tipping-bucket rain gauge measurement. 

J. Hydrol. Eng. 6 (2) (2001), pp. 159–166. 

Hansen, J. & Lebedeff, S. Global trends in measured surface air temperature, J. of Geophys. Res., 

1987, D11, 13345-13372. 

Hosking JRM, Wallis JR (1997) Regional Frequency Analysis: An Approach Based on L-Moments. 

Cambridge University Press. Cambridge. 

Jones, P.D, Wigley, T.M.L. & Wright, P.B. Global temperature variations between 1861 and 1984, 

Nature, 1986, 322, 430-434. 

Landsea C. Nicholls N. Gray W.M, Avila L.A. 1996. Downward trends in the frequency of intense 

Atlantic hurricanes during the past five decades. Geophys Res. Lett., 23, 1697–1700. 

Lanza, L.G. Vuerich, E. 2009 The WMO field intercomparison of rain intensity gauges. Amos. Res. 94, 

pp. 534–543. 

Lee SH, Maeng, SJ (2003) Frequency analysis of extreme rainfall using Lmoment. Irrigation and 

Drainage 52: 219 – 230. 



Introduction 

 
Helmi Saidi 

Extreme Storm Precipitations Events in a Changing Climate: How to Define and Analyze  
(Case of the Lake Maggiore Watershed) 

Ph.D Thesis in Natural Sciences – University of Sassari, 2012 – XXIV cycle 
 

9

Marsalek, J. 1981 Calibration of the tipping bucket rain gauge J. Hydrol. 53 , pp. 343–354. 

Montanari A.,Rosso R. Taqqu M.S. 1996. Some long-run properties of daily rainfall records in Italy, J. 

of Geophys. Res. - Atmosphere, 101, 29431-29438. 

Montanari, A. 1998. Storm structure variability in historical rainfall data observed in Italy, Ann. 

Geophysicae, 16(2), 456. 

Nicholls N. Landsea C. J. Gill J.1998. Recent trends in Australian regional tropical cyclone activity. 

Meteor Atmos. Phys., 65, 197–205. 

Peterson TC, Folland C, Gruza G, Hogg W, Mokssit A,  Plummer N (2001) Report on the activities of 

the Working Group on Climate Change detection and related rapporteurs 1998 – 2001, Rep. WCDMP-

47, WMO-TD 1071. World Meteorol. Organ. Geneva, Switzerland. 

Siek, L.C. Burges, S.J. Steiner, M. 2007 Challenges in obtaining reliable measurements of point 

rainfall. Water Resour. Res. 43, W01420. 

Vuerich, E. Monesi, C. Lanza, L.G. Stagi, L. Lanzinger, E. 2009 The WMO field intercomparison of 

rainfall intensity (RI) gauges in Vigna di Valle (Italy), October 2007- April 2009: relevant aspects and 

results. TECO-2010 Helsinki, Finland, St. Petersburg, Russian Federation, 28-29 November 2008. 

WMO field intercomparison of rainfall intensity gauges – Instruments and observing methods, Report 

N° 99. 2009 – WMO/TD – N° 1504. 290 pp. 

WMO Laboratory intercomparison of rainfall intensity gauges – Instruments and observing methods, 

Report N° 84. 2006 – WMO/TD – N° 1304. 134 pp. 



Chapter 1 

 
Helmi Saidi 

Extreme Storm Precipitations Events in a Changing Climate: How to Define and Analyze  
(Case of the Lake Maggiore Watershed) 

Ph.D Thesis in Natural Sciences – University of Sassari, 2012 – XXIV cycle 

10

 

 

 

 

Chapter 1 

 

 

 

The Climatic Characteristics of Extreme 
Precipitations for Short-term Intervals in the 

Watershed of Lake Maggiore 
 
 
 
 

Helmi Saidi,  Marzia Ciampittiello, Claudia Dresti & Giorgio Ghiglieri 
Theor Appl Climatol 
DOI 10.1007/s00704-012-0768-x 
 

 



ORIGINAL PAPER

The climatic characteristics of extreme precipitations
for short-term intervals in the watershed of Lake Maggiore

Helmi Saidi & Marzia Ciampittiello & Claudia Dresti & Giorgio Ghiglieri

Received: 20 February 2012 /Accepted: 9 September 2012
# Springer-Verlag 2012

Abstract Alpine and Mediterranean areas are undergoing a
profound change in the typology and distribution of rainfall.
In particular, there has been an increase in consecutive non-
rainy days, and an escalation of extreme rainy events. The
climatic characteristic of extreme precipitations over short-
term intervals is an object of study in the watershed of Lake
Maggiore, the second largest freshwater basin in Italy (located
in the north-west of the country) and an important resource for
tourism, fishing and commercial flower growing. The histor-
ical extreme rainfall series with high-resolution from 5 to
45 min and above: 1, 2, 3, 6, 12 and 24 h collected at different
gauges located at representative sites in the watershed of Lake
Maggiore, have been computed to perform regional frequency
analysis of annual maxima precipitation based on the L-
moments approach, and to produce growth curves for different
return-period rainfall events. Because of different rainfall-
generating mechanisms in the watershed of Lake Maggiore
such as elevation, no single parent distribution could be found
for the entire study area. This paper concerns an investigation
designed to give a first view of the temporal change and
evolution of annual maxima precipitation, focusing particu-
larly on both heavy and extreme events recorded at time
intervals ranging from few minutes to 24 h and also to create

and develop an extreme storm precipitation database, starting
from historical sub-daily precipitation series distributed over
the territory. There have been two-part changes in extreme
rainfall events occurrence in the last 23 years from 1987 to
2009. Little change is observed in 720 min and 24-
h precipitations, but the change seen in 5, 10, 15, 20, 30, 45,
60, 120, 180 and 360 min events is significant. In fact, during
the 2000s, growth curves have flattened and annual maxima
have decreased.

1 Introduction

Rainfall studies are very important for understanding of the
evolution of water resources and in developing a correct
approach to environmental management and the activities
and safety of people. Rainfall is also an environmental
parameter of great importance and complexity. The frequen-
cy analysis of extreme precipitation events on sub-daily
timescales, which depend on the topographical and meteo-
rological characteristics of a particular region or territory
(Gajic-Capka 1991), represents one of the challenges in
climatological studies and is the first step towards clarifying
climate change and predicting its future evolution. The risks
of such events are difficult to predict, but their impacts
might well be severe.

Because the extreme precipitation events are rare and the
data record is often short, it is difficult to estimate their
frequency. There are thus many hydrologic and climatic
studies trying to find and develop methods for the regional-
ization of extreme hydrologic and climatic events. It is clear
that when data at a given location are insufficient for a
reliable estimation of the quantiles, a regional frequency
analysis must be performed.

The regional frequency analysis of extreme storm precip-
itation of a given duration is generally based on (Caporali et
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al. 2008): (a) selection of the regionalization method, com-
bining the extreme rainfall with geomorphological and
meteoclimatic characteristics; (b) selection of the probability
distribution of the annual maximum rainfall depth of the
analysed duration, relating to the extreme rainfall.

In the process of regional frequency analysis, the sites
must be assigned to homogeneous regions, because approx-
imate homogeneity is required to ensure that regional fre-
quency is more accurate than at-site analysis (Hosking and
Wallis 1997; Alila 1994; Lin and Chen 2005).

In literature, a decrease in total precipitation in Italy over
the past two centuries has been highlighted in Brunetti et al.
(2002, 2006) from a dataset of 111 homogenised precipita-
tion series. This decrease has become more accentuated,
though less significant, in recent decades. A final dataset
was clustered into regions that are climatically homoge-
neous in terms of precipitation, by means of a principal
component analysis. Italy was divided into six regions:
northwest, southeast, the southern part of northeast, the
northern part of northeast, south and centre.

A project for flood evaluation in Italy called Valutazione
delle Piene in Italia (VAPI; flood evaluation in Italy) has been
carried out by the National Group for Defence from
Hydrogeological Catastrophes (Gabriele and Iiritano 1994).
A hierarchical three-level regionalization approach was adop-
ted. This approach is based on the two-component extreme
value distribution (TCEV) introduced by Rossi et al. (1984)
and generalises the most common index flood method.

Since the introduction of L-moments by Hosking and
Wallis (1997), many studies have used L-moments for the
regionalisation of hydroclimatic variables. Hosking and
Wallis showed the good property of regionalization based on
L-moments ratios, which represent a linear combination of the
ratio of probability-weighted moments, called L-moments.

The purpose of this paper is to use the L-moments to
develop a regional rainfall frequency model for computing
design storms at gauged stations. The statistic analysis is
performed using annual maximum rainfall data from 15
stations located in the watershed of Lake Maggiore for
storm durations of 5, 10, 15, 20, 30, 60 min and 2, 3, 6,
12, 24 h. The regional rainfall frequency model is developed
in four stages (Hosking and Wallis 1997), to be precise:
screening data, identification of homogeneous regions (clus-
ter analysis), choice of the regional parent distribution and
estimation of its parameters.

2 Study area

Lake Maggiore (Fig. 1), located in North-western Italy, is
the second largest freshwater basin in Italy and one of
the most important lakes of the European Community.
Lake Maggiore is one of several large lakes in the
southern alpine lake district (which includes Lakes
Como, Garda and Iseo); it has an area of 212.2 km2

(80 % in Italy and 20 % in Switzerland) and a water
volume of 37.5 km3 (Ciampittiello 1999).

The Lake Maggiore watershed extends for 6,599 km2

shared between Italy (3,299 km2), in the two Region of
Piedmont and Lombardy, and Switzerland (3,369 km2;
Ciampittiello 1999). The lake’s catchment contains
many streams and rivers, some natural alpine lakes
and numerous reservoirs created by the damming of
rivers for hydroelectric power. Other important lakes in
the Lake Maggiore catchment are Lugano, Varese, Orta
and Mergozzo.

The highest point of the catchment is the Dufour Peak
(4,634 m above sea level (asl)) in the Monte Rosa Massif,

Fig. 1 Study area: Lake
Maggiore Watershed and
meteorological stations
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and its average altitude, extracted from the hypsographic
curve, is 1,270 m asl. The lowest point is the height of the
lake above sea level, 193 m. Six percent of the catchment is
above 2,500 m asl (Barbanti 1994).

The Lake Maggiore catchment is characterised by a dis-
tinctive climatic regime. The presence of the Alps causes
heavy rainfall in the area, often with extreme events (Frei
and Schär 1998). Indeed, the average of precipitation is
higher than the Italian average, 1,700 mm as opposed to
940 mm. Numerous flood events have occurred since the
eighteenth century with a frequency of minor event every 2–
3 years; the most important happened in the years 1993 and
2000, the latter with a return period of 100 years (Provenghi
2002). These exceptional precipitations are especially sig-
nificant for a number of practical aspects, like the study of
erosion processes, water resource management and hydrau-
lic infrastructure design, and are also essential for a defini-
tion of the hydrological regime of water bodies. The
pluviometric regime, calculated as mean monthly distribu-
tion during an annual period, is defined as “sub-littoral
alpine” (Contessini 1956), characterised by two maxima in
spring and autumn and two minima in winter and summer.

Rainfall is distributed over the Lake Maggiore catchment
in different groups of precipitation dividing the catchment
into areas of major or minor rainfall (Ciampittiello and Rolla
2008) analysed in our study.

By analysing the maxima precipitation, from 1 to 5
consecutive days, over a long time period (1921–1950)
in the River Po Basin, where the Lake Maggiore catch-
ment is situated, it is possible to divide the area into
different zone according to rain features (Cati 1981).
The Lake Maggiore catchment is situated in the zones
B and C.

3 Data collection

The Lake Maggiore catchment contains a number of mete-
orological stations at different altitudes and in different
valleys, divided homogeneously throughout Italian and
Swiss territory, to a total of 99 pluviometric stations with a
density of one station every 66.7 km2 (Ciampittiello 2009).
These stations show great differences as regards the number
and type of data available: some are automatic and some are
manual, some data have been generated digitally, while
others, the oldest, are still on paper. Our study analyzes
the data collected by the Italian automatic station in the
Piedmont Region, which have been available since 1980.

The extreme rainfall database consists of the annual
series of precipitation maxima with durations of 5, 10, 15,
20, 30 and 45 min; 1, 2, 3, 6, 12 and 24 h obtained from 15
stations situated in the watershed of Lake Maggiore. Table 1
reports the major characteristics of the meteorological sta-
tions used in this study.

The choice of this station is based:

& on the possibility to have long time series recorded
continuously at the same station in the same place

& on time series of at least 20 years
& on the presence of other station around the one selected,

in the same 5 km wide area and at the same altitude, with
a data period overlap of at least 10 years

& on the covered of different altitude, because of the
different distribution of the precipitation in the large
Lake Maggiore catchment

At the moment, we are using data recorded on the com-
puter series regarding the last 20 years in digital format,
selected from regional and CNR ISE rain gauge networks.

