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Nature Genetics and one in press at Nature Communications. 
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elucidates Sardinian genetic architecture and augments GWAS findings: the examples of 
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Taylor P, Porcu E, et al., Whole-genome sequence-based analysis of thyroid function, 
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1. Introduction 

With the completion of the Human Genome Project in 2003(1) and the International 

HapMap Project(2) in 2005, researchers began to pinpoint areas of the genome that varies 

between individuals. Shortly thereafter, they discovered that the most common type of 

DNA sequence variation found in the genome is the single nucleotide polymorphism 

(SNP). 

The public data of the HapMap project, and the more recent 1000 Genomes project(3), 

which systematically and comprehensively catalog human variations of different 

populations, have facilitated a new type of research effort: the genome-wide association 

study (GWAS). 

The basic approach in GWAS is to evaluate the association between each SNP and a 

quantitative, or qualitative, trait of interest that has been measured across a large number 

of individuals. The power of a GWAS study is proportional to the effect of the causative 

variant to be found, therefore strongly depends on the number of individuals and the 

number of genetic markers assessed. 

The first successful GWAS was published in 2005 and investigated a few hundreds 

patients with age-related macular degeneration and controls(4). Since 2005, the GWAS 

approach has been applied to hundreds of complex traits and diseases, constantly 

enlarging the number of individuals and improving genetic resolution – although with 

limitations dictated by the status of available technologies. All such efforts led to more 

than 2,000 published human GWAS (http://www.genome.gov/gwastudies). 

Although these studies have revealed thousands of loci predisposing to hundreds of 

human diseases and traits, these variants have explained relatively little of the heritability 
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- the portion of phenotypic variance in a population attributable to additive genetic 

factors - of most complex traits. For example, the estimated heritability for the human 

height is 80% but although several studies of tens to hundreds of thousands individuals 

has been conducted, the loci associated with height explain only about 16% of phenotypic 

variance(5). 

Several proposed explanations for this “missing heritability” include(6,7):  

1. effect sizes of associated variants may be underestimates due to incomplete 

linkage disequilibrium (LD) between causal variants and SNPs we tested;  

2. the polygenic model of complex traits includes several low-frequency 

polymorphisms (minor allele frequency (MAF) < 5%) or rare variants (MAF < 

1%) that are not sufficiently frequent to be captured by current genotyping arrays;  

3. heritability may be overestimated(8), with epistasis, epigenetics, and genotype–

environment interactions contributing to trait heritability;  

4. many additional, currently undetected small effects (both at common and rare 

variants) may together comprise a significant contribution to heritability. 

For the first two hypotheses, whole-genome sequencing represents a good investment as 

it allows an accurate identification of the lowest frequency variants and distinguishing 

causal variants among so many. 

However efficient detection of rare and low frequency variants requires sequencing 

hundreds to thousands of individuals which costs are still prohibitively high. 

An alternative cost-effective approach is to sequence a subset from a study sample that 

incorporates maximal number of variants (i.e. founders individuals), and use their 

haplotypes to impute the missing genotypes in the rest study sample. In parallel, meta-
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analyses of different GWAS cohorts is another cost-effective strategy to assess variants in 

hundreds of thousands of individuals at a minimum-cost. 

This work is subdivided in two parts where I will present two different genetic studies 

that involved whole-genome sequencing data.  

In the first section I will present how whole-genome low-pass sequencing of 2,120 

individuals from the Sardinian founder population allowed assessment of  ~13.6 million 

variants that, tested in 6,602 individuals, yielded novel associations with the levels of five 

inflammatory biomarkers: adiponectin, high-sensitivity C-reactive protein, erythrocyte 

sedimentation rate, monocyte chemotactic protein-1 and interleukin-6. 

In the second part I will present a meta-analysis of 7 cohorts (totaling up to 16,335 

individuals) for common and low-frequent variants (MAF >= 1%) associated with 

thyroid function using whole-genome sequence data from various sources and deeply 

imputed datasets. In particular, I will show how increasing coverage in whole-genome 

sequence association studies permits identification of novel variants associated with 

thyroid stimulating hormone and free thyroxine. 
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1.1 Genome-wide association studies  

In the genome-wide association studies (GWAS) hundreds of thousands of single 

nucleotide polymorphisms (SNPs) are tested for association with a phenotype in 

hundreds or thousands of individuals. They were made possible by the availability of 

chip-based microarray technology for assaying hundreds of thousand SNPs. 

In GWAS no a priori biological knowledge is needed and they are therefore an agnostic 

method for localizing the genetic effects even in unsuspected genes. 

The association analysis of genome-wide data is a series of single-locus statistical tests, 

examining each SNP independently for association to the phenotype. The specific 

statistical test chosen to assess association depends on a variety of factors but one major 

distinction is dictated by the type of phenotype of interest: binary or quantitative. 

Quantitative traits are generally analyzed using generalized linear model (GLM) 

approaches, most commonly the Analysis of Variance (ANOVA), which is similar to 

linear regression with a categorical predictor variable, in this case genotype classes. The 

null hypothesis of an ANOVA using a single SNP is that there is no difference between 

the trait means of any genotype group. 

Binary traits are generally analyzed using either logistic regression or contingency table 

methods. Researchers often prefer logistic regression as it allows for adjustment for 

clinical covariates. Indeed, the statistical test should be adjusted for all of the factors that 

are known to influence the trait (age, sex, …) in order to reduce spurious associations due 

to sampling artifacts. 

For each statistical test, we have a p-value, i.e. the probability of seeing a test statistic 

equal to or greater than the observed test statistic if the null hypothesis is true. This 
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effectively means that lower p-values indicate that if there is no association, the chance of 

seeing this result is extremely small. 

Statistical tests are generally called significant when the p-value is lower than 0.05. This 

threshold is relative to a single test but in the case of GWAS, we have millions of tests 

and a multiple testing correction is needed. 

A consensus has emerged that 5x10-08 is the genome-wide significance threshold in a 

non-African population-based GWAS. This is a conservative Bonferroni correction 

which adjusts the single test threshold 0.05 to 0.05/k where k is the number of tests 

conducted(9); in this case k is one million as it is the number of independent common 

SNPs throughout the genome(10). 

With the inclusion of low-frequency and rare variants catalogued within the 1000 

Genomes Project, in which ~50 million markers (SNPs, insertions and deletions) have 

been reported, the number of independent loci under study will be significantly larger 

than the 1 million markers estimated previously. An even more stringent threshold, 

compared to the typical 5x10-8, may be required to ensure robust findings(11). Additional 

studies are needed to indicate the optimal threshold but this threshold may depend on 

number of low-frequency variants present in the study and may therefore vary from study 

to study.   

Reproducibility of the findings is a key part of the GWAS. Indeed, a repeated observation 

demonstrates that the association is not due to chance or uncontrolled bias affecting a 

single study. Furthermore, the replication allows a more precise estimate of the findings 

and a generalization of them to the wider population. 
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The best strategy for a replication study is to repeat the same analysis in an independent 

cohort, from the same population as the GWAS, using identical criteria for exclusions 

and adjustments of phenotypes, and only for the SNPs passing the genome-wide 

significant threshold in the GWAS. SNPs showing a significant association (0.05/N, 

where N is the number of SNPs tested for replication) and with the direction of effect 

consistent with the GWAS finding for the same allele are considered “replicated”. 