Table 1 Description of the 15
meteorological stations located
in the project area and used for
the homogenisation and extreme
events analysis

Each station is identifiable in
Fig. 1 by its code

Station code Station name Easting Northing Elevation (m asl) River/Lake Catchment

1 Candoglia 455,382 5,091,683 201 Toce

2 Cannobio 476,626 5,101,249 220 Cannobino

3 Cicogna 460,527 5,094,840 770 San Bernardino

4 Domodossola 445,070 5,106,511 277 Basso Toce

5 Fornarelli 421,939 5,090,075 1,185 Anza

6 Lunecco 469,645 5,102,406 415 Cannobino

7 Mergozzo 457,529 5,090,130 195 Lake Mergozzo

8 Miazzina 463,252 5,091,628 721 San Bernardino

9 Monte Mesma 456,616 5,069,516 575 Lake Orta

10 Mottac 453,935 5,100,948 1,690 San Bernardino

11 Mottarone 457,656 5,081,294 1,491 Lake Orta

12 Paione 437,475 5,114,095 2,269 Bogna

13 Pallanza 465,025 5,086,015 211 Lake Maggiore

14 Piancavallo 471,381 5,095,332 1,240 San Giovanni

15 Sambughetto 446,531 5,084,133 800 Strona
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These data have been provided by CAE-Bologna instrument
(Environmental Monitoring Company). But in the future,
we intend to transform and use data from before the 1980s,
which are still recorded on paper, and improve the long time
series of extreme events, to analyse better the trend of
climate change in the different zones of the Lake
Maggiore catchment and in different season.

To carry out statistical analysis and studies on the time series
in order to detect any trend in the extreme series, we need to
have a certain number of historical daily, hourly and sub-
hourly data (Djerboua et al. 2004; Pal and Al-Tabbaa 2009).

One of the major problems examining the climate record
for changes in extremes is a lack of high-quality long-term
data (Easterling et al. 2000). In our case, we need data series
able to produce a time series long enough for analysis from
the perspective of climate change. According to Gajic-
Capka (1990), climatic observations of at least 50–60 years
are needed, in case of short-term precipitation, in order to
obtain representative climatic data. The longer are the sam-
ple sizes of rainfall depth, the more reliable the statistics
analysis will be (Aronica et al. 2002).

4 Regional frequency: an approach based on L-moments

4.1 Regional rainfall frequency analysis

L-moments are a recent development in mathematical statis-
tics facilitating the estimation process in the frequency analy-
sis (Noto and La Loggia 2009; Onibon et al. 2004); they
represent an alternative set of scale and shape statistics of a
data sample or a probability distribution (Hosking and Wallis
1997). Their main advantages over conventional product
moments are that they are able to characterise a wider range
of distribution, and when estimated from a sample, are less
subject to bias in estimation andmore robust to the presence of
extreme values and outliers. Introduced by Hosking (1990),
this approach is increasingly being used by hydrologists.

For example, this method is widely used for the regional
frequency analysis of extreme storm precipitation.
Adamowski et al. (1996) applied L-moment for the region-
al frequency analysis of annual extreme series of precipi-
tation for assumed durations of 5, 10, 15, 30, 60 and
120 min from 320 meteorological stations in Canada, iden-
tifying 28 homogeneous regions and suitable distribution
for each region. Flower and Kilsby (2003) carried out a
regional pooling of 1-, 2-, 5- and 10-day annual maxima
for 1961–2000 from 204 sites across the UK and estimated
maximum rainfall over different return periods. This study
showed that the frequency of extreme rainfall changed over
parts of the UK in the period 1961–2000. Nine regions
were defined taking into account physiographic character
and spatially coherent rainfall variability.

Smithers and Schulze (2001) employed the L-
moments approach to define regions using 175 rainfall
stations across South Africa. They found 15 relatively
homogeneous regions for which the generalised extreme
value (GEV) distribution was identified as a parent
distribution.

Modarres and Sarhadi (2011) investigated the spatial
pattern of rainfall frequency function over Iran using the
annual rainfall of 137 stations for the period of 1952–2003.
The hierarchical method identified eight rainfall regions
over Iran. Guttman (1993) and Guttman et al. (1993) de-
fined 111 regional rainfall groups within the 48 contiguous
USA using L-moments and calculated the regional quantile
value for eight durations.

Lee and Maeng (2003) applied L-moments for the re-
gional frequency analysis of annual maximum daily rainfall
in 38 Korean stations. Di Baldassarre et al. (2006) used the
L-moments method for the regionalization of annual precip-
itation from 15 min to 1 day in northern central Italy. Casas
et al. (2007) used 145 pluviometric stations for the regional
estimation of extreme rainfall in Catalonia using L-
moments. More recently, Yurekli et al. (2009) found GEV
and three-parameter log normal distributions as the regional
distribution function for the maximum daily rainfall of
the Cekerec watershed, Turkey, through the L-moment
approach.

The L-moments method has also been used for regional
flood frequency analysis. Noto and La Loggia (2009) ana-
lysed the annual maximum peak of flood discharge data
recorded from more than 50 stream flow gauging sites in
Sicily in order to derive regional flood frequency curve.
Sicily was divided into five sub-regions and hydrometric
homogeneity was confirmed using a heterogeneity measure
test based on L-moments.

Adamowski (2000) and Kumar and Chatterjee (2005)
performed regional analysis of annual maximum peak flood
data, respectively, from hydrometric sites in Ontario and
Quebec provinces in Canada and in the north Brahmaputra
region of India using the L-moments approach.

Regional frequency analysis assumes that the standar-
dised variate has the same distribution at every site in the
selected region, and that data from a region can thus be
combined to produce a single regional rainfall frequency
curve that is applicable anywhere in the region (Hosking
and Wallis 1997; Gabriele and Arnell 1991). This approach
can also be used to estimate events at an ungauged site
where no information exists.

4.2 L-moments

Hosking and Wallis (1997) defined L-moments as linear
functions of probability weighted moments (PWM),
which are robust to outliers and virtually unbiased for
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small samples. Greenwood et al. (1979) summarised the
theory of PWM and defined them as follows:

br ¼ E X FðX Þ½ �rf g ð1Þ

Where F(X) is the cumulative distribution function of X
and βr is the rth order PWM. Starting from PWMs, Hosking
(1990) suggested the use the L-moment defined as the linear
combination of probability weighted moments. The (r+1)th
L-moment is defined as:

lrþ1 ¼
Xr

k¼0

p*r;kbk where p*r;k ¼ �1ð Þr�k r
k

� �
r þ k
k

� �

ð2Þ
In particular, l1 is the mean of the distribution; l2 is a
measure of the scale or dispersion; and l3 and l4 are meas-
ures of skewness and kurtosis, respectively.

In the regional frequency analysis, dimensionless ratios
between L-moments, called L-moments ratios (indicated as
LMRs), are particularly useful. The LMRs are Lcv, Lskew and
Lkurt and they are analogous to the usual coefficient of varia-
tion, coefficient of skewness and coefficient of kurtosis. In
particular, the coefficient of variation is equal to C0l2/l1
while the other two LMRs (Lskew and Lkurt) are given by

tr ¼ lr
l2

r ¼ 3; 4 Lskew for r ¼ 3 and Lkurt for r ¼ 4ð Þ ð3Þ

The sample estimation of L-moments can be expressed
by:

lrþ1 ¼
Xr

k¼0

p*r;kbk ð4Þ

With

bk ¼ 1
n

Pn
i¼1

i�1ð Þ i�2ð Þ... i�kð Þ
n�1ð Þ n�2ð Þ:::: n�kð Þ xi;k > 1; and b0 ¼ 1

n

Pn
i¼1

xi ð5Þ

Where xi for i01,…, n is the ordered sample and n is the
sample size.

The sample estimations of βr and lr are unbiased while the
following estimation of the L-moments ratios C and Cr (Lcv and
Lr) are consistent but not unbiased (Hosking andWallis 1997).

t ¼ Lcv ¼ l2
l1

ð6Þ

t3 ¼ Lskew ¼ l3
l2

ð7Þ

t4 ¼ Lkur ¼ l4
l2

ð8Þ

The values of l1, l2, t, t3 and t4 are useful summary statistics of
data sample and can be used to delineate homogenous regions,
to judge which distributions are consistent with a given data
sample and to estimate parameters when fitting a distribution.

4.3 Delineation and statistical testing of homogeneous
regions

4.3.1 Screening data: discordancy test

Given the group of 15 sites situated in the Lake Maggiore
watershed, the aim is to identify the so-called “unusual
sites”, which are grossly discordant with the group as a
whole. Discordancy is measured in terms of the L-
moments of the sites data (Hosking and Wallis 1993). A
high value of the discordancy measure indicates that a site
may be discordant within the pooling group, but this may be
caused by only a few unusual rainfall events. These unusual
sites merit close examination.

The discordancy measure of site (1) was defined by
Hosking and Wallis (1993) as

Di ¼ 1

3
ui � uð ÞTS�1 ui � uð Þ: ð9Þ

with

S ¼ N � 1ð Þ�1
XN
i¼1

ui � uð ÞT ui � uð Þ ð10Þ

and

u ¼ N�1
XN
i¼1

ui ð11Þ

and

ui ¼ tðiÞ; tðiÞ3 ; tðiÞ4
h iT

ð12Þ

This discordancy test was applied to each extreme storm
precipitation from 5 min to 1 day.

4.3.2 Tests of regional homogeneity

The second step of the regional frequency analysis of extreme
storm precipitation was identifying the homogenous regions,
defined as a set of gauge sites whose frequency distributions
are approximately the same after appropriate scaling opera-
tions (Noto and La Loggia 2009). It can be assumed that the
LMRs are the same for data from all the sites within this
statistically homogeneous region. The homogeneity of the
proposed region is usually calculated by using a summary
statistic of at-site data and then comparing their variability with
what would be expected for a homogeneous region, following
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the approach proposed by Hosking andWallis (1997). Another
test, the S statistic test (Alila 1999), was used for this purpose.

– Homogeneity test (H; Hosking and Wallis 1997)

Supposing that the proposed region has N sites, with site i
having record length ni and sample L-moment ratios t(i) (L-
CV), t3

(i) (L-skewness) and t4
(i) (L-kurtosis) of maximum

annual k minute (5, 10, 15, 20, 30, 45, 60, 120, 180, 360,
720 and 1,440) precipitation.

The test statistic is

H1 ¼ V1�μv
σv

;whereV1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ni tðiÞ�tRð Þ2

PN
i¼1

ni

;

vuuuut tR ¼
PN
i¼1

nitðiÞ

PN
i¼1

ni

ð13Þ

μv and σv are determined from simulation (500 realisations
of a homogeneous region with N sites, each having a four-
parameter kappa distribution with L-moments ratios equal to
tR, t3

R and t4
R and the at-site mean equal to 1) as the mean

and the standard deviation of the simulated value of V1.
Two other analogous tests are based on L-skewness t3

(test statistic H2) and L-kurtosis t4 (test statistic H3) instead
of L-CV. The region is regarded as “acceptably homoge-
nous” if H<1, “possibly heterogeneous” if 1≤H<2, and
“definitely heterogeneous” if H≥2 (Hosking and Wallis
1997).

– Homogeneity test S (Alila 1999)

The test statistic is

S1 %ð Þ ¼ σ21�μσ2

σ21
� 100; where σ2

1 ¼
PN
i¼1

ni tðiÞ�tRð Þ2
PN
i¼1

ni

ð14Þ

And μσ
2 is determined from simulations as the mean of

the simulated value of σ1
2. S1 represents the percentage of

signal that is evident in the network and the percentage of
noise (sampling error) in the network is thus equal to 100−
S1. A high value of S1 means high heterogeneity. Two other
analogous tests are based on L-skewness t3 (test statistic S2)
and L-kurtosis t4 (test statistic S3) instead of L-CV.

4.3.3 Identification of homogeneous sub-regions (cluster
analysis)

Cluster analysis, a standard method of statistical multivari-
ate analysis for dividing a dataset into groups, has been
successfully used to form regions for the regional frequency
analysis of extreme storm precipitation (Smithers and
Schulze 2001; Lin and Chen 2005; Kysely et al. 2005).

To identify homogeneous regions, Hosking and Wallis
(1997) recommended using Ward’s method, which is a hier-
archical clustering method, based on minimising the

Euclidean distance in site-characteristics space within each
cluster.

A data vector is associated with each site, and sites are
partitioned or aggregated into groups according to the sim-
ilarity of their data vectors. The data vector can include at-
site statistics or site characteristics. We prefer to use combi-
nations of the two.

The variables used have to be carefully selected and
weighted according to their importance for the actual problem.
Since the attributes, chosen for the distance measure, have
different units and, in most case, also different magnitudes,
standardisation of the attribute data had to be performed
before calculating the distance measure (Hosking and Wallis
1997; Smithers and Schulze 2001). Several methods of stand-
ardisation are conceivable, for example methods based on a
range or standard deviation and/or substraction of the mean. A
number of different transformations of the sites characteristics
which gave satisfactory results and which were implemented
are summarised in Table 2.

The site characteristics selected in this study for each site
included: latitude, longitude and the altitude of the stations.
Table 1 shows the site characters for 15 stations selected in
the watershed of Lake Maggiore. We also used to perform
this cluster analysis, mean annual precipitation (Alila 1999),
and at-site characteristics like Lcv, Lskew and Lkurt for each
storm duration.