Replication can be searched in more than one independent cohort, strengthening the 

finding. Furthermore, the chance that a variant assessed is causative increases when 

replication is seen also in cohorts of different ethnicities and without heterogeneity in 

effect size.  
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1.2 Genotype imputation 

Genotype imputation is a statistical technique that is often used to increase the power and 

resolution of genetic association studies.  

Imputation methods infer untyped markers in a study sample by using the LD structure 

among markers assessed in an external reference panel for which a much denser genetic 

map is available(12).  

Typically, the study sample is genotyped with a commercial genotyping platform for 

hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) located 

across the entire genome(13,14).  

The HapMap haplotypes have been used to carry out imputation for most of the GWAS 

published to date, but its use is now being replaced by the larger and more comprehensive 

set of individuals characterized within the 1000 Genomes Project (1000G). Indeed, while 

the HapMap set characterized 270 individuals with genotyping arrays for roughly 3 

million markers, the 1000G reference set has been generated from whole-genome 

sequencing of 1,092 individuals (181 samples from Admixed American, 246 from 

African, 286 from East Asian, and 379 from European ancestry groups), leading to the 

discovery of about 39.7 million bi-allelic variants; of these, approximately 1.4 million 

markers are short indels and large deletions, and the rest are SNPs. Imputation performed 

with this much denser data set will yield a higher resolution of the genome for detection 

of association signals, thus increasing the power of the existing GWAS to identify novel 

variants beyond what was found after imputation with the HapMap data set and to 

pinpoint the causal variants at known associated loci(15).  
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1.3 Meta-analysis approach 

Individual GWAS are generally too small to provide sufficient power to detect associated 

variants with small effect. To identify these variants, tens of thousands or even hundreds 

of thousands samples are needed, but such large cohorts are impractical to collect. To 

augment the sample size and increase the power in a ‘virtual’ manner, the genetics 

community has widely adopted the cost-effective approach of combining summary 

statistics from multiple independent GWASs into a single analysis called meta-

analysis(16,17,18).  

There are several approaches for GWAS meta-analysis and all of those have as 

fundamental principle that each study provides statistical results without transferring any 

genotype or clinical information to the other studies. Notably, it is not necessary that all 

studies genotype the same set of SNPs because data from different genotyping platforms 

are imputed to a common reference set and then combined in a joint analysis. 

As only key condition is that all studies included adopt the same criteria to collect the 

phenotype and for modeling it (phenotype transformation method, if any, and adjustment 

for highly impacting covariates). Indeed, the power to find associations also depends on 

phenotype definition -- variability in definitions may cause heterogeneity in effect size or 

even spurious associations. 

The most popular and the most powerful method in meta-analysis is the fixed-effect 

approach assuming that there is one true effect size which is shared by all the included 

studies. There are different models for fixed-effect meta-analysis, but the inverse 

variance weighting, in which each study is weighted according to the inverse of its 

squared standard error, is predominantly used(19).  
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In meta-analysis, as we are combining results from multiple studies performed by 

different analysts using different software for single SNP association tests, in populations 

with slightly different ethnic background and sometimes dealing with phenotypes 

measured with different instruments, heterogeneity is inevitable. The most popular 

measure of heterogeneity is Cochran’s Q(20), which is calculated as the weighted sum of 

squared differences between individual study effects and the overall meta-analysis 

estimate, weighting the contribution of each study in the same manner as in the meta-

analysis. Q is distributed as a chi-square statistic with k-1 degrees of freedom where k is 

the number of studies included. 

Like primary GWAS, meta-analysis usually define P-value threshold at which a finding 

can be considered genome-wide significant. Usually, the standard genome-wide threshold 

of 5x10-08 is used combined with less stringent level (1x10-04 or 1x10-05)(21) to warrant 

further bioinformatics analysis or replication in independent cohorts. 
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1.4 Rare variants tests 

With the recent technological advances in high-throughput sequencing platforms, the 

focus of genetic associations is shifting to rare variants(22,23). 

While statistical methods for detecting associations of common variants have been 

extensively studied and thousands common variants were found to be associated with 

hundreds complex traits, methods for statistical analysis of rare variants are limited. 

Although methods used with common variants are applicable to rare variants, their 

performance might not be optimal because they are underpowered unless sample sizes or 

effect sizes are very large. 

In recent years, considerable efforts have been done for developing rare-variant analysis 

focusing on testing cumulative effects of rare variants in genetic regions, such as genes. 

These tests can be broadly classified as burden and non-burden tests(24,25,26,27). 

The approach in burden tests is to fix an allele-frequency threshold (1% - 5%) and 

combine multiple variants from the same gene below that threshold in a single unit. In 

this way, each rare variant has the same weight and the genes, rather than individual 

alleles, are treated as a unit for the association test(28). 

A more general approach uses a variable allele-frequency threshold (VT test)(29), instead 

of a fixed threshold: rare alleles are grouped together optimizing an allele-frequency 

threshold that maximizes the difference between distributions of trait values for 

individuals with and without rare alleles. 

Examples of burden tests are the cohort allelic sum test (CAST)(30) and the combined 

multivariate and collapsing method (CMC). CAST collapses information on all rare 

variants within a gene into a single dichotomous variable for each subject by indicating 
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whether or not the subject has any rare variants within the gene and then applies a 

univariate test. CMC collapses by counting the rare variants within a gene and then 

applies a multivariate test.  

Kernel-based test methods, such as the sequence kernel association test (SKAT)(31), are 

non-burden tests. SKAT uses a multiple regression model to directly regress the 

phenotype on genetic variants in a region and on covariates, and so allows different 

variants to have different directions and magnitude of effects, including no effects. 

Both burden and non-burden tests present limitations. A limitation for all burden tests is 

that they implicitly assume that all the rare variants in a gene are causal and affect the 

phenotype in the same direction with the same magnitude. When these assumptions are 

violated they are underpowered because collapsing all variants is likely to introduce noise 

into the collapsed value.  

By contrast, for SKAT, as for multiple regression models, neither directionality nor 

magnitudes of the associations are assumed a priori but are instead estimated from the 

data. Hence, SKAT is more powerful when a large fraction of the variants in a region are 

noncausal or the effects of causal variants have different directions.  

Although SKAT makes few assumptions about rare-variant effects, it can be less 

powerful than burden tests if a large proportion of the rare variants in a gene are truly 

causal and influence the phenotype in the same direction. 

Taking in account of these limitations, an optimized test has been developed, known as 

SKAT-O(32). This approach maximizes statistical power by applying both burden-based 

and sequence kernel association tests: when the burden test is more powerful than SKAT, 
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SKAT-O behaves like the burden test and when the SKAT is more powerful than the 

burden test, it behaves like SKAT. 
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2. The SardiNIA project 

2.1 Samples description 

The SardiNIA project started in 2001 and recruited 6,921 Sardinians (age 14-102 older), 

from a cluster of four towns in the Lanusei Valley in the Ogliastra region: Arzana, Elini, 

Ilbono and Lanusei. This sample corresponded to approximately 62% of the population 

eligible in the area for recruitment(33,34).  