4.4 Choice and estimation of regional frequency

After the correct identification of the homogeneous regions, the
subsequent step was to select an appropriate regional frequency
distribution; this was done by comparing the moments of the
distributions to the average moments statistics obtained from
regional data. The aim was to find from a number of candidate
distributions the one giving the best fit to the observed data.

L-moments ratio diagram An L-moment diagram of L-
kurtosis versus L-skewness is useful for distinguishing groups
of sites with similar frequency behaviour of extreme storm
precipitation and identifying the statistical distribution that can
adequately describe them (Rahnama and Rostami 2007).

Table 2 Final transformation of site characteristics

Site characteristics X Cluster variable Y

Latitude (m) y ¼ x�xmin
xmax�xmin

Longitude (m) y ¼ x�xmin
xmax�xmin

Altitude (m) y ¼ x
xmax

Mean annual precipitation (mm) y ¼ x
xmax

L-cv y ¼ x
xmax

L-skew y ¼ x
xmax

L-kurt y ¼ x
xmax
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Goodness-of-fit test The goodness-of-fit test described by
Hosking and Wallis (1997) is based on a comparison be-
tween sample Lkurt and population Lkurt for different distri-
butions. The test statistic is termed ZDIST and given as

ZDIST ¼ t4 � tDIST4

� �
σ4

ð15Þ

where DIST refers to the candidate distribution, t4 the
regional average of L-kurtosis and σ4 the standard deviation
of t4. A given distribution is declared a good fit if |ZDIST|≤

1.64. When more than one distribution qualifies for the
goodness-of-fit measurement criteria, the preferred distribu-
tion will be the one that has the minimum |ZDIST| value
(Hosking and Wallis 1997). The criterion corresponds to
acceptance of the hypothesised distribution at a confidence
level of 90 % (Hosking and Wallis 1997).

A goodness-of-fit test was not applied to the Wakeby
distribution because it has the ability to assume the
wide variety of skewed shapes that the extreme precip-
itation distribution exhibits (Guttman et al. 1993; Park
et al. 2001).

Table 3 Summary statistics test
results for 5 min precipitation
measured in all sites

Site Site name N Mean L_CV t_3 t_4 t_5

1 Candoglia 22 9.9545 0.1804 0.1860 0.2577 0.1508

2 Cannobio 9 10.1333 0.1096 0.1757 0.1643 0.0557

3 Cicogna 24 14.8417 0.2684 0.4282 0.4586 0.3639

4 Domodossola 11 7.9818 0.2720 0.3892 0.1848 0.0307

5 Fornarelli 12 5.2333 0.1691 0.0274 0.6016 0.0034

6 Lunecco 20 11.2600 0.1906 0.0343 0.0993 0.1392

7 Mergozzo 19 10.6421 0.1811 0.1970 0.2090 0.0211

8 Miazzina 22 11.6818 0.2321 0.3272 0.4234 0.3300

9 Monte Mesma 12 7.8833 0.3654 0.1470 0.0710 0.0002

10 Mottac 20 8.3200 0.2024 0.0983 0.2346 −0.0450

11 Mottarone 24 10.5000 0.2126 0.1882 0.1223 0.0751

12 Paione 13 6.0923 0.1229 0.0467 0.1438 −0.1364

13 Pallanza 18 14.5778 0.2742 0.5523 0.5376 0.5022

14 Piancavallo 23 10.8087 0.2306 0.2101 0.3520 0.1114

15 Sambughetto 21 10.7143 0.2475 0.1469 0.2566 0.0498

Fig. 2 Example of L-moments
ratio diagrams for 10 min storm
precipitations. a Lcv against
Lskew, b kurt against Lskew
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5 Results and discussion

The time series of multi-annual extreme rainfall at rain
gauges in the zone were used. The multi-annual rainfall
extremes for different durations were extracted from the
historical data series collected (Crisci et al. 2002) distin-
guishing between the extreme events with high resolution:
from 5 to 45 min (Molnar and Burlando 2008), and above:
1, 2, 3, 6, 12 and 24 h. The duration of the rainfall extremes
is important for an evaluation of the precipitation law and
for defining the rain time distribution.

A complete regional analysis of high-resolution precip-
itations was carried out using data collected in 15 sites

situated in the Italian part of the Lake Maggiore watershed.
The first step of the regional analysis (screening, data qual-
ity) is a close scrutiny of the data so that gross errors and
inconsistencies can be eliminated. The second step involves
delineating the homogeneous regions within the area of
study and testing for homogeneity within each region. The
delineation of homogeneous regions is based on the use of
L-moments ratios. The third step of the procedure deals with
the identification of the regional distribution, and the fourth
step consist of the estimation of its parameters.

– Screening data: discordancy test

The discordancy test was applied to each extreme storm
precipitation from 5 min to 1 day. Record lengths and L-
moment ratios for the 15 sites are given in Table 3 and
illustrated in Fig. 2.

Table 4 Result of discordancy test Di in all sites for all 12 durations from 5 min to 24 h

Duration (min) 5 10 15 20 30 45 60 120 180 360 720 1,440

Candoglia 0.13 0.28 0.43 0.71 0.80 1.45 0.76 1.10 0.88 1.12 0.61 0.70

Cannobio 1.49 1.14 0.85 1.72 0.49 0.12 2.98 2.31 2.25 1.47 1.94 2.25

Cicogna 0.86 0.62 0.74 0.61 1.41 0.28 0.22 1.05 0.71 0.46 0.64 0.81

Domodossola 0.98 0.97 1.09 1.01 1.75 0.76 0.97 2.35 2.96 1.13 1.66 0.32

Fornarelli 3.32a 1.33 2.99 2.34 1.26 1.72 2.16 1.44 0.52 0.65 0.94 2.17

Lunecco 0.62 0.13 0.28 0.22 0.40 0.63 1.20 0.51 0.03 0.41 0.58 0.68

Mergozzo 0.22 0.13 1.50 1.93 0.49 0.35 0.78 0.09 0.34 0.92 1.56 0.74

Miazzina 0.36 0.77 0.29 0.82 1.04 1.43 1.10 1.16 1.97 1.00 0.51 0.83

M. Mesma 3.11a 3.52a 4.03a 3.85a 3.72a 2.24 0.87 0.35 0.15 1.84 2.41 1.09

Mottac 0.21 0.09 0.14 0.37 0.23 0.64 0.90 0.32 0.48 0.96 0.57 0.75

Mottarone 0.35 0.21 0.37 0.18 0.46 0.32 0.11 0.51 0.30 0.48 0.49 0.78

Paione 0.94 1.94 0.41 0.23 0.64 1.19 0.09 0.52 0.37 0.85 1.88 2.59

Pallanza 1.98 2.33 0.11 0.18 1.80 2.42 1.27 1.84 2.76 1.13 0.21 0.57

Piancavallo 0.14 1.17 0.08 0.44 0.13 0.60 0.41 1.11 0.96 2.15 0.93 0.09

Sambughetto 0.29 0.38 1.70 0.36 0.37 0.85 1.06 0.33 0.33 0.42 0.10 0.66

a Di higher than critical value: 3

Table 5 Results of the H and S statistical tests of homogeneity

Storm duration (min) L-CV L-skewness L-kurtosis

H1 S1 (%) H2 S2 (%) H3 S3 (%)

5 0.86 18 0.22 −5 0.92 31

10 0.66 16 2.18 44 1.73 22

15 0.47 14 0.95 30 1.22 29

20 −0.07 −2 1.68 36 1.89 37

30 −0.61 −31 0.92 29 2.15 38

45 −0.07 −8 0.12 −1 0.02 −16

60 1.48 30 1.80 37 0.70 −85

120 0.33 9 −0.09 −16 −0.32 −49

180 0.80 19 −0.73 −45 −1.05 −46

360 2.48 51 1.47 9 1.47 36

720 2.21 51 2.60 50 3.43 57

1,440 0.63 18 1.38 47 2.27 55

Table 6 Results of heterogeneity test for the three clusters obtained for
60, 360 and 720 min storm durations

Storm duration (min) Sub-region Heterogeneity measure (H1)

60 A −0.01

B 0.02

C 0.87

360 A 0.32

B 0.44

C 0.60

710 A 0.65

B 0.68

C 0.75
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For 5 min storm precipitation, the critical value, 3, is
exceeded by two sites (Table 4): Fornarelli (station 5) and
Monte Mesma (station 9). The high value of discordancy
test result for the station of Fornarelli, is caused by single
unusually low annual maxima precipitations on 17 April
2005.

For the meteorological station of Monte Mesma (station 9)
this critical value, is exceeded for 5-min storm precipitations
and also for the storm durations of 10, 15, 20 and 30min. This

site has the highest L-CVof any in the group but this is not the
only factor causing the high discordance measure (Di) value.
As Fig. 2 suggests, the discordancy arises because the com-
bination of high L-CVand low L-skewness and L-kurtosis is
discordant with the pattern of the other sites.

In contrast, for this kind of precipitation, Pallanza (station
13), with extremely high values of L-CV, L-skewness and
L-kurtosis and Fornarelli (station 5), with extremely low
values of L-CV, L-skewness and L-kurtosis are not particu-
larly discordant with the other sites. At the Monte Mesma
site, the high discordancy measure for 5, 10, 15, 20 and
30 min precipitations results from single unusually low
annual maxima precipitations in 2005.

Initially, the Lake Maggiore watershed was assumed
to be a homogenous region in terms of extreme storm
precipitations for all durations from 5 min to 24 h. If
this is the case, it might be worthwhile to shift Monte
Mesma Station to another group but there is no evi-
dence of gross errors in the data and the entire group of
sites is at this stage a plausible candidate for being a
homogenous region.

– Tests of regional homogeneity

Initially, the study area as a whole was assumed to be
homogenous region, the truthfulness of this assumption
being tested using the two tests, H and S.

The values of heterogeneity measures computed by car-
rying out the 500 simulations mentioned above, based on
the data of 15 sites are shown in Table 5.

H2, H3, S2 and S3 statistics lack the power to discriminate
between homogenous and heterogeneous regions while the

Fig. 3 Result of identification
of homogenous regions for
regional frequency analysis:
sub-region A (grey), sub-region
B (blue) and sub-region C
(purple)

Fig. 4 Identification of frequency distribution using L-moment ratio
diagram for the 5, 10, 15, 20, 30, 45, 60, 120, 180, 360, 720 and
1,440 min precipitations and theoretical L-moment ratio diagram. GLO
generalised logistic, GEV generalised extreme value, GPA generalised
Pareto, GNO generalised normal, PE3 Pearson type III
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Table 7 Result of the Z goodness of fit for rainfall data at all station

Duration (min) 5 10 15 20 30 45 60 120 180 360 720 1,440

GLO −2.37 −0.04 0.39 −0.92 1.97 2.17 1.56 0.30 0.52 2.01 4.39 4.32

GEV −3.41 −1.77 −1.48 −2.75 −0.18 0.21 0.09 −0.54 −0.26 0.86 2.62 2.36

GNO −3.78 −1.79 −1.47 −2.74 −0.25 0.03 −0.31 −1.03 −0.80 0.29 2.13 1.93

PE3 −4.47 −2.12 −1.78 −3.06 −0.72 −0.52 −1.12 −1.89 −1.73 −0.75 1.15 1.03

GPA −5.92 −5.44 −5.42 −6.61 −4.77 −4.08 −3.35 −2.71 −2.36 −2.05 −1.57 −2.16

GLO generalised logistic, GEV generalised extreme value, GNO generalised normal, P3 pearson type III, GPA generalised Pareto distribution

Fig. 5 Example of temporal changes in annual maxima precipitation using parent distribution, 10-year moving window and the fixed decades of
1990–2099 (red) and 2000–2009 (blue): a5 min, b 10 min, c 15 min, d 20 min, e 30 min, f 45 min, g 120 min, h 180 min, i 24 h
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H1 statistic has much better discriminatory power (Hosking
and Wallis 1997).

For the above reasons, since the H1 statistic measure
for the Lake Maggiore watershed, using the data of 15
sites, was found to be greater than 1 for storm durations
of 60, 360 and 720 min, thus one can assert that the
entire watershed is not identifiable as a homogenous
region for storm durations of 60, 360 and 720 min,
and homogeneous for the others. This initial finding
was confirmed by the high value of the S1 statistic
respective to this kind of precipitation.

– Identification of homogeneous sub-regions (cluster
analysis)

Using the method described in 4.3.3 and based also on L-
moments ratio diagrams (Fig. 2) the project area was divid-
ed into three regions (A, B and C).

After identification of the homogeneous region, using
Hosking’s method, Di and heterogeneity measure H1 were
applied for each sub-region. Table 6 shows the result of the
heterogeneity test for the three clusters A, B and C. Figure 3
shows the location of gauging sites and homogeneous
regions in the watershed of Lake Maggiore.