The samples can be grouped in >1000 families, up to 5 generations deep; the largest 

family has more than 625 genotyped individuals.  

While GWAS studies are designed to find common variants with low/moderate 

attributable risks, family-based studies may facilitate the detection of rare variants with 

high attributable risk because predisposing variants will be present at much higher 

frequency in affected relatives of an index case.  Moreover, family-based designs can 

better control both genetic and environmental background and are robust to heterogeneity 

and population stratification.  

All volunteers have been characterized for more than 800 quantitative traits. Traits 

include anthropomorphic measures, plasma and serum markers (including cholesterol and 

other markers of cardiovascular disease), personality traits (using the five-factor model), 

as well as deep characterization of the immune system through assessment of different 

cell types by means of fluorescence-activated cell sorting (FACS). 

 

2.2 Genotyping 

The entire SardiNIA cohort was genotyped using the HumanOmniExpress GWAS array, 

containing ~750K markers, and three different Illumina custom arrays: the Cardio-
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MetaboChip, ImmunoChip and the HumanExome, each containing about 200,000 

markers(35,36). Genotyping calling was performed using the Illumina GenCall algorithm, 

and an additional 2,968 rare variants were called for HumanExome using Zcall(37). 

All samples had a genotyping call rate > 90% in OmniExpress and > 98% in the other 

arrays. SNP genotypes were carefully assessed though several quality control checks. In 

particular, the four arrays were analysed independently and removed markers with call 

rate < 98%, with strong deviation from HWE (p < 10-6), that were monomorphic (or with 

MAF < 1% for OmniExpress) or leading to an excess of Mendelian errors (defined as > 

1% of the families or > 1 for ExomeChip SNPs called with Zcall). 

In addition, SNPs in common between the arrays that showed a high level of discordance 

or that generated > 1% discrepancies when comparing genotypes across 13 twins were 

removed. After performing quality control checks and merging genotypes from the four 

arrays, the quality checked 886,938 autosomal markers were used as baseline genotypes 

to impute variants detected through sequencing, as described below. 

 

2.3 Sequencing 

Samples to be sequenced were selected in trios, being those highly informative for 

haplotypes reconstruction. Trios were selected starting from the founders of all available 

families to assure the representation of all haplotypes that have been propagated within 

families. Of the 2,120 Sardinian samples sequenced at 4X coverage, 1,122 were part of 

the SardiNIA project, whereas the remaining 998 were individuals enrolled in case-

control studies of Multiple Sclerosis and Type 1 Diabetes(38,39). 
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To avoid over-representation of rare variants, related samples were removed (mostly 

child of a trios) and we generated a reference panel containing phased haplotypes of 

1,488 individuals and 17 million variants. 

 

2.4 Genotype imputation 

Before performing imputation using minimac(40), genotypes of all individuals were 

phased using MACH (--phase option) with 400 states and 30 rounds by subdividing the 

variants in 344 groups of 2,500 with an overlap of 500. Then, imputation was performed 

using the phased haplotypes as baseline and Sardinia sequences as reference panel.  

After imputation, we retained for association only markers with an imputation quality 

(RSQR) > 0.3 or > 0.6 if the estimated MAF was >= 1% or < 1% respectively. This 

strategy lead to 13.6 million markers useful for analyses. 

To better understand the benefits of a population based reference panel, an other run of 

imputation was performed in parallel using the same baseline but the 1000 Genomes data 

as reference panel (March 2012 release). 

We used RSQR > 0.3 for all variants as a filter for imputation accuracy, as recommended 

(Ref. cookbook). This results in the analysis of 13.5 million markers. 
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3. Statistical methods 

3.1 Genome-wide association analysis 

Since the majority of the variants, both directly genotyped with the arrays and coming 

from the imputation, are low frequency (MAF between 1% and 5%) and rare (MAF<1%) 

variants, the effect of cryptic relatedness and population stratification could be a cause of 

spurious associations. 

For each trait, each SNP was tested for association using EPACTS(41), a software that 

performs a linear mixed model adjusted with a genomic-based kinship matrix calculated 

using all quality checked genotyped SNPs with MAF > 1%. 

The advantage of this model is that the kinship matrix encodes a wide range of sample 

structures, including both cryptic relatedness than population stratification. 

 

3.2 Association analysis - Conditional analysis 

There may be multiple causal variants at the same locus, each independently contributing 

to genetic association with the phenotype. A tool to detect secondary independent signal 

at a locus is the conditional analysis which consists in a GWAS performed for each trait 

by adding the leading SNPs found in the primary GWAS as covariates to the basic model. 

A SNP reaching the standard genome-wide significance threshold (P < 5x10-08) was 

considered a significant independent signal. 

 

3.3 Meta-analysis 

We used the GWAMA (Genome-Wide Association Meta Analysis) software(42) to 

perform meta-analysis of the results of each GWAS from the 7 cohorts participant (see 
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description in Appendix): TwinsUK WGS, TwinsUK GWAS, Avon Longitudinal Study 

of Parents and Children (ALSPAC) WGS, ALSPAC GWAS, SardiNIA, ValBorbera and 

Busselton Health Study (BHS). 

We performed fixed effects meta-analyses using estimates of the allelic effect size and 

standard error. Two meta-analysis were performed for each phenotype: a meta-analysis of 

the two UK10K WGS cohorts (TwinsUK WGS and ALSPAC WGS), and a meta-

analysis of all seven cohorts. The ValBorbera cohort does not have FT4 phenotype data 

so this cohort was not included in the meta-analysis for this phenotype.  

In each GWAS cohort, genotyping was performed using different Illumina genome-wide 

chips and >9 million SNPs were imputed using three different panels as reference: 

UK10K (http://www.uk10k.org/studies/cohorts.html), 1000 Genomes Phase I and 

Sardinia. Cohort-specific quality control filters relating to call rate and Hardy-Weinberg 

equilibrium (HWE) were applied before imputation. Genotype imputation was performed 

using either the IMPUTE(43), MaCH(44) or Minimac software packages with poorly 

imputed variants excluded. 

An inverse normal transformation was applied to each trait and each SNP was modeled 

using an additive genetic effect (allele dosage for imputed SNPs), including age and sex 

as covariates in the model as well as study-specific covariates.  

Association analysis within each cohort was performed using either the SNPTEST 

v247(45), GEMMA (Genome-wide Efficient Mixed Model Association)(46), EPACTS 

(Efficient and Parallelizable Association Container Toolbox) or ProbABEL(47) software 

packages. 
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In the meta-analysis, any variants that were missing from > 2 cohorts or with a combined 

MAF < 1% were excluded. However, in the meta-analysis performed using whole-

genome sequence data a MAF of 0.5% in either cohort was accepted to prevent marginal 

MAF drop-outs; the MAF < 1% exclusion was then applied during the meta-analysis. 

To identify independent association signals, each study repeated the analysis using the 

top SNPs as covariates. In cohorts where the top SNP was not present, the best proxy 

(r2>0.8) was included when available. A meta-analysis was then performed using these 

results and using the same filters and the same model as in the primary analysis. 

Separate work in the UK10K project has identified that a combined analytic strategy of 

testing common variants (MAF 0.5% or above) using single-SNP tests combined with 

detailed rare variants analysis would have marginally lower significance threshold of 

around 1.5x10-08. To take account of this we have reset the significance threshold to 

1.5x10-08. 

 

3.4 Burden test on inflammatory markers 

To improve power on the analysis of rare variants, we performed the Combined 

Multivariate and Collapsing (CMC) and Variable Threshold tests implemented in 

EPACTS. To perform these rare variants tests we used all non synonymous SNPs and 

variants altering splicing, with MAF < 5%. In each test, we assessed 10,000 regions and 

thus considered a Bonferroni threshold of 5x10-06 to declare significance. 

 

3.5 SKAT analysis on thyroid related traits 

We conducted GWAS candidate gene (AADAT, ABO, B4GALT6, CAPNS2, CAPZB, 
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DIO1, DIRC3, ELK3, FBXO15, FGF7, FOXA2, FOXE1, GLIS3, HACE1, IGFBP2, 

IGFBP5, INSR, ITPK1, LHX3, LOC440389/LOC102467146, LPCAT2, MAF, MBIP, 

MIR1179, NETO1, NFIA, NKX2-3, NR3C2, NRG1, PDE10A, PDE8B, PRDM11, 

RAPGEF5, SASH1, SIVA1, SLC25A52, SOX9, SYN2, TMEM196, TPO, TTR, VAV3, 

VEGFA) based analyses to test for association of the combined effects of rare variants on 

TSH and FT4 using SKAT-O software. We used the TwinsUK WGS, ALSPAC WGS 

and SardiNIA data to examine loci with a known association with TSH and FT4. We 

examined all SNPs within the candidate gene regions, including variants within 50kb on 

either side of the gene with MAF less than 1% down to a MAF of 0.04% (in a cohort), or 

0.02% (overall). These analyses used sequential nonoverlapping windows each 

containing 50 SNPs. Association at P <1.55x10-05 (Bonferroni corrected) was considered 

significant. For the meta-analysis of rare variant data from the WGS cohorts we used 

SkatMeta(48). 

 

3.6 Calculation of variance explained on thyroid related traits 

The variance explained by the strongest associated SNPs was calculated for each trait as 

the difference of R2-adjusted observed in the full and the basic model, where the full 

model contains all the independent SNPs associated to the specific trait in addition to the 

covariates age, age2, sex in the basic model for TSH and FT4 and age, age2, sex, smoke 

and BMI for inflammatory traits.  

Variance for all available SNPs was calculated using GCTA software(49) taking account 

of both closely and distantly related pairs of individuals. For each trait, we quantified the 

variance explained by all quality checked SNPs after removing those which were 
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monomorphic in the subset of individuals phenotyped (also known as “accessible 

genome”).  
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4. Whole-genome sequence-based GWAS on inflammatory 

markers  

Inflammation is a process by which our organism protects itself from harmful stimuli -  

such as germs, damaged cells, or irritants - and begins the healing process. It has also 

been implicated, with both protective and predisposing effects, in several diseases(50,51); 

but many important details of this complex phenomenon are still unknown. Identifying 

the genes that influence levels of pro-inflammatory molecules can help to elucidate the 

factors and mechanisms underlying inflammation and their consequence on health. 

We conducted a population sequencing-based GWAS on the levels of five key 

inflammatory biomarkers: adiponectin (ADPN), high-sensitivity C-reactive protein 

(hsCRP), erytrocyte sedimentation rate (ESR), monocyte chemotactic protein-1 (MCP-1) 

and interlukin-6 (IL-6). 

 

4.1 Results 

Using the Sardinian reference panel we assessed up to 13.6 million variants and found 

several SNPs above the standard genome-wide significant threshold (5x10-08). In 

particular, we found 5 hits at 4 novel loci, along with 2 new independent variants at 

previously reported loci.   
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Table1. Association results at the genome-wide significant loci. The table shows the association results at the 
genome-wide significant loci. For each lead SNP, we reported the nearest gene, the rs ID when available, the effect 
allele and its frequency, the regression coefficients, the imputation accuracy (RSQR) for those that were imputed, the 
biological type of the corresponding nucleotide change. Novel loci are shown in bold; independent signals are shown in 
italics. 

Nearest	  
Gene	  

Chr:position	   rs	  name	   Effect	  Allele	  
/	  Other	  

Freq	  	   Effect	  (StdErr)	   pvalue	   RSQR	   Type	  

ADPN	  

ADIPOQ	   3:186559460	   rs17300539	   A/G	   0.156	   0.247	  (0.025)	   1.35x10-‐22	  	   genotyped	   intergenic	  

ABDH13	   13:108884835	   N/A	   A/G	   0.001	   -‐1.519	  (0.275)	  	   3.35x10-‐08	   0.921	   UTR5	  

hsCRP	  

CRP	   1:159684665	   rs3091244	   A/G	   0.428	   0.207	  (0.019)	  	   5.28x10-‐27	   genotyped	   intergenic	  

PDGFRL	   8:17450500	   rs73198138	   A/G	   0.004	   -‐0.894	  (0.151)	   3.31x10-‐09	  	   0.977	   intronic	  

HNF1A	   12:121415293	   rs7139079	   G/A	   0.377	   -‐0.123	  (0.020)	  	   7.70x10-‐10	   0.998	   intergenic	  

AACS	   12:125533106	   rs183233091	   A/G	   0.01	   1.054	  (0.094)	   1.09x10-‐28	   0.941	   intergenic	  

APOE/APOC1	   19:45411941	   rs429358	   C/T	   0.073	   -‐0.237	  (0.036)	   3.78x10-‐11	   1	   nonsyn	  

ESR	  

TMEM57	   1:25724005	   rs71721472	   T/C	   0.297	   -‐0.109	  (0.020)	   4.26x10-‐08	   0.957	   intronic	  

CR1	   1:207684359	   rs11117956	   T/G	   0.4	   -‐0.153	  (0.018)	  	   9.43x10-‐18	   genotyped	   intronic	  

HBB	   11:5248004	   rs76728603	   A/G	   0.048	   -‐0.437	  (0.042)	  	   1.02x10-‐25	   0.918	   stop	  	  

AACS	   12:125406340	   N/A	   G/A	   0.007	   1.034	  (0.104)	  	   4.40x10-‐23	   0.952	   intergenic	  

MCP-‐1	  

DARC	  	   1:159175354	   rs12075	   G/A	   0.446	   -‐0.405	  (0.019)	   1.08x10-‐96	   -‐	   nonsyn	  

CADM3	  	   1:159164454*	   rs2852718	   C/T	   0.022	   -‐0.515	  (0.063)	  	   3.34x10-‐16	   0.999	   intronic	  

DARC	  	   1:159175494*	   rs34599082	   T/C	   0.037	   -‐0.338	  (0.049)	   8.23x10-‐12	   -‐	   nonsyn	  

CCR2	  	   3:46383906	   rs113403743	   T/G	   0.099	   0.273	  (0.034)	   1.47x10-‐15	   0.997	   intergenic	  