The three proposed homogeneous sub-regions are:

– Sub-region A: including Cannobio, Lunecco, Miazzina,
Piancavallo

– Sub-region B: including Cicogna, Mergozzo, Monte
Mesma, Mottac, Mottarone, Pallanza, Sambughetto

– Sub-region C: including Candoglia, Domodossola,
Fornarelli, Paione.

The value of H1 based on the proposed regional subdivi-
sion (Table 6) identifies the three sub-regions as homoge-
neous (H1<1).

Fig. 7 Example of temporal changes in annual maxima precipitation
for homogeneous sub-region B using parent distribution; 10-year mov-
ing window and the fixed decades of 1990–1999 (red) and 2000–2009

(blue): a 60 min and GEV distribution, b 360 min and GNO distribu-
tion, c 720 min and PE3 distribution

Fig. 6 Example of temporal changes in annual maxima precipitation
for homogeneous sub-region A using parent distribution; 10-year mov-
ing window and the fixed decades of 1990–1999 (red) and 2000–2009

(blue): a 60 min and GEV distribution, b 360 min and GNO distribu-
tion, c 720 min and PE3 distribution
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The usefulness of this rainfall regionalisation is that it can
be used to extend rainfall data to regions where rainfall data
are not available.

– Choice and estimation of regional frequency

Figure 4 shows the L-moments ratio diagram for all
precipitation durations from 5 to 1,440 min. As the samples
L-moment are unbiased, the sample point should be distrib-
uted close to the theoretical line of a suitable distribution
(Hosking and Wallis 1997).

– Goodness-of-fit test

The choice of distribution should be influenced by consid-
erations of robustness. It is particularly important to use a
distribution that is robust to moderate heterogeneity in the
at-site frequency distributions. By applying the goodness-of-
fit test and plotting the L-moment diagram, it appears that the
generalised logistic (GLO) is appropriate for 10, 15, 20 and
120 min precipitation, the GEV is appropriate for 30, 60 and
180 min precipitation, the generalised normal is appropriate
for 45 and 360 min precipitation and Pearson type III (PE3) is
appropriate to 720 and 1,440 min precipitation.

In the case of 5-min precipitation, the regional L-moments
(Fig. 4) does not lie between two operationally equivalent
distributions. It lies above the GLO and |ZDIST|>1.64
(Table 7) for all the candidate distributions. In this case, no
three parameters distribution is acceptable (Hosking andWallis
1997) and a more general distribution such as the Kappa or
Wakeby should be used. We opted to use the Wakeby distri-
bution as parent distribution for the 5-min precipitation data.

– Derivation of the regional growth curves

After the regional distributions were selected and the
parameters of these distributions were estimated by the

L-moments, growth curves were derived for each ex-
treme event.

Changes in regional growth curve parameters which im-
ply temporal changes in extreme storm precipitation are
examined with L-moments using both a 10-years moving
window and the fixed decades 1990–99 and 2000–2009.
Growth curves for the 5, 10, 15, 20, 30, 45, 60, 120, 180,
360, 720 min and 24-h precipitation are shown in Figs. 5, 6,
7 and 8.

There was a two-part change in occurrence of extreme
events across the study area from 1987 to 2009. Few decad-
al level changes are seen in all extreme storm precipitation
events. From 5- to 180-min precipitations, the growth
curves have flattened and annual maxima have decreased
(Fig. 5). However for 24-h precipitations (Fig. 5i), the
growth curves have steepened and annual maxima have
risen.

Using 5-, 10-, 15-, 20-, 30-, 45-, 60-, 120-, 180-min
data precipitations from 15 stations located in the wa-
tershed of Lake Maggiore, regarded as a single, homo-
geneous group for this kind of event, we can deduce
that recent short rainfall events have been less extreme
than those previously recorded and that for 24-
h precipitation, these events have increased in the last
decade.

In terms of regional frequency change, the regional
changes in growth curves are markedly different be-
tween sub-regions A, B and C and are mainly seen at
60, 360 and 720 min precipitations. In sub-regions A
and B, growth curve became flatter over the last decade
from 2000 to 2009. Growth curves for 60, 360 and 720
duration in sub-region A and B are shown in Figs. 6
and 7, respectively. In the sub-region C, the opposite
change occurs, with the growth curve increasing in
gradient spatially for the extreme events of 360 and
720 min (Fig. 8).

Fig. 8 Example of temporal changes in annual maxima precipitation
for homogeneous sub-region C using parent distribution, 10-year mov-
ing window and the fixed decades of 1990–1999 (red) and 2000–2009

(blue): a 60 min and GEV distribution, b 360 min and GNO distribu-
tion, c 720 min and PE3 distribution
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We found that recent extreme events during the 2000s
have been less extreme than events recorded before. The
annual maxima series also reveal many extreme events
lasting less than 24 h in the 1990s. The decade from
2000 to 2009 was in fact, highly unusual in terms of
24 h precipitations over the whole study area and in
terms of 360 and 720 min with reference only to sub-
region C of the Lake Maggiore Watershed (stations:
Candoglia, Domodossola, Fornarelli, Paione).

Taking account of these results and examining the
historical data recorded, we found that the unusually
high annual maxima precipitations during the 1990s
are related to single events observed at a single station
such as the event of 1 June 1998, when 55.6 mm of
precipitation was recorded in 5 min at the station of
Pallanza. During the 2000s, there were high annual
maxima in 2000, related to the event of 14 October
2000. This resulted in Lake Maggiore flooding and
caused great damage in Piedmont, with very large 1-
day rainfall at some sites. At Paione, for example there
was 406.8 mm rainfall, 4.6 times more than the decadal
site median. Rainfall approximating 232.6 mm also oc-
curred at Fornarelli, 204.8 mm at Sambughetto and
184.4 mm at Cicogna.

6 Conclusions

Do we really have a changing climate in the Lake Maggiore
catchment? The impression from the international literature
is that no one, in this region (Lake Maggiore), has ever
found significant non-stationarity in extreme hydrological
data, and this may merely be a scare story promoted by
environmentalists exploiting the confusion between the nat-
ural phenomenon itself and the cost implications of the
consequences of a flood.

This paper accordingly describes the regional frequency
analysis, based on L-moments techniques, of annual maxi-
mum rainfall depths for storm durations ranging from 5 to
45 min and from 1 to 24 h observed in 15 stations across the
watershed of Lake Maggiore with an average of 20 years of
observations.

It would be remiss not to mention that many studies
continues to emphasise the need for long-term period data
for trend analysis of very rare events (Frei and Schär 1998).
Indeed, one of the biggest problems in performing analysis
of extreme climate events is the lack of long-term climate
data with good quality (Easterling et al. 2000) and with the
time resolution appropriate for analysing extreme events.
Furthermore, much high resolution data remains undigi-
tized. For our study, longer datasets are needed.
Consequently, we have to use a methodology that consent
to digitise numerous data on paper.

The large time variability of short-term precipitation
requires that a sufficiently long-time series of rainfall
input is used for this kind of hydrological calculations.
Long rainfall series with high resolutions are necessary
in order to observe a trend within the uncertainty margins
(Vaes et al. 2002).

It is necessary to underline that the shortness of the
period did not permit to do a rigorous statistical analysis;
nevertheless, it provides important information in order to
explain regional precipitation feature, especially extreme
events and, above all, it concerns high temporal resolution
data extended to the whole Lake Maggiore watershed.

Our study shows little change in the frequency of
extreme rainfall over parts of the study area and recent
short rainfall events have been less extreme than events
recorded before. This may due to natural climatic vari-
ability, climate change or both.

The study area can be regarded as one homogeneous
region for some short term rainfalls (5, 10, 15, 20, 30, 45,
120, 180 min and 24 h) and heterogeneous for others (60,
360 and 720 min). Given this heterogeneity and using site
characteristics, L-moments and Ward’s method the study
area was divided into three acceptably homogeneous
regions.

The identification of a suitable regional distribution for
each storm event was based on the L-moment diagram and a
goodness-of-fit test. Growth curves were developed for each
of 12 durations ranging from 5 min to 24 h. The estimated
regional growth curves were different for the three sub-
regions A, B and C, confirming the non-homogeneity of
the whole region in terms of 60, 360 and 720 min precipi-
tation. In fact, this approach can be regarded as a valid
alternative to the VAPI (Arnell and Gabriele 1988;
Gabriele and Arnell 1991; Gabriele and Iiritano 1994) proj-
ect procedure (Italian regional frequency analysis carried
out with TCEV distribution).

The results of this statistical analysis will be useful for
sustainable territory management at local or larger scales,
for the hydrologic design of structures that control storm
runoff, and also for modelling water course systems and
drainage.

It is anticipated that the research presented in this paper
will be built upon to examine the further possibilities of:

– When the oldest data available (before the 1980s), cur-
rently in paper format, have been transformed to digital
format, it will be possible to have a more complete view
of evolution and trend of precipitation distribution, with
particular focus on both heavy and extreme events.

– A comparison of the results of regional frequency anal-
ysis of extreme storm precipitation in the watershed of
Lake Maggiore based on L-moments, with a regional
analysis based on the TCEV.

The climatic characteristics of extreme precipitations
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Abstract 

With regard to extreme events, it is well documented that an intensity of about 1 mm/min 

already represents an extreme intensity. Under alpine conditions, a precipitation event with an 

intensity of 3 mm/min has occurred. Therefore the rain gauges in this region have to be able 

to measure in this and even in higher intensity ranges. This study deals with basic automated 

Tipping-Bucket Rain (TBR) gauge, and Bulk precipitation samplers, which are able to hold 

more than 95% of the cumulative rainfall that are verified within the space of the week 

without losses during the extreme events and with minimal evaporation loss. Bulk samplers 

collected more rainfall than TBR gauges in 110 of 221 extreme events analysed over the past 

10 years. In 17 extreme events an underestimation greater than 10% was evaluated. The 

objective was to single out the counting errors associated with TBR gauge, during extreme 

events, so as to help the understanding of the measured differences between instruments in the 

field. We want to determine if the automated precipitation gauge can provide a reliable and 

precise measurement of precipitation with particular interest regarding heavy and extreme 

events. 

Keywords: extreme events, tipping-bucket rain gauge, Bulk sampler, underestimation, 

reliable 
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1- Introduction 

The attention paid to accuracy and reliability in rainfall measurements is currently increasing, 

following the increased popularity of scientific and practical issues related to the assessment 

of possible extreme events trends and the mitigation of natural disasters like storms and floods 

(Lanza and Stagi 2009). 

Errors in measurements from traditional and recently developed rain gauges are reported by 

various authors (Habib et al. 2001; Calder and Kidd 1978; Marsalek 1981; Maksimović et al. 

1991; La Barbera et al. 2002; Molini et al. 2002; Siek et al. 2007), together with suitable 

proposed methods for either a posterior correction of the measured figures (Molini et al. 

2005b) or calibration of the gauges (Humphrey et al. 1997; Lombardo and Stagi 2004). 

Tipping-bucket rain gauges are the most popular recording rain gauges used by many weather 

and hydrological agencies. Tipping-bucket rain gauges are known for providing high accurate 

measurements of low to intermediate intensity rainfalls. This type of gauge produces rainfall 

data in digital form which can be readily processed by computers. However tipping-bucket 

rain gauges are known to underestimate the rainfall at higher intensities because of the loss of 

rainwater during the movement of the bucket. Then at high rain rates a tipping-bucket gauge 

may suffer from underestimation problems due to the fact that it cannot keep up with heavy 

rain during a severe extreme event (Vasvári 2005). Allis et al. (1963) compared several rain 

gauges and concluded that, although differences were sometimes statistically significant, they 

were frequently so small in absolute magnitude that they were a little practical concern. La 

Barbera et al. (2002), Molini et al. (2001) and Habib et al. (2008) investigated the propagation 

of measurement errors in the most common statistics of rainfall extremes and found that 

mechanical errors of Tipping-Bucket Rain gauges may lead to biases in the assessment of the 
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return period T of short duration and high intensity events quantified as 100% for T=100 

years. The problems associated with adjusting the dynamics of these instruments (Russo et al. 

1997) has been documented extensively. Molini et al. (2005a) present a methodology to 

minimize measuring errors particularly for heavy rainstorm events. Over the last 50 years the 

World Meteorological Organization has launched many large-scale international programs to 

develop adjustments to regular precipitation measurements. Since 2006 this organization has 

studied rain gauges and worked on checking their good functioning (WMO report n° 84 2006 

and Report n°99 2009). A 2010 work session in Helsinki (WMO – N°1064, 2010) discussed 

the necessity for evaluating the methods and instruments used for measurements in the 

meteorological field, focusing on the need to obtain correct, homogeneous data, both for the 

statistical use of extreme events or of long time series based on correct data. As such, From 1 

October 2007 to 26 June 2009, the Department for Meteorological Experimentation of the Air 

Force (ReSMA) of Vigna di Valle (Roma), in collaboration with Genoa University, conducted 

assessment of rainfall measuring instruments. 

 

The main objective of this intercomparison in the field was to assess and compare counting 

and catching errors of both catching and non-catching type of rainfall intensity gauges 

(Vuerich et al. 2009; Lanza and Vuerich, 2009), with special consideration given to high 

rainfall intensities. Further objectives were to offer advice on improvements of instruments 

and precipitation measurements. 