CCR2	  	   3:46399764*	   rs200491743	   A/T	   0.005	   0.799	  (0.130)	   9.94x10-‐10	   -‐	   nonsyn	  

CBLN1	   16:49072490**	   rs76135610	   T/C	   0.005	   0.969	  (0.172)	   1.76x10-‐08	   0.915	   intergenic	  

IL-‐6	  

IL6R	  	   1:154428283	   rs12133641	   G/A	   0.255	   0.118	  (0.020)	  	   6.87x10-‐09	   1	   intronic	  

ABO	   9:136142355	   rs643434	   A/G	   0.263	   -‐0.221	  (0.020)	   5.80x10-‐27	   -‐	   intronic	  

 

Specifically, we detected one novel association at the 3’UTR of the ABHD13 gene on 

chromosome 13 (chr13:108884835; p=3.35x10-08) for ADPN, two new signals for hsCRP 

near the PDGFRL (rs73198138; p=3.31x10-09) and AACS (rs125533106; p=1.09x10-28) 

genes, and one for ESR near AACS (chr12:125406340; p=4.40x10-23). It is interesting to 
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observe that the top SNPs at the AACS locus were only partially correlated (r2=0.20), but 

the association with hsCRP disappeared when conditioning for the lead variant for ESR 

and viceversa. Thus, the two markers are likely representing the same causal variant, 

consistent with the biological correlation between hsCRP and ESR. 

Performing conditional analysis, we also detected two novel independent signals for 

MCP-1 in the DARC (rs34599082; p=8.23x10-12 after conditioning on top SNPs rs12075 

and rs2852718) and CCR2 (rs200491743; p=9.94x10-10 after conditioning on top SNP 

rs113403743) genes. Both variants are non-synonymous and cause non-conservative 

amino acid changes in the corresponding protein.  

Furthermore, at 3 loci we were able to detect a more strongly associated variant than 

previously reported, likely representing the causative one. For example, at the HBB gene 

the top variant associated with ESR levels is now the Q40X stop codon mutation, also 

known as β°39, responsible for β-thalassemia when carried in homozygosity. Other 

refinements were seen on chromosome 1 for ESR, where a previously reported 

signal(52,53) in an intron of TMEM57, encoding a protein with unknown function, has been 

now mapped to intron 3 of the nearby RHCE gene, encoding for the Rh blood group C 

and E antigens. Finally, we could fine map the previously reported association signal for 

hsCRP at the APOC1 locus, with a non-synonymous variant in the APOE gene, C130R, 

which has been associated with Alzheimer’s disease but not yet directly with CRP 

levels(54).  

To assess the potential sex-specific impact of the associated variants, we conducted two 

different GWAS for males and females separately. [Supplementary Table 1 – Sex 

specific results] 
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We found a novel signal for MCP-1 at CBLN1 gene which was significant only in 

females (rs76135610, p=1.76x10-08 and p=0.13 in females and males respectively, 

heterogeneity p=8.06x10-03). Furthermore, of all top associated variants in main analysis, 

significant evidence for heterogeneity of effects in males and females (p< 0.002, 

corresponding to a Bonferroni threshold of 0.05/18) was observed at AACS 

(heterogeneity p=6.36x10-03, the G allele lead to a stronger decrease of both hsCRP and 

ESR in males than in females), CR1 and HBB (heterogeneity p=2.88x10-03 and 

heterogeneity p=7.75x10-03 respectively, the effect sizes for top SNPs for increased ESR 

levels were doubled in females than in males). 

 

4.2 Comparison with 1000 Genomes data 

To assess the effectiveness of our Sardinian imputation panel, we carried out the same 

GWAS analyses using the 1000G phase I reference panel for imputation and made a 

direct comparison of the results obtained using the two panels. Interestingly, not only we 

were unable to find additional loci, but we missed signals detected using the Sardinian 

reference panel. [Supplementary Table2 – 1000G GWAS results] At the ABHD13 locus 

on chromosome 13 for ADPN and at AACS for ESR we missed the signal because the 

associated variants are absent in 1000G reference panel. For ESR, a significant signal 

was seen at variants in the downstream region. 
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Fig1. Regional association plots for ABHD13 and AACS. Regional association plots at the ABDH13 locus for 
ADPN, and at AACS for ESR for imputation performed using the Sardinian and 1000 Genomes reference panels, 
respectively. At each locus, we plotted the association strength (Y axis shows the –log 10 pvalue) versus the genomic 
positions (on hg19/GRCh37 genomic build) around the most significant SNP, which is indicated with a purple dot. 
Other SNPs in the region are color-coded to reflect their LD with the top SNP as in the inset (taken from pairwise r2 
values calculated on Sardinian and 1000G haplotypes, for left and right panels, respectively). Symbols reflect genomic 
functional annotation, as indicated in the inner box of the first plot. Genes and the position of exons, as well as the 
direction of transcription, are noted in lower boxes. This plot was drawn using the standalone version of LocusZoom 
package(60). 
 

 

 

Marker chr13:108884835 at ABHD13 is present in the recent release of the UK10K 

project, where its frequency is extremely low (AC=1), and the variant chr12:125406340 
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near AACS is still missing, so it is unclear whether it is specific to Sardinians or just rarer 

elsewhere.  

Variants in PDGFRL, AACS (rs183233091) and CBLN1 are present in 1000G panels but 

are poorly imputed in our cohort, thus association did not passed the genome-wide 

significant threshold.  

 

Fig2. Regional association plots for PDGFRL and AACS. Regional association plots at the PDGFRL and AACS loci 
for hsCRP for imputation performed using the Sardinian and 1000 Genomes reference panels, respectively. For a 
description of the plot style, see Fig1 legend. 
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Fig3. Regional association plots for CBLN1. Regional association plots at the CBLN1 for MCP-1 in 
females and males for imputation performed using the Sardinian and 1000 Genomes reference panels, 
respectively. For a description of the plot style, see Fig1 legend. 
 

 

 

Finally, the association at the HBB gene was seen with weaker evidence at marker 

rs186042619 (p=1.28x10-16) versus p=1.02x10-25 at the putative causative variant Q40X 

with our imputation panel. Indeed, the causative variant Q40X was imputed with poor 



	  

Eleonora	  Porcu	  -‐	  Sequence-‐based	  GWAS	  using	  thousands	  Sardinian	  genomes:	  an	  application	  to	  
quantitative	  traits,	  Tesi	  di	  Dottorato	  in	  Scienze	  Biomediche,	  Università	  degli	  Studi	  di	  Sassari	  

31	  

quality (RSQR=0.31) and incorrect frequency (0.000089), being present in only one 

haplotype in the reference set and thus difficult to impute.   

 

Fig4. Regional association plots for HBB. Regional association plots at the HBB locus with ESR levels, using the 
Sardinian and 1000Genomes reference panels for imputation, respectively. For a description of the plot style, see Fig1 
legend. 

 

 

4.3 Validation of findings 

Replication is a key step in GWAS but it becomes unfeasible when the variant to be 

replicated is extremely rare or population-specific because large cohorts are needed to 

have enough power to detect association. 

Our findings belong to this case, so we validated rather than replicated them. Validation 

allows to ensure the associations are due to true variation and not to imputation artefacts. 

Using Sanger sequencing, we validated imputed genotypes, and therefore association, for 

all of the 5 imputed signals.  
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Table2. Validation. For each SNP, we show the number of heterozygotes and homozygotes for the reference and 
alternative alleles that were imputed using the Sardinian panel, the number of these that were validated by Sanger 
sequencing along with the genotype mismatch rate, the pvalue observed in our primary analysis (as reported in Table 1) 
and the pvalue obtained replacing imputed genotypes with those derived by Sanger sequencing. 
 

SNP	  
N	  hom	  

ref/het/hom	  
alt	  

N	  Sanger	  sequencing	  

Original	  Pvalue	  
Pvalue	  after	  
validation	  

Hom	  Ref	  
(mismatch	  %)	  

Het	  (mismatch	  
%)	  

Hom	  alt	  
(mismatch	  %)	  

13:108884835	   5824/12/0	   12	  (0%)	   12	  (0%)	   0	   3.35x10-‐08	   2.84x10-‐08	  

8:17450500	   5588/42/0	   20	  (0%)	   42	  (7%)	   0	   3.31x10-‐09	   2.65x10-‐09	  

12:125533106	   5524/105/1	   20	  (0%)	   63	  (0%)	   1	  (100%)	   1.09x10-‐28	   1.80x10-‐28	  

12:125406340	   5864/77/0	   20	  (0%)	   16	  (0%)	   0	   4.40x10-‐23	   4.41x10-‐23	  

16:49072490	   3312/35/0	   21	  (0%)	   33	  (0%)	   0	   1.76x10-‐08	   1.76x10-‐08	  

 

 

4.4 Rare variants association 

We also assessed global gene effects using two burden tests: the Combined and 

Multivariate Collapsing (CMC) and the variable thresholds method (VT), both adapted in 

EPACTS to account for familiar relationship. In each test, we assessed 10,000 regions 

and thus considered a Bonferroni threshold of 5x10-06 to declare significance. 

Interestingly, four loci were significant for both tests, thus likely representing true 

signals. In particular, two overlapped with results for single-variant association tests: the 

CCR2 gene for MCP-1 and HBB gene for ESR.   
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Table3. Burden test. The table shows results for the rare variants association tests at gene passing the significant 
threshold for at least on the two statistical tests (CMC and VT). Of note, no significant results were observed for hsCRP 
and IL-6. For each gene, we indicated the genomic location assessed for analyses (in hg19 genomic build), the number 
of available SNPs considered, the number of SNPs passing the tests-specific criteria for inclusion, and the number and 
the fraction of individuals carrying a rare allele. For the CMC test, the effect size and its standard error, along with the 
pvalue and the phenotypic variance explained is reported. For the VT we reported the pvalue and the pvalue observed 
after adjusting for the lead variant at the same or the nearby gene. Specifically, STAB1 was adjusted for rs7639267; 
CCR2 was adjusted for rs113403743 and rs200491743; IFI16 was adjusted for rs12075, rs2852718 and rs34599082; 
HBB and OR52H1 were adjusted for rs76728603, and PTPRH was adjusted for the best lead in the region (rs7253814). 
Genes that remain significant after adjustment are marked in bold. 

Gene	  	   Chr:Start-‐end	   #SNPs	   #Pass	   Burden	  
Count	  

Fraction	  
with	  
rare	  

CMC	  test	   	  	   VT	  test	  

Effect	  
(StdErr)	   Pvalue	  

Adjusted	  
pvalue	  	   	  	   Pvalue	  

Adjusted	  
pvalue	  

ADPN	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

STAB1	   3:	  52535766-‐
52558237	  

25	   23	   752	   0.12886	   0.245	  
(0.039)	  

4.71x10-‐10	   1.92x10-‐09	  
	  

1.00x10-‐07	   1.00x10-‐07	  

MCP1	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

CCR2	   3:	  46399158-‐
46401290	  

4	   3	   105	   0.01797	   0.541	  
(0.104)	  

1.84x10-‐07	   0.7092	  
	  

1.00x10-‐06	   0.92	  

IFI16	   1:	  158979950-‐
159024668	   10	   8	   567	   0.09702	   0.218	  

(0.046)	   2.50x10-‐06	   0.1564	   	   1.40x10-05 0.115 

ESR	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

HBB	   11:	  5247914-‐
5248004	  

2	   2	   613	   0.10318	   -‐0.345	  
(0.039)	  

9.77x10-‐19	   0.015	  
	  

1.00x10-‐07	   0.025	  

OR52H1	   11:	  5565906-‐
5566751	   5	   3	   529	   0.08904	   -‐0.205	  

(0.042)	   1.23x10-‐06	   0.345	   	   3.40x10-‐06	   0.69	  

PTPRH	  
19:	  55693244-‐
55716713	   22	   15	   1152	   0.19391	  

-‐0.146	  
(0.029)	   8.31x10-‐07	   4.22x10-‐06	   	  	   1.18x10-‐05	   1.90x10-‐05	  

 

Of note, 4 of 6 signals were not a result of cumulative effects of rare variants but they 

were driven by a single top SNP in the region. Indeed, the signal at the genes CCR2 and 

IFI16 for MCP-1, at HBB and OR52H1 for ESR disappeared when we repeated the test 

adding the top SNP in the region as covariate. 

The other two significant loci include the gene STAB1 for ADPN, and the PTPRH gene 

for ESR. Of note, PTPRH was significant only with the CMC test (p=8.31x10-07 and 

p=1.18x10-05 with CMC and VT respectively). STAB1 acts as a scavenger receptor for 

acetylated low density lipoprotein, and variants in this gene has been associated to waist-

hip ratio(55). The protein encoded by PTPRH is a member of the protein tyrosine 

phosphatase (PTP) family, known to be signaling molecules that regulate a variety of 
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cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic 

transformation. Its relation to ESR is at the moment unclear. 

 

4.5 Variance explained 

The variance explained calculated by using the top variants is higher for all traits when 

using Sardinian rather than 1000G reference panel, with the exception of IL-6 where the 

same variants were detected using both panels and thus the variance explained did not 

change. Thus, the Sardinian reference panel provided more precise information than a 

general, freely available panel from multiple populations. We confirmed the higher 

efficiency of Sardinian-imputed results when we estimated the variance explained by all 

the 13.6 SNPs successfully genotyped or imputed.   

 

Table4. Variance explained. For each of the five inflammatory markers, the table shows the heritability, the amount 
of phenotypic variance explained by the top signals identified using the Sardinian and the 1000 Genomes reference 
panel, as well as the variance explained by all variants in the accessible genome when the Sardinian or 1000 Genomes 
imputed data are considered.	  	  

Trait	   h2	  
top	  hits	   	  	   All	  SNPs	  

Sardinian	   1000G	   	  	   Sardinian	   1000G	  

ADPN	   39.2	   2.37	   1.97	   	  	   21.71	   20.39	  

hsCRP	   25.1	   6.35	   5.02	   	  	   24.73	   21.96	  

ESR	   43.1	   4.58	   3.39	   	  	   24.92	   24.36 

MCP-‐1	   31	   11.80	   11.25	   	  	   13.26	   11.00	  

IL-‐6	   15.3	   2.49	   2.49	   	  	   5.46	   3.39	  
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5. Whole-genome sequence-based analysis of thyroid 

function 

Levels of thyroid hormones are tightly regulated by TSH produced in the pituitary, and 

even mild alterations in their concentrations are strong indicators of thyroid pathologies, 

which are very common worldwide. In the last years, genome-wide association studies 

(GWAS) have identified several susceptibility loci for thyroid function markers(56,57,58). 