 

2- Precipitation measurement instruments: 

Rain gauges are classified into recording and non-recording types. The latter include 

cylindrical and ordinary rain gauges, and measurement of precipitation with these types is 
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performed manually by the observer (case of Bulk precipitation collector). Some recording 

types such as tipping-bucket rain gauges have a recorder attached to them, and remote 

readings can be taken by setting an automatic recorder at a site distant from the gauge itself to 

enable automatic observation. This study focuses on basic automated tipping-bucket rain 

gauge CAE-PMB2 and Bulk precipitation collector. 

 

- CAE-PMB2 Rain gauge: 

This type of rain gauge generates an electric signal for each unit of precipitation collected. 

The PMB2 is a tipping-bucket rain gauge with a resolution of 0.2 mm and collector area of 

1000 cm2 +- 0.5%. The automated precipitation gauge CAE-PMB2 proved to be a reliable 

and precise device of automated measurements of liquid precipitation. The CAE sensor is 

conforming to standard W.M.O. 

Technical Data of Rain gauge PMB2  

• Resolution: 0.2 mm of rain  

• Tipping-bucket with knife support  

• Rain collection vessel surface: 1000 cm²  

• Reed magnetic contact  

• Measurement range: 0-300 mm/h  

• Working temperature: 0-60 ° C  

• Size: 358x584 cm  

• Weight: 7 Kg  

 

- Bulk precipitation collector 
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The bulk collector consists of a funnel (plastic in our case) connected to a sampling bottle, 

which may be changed daily, weekly or even monthly. The main body of the collector (which 

contains the 2 litre bottle) is constructed from 195-145 mm diameter pipe depending on the 

rainfall of the area (fig. 1). This system is simple and does not require electrical power. It was 

designed to collect samples of precipitation falling as rain for chemical analysis in our 

institute but in addition it may be used as a reasonably accurate rain gauge like in our study. 

 

Figure1. Bulk precipitation Collector (Tartari et al., 2002) 

3- Context and case study description 

To check whether our automatic equipment (tipping-bucket rain gauges) was working 

effectively during specific extreme events, we confined our study to the Lake Maggiore 

region. Rainfall data from four (4) different stations was analysed over the course of 

approximately 20 years (1991-2010). 

 

Approximately 99 meteorological stations were distributed fairly homogeneously inside the 

Lake Maggiore area (Fig. 1 - chapter 1) (Ciampittiello 2009a); these were and still are used to 
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evaluate both the annual and seasonal evolution of the pluriannual rainfall trends. Some 

stations (Fig. 2) were selected to be checked for the correct functioning of the tipping-bucket 

rain gauges. Their characteristics and the data used are given in Table 1. 

 

The selected stations are located in areas which differ both in altitude and geographical 

characteristics. Two are located at low altitudes (Pallanza and Domodossola) and two at a 

medium altitude (Monte Mesma and Lunecco) (Fig. 2) compared with the area in which they 

are located (Table 1). The Domodossola station is characterised by a more continental climate 

(Ciampittielo 1999b), while the Lunecco station is located in an enclosed, narrow valley (the 

Cannobino Valley). 

Table 1 – Pluviometric stations used to check some extreme events. 
ID Stations Altitude ( m a.s.l.) Catchment area Data used 
1 Pallanza 211 Lago Maggiore 1992-2009 
2 Monte Mesma 575 Lago d’Orta 1999-2010 
3 Domodossola Rosmini 277 Lower River Toce 2000-2010 
4 Lunecco 662 Cannobino Stream 1991-2010 

 

These stations were selected not only for their ability to continuously provide data, but also 

for their range of geographic and altitudinal characteristics. 

 

However, they were selected primarily because they are close to a tipping-bucket rain gauge 

of the type PMB2 – CAE, and to a BULK rain gauge. Thus, we were able arrive at the total 

effective quantity of precipitation during the events studied. The height of the containers 

meant that more than 95% of the rainfall events occurring in a week can be retained, with no 

loss during the event and with a minimal loss through evaporation (CESI 2004). Tipping-

bucket gauge measured and recorded 0.2 mm of rain each, whereas the Bulk was emptied 

weekly at all the stations, except for Pallanza, where they were emptied at the end of each 
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rainfall event. The major events investigated are given in Table 1. Of duration between 5 

minutes and 5 days, they are converted to weekly values to make them comparable with the 

rainfall collected by the Bulk and gauges. 

 

Figure 2 – Monte Mesma. Pluviometric station, tipping-bucket rain gauge and Bulk 

4- Data Retrieval 

The continuously recorded tipping-bucket gauge data were analysed using a programme 

devised for the calculation of all intense events (every 5, 10, 15, 20, 30, 45, 60, 120, 180, 360, 

720, 1440 minutes) starting from binary data, and aggregations for 1, 2, 3, 4, 5 days. The 

rainfall data were downloaded in binary format and processed from the modules of the CAE 

stations of Pallanza, Monte Mesma, Domodossola Rosmini, and Lunecco.  

 

Binary data resulting from the memory module, were transformed into text format, then 

transferred automatically to an Excel archive at a daily, hourly and sub-hourly rate; a further, 

specially devised procedure was used for calculating and analysing short, intense periods of 

rainfall. This procedure allowed for data to be processed directly from all four station 

modules, as well as calculated the values of short, intense rainfall events for varying periods. 
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Using this system we produced tables at intervals of 5, 10, 15, 30 and 45 minutes, 1, 2, 3, 6, 

12 and 24 hours, 1, 2, 3, 4 and 5 days for the stations of  Pallanza, Monte Mesma, 

Domodossola and Lunecco for the period 1991-2010. From the different events considered, 

we checked the data and their effective duration: for example, a 5-minute event may be 

continued for longer, until we arrived at the reduction and the identification of the events in a 

single week, for each station and for the years analysed, so that we could compare these 

continuously measured data with those collected weekly in Bulk rain gauges.  

 

5- Rainfall Statistics (Methodology) 

A statistical analysis has been applied to paired variables (Tokay et al. 2008; Tokay et 

al.2010) represented by extreme rain events registered by CAE-PMB2 rain gauge and Bulk 

precipitation collector. The statistical analysis takes into account the Pearson correlation 

coefficient ρ , which is the ratio of the sample covariance of the two variables (x and y) to the 

product of the two standard deviations. It is expressed as 

[ ]1/2y)Var(x)Var(
y)Cov(x,ρ =                                       (1) 

The Pearson correlation coefficient is neither robust nor resistant (Wilks 1995). It is not 

robust because a strong but nonlinear relationship between the two extreme events may not be 

recognized. It is not considered resistant because it is relatively sensitive to a single or few 

outlying point pairs. Since a high correlation coefficient alone does not guarantee a good 

agreement between the paired variables, a low bias should be satisfactory in this situation. 

Bias is indicative of the position of paired variables with respect to the diagonal (one to one) 

line (Tokay et al. 2008), and if one of the variables is taken as a reference, the bias indicates 

the underestimation or overestimation of the other variable like in our case of study. If the 

 
Helmi Saidi 

Extreme Storm Precipitations Events in a Changing Climate: How to Define and Analyze  
(Case of the Lake Maggiore Watershed) 

Ph.D Thesis in Natural Sciences – University of Sassari, 2012 – XXIV cycle 
 

34



Chapter 2 

points were scattered at both sides of the one-to-one line, then the bias would be small but this 

does not guarantee good agreement in the absence of a high correlation coefficient. In this 

study, the bias β  between the two variables is defined as: 

∑
=

−=
n

1k
kk )y(x

n
1β                                               (2) 

Where n is the number of paired variables (number of events). The standard deviation of the 

difference (SD) between the two paired of precipitation value provides a measure of the 

agreement between the two in terms of their distribution. Low standard deviation is one of the 

indications for the agreement between the considered paired of variables. The SD is expressed 

as: 

y)2Cov(x,Var(y)Var(x)y)SD(x −−=−                     (3) 

We consider one of the instruments as a reference (Bulk collector), then we can calculate the 

measurement error of the second instrument (CAE-PMB2 rain gauge). We employed absolute 

bias to quantify the measurement error of the CAE-PMB2 instruments. The bias in Eq. (2) 

equally weights all the paired variables. Extreme rainfall events with higher accumulation are 

of large significance, as they can result in flooding (Tokay et al., 2008). The weighted 

absolute bias wβ  is then calculated as 

∑
=

−=
n

1k
kkkw yxwβ                        (4) 

Where wk is the weighting function and is calculated based on the reference instrument 

∑
=

= n

1k
k

k
k

x

x
w                                      (5) 

Unlike the correlation coefficient, the statistics used in this package are not normalized and 

carry the units of the variables (mm of precipitation in our case). Although the magnitude of 
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the mean absolute difference between the two variables is significant in rainfall, the percent 

absolute bias, a normalized quantity, is widely used in rainfall statistics. If variable x is 

considered to be a reference, the percent absolute bias percentβ  becomes: 

∑

∑

=

=

−
= n

1k
k

n

1k
kk

percent

x

yx
β                        (6) 

The criterions to judge the degree of agreements between the PMB2_CAE rain gauge and 

Bulk collector are: 

• Bias < 5%       Excellent 

•  5% < Bias < 10%  Very Good 

• 10% < Bias < 15%  Good 

• 15% < Bias < 20%  Reasonable 

• 20% < Bias       Poor 

 

6- Results 

6- 1-Dispersion and relative deviation 

Tipping-bucket rain gauges identified 63 extreme events at the Pallanza station, 49 events at 

the Monte Mesma station, 55 events at the Domodossola station, and 54 events at the Lunecco 

station. We then compared the data measured by the different rain gauges available, for each 

event and for each station, for a total of 221 events.  

 

This comparison revealed that of the total of 221 events, there were 110 (50%) in which the 

Bulk collectors recorded a greater quantity of rain than was recorded by the tipping-bucket 

gauges; this occurred specifically in 24 events at Domodossola and Lunecco, 28 at Pallanza 
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and 34 at Monte Mesma. It is hypothesized that the Monte Mesma station received a higher 

frequency of extreme events than the other stations analysed. 

 

Figure 3 shows all the events at all stations during which the Bulk collectors recorded greater 

quantities of rain than the tipping-bucket gauges; this trend was more marked after 2002.  
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Figure 3. Percent deviation of the quantity of rainfall measured during intense events by Bulk collectors 

compared with PMB2 – CAE tipping-bucket gauges. 
 

The graph shows that most events analysed had between 0 and 10% deviation (81 global 

events, or 76%); 11 events showed a deviation between 10 and 15%, with four events at the 

Lunecco station alone; 3 events had a deviation between 15 and 20%, of which 2 were at the 

Lunecco station, and 3 events recorded at Pallanza, Monte Mesma and Domodossola had a 

deviation between 25 and 30% although these were recorded in different years. 

 

As for the intensity of the events recorded, this datum can be obtained only from the tipping-

bucket gauges, and is therefore subject to underestimation (Tropeano and Turconi 2004; 

Turconi et al. 2008). Thus, it must be explored further. In summary, according to the events 

analysed up to now, the greatest deviation between the two different rainfall measurements 
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occurred mainly at Domodossola, followed by Monte Mesma and Lunecco. The Pallanza 

station had a higher number of deviations but with percent values lower than those at the other 

stations. The data can be analysed on monthly and annual basis. 

- Monthly deviations 

The relative deviation of tipping-bucket rain gauges was negative across all stations, which 

implies that this instrument underestimated precipitation. (Fig. 4). Relative deviations of 

Monte Mesma, Domodossola and Lunecco show the highest underestimation of measured 

precipitation, even up to 20 %. Pallanza raingauge deviations are uniform and below 10% 

with only one exception in July (the lowest monthly amount of extreme events in Pallanza) 

 
Figure 4. Monthly relative deviations of different stations rain gauges to the Bulk precipitation collector. 

 
- Annual deviations 

Figure 5 presents annual relative deviation. As with the monthly data, annual data also shows 

negative deviation, further supporting the fact that tipping-bucket rain gauge underestimates 

precipitation. Again Domodossola, Monte Mesma and Lunecco show the highest relative 

deviations. 
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Figure 5 Annual relative deviations of different stations rain gauges to the Bulk precipitation collector. 

 
- Dispersion of relative deviation: 

The analysis of the range of the relative deviations is shown in Figure 6. Ends of the bar 

represent mean values ±1 standard deviation. Generally higher dispersion of the relative 

deviations is seen in July and August: this is likely due to lower amounts of precipitation in 

these months. 
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Figure 6 . Dispersion (mean +/- 1 stdev) of relative deviations of different rain gauges (a) Pallanza (b) Monte 
Mesma (c) Lunecco (d) Domodossola 
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6-2. Rainfall Statistics package 

The results of rainfall statistics package are presented in Figure 7, 8, 9 and 10 for the four 

stations of this study. 
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Figure 7. Comparison of rain events Pallanza  

 
Figure 8. Comparison of rain events Monte Mesma 
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Figure 9. Comparison of rain events Domodossola 
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Figure 10. Comparison of rain events Lunecco 

 

Considering the event-by-event comparisons for the station of Pallanza, the two different 

gauges, PMB2_CAE and Bulk, had excellent agreement with high correlation (fig. 7) and had 

a low absolute percent bias of 4.5%. 