However, to gain insights into increasingly more modest signals of association, samples 

of many thousands of individuals are required. One approach to overcome this problem is 

to combine the results of GWAS from closely related populations via meta-analysis. The 

most recent meta-analysis(56) conducted in 26,420 individuals, identified 19 loci 

associated with TSH and 4 with fT4 explaining only 5.6% and 2.3% of the variance for 

TSH and fT4 respectively. To identify additional common (MAF>=1%) variants 

associated with TSH and FT4 levels, we carried out a two-stage meta-analysis of 

genome-wide association results from whole-genome sequence and deeply imputed 

datasets. 

5.1 Results 

In the stage1, using a meta-analysis of WGS data from the ALSPAC and TwinsUK 

cohorts (N=2,287) we analyzed up to 8,816,734 markers and we found associations at 2 

previously described loci for TSH. These are NR3C2 (rs11728154; p=8.21x10-09; r2=0.99 

with the previously reported rs10028213) and FOXE1 (rs1877431; p=2.29x10-10; r2=0.99 

with the previously reported rs965513). We found one borderline signal at a novel locus 

FAM222A (rs11067829; p=3.73x10-08).  
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No variants showed genome-wide significant association for FT4. 

In the stage2, we conducted a meta-analysis of the stage1 cohorts and 5 additional 

cohorts (TwinsUK GWAS, ALSPAC GWAS, SardiNIA, ValBorbera and Busselton 

Health Study (BHS)) and we found associations for 13 SNPs at 11 loci for TSH 

(N=16,335) and 4 SNPs at 4 loci for FT4 (N=13,651). 

 

Fig5. Manhattan plot. Annotated Manhattan plot from the overall analysis for TSH and FT4. SNPs (MAF>1%) are 
plotted on the X axis according to their position on each chromosome against association with TSH on the Y axis 
(shown as–log10 P value). The loci are regarded as genome-wide significant at P<5x10-8. Variants with 1%<MAF <5% 
are show as open diamond symbols. Common SNPs (MAF>5%) are shown as sold circles with those present in 
Hapmap II reference panels in grey and those derived from WGS or deeply imputed using WGS and 1000 genomes 
reference panels in blue. Genes labeled in red represent novel genome-wide significant (P<5x10-8) findings. 
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For TSH, 11 top SNPs represent known signals: our top variants are in strong LD (r2>0.6) 

with those described in previous studies.  

Two SNPs associated are novel: one at SYN2 (rs310763; p=6.15x10-09). SYN2 is a 

member of a family of neuron-specific phosphoproteins involved in the regulation of 

neurotransmitter release with expression in the pituitary and hypothalamus.  

With a conditional analysis on PDE8B we identified a novel variant (rs2928167; 

p=5.94x10-14) in linkage equilibrium (r2=0.002) with the previously described variant 

rs688509910 and independent from our top SNP rs2046045 (p=1.93x10-11 after 

conditional analysis). 

In the overall meta-analysis we were unable to replicate the association between 

FAM222A and TSH detected in the stage1 (p=0.378); however, we observed evidence of 

heterogeneity between cohorts (p heterogeneity=4.70x10-06), so potentially this locus may 

find support in future WGS studies. 

For FT4, we confirmed 3 known associated loci (DIO1, LHX3 and AADAT) and we found 

one novel uncommon variant (MAF=3.2%) at B4GALT6/SLC25A52 (rs113107469; 

p=1.27x10-09). 

B4GALT6 is in the ceramide metabolic pathway, which inhibits cAMP production in 

TSH-stimulated cells. However rs113107469 is in weak LD (r2<0.1) with the Thr139Met 

substitution (rs28933981; MAF=0.4%) and it may therefore be a marker for this 

functional change in TTR. The Thr139Met substitution was associated with FT4 levels in 

our single-point meta-analysis (p=2.14x10-11), however was not originally observed as 

the MAF was lower than our 1% threshold. Conditional analysis of the TTR region using 

rs28933981 as the conditioning marker in the ALSPAC WGS cohort reveals no evidence 
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of association between rs113107469 in B4GALT6 and FT4 (p=0.124). Analysis using 

direct genotyping in the ALSPAC WGS and GWAS cohorts confirms the effect of the 

Thr139Met substitution on FT4 levels. Here, 0.79% of children were heterozygous for 

the Thr139Met substitution, which is positively associated with FT4 (p=3.89x10-24). In 

the ALSPAC GWAS dataset, rs113107469 in B4GALT6 was also positively associated 

with FT4 (p=0.0002); however, when conditioned on the Thr139Met substitution there 

was no longer any evidence of association (p=0.20). The Thr139Met substitution also 

appears to be functional: this mutation has increased protein stability compared with 

wild-type TTR and tighter binding of thyroxine, resulting in a two-fold increase in 

thyroxine binding affinity.  

Of all 17 independent markers, significant evidence for heterogeneity (p<0.003, 

corresponding to a Bonferroni threshold of 0.05/17) was observed at FOXE1 (p=2.02x10-

06) and ABO (p=4.11x10-04). 
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Table1. Table shows the association results for SNPs that reached genome-wide level significance in the final meta-
analysis. For each SNP, the best candidate gene is showed, as well as its genomic position, the effect allele (A1), the 
other allele (A2), the combined frequency of A1 across studies (Freq A1) the effect size (Beta - change in standardized 
thyroid measure by allele) and its standard error (Std Err), the p-value for association (P), the number of samples 
analyzed (N) and the p-values for heterogeneity of effects across the cohorts used in the meta-analysis (Het P). Entries 
in bold reflect novel identified SNPs 