 

Despite the underestimation of extreme rainfall events registered by the PMB2_CAE gauges 

of Monte Mesma, Domodossola and Lunecco stations (fig. 4 and 5) the gauges were still 

highly correlated (figure 8, 9 and 10). 
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Statistically speaking, the stations of Pallanza, Monte Mesma, Domodossola and Lunecco 

proved a good agreement between the extreme precipitation values collected by the two 

different instruments. This shouldn’t obscure the fact that difference in measured catches were 

apparent and in some cases with very high magnitude. The bias induced by systematic 

mechanical errors of tipping-bucket gauge (PMB2_CAE) is usually neglected in the 

hydrological practice, based on the assumption that it has little influence on the total recorded 

rainfall depth. Since the error increases in the case of extreme events, the assumption is not 

acceptable for the assessment of rainfall in hydrological applications. 

 

7. Conclusions 

In this study, it was generally found that CAE-PMB2 Rain gauge underestimated 

precipitation. Due to relative deviation comparison it could be said that rain gauges deployed 

in Domodossola and Monte Mesma showed the highest underestimation of measured 

precipitation. The registrations of these two stations showed the least regularity. Uniformity in 

registration was found for Pallanza rain gauge and its registration was the closet to Bulk 

precipitation collector may be because the latter is emptied at the end of each rainfall event. 

 

The high number of intense events – 110 – which were underestimated (on average by about 

7%) by the tipping-bucket rain gauges, makes it necessary to perform further research into the 

methods of measuring rainfall data, especially for extreme events. The importance of 

measuring extreme events using different methods at the same time and in different areas 

derives from the requirement to be able to provide correct, accurate measurements on which 

to base models, predictions of phenomena, and critical thresholds. Further comparison and 

investigations will be done. 
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This paper is intended to emphasize the intention of the scientific community to apply the 

results of studies in a specialised, concrete examination of the data, which can provide a 

reliable reconstruction of precipitation; it is also designed to highlight a critical evaluation of 

methods used to measure extreme data.  

 

It is only through evaluations of this kind of data, and by a serious exploration of the 

situation, that we can further model specific phenomena, which are closely connected with 

meteo-pluviometrical events. 

 

Despite the underestimation of extreme events by the PMB2_CAE gauge, a strong 

relationship between the two gauges in this study raised the authors’ confidence to consider 

that other investigations and intercomparison of more than two different instruments is 

necessary and should be done in the future. 

 

It’s concluded that, while the measured values of precipitation during extreme event from the 

PMB2_CAE tipping-bucket gauge in the watershed of Lake Maggiore are satisfactory, the 

recorded values may not be reliable. 
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Trend in long term series of extreme rainfall events 
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Abstract 

 

Intensification of heavy precipitation foreseen in climate change studies has become a 

public concern, but it has not yet been examined well with observed data, particularly 

with data at short temporal scale like hourly and sub-hourly data. 

In this research we digitalized sub-hourly precipitation recorded at the stations of 

Vercelli (since 1927), Bra (since 1933), Lombriasco (since 1939) and Pallanza (since 

1956) in order to investigate historical change in extreme short precipitations. 

Besides seasonal and yearly maximum of precipitation we adopted two indices of 

extreme rainfall: the number of events above an extreme threshold (extreme frequency) 

and the average intensity of rainfall from extreme events (extreme intensity). 

The results showed a statistically significant increase of the extreme frequency index 

and spring maximum precipitation for the station of Bra and Lombriasco. The extreme 

intensity index presented by the mean of events above 95th percentile is decreasing for 

Bra regarding hourly precipitation and increasing for Lombriasco regarding 20 minutes 

extreme events. For the station of Vercelli we noticed only a positive trend of the 

number of extreme events for hourly precipitation. 
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Thereby it cannot be said that recent sub-hourly and hourly precipitation has become 

unprecedently strong or frequent for all the stations and for all the extreme events 

duration. 

 

Key words: trend, sub-hourly precipitation, extreme frequency, extreme intensity 

 

1 Introduction: 

Trend detection is an active area of interest for both hydrology and climatology in order 

to investigate climate changes scenario and improve climate impact research. The 

assumption of stationarity seems to be invalid as a result of anthropogenic influence and 

the natural variability of the climate system (Karpouzos et al. 2010). Therefore, trend 

detection in precipitation time series is crucial for planning regional water resources 

management and civil defence. 

 

Climate simulations indicate that a warmer climate could result in an increase in the 

proportion of precipitation occurring in extreme events (karl et al. 1995). It seems to be 

generally accepted that the expected climatic changes are not necessarily associated 

with a higher intensity of extreme values, but rather with a higher frequency of the 

occurrence of extreme values. Recent studies (Easterling et al. 2000) analyzed the 

changes in observed heavy precipitation, based on daily precipitation, resulting in the 

detection of an increase in heavy precipitation at many parts of the world, with a 

decrease at some parts of the world. Due to the limitation of available digitalized 

records, as described above, daily precipitation has been the major material for analysis 

so far. 
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Some studies about the variation of heavy and extreme events were performed for the 

USA (Karl et al. 1995; Karl and Knight, 1998; Trenberth, 1998; Kunkel et al., 1999), 

Japan (Iwashima and Yamamoto, 1993), eastern and northeastern Australia (Suppiah 

and Hennessy, 1998; Hennessy et al. 1999; Plummer et al. 1999), South Africa (Mason 

et al. 1999), the UK (Timothy et al. 199, Osborn et al. 2000) and Italy (Brunetti et al., 

2004, Brunetti et al., 2006). 

 

Karl et al. (1995) and Karl and Knight (1998) observed a significant positive trend in 

the frequency of extreme rainfalls (greater than 50 mm per day) over the last few 

decades in the USA. For Australia, Suppiah and Hennessy (1996, 1999) showed a 

significant increase in the 90th and 95th percentiles, while Hennessy et al. (1999) and 

Plummer et al. (1999) showed increases in the 99th percentile. Iwashima and 

Yamamoto (1993) found that, in Japan, more stations recorded their highest 

precipitation events in recent decades.  Brunetti et al. (2004, 2006) confirmed a strong 

decrease in precipitation trends over Italy, with a rainfall reduction of about 135 mm in 

the southern regions during the last 50 years. 

 

Groisman et al. (1999) performed a study on heavy precipitation over a wide area 

comprising Canada and Norway (for the period 1900–1995), the USA and Australia 

(spanning the period 1910–1999), the Ex-former Soviet Union (1936–1994), Mexico, 

China, Alaska and Poland (whose data are available for the post-World War II period). 

They found an increase both in summer rainy days and in heavy precipitation frequency 

over the past century for the USA, Norway and Australia, but they found no significant 
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trend for any other country where the series are shorter and/or have many missing data. 

In most of the analysed areas, the positive trend observed in rain intensity is generally 

associated with an increase in total precipitation. Groisman et al. (1999) studied the 

relationship between the increase in total precipitation and the frequency of heavy rain 

events.  

 

Typical temporal scales of precipitation phenomena may suggest us to analyze 

precipitation records of shorter resolution than a day. Kanae et al, (2004) digitalized and 

investigated the hourly precipitation record since 1890 measured at the Tokyo 

observatory and proved an upward trend in heavy precipitation over Japan. They report 

that "many hourly heavy precipitation events (above 20 mm/hour) occurred in the 1990s 

compared with the 1970s and the 1980s”. 

 

In Alpine region the evidence is growing stronger that climate warming is accompanied 

by an increase frequency of intense precipitation events (Frei and Schär 1998, Frei and 

Schär 2000). Some previous studies (Saidi et al. 2012) took the advantage of utilizing 

sub-daily precipitation data for analysis of regional changes in precipitation in the 

watershed of Lake Maggiore where the Alps are the cause heavy and extreme events. 

The periods of the utilized data are generally limited to a few decades due to the 

availability of digital data. Recent progresses on digitalization method of old climatic 

data point out to us the importance of studying the changes in hydrological cycle with a 

longer record. 
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The purpose of this work is to investigate the variability of precipitation data collected 

in 4 different sites in the Piedmont region -Italy. The historical extreme rainfall series 

with high-resolution from 5 minutes to 30 minutes and above: 1, 2, 3, 6, and 12h 

collected at different gauges have been computed to perform a statistical analysis to 

determine whether the recent changes in frequency and magnitude of the rainfall 

extremes can be considered statistically significant. Trends are analysed both at the 

annual and at the seasonal scale. The implications of changes at the seasonal scale are 

particularly significant for water resource management processes related to seasonal 

cycles. 

 

2 Data: 

 

Understanding climate change demands attention to change in climate variability and 

extremes, but knowledge of the behaviour of these variables has been limited by the 

unavailability of long-term high-resolution data. The extending spread of new 

technological techniques over meteorological stations has made it possible to have high 

temporal resolution data (i.e. hourly and sub-hourly) and to collect them automatically. 

 

Very few such stations are operated before 1980. Hence the time period available with 

sub-daily rainfall totals is quite short for conducting analyses on long-term changes we 

decided to transform the oldest data available, currently in paper format, to digital 

format. It will be possible to have a more complete view of evolution and trend of 

extreme events. 
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Given that still now we have only one station (Pallanza), in our study area (Lake 

Maggiore watershed), with sufficient data record length to justify a trend detection 

study, so we decided to add three other stations situated in Piedmont region: Vercelli, 

Bra and Lombriasco to verify and calibrate better the model analysis of long time series 

of extreme events. All the station are situated in plain and good allocated in the flat total 

area. Details of the location and the period of observation have been reported in table 1 

 

Table 1. Main characteristics of meteorological station: 
Location Station name Elevation 

m a.s.l UTM_X UTM_Y 
Observation 

period 
Year 

Pallanza 211 465025 5086015 1956-2003 
Bra 290 409124 4950561 1933-2003 
Vercelli 135 450886 5019210 1927-2003 
Lombriasco 241 392509 4966637 1939-2003 
 
As a matter of fact, several software dedicated to data digitization are available which 

allow the transcription of the paper-recorded data onto text files, after the acquisition of 

the tracks by a scanner as an image file (figure 1). 

 

We used two kind of software, called Plot2data (Leonardi et al. 2006) and GetData 

Graph Digitizer (http://getdata-graph-digitizer.com), dedicated to the completely 

automatic reading of scanned images of records of precipitation. The same software 

provides the immediate storage of the resulting data on text files. 

 

The conservation of the cartograms represents a critical factor. In fact, as years pass by, 

the paper gets dusty, spoiled and worm-eaten, while the tracks fade and become less and 

less readable, so that the longer is the delay in digitizing the cartograms, the more 
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difficult is the retrieval of the recorded data and of the meteorological information 

stored therein.  

 

The strip chart is converted into a file by means of a scanner as a true-colour (24 bit) 

image with a resolution of 150 to 200 depending on the size and quality of the 

cartogram. 

 
 

 
.Figure 1. Exemple of rain gauge recorder chart 

The tracks impressed on graph paper, once transformed into image files with the use of 

a scanner, are converted rapidly and accurately into numeric data files of a format 

chosen by the useradopting sampling times as low as 5 minutes.  

 

By means of this software we obtained observations every 5 minutes interrupted by a 

brief gap every Mondays, corresponding to the time taken by the manual procedure 

necessary to replace the paper form on the rotating drum. 

 

Then it’s possible to recover within reasonable times the vast information stored in the 

voluminous paper archive from chosen stations: Pallanza, Lombriasco and Vercelli. 

Rainfall data from the stations of Bra are manually extracted from the charts. In the last 

case (Bra) the highest temporal resolution for the manually work is 1 h. 
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Quality check was applied to the digitalized dataset such as calculating daily totals from 

the dataset and comparing them with another independent daily precipitation dataset. 

The above procedure was carried out for the prevention of mistype. 

 

3 Methods: 

 

The definition of what constitutes an extreme event is debated. An extreme event may 

be selected based on frequency, intensity or threshold exceedance and physical expected 

impacts (Ntegeka and Willems, 2008). It depends on the intended use in design or 

future planning. Afterwards we explained which kind of indices we adopted in this 

study. 

 

3.1 Indices of climate extremes: 

 

In addition to yearly and seasonal maxima, two indices of extreme rainfall (Haylock and 

Nicholls, 2000) were calculated for each year in the period: the number of events above 

the long-term 95th percentile, referred to as the extreme frequency and the average 

intensity of rain falling in the highest events, referred to as the extreme intensity. 

 

The extreme frequency index examines changes in the number of extreme events. In 

calculating this index, the authors selected to use the mean 95th percentile (which varies 

for each station), rather than following the method of Karl et al. (1995) involving a 

fixed threshold for all stations. A fixed threshold is impractical for our study area with a 

high spatial variation in rainfall intensity. The index is calculated by counting the 
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number of events in the year with intensities above this threshold. This approach is 

similar to that used by Karl and Knight (1998) who considered changes in frequencies 

or probability of events above specified long-term percentiles. They proved that 

increases of total precipitation are strongly affected by increases in both frequency and 

intensity of heavy extreme precipitation events and the proportion of total annual 

precipitation derived from heavy and extreme precipitation events have increased 

relative to more moderate precipitation (not heavy precipitation). 

 

The extreme intensity index incorporates changes in all events above the upper 

percentile. This index was calculated using two different methods: averaging the highest 

four events for each year and averaging all events above the long-term 95th percentile. 

 

3.2 Mann-Kendall test: 

 

All trends have been calculated using the test statistic Mann-Kendall test. Where a trend 

is indicated as ‘significant’, it has at least 95% significance using this test. 

 

Mann–Kendall test (Kendall, 1962; Sneyers, 1990) is based on the comparison between 

the observed number of increases and decreases (jumps) and the values expected from 

random series. The occurrence of a trend is suggested if the null hypothesis of no trend 

is rejected when the level of significance is below a given threshold (here set at value α 

= 0.05). 
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In this test, for each element yi the number ni of element yj preceding it (i>j) is 

calculated such that yi>yj. 

The test statistic t is then given by the equation: 

 
∑=
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And its distribution function, under the null hypothesis is asymptotically normal, with 

mean and variance: 
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In particular, if the probability 1α  is determined using a standard normal distribution 

table such that 
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The null hypothesis is accepted of rejected at the level 0α , depending on whether we 

have 1α > 0α  or 1α < 0α . 

When the values of are significant, an increasing or decreasing trend can be 

observed depending on whether >0 or <0 
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3.3 Peaks-Over-Threshold: 

 

One of commonly used extreme value sampling is to pick the highest value per year, 

hence it generate annual maximum series whose sample size is identical with the 

number of years (Ny). It does not include all extreme values because any second highest 

would be dropped out of Ny samples. The other procedure is called Peaks-Over-

Threshold (POT). 

 

In this case extremes are extracted from a series by applying a threshold (in section 3.1 

the threshold was 95% long term percentile), which implies that the analysis is valid 

only for those values above a certain return period. The selection of the threshold is, 

however, subjective. There is no universal technique used for the selection of the 

threshold. Lang et al. (1999) proposed that the selection of the threshold should be 

based on the distribution of the Peaks-Over-Threshold values and the hypothesis of the 

independency. Pickands (1975) stated that independent extremes extracted from a 

univariate series after applying a threshold can be fitted to a Generalized Pareto 

distribution (GPD). 

 

Therefore, for practical applications, the threshold needs to be high enough to ensure 

that the extremes can be fitted to the extreme value distribution. 

 

In the present study, the independency criterion is based on a procedure for extracting 

Peaks-Over-Threshold (POT) values for rainfall which is similar to that of extracting 

Peaks-Over-Threshold values for flows (Ntegeka and Willems, 2008). The 
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independency criterion for rainfall events states that two consecutive events are 

independent if the occurrence of one event does not affect the occurrence of the other 

event. Ntegeka and Willems (2008) proposed for extreme value analysis based on 

rainfall series a minimum of 12 h inter-event time considering two events happening 

within the same day or night as one event. 

 

The theoretical background of the POT method is based on the following fact: Excesses 

over a high threshold u can be modelled by a generalized Pareto distribution with the 

following distribution function: 

( )
ξ

βξ β
ξ

1

, 11
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=
xxG     if  0≠ξ  
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The procedure consists of choosing the subsequence { Xj } from the basic sequence that 

exceeds a threshold u, calculating the values { X j -u } for those values that exceed the 

threshold u and estimating parameters ξ and β either by the L-moment method presented 

in Chapter 1. 

 

4- Results and discussion 

- Mann-Kendall test: 

As mentioned above we tried to adopt several indices for heavy precipitation analysis, 

since there is not an only index to clarify the changes in the time series of heavy 

precipitation. Seasons were defined according to the standard meteorological definition: 

winter (DJF), spring (MMA), summer (JJA), autumn (SON). 
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A summary of the trends in extreme indices are summarized in table 2, 3 and 4 for all 

the stations.  

It can be stated that the frequency of hourly heavy precipitation in case of the station of 

Vercelli is increasing (figure 2). For all the other series regarding this station the results 

showed no statistically significant (table2).  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. 5 year moving average of extreme frequency index for Vercelli (1hour 
precipitation) and residuals. 
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Of note is that, although statistically not significant, the test values, regarding many 

aggregation levels less than 1 hour (10min, 15min, 2min and 30min), indicated an 

increase of intensity and a decrease of frequency of this kind of extreme events 

registered in the station of Vercelli. 

Table 3 and 4 show an increase in the extreme frequency index regarding the stations 

Bra (figure 3) and Lombriasco. 
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Figure 3. 5 year moving average of extreme frequency index for Bra (1, 2, 3, and 6 hour 
precipitation) 
 
The mean of events above 95th percentile (extreme intensity) decreased in the case of 

heavy hourly precipitation for the station of Bra (figure 4) 
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Figure 4. 5 year moving average of extreme intensity index for Bra (mean of events 
over 95th percentile:1 hour precipitation ) 
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These trends imply significance change of the mean of the highest four event (extreme 

intensity) and the yearly maximum precipitation with duration of 12hours for the station 

of Bra (figure 5).  

Frequently the trends are most similar between the index calculated from the four  

highest events and the events exceeding the long-term 95th percentile. The trend is 

generally strongest when the index is calculated using the average of events above the 

95th percentile. 
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Figure 5. 5 year moving average of mean of highest 4 events and yearly maximum 
precipitation for Bra (12 hour precipitation) 
 

In most cases, the positive sign of the trend in the extreme intensity index matches the 

trend in spring maximum precipitation (figure6). 

 

Changes and increase of extreme precipitation frequency coincide with decrease of 

storm intensity in the case of heavy hourly precipitation registered in the station of Bra. 

This may pose a number of problems for water resource managers. 
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Figure 6. 5 year moving average of spring maximum precipitation for Bra (3 and 6 hour 
precipitation) 
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Table 2: Result of the application of Mann-Kendal test to Extreme precipitation indices for the station of Vercelli 
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Site duration index Kendall's tau Significance level  
(Upper threshold :0.05) 

Series with significant 
trend 

Vercelli 5min WINTER  -0.014 0.880 NS 
    SPRING 0.074 0.394 NS 
    SUMMER  0.121 0.167 NS 
    AUTUMN  0.013 0.882 NS 
    YEARLY MAX 0.138 0.112 NS 
    extreme frequency 0.022 0.799 NS 

    
mean of events above  
95th percentile 0.042 0.626 NS 

    
extreme intensity 

mean of highest 4 events 0.108 0.209 NS 
Vercelli 10min WINTER  -0.014 0.883 NS 
    SPRING 0.030 0.728 NS 
    SUMMER  0.120 0.172 NS 
    AUTUMN  0.056 0.516 NS 
    YEARLY MAX 0.137 0.116 NS 
    extreme frequency -0.018 0.835 NS 

    
mean of events above  
95th percentile 0.106 0.219 NS 

    
extreme intensity 

mean of highest 4 events 0.115 0.183 NS 
Vercelli 15min WINTER  -0.051 0.578 NS 
    SPRING 0.095 0.271 NS 
    SUMMER  0.040 0.652 NS 
    AUTUMN  0.030 0.731 NS 
    YEARLY MAX 0.068 0.434 NS 
    extreme frequency -0.001 0.995 NS 

    
extreme intensity 

mean of events above  0.073 0.401 NS 
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95th percentile 
    mean of highest 4 events 0.086 0.319 NS 
Vercelli 20min WINTER  -0.083 0.359 NS 
    SPRING 0.087 0.316 NS 
    SUMMER  0.034 0.695 NS 
    AUTUMN  0.061 0.488 NS 
    YEARLY MAX 0.053 0.539 NS 
    extreme frequency -0.025 0.780 NS 

    
mean of events above  
95th percentile 0.081 0.348 NS 

    
extreme intensity 

mean of highest 4 events 0.070 0.417 NS 
Vercelli 30min WINTER  0.005 0.963 NS 
    SPRING 0.044 0.618 NS 
    SUMMER  0.068 0.434 NS 
    AUTUMN  0.027 0.762 NS 
    YEARLY MAX 0.061 0.480 NS 
    extreme frequency -0.055 0.533 NS 

    
mean of events above  
95th percentile 0.126 0.146 NS 

    
extreme intensity 

mean of highest 4 events 0.057 0.513 NS 
Vercelli 1h WINTER  0.015 0.846 NS 
    SPRING 0.054 0.495 NS 
    SUMMER  0.017 0.833 NS 
    AUTUMN  0.080 0.307 NS 
    YEARLY MAX -0.014 0.857 NS 
    extreme frequency 0.163 0.043 increase 

    
mean of events above  
95th percentile 0.096 0.218 NS 

    
extreme intensity 

mean of highest 4 events 0.042 0.595 NS 
Vercelli 2h WINTER  0.017 0.829 NS 
    SPRING -0.002 0.986 NS 
    SUMMER  0.040 0.607 NS 
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    AUTUMN  0.153 0.050 NS 
    YEARLY MAX 0.034 0.666 NS 
    extreme frequency 0.083 0.300 NS 

    
mean of events above  
95th percentile 0.050 0.521 NS 

    
extreme intensity 

mean of highest 4 events 0.079 0.310 NS 
Vercelli 3h WINTER  0.036 0.644 NS 
    SPRING 0.007 0.929 NS 
    SUMMER  0.004 0.965 NS 
    AUTUMN  0.148 0.059 NS 
    YEARLY MAX 0.048 0.538 NS 
    extreme frequency 0.037 0.652 NS 

    
mean of events above  
95th percentile 0.066 0.398 NS 

    
extreme intensity 

mean of highest 4 events 0.046 0.559 NS 
Vercelli 6h WINTER  0.021 0.798 NS 
    SPRING 0.020 0.798 NS 
    SUMMER  0.069 0.391 NS 
    AUTUMN  0.019 0.816 NS 
    YEARLY MAX 0.066 0.401 NS 
    extreme frequency 0.078 0.347 NS 

    
mean of events above  
95th percentile -0.012 0.891 NS 

    
extreme intensity 

mean of highest 4 events 0.071 0.365 NS 
Vercelli 12h WINTER  0.009 0.913 NS 
    SPRING 0.066 0.417 NS 
    SUMMER  0.044 0.733 NS 
    AUTUMN  0.099 0.224 NS 
    YEARLY MAX 0.094 0.230 NS 
    extreme frequency 0.138 0.122 NS 

    extreme intensity mean of events above  
95th percentile -0.168 0.160 NS 
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    mean of highest 4 events 0.102 0.191 NS 
NS: non significant 
In bold: significant level grater than 95% 

 
Table 3: Result of the application of Mann-Kendal test to Extreme precipitation indices for the station of Bra 
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Site duration indices values of u Significance level  
(Upper threshold :0.05) Series with significant trend 

Bra 1h WINTER  -0.157 0.062 NS 
    SPRING 0.122 0.142 NS 
    SUMMER  -0.088 0.288 NS 
    AUTUMN  -0.027 0.752 NS 
    YEARLY MAX -0.034 0.686 NS 
    extreme frequency 0.195 0.020 increase 

    
mean of events above 
95th percentile -0.212 0.010 decrease 

    
extreme intensity 

mean of highest 4 events -0.029 0.729 NS 
Bra 2h WINTER  0.019 0.828 NS 

    SPRING 0.138 0.096 NS 
    SUMMER  0.084 0.319 NS 
    AUTUMN  0.069 0.410 NS 
    YEARLY MAX 0.055 0.507 NS 
    extreme frequency 0.206 0.015 increase 

    
mean of events above 
95th percentile -0.020 0.816 NS 

    
extreme intensity 

mean of highest 4 events 0.095 0.250 NS 
Bra 3h WINTER  -0.032 0.704 NS 

    SPRING 0.210 0.011 increase 
    SUMMER  0.085 0.305 NS 
    AUTUMN  0.059 0.475 NS 
    YEARLY MAX 0.060 0.468 NS 
    extreme frequency 0.238 0.005 increase 

    
extreme intensity 

mean of events above  -0.049 0.569 NS 
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95th percentile 
    mean of highest 4 events 0.110 0.183 NS 

Bra 6h WINTER  0.047 0.593 NS 
    SPRING 0.210 0.012 increase 
    SUMMER  -0.026 0.805 NS 
    AUTUMN  0.142 0.085 NS 
    YEARLY MAX 0.122 0.143 NS 
    extreme frequency 0.231 0.010 increase 

    
mean of events above 
95th percentile 0.065 0.492 NS 

    extreme intensity mean of highest 4 events 0.230 0.005 NS 
Bra 12h WINTER  0.147 0.138 NS 

    SPRING 0.204 0.025 increase 
    SUMMER  -0.047 0.795 NS 
    AUTUMN  0.108 0.226 NS 
    YEARLY MAX 0.211 0.012 increase 
    extreme frequency 0.224 0.022 NS 

    
mean of events above 
95th percentile -0.051 0.723 NS 

    
extreme intensity 

mean of highest 4 events 0.292 0.0005 increase 
NS: non significant 
In bold: significant level grater than 95% 

 
Table 4: Result of the application of Mann-Kendal test to Extreme precipitation indices for the station of Lombriasco 

Site duration index Kendall's tau 
Significance level  
(Upper threshold :0.05) 

Series with significance 
trend 

Lombriasco 5min WINTER  -0.072 0.536 NS 
    SPRING -0.090 0.389 NS 
    SUMMER  0.008 0.941 NS 
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    AUTUMN  0.099 0.335 NS 
    YEARLY MAX -0.002 0.993 NS 
    extreme frequency 0.146 0.152 NS 

    
mean of events above 95th  
percentile 0.092 0.368 NS 

    
extreme intensity

mean of highest 4 events 0.065 0.527 NS 
Lombriasco 10min WINTER  -0.093 0.427 NS 
    SPRING -0.041 0.703 NS 
    SUMMER  0.064 0.533 NS 
    AUTUMN  0.103 0.313 NS 
    YEARLY MAX 0.100 0.331 NS 
    extreme frequency 0.127 0.212 NS 

    
mean of events above 95th  
percentile 0.121 0.240 NS 

    
extreme intensity

mean of highest 4 events 0.146 0.152 NS 
Lombriasco 15min WINTER  -0.170 0.107 NS 
    SPRING -0.032 0.762 NS 
    SUMMER  0.114 0.267 NS 
    AUTUMN  0.096 0.349 NS 
    YEARLY MAX 0.167 0.098 NS 
    extreme frequency 0.157 0.125 NS 

    
mean of events above 95th  
percentile 0.112 0.276 NS 

    
extreme intensity

mean of highest 4 events 0.146 0.152 NS 
Lombriasco 20min WINTER  -0.033 0.782 NS 
    SPRING 0.034 0.747 NS 
    SUMMER  0.070 0.491 NS 
    AUTUMN  0.093 0.364 NS 
    YEARLY MAX 0.182 0.074 NS 
    extreme frequency 0.128 0.215 NS 

    extreme intensity mean of events above 95th  
percentile 0.213 0.038 increase 
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    mean of highest 4 events 0.155 0.126 NS 
Lombriasco 30min WINTER  -0.063 0.588 NS 
    SPRING 0.111 0.291 NS 
    SUMMER  0.080 0.436 NS 
    AUTUMN  0.046 0.653 NS 
    YEARLY MAX 0.185 0.069 NS 
    extreme frequency 0.085 0.413 NS 

    
mean of events above 95th  
percentile 0.104 0.311 NS 

    
extreme intensity

mean of highest 4 events 0.131 0.199 NS 
Lombriasco 1h WINTER  0.018 0.847 NS 
    SPRING 0.094 0.276 NS 
    SUMMER  0.054 0.535 NS 
    AUTUMN  0.059 0.494 NS 
    YEARLY MAX 0.147 0.088 NS 
    extreme frequency -0.055 0.533 NS 

    
mean of events above 95th  
percentile 0.126 0.146 NS 

    
extreme intensity

mean of highest 4 events 0.057 0.513 NS 
Lombriasco 2h WINTER  0.027 0.765 NS 
    SPRING 0.082 0.342 NS 
    SUMMER  0.091 0.289 NS 
    AUTUMN  -0.012 0.894 NS 
    YEARLY MAX 0.169 0.050 NS 
    extreme frequency 0.146 0.098 NS 

    
mean of events above 95th  
percentile 0.058 0.502 NS 

    
extreme intensity

mean of highest 4 events 0.131 0.129 NS 
Lombriasco 3h WINTER  0.043 0.632 NS 
    SPRING 0.182 0.034 increase 
    SUMMER  0.059 0.504 NS 
    AUTUMN  0.060 0.487 NS 
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    YEARLY MAX 0.126 0.143 NS 
    extreme frequency 0.228 0.010 increase 

    
mean of events above 95th  
percentile 0.070 0.417 NS 

    
extreme intensity

mean of highest 4 events 0.161 0.060 NS 
Lombriasco 6h WINTER  0.075 0.413 NS 
    SPRING 0.311 0.0003 increase 
    SUMMER  -0.154 0.118 NS 
    AUTUMN  0.054 0.531 NS 
    YEARLY MAX 0.164 0.057 NS 
    extreme frequency 0.241 0.0090 increase 

    
mean of events above 95th  
percentile -0.001 0.990 NS 

    
extreme intensity

mean of highest 4 events 0.163 0.057 NS 
Lombriasco 12h WINTER  -0.030 0.769 NS 
    SPRING -0.016 0.862 NS 
    SUMMER  -0.017 0.965 NS 
    AUTUMN  -0.137 0.155 NS 
    YEARLY MAX 0.040 0.647 NS 
    extreme frequency 0.086 0.395 NS 

    
mean of events above 95th  
percentile 0.043 0.747 NS 

    
extreme intensity

mean of highest 4 events 0.061 0.483 NS 
     NS: non significant 
     In bold: significant level grater than 95% 
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- Peaks-Over-Threshold series: 

 

In this study we apply the POT model to rainfall data collected in the station of Vercelli 

(the longest historical time series available: 1927-2003) in order to investigate changes 

in growth curve in the last 20 years comparing the whole long time series which imply 

temporal changes in extreme storm precipitation (growth curves are examined with L-

moments like in chapter 1). The peak-over-threshold extremes are extracted using R 

software (http://www.r-project.org/). 

 

As this is a time series, we must select independent events above a threshold. First, we 

fix a relatively low threshold to extract more events. Thus, some of them are not 

extreme but regular events. This is necessary to select a reasonable threshold for the 

asymptotic approximation by a GPD. 

 

From figure 7 a threshold value of 10mm should be reasonable for series of 1 hour 

precipitation. The selected threshold must be low enough to have enough events above 

it to reduce variance while not too low as it increases the bias. Thus, we can now re-

extract events above the threshold 10mm. 
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Figure 7. Threshold selection for 1 hour precipitation (Vercelli) 

Figure 8 shows graphic diagnostics for the fitted model. It can be seen that this model 
seems to be appropriate. 
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Figure 8. Graphic diagnostics for 1 hour precipitation (Vercelli) 
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Table 5 shows the selected thresholds for the stations of Vercelli. These values are 

starting point for calculating POT series for every timescale. 

 

Table5. Example of threshold above which POT series were derived: Vercelli 
Timescale (h) 1 2 3 6 12 
Threshold (mm) 10 13 15 25 34 

 

POT series extracted from precipitation data collected in the station of Vercelli with 

high resolution (5, 10, 15, 20, 30 minutes and 1, 2, 3, 6, 12 hour) is used to produce 

growth curves with an extreme value distribution.  

Figure 9 shows that growth curves has steepened and recent short rainfall events have 

risen during the last 20 years of our time series (1984-2003) except for POT series 

derived from 1 and 12 hour precipitations where we noticed a decrease of theses events. 
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Figure 9. Changes in POT series compared to last 20 years (1984-2003 
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5- Conclusions 

 

The aim of the present study was to analyse rainfall time series, detecting potential 

trends and assessing their significance. It’s well known that one of the biggest problems 

in performing analyses of extreme climate events for most of the globe is a lack of 

access to high-quality, long-term climate data with the time resolution appropriate for 

analyzing extreme events. 

 

We adopted an automated recovery of rain data from paper records of tipping-bucket 

rain gauges regarding four sites: Pallanza, Vercelli, Lombriasco and Bra situated in the 

Piedmont region in the north west of Italy. We obtained long time series of precipitation 

with high temporal resolution: 5, 10, 15, 20 and 30 minutes and above 1, 2, 3, 6 and 

12hour. 

 

For intense precipitation in Lombriasco and Bra the trend analysis has yielded 

substantial evidence of increasing trends in the extreme intensity index of this event. 

The increase was found also for spring, season that is characterized by high synoptic 

weather activity. 

 

Globally we can say the analysis of extreme short precipitation series from 4 stations 

(Lombriasco, Vercelli, Bra and Pallanza) gave the following principal results: 
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- The extreme frequency index seems to have a positive trend for the station Bra 

and Lombriasco for only hourly heavy precipitations registered in the station of 

Vercelli. 

- The extreme intensity index presented by the mean of events above 95th 

percentile is decreasing for Bra regarding hourly precipitation  

- On a yearly basis, maximum precipitation increased only for Bra with a time 

scale of 12 hour. 

- On a seasonal basis, there is significant positive trend in spring maximum 

precipitation for Bra and Lombriasco. 

- On a sub-hour scale we noticed a significant increase of the mean of events 

above 95th percentile (extreme intensity) of precipitation with duration of 20 

minutes registered in the station Lombriasco. 

 

The use of Peaks-Over- Threshold method showed that extreme events have risen in the 

last 20 years (1984-2003) in the station of Vercelli. 

 

The results obtained are consistent with those provided by Brunetti et al. (2004) for Italy 

and Burlando (1989) for Florence. 
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Conclusions 
 

In the first Part we described the regional frequency analysis, based on L-moments techniques, 

of annual maximum rainfall depths for storm durations ranging from 5 to 45 min and from 1 to 24 hour 

observed in 15 stations across the watershed of Lake Maggiore with an average of 20 years of 

observations. The study area can be regarded as one homogeneous region for some short term rainfalls 

(5, 10, 15, 20, 30, 45, 120, 180min and 24hours) and heterogeneous for others (60, 360 and 720min).  

 

Given this heterogeneity and using site characteristics, L-moments and Ward’s method the 

study area was divided into three acceptably homogeneous regions. The identification of a suitable 

regional distribution for each storm event was based on the L-moment diagram and a goodness-of-fit 

test. The results therefore affirm that our study manifests a little change in the frequency of extreme 

rainfall over parts of the study area and recent short rainfall events have been less extreme than events 

recorded before. This may due to natural climatic variability, climate change or both. Hence the time 

period available with sub-daily rainfall totals is quite short for conducting analyses on long-term 

changes we decided to transform the oldest data available (third part of this study), currently in paper 

format, to digital format. It was possible to have a more complete view of evolution and trend of 

extreme events. 

 

In the second Part, the inter-comparison of rainfall intensity gauges regarding automated 

tipping-Bucket Rain and Bulk precipitation samplers in four selected stations in our study ( Pallanza, 

Domodossola Lunecco and Monte Mesma), during extreme events, shows that in 17 extreme events an 
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underestimation greater than 10% was evaluated if we consider the Bulk sampler as reference 

instrument. 

 

Due to relative deviation comparison it could be said that rain gauges deployed in Domodossola 

and Monte Mesma showed the highest underestimation of measured precipitation. In that cases the 

registrations of these two stations showed the least regularity. Uniformity in registration was found for 

Pallanza rain gauge and its registration was the closet to Bulk precipitation collector may be because 

the latter is emptied at the end of each rainfall event. 

 

The importance of measuring extreme events using different methods at the same time and in 

different areas derives from the requirement to be able to provide correct, accurate measurements on 

which to base models, predictions of phenomena, and critical thresholds. 

 

Finally in the third Part we adopted an automated recovery of rain data from paper records of 

tipping-bucket rain gauges regarding four sites: Pallanza, Vercelli, Lombriasco and Bra situated in the 

Piedmont region in the north west of Italy. Using this technique we obtained long time series of 

precipitation with high temporal resolution: 5, 10, 15, 20 and 30 minutes and above 1, 2, 3, 6 and 

12hour. 

 

The analysis of trend of extreme events, performed by the Mann-kendall test and some indices 

of climate extremes, gave the following principal results: 
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- The extreme frequency index seems to have a positive trend for the station Bra and Lombriasco 

for only hourly heavy precipitations registered in the station of Vercelli. 

- The extreme intensity index presented by the mean of events above 95th percentile is 

decreasing for Bra regarding hourly precipitation  

- On a yearly basis, maximum precipitation increased only for Bra with a time scale of 12 hour. 

- On a seasonal basis, there is significant positive trend in spring maximum precipitation for Bra 

and Lombriasco. 

- On a sub-hour scale we noticed a significant increase of the mean of events above 95th 

percentile (extreme intensity) of precipitation with duration of 20 minutes registered in the 

station Lombriasco. 

 

It is anticipated that the research presented will be built upon to examine the further possibilities of: 

 

- A comparison of the results of regional frequency analysis of extreme storm precipitation in the 

watershed of Lake Maggiore based on L-moments, with a regional analysis based on the Two-

Component Extreme Value procedure (TCEV). 

- Linking trends in rainfall extremes to trends in floods using various case studies. 

- Verify if even weak trends in the mean of a distribution, which can go unnoticed, can cause 

surprising changes in the probability of exceedance of larger events and, hence, substantial 

changes in flood risk 
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Moreover, this kind of changes in the frequency and intensity of extreme events are surely 

having more impacts on environment and human activities than changes in the mean climate. Losses of 

life and very high economic damages have been experienced during recent flooding events in the last 

decade in Italy e especially in the watershed of Lake Maggiore. A vital question not only for our study 

area but also in all the world is, therefore, whether such events will occur stronger and more frequently 

in the future. 
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