Gene SNP Chr Position A1/A2 Freq A1 Effect Std Err N P Het P 

TSH           

CAPZB rs12410532 1 19845279 T/C 0.164 -0.090 0.016 16,332 9.41 x10-09 0.003 

IGFBP2 rs7568039 2 217612321 A/C 0.250 -0.122 0.014 16,335 2.11 x10-19 0.370 

SYN2 rs310763 3 12230704 T/C 0.235 0.083 0.014 16,334 6.15 x10-09 0.252 

NR3C2 rs28435578 4 149646538 C/T 0.227 -0.166 0.014 16,333 4.59 x10-32 0.109 

PDE8B rs2046045 5 76535811 G/T 0.414 0.142 0.012 16,334 4.05 x10-33 0.653 

PDE8B rs2928167 5 76477820 G/A 0.104 -0.145 0.019 16334 5.94 x10-14 0.994 

VEGFA rs6923866 6 43901184 C/T 0.280 -0.102 0.013 16,333 7.55 x10-15 0.646 

VEGFA rs2396084 6 43804825 A/G 0.287 -0.096 0.013 16,333 4.33 x10-13 0.422 

PDE10A rs3008034 6 166043862 C/T 0.312 -0.131 0.012 16,335 4.68 x10-26 0.084 

FOXE1 rs112817873 9 100548934 T/A 0.323 -0.14 0.015 11,544 6.15 x10-20 2.02x10-6 

ABO rs116552240 9 136149098 A/T 0.239 0.121 0.016 14,047 1.92 x10-14 4.11x10-4 

MBIP rs116909374 14 36738361 T/C 0.043 -0.208 0.032 15,037 4.69 x10-11 0.179 

MAF rs17767742 16 79740541 G/C 0.354 -0.113 0.012 16,335 5.64 x10-20 0.447 

FT4           

DIO1 rs2235544 1 54375570 A/C 0.499 0.154 0.013 13,650 5.23 x10-34 0.084 

AADAT rs7694879 4 170969799 T/C 0.095 0.137 0.022 13,650 4.15 x10-10 0.168 

LHX3 rs11103377 9 139097135 G/A 0.496 0.087 0.013 13,651 1.44 x10-11 0.735 

B4GALT6 rs113107469 18 29306737 T/C 0.032 0.223 0.037 13,649 1.27 x10-11 0.574 

 

5.2 Rare variants association 

In the meta-analysis we analyzed only low frequency and common SNPs, excluding 

those with MAF<1%. To analyse rare variants we performed sequence kernel based 

association testing (SKAT) analysis using only individuals with WGS data.  

We found no evidence of association with TSH, however for FT4 we identified one 

SKAT bin with multiple-testing corrected evidence for association in NRG1 (p=2.53x10-

06). NRG1 is a glycoprotein that interacts with the NEU/ERBB2 receptor tyrosine kinase, 

and is critical in organ development. 
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5.3 Variance explained 

To evaluate the improvement in variance explained given by our study, we compared the 

variance explained calculated by using all known SNPs from previous studies and then 

adding the novel top hits. We performed the analysis in ALSPAC WGS, TwinsUK WGS, 

BHS and SardiNIA and then combined the results with a fixed-effects meta-analysis. 

We observed a small improvement: our estimates improved from 7.2% to 8% for TSH 

and from 1.8% to 2% for FT4. 

Furthermore, we calculated that low frequency and common variants (MAF>=1%) 

collectively account for over 20% of the variance in TSH and FT4; a substantial advance 

on using only the top hits from GWAS meta-analysis.  
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6. Concluding Remarks 

Advances in sequencing technologies revolutionized genetic studies of complex traits 

allowing the analysis of variants across the entire allele frequency spectrum.  

Whole-genome sequencing provides many advantages over array-based genotyping for 

GWAS. Most importantly, the possibility to assess extremely large number of markers  

and even to discover new variants not yet classified in public databases augments the 

chance to directly assess the causal allele, with consequently higher statistical power and 

precision of results. Furthermore, it allows to compare association of genetic variations in 

different populations avoiding heterogeneity and lack of replication due to differences in 

linkage disequilibrium, important issue to consider when analyzing a fixed subset of 

markers from the genome.  

In this work, I showed how single analysis and meta-analysis of sequencing-based 

GWAS improve the current knowledge of genetic variation associated to important 

human traits. In two different study designs with different statistical approaches, whole-

genome sequencing integrated with genotyping arrays by statistical inference, led to the 

identification of novel common, low frequency and rare variants associated with levels of 

five inflammatory biomarkers and with two parameters related to thyroid function. 

These two studies highlighted not only advantages but also current pitfalls of the 

sequencing based GWAS approach. One is related to the statistical methods utilized. In 

fact, although sequencing provides the opportunity to investigate the roles of low-

frequency and rare variants in complex traits, a debate still exists on the optimal 

statistical method to be used for such variants. Given that the relative performance of 

these methods depends on the underlying genetic architectures of complex traits, which is 
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unknown, it is difficult to have a test that is optimal for all scenarios. 

Another limitation of the sequencing-based GWAS approach is the difficulty in 

replication of the association results. When the number of sequenced individuals 

increases, the proportion of low-frequency SNPs dramatically increases. A large 

proportion of rare variants are private to specific populations, absent in any commercial 

SNP array and even in large, public repositories, as dbSNP, so the associations hardly can 

be replicated. Furthermore, as the power of association tests is a function of the allele 

frequency, replication of rare-variant associations requires very large sample, with 

numbers that become unachievable for very rare or population-specific alleles.  

Finally and contrary to expectations, the missing heritability will be not easily accounted 

for. In fact, because power to detect low-frequency and rare variant associations is lower 

than the power to detect common-variant associations, the observed proportion of 

heritability due to low frequency and rare variants in finite samples might be substantially 

underestimated. Indeed, even if these variants account for a large proportion of 

heritability, identifying them might require extremely large samples. For example, it has 

been demonstrated that when rare-variant association studies are carried out in a sample 

of 10,000 individuals, most rare causal variants will show no significant association(59). In 

this case, the apparent proportion of variance due to rare variants might be <0.1%, even 

when rare variants actually explain most of the heritability. The number of rare causal 

variants significantly associated increases with the sample sizes, and the variance 

explained by rare alleles become closer to the true value. Still, even after 1,000,000 

individuals are studied, the estimated proportion of variance due to rare variants remains 

underestimated.  Currently, there is no clear evidence as to which scenario represents the 
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true genetic architecture of common complex diseases, and it is likely to vary across 

diseases and traits.  

Nevertheless, only a few sequencing based GWAS studies have been published so far, 

and we expect this number to increase substantially as it has been for the HapMap 

GWAS studies. Therefore, despite the discussed limitations of the approach, their results 

will be valuable. They will enlarge our current knowledge of genes associated to traits 

and diseases, highlight novel biological pathways and elucidate underlying mechanisms, 

and suggest critical points and issues to be considered in further developments and 

improvements of necessary statistical methods. 
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Appendix Table 1. Gender specific effects at variants associated with inflammatory markers. The table shows the association parameters of the SNPs listed in Table 1 when 
analysed in males and females separately. Columns are defined as in Table 1. SNPs showing significant heterogeneity (HetPval column) between genders are marked in bold. 

Chr:position	   rs	  name	   Candidate	  Gene	   Effect	  Allele	  /	  
Other	  

Males	   	   Females	   	  

Freq	   Effect	  (StdErr)	   pvalue	   	  	   Freq	   Effect	  (StdErr)	   pvalue	   HetPVal	  

	  	   ADPN	  (2486	  males/3350	  females)	  

3:186559460	   rs17300539	   ADIPOQ	   A/G	   0.165	   0.277	  (0.038)	   5.15x10-‐13	   	   0.15	   0.256	  (0.034)	   1.28x10-‐13	   0.687	  

13:108884835	   N/A	   ABDH13	   A/G	   0.001	   -‐1.982	  (0.521)	   1.44x10-‐04	   	   0.001	   -‐1.426	  (0.350)	   4.68x10-‐05	   0.377	  

	  	   hsCRP	  (2411	  males/3219	  females)	  

1:159684665	   rs3091244	   CRP	   A/G	   0.414	   0.196	  (0.028)	   2.46x10-‐12	   	   0.439	   0.229	  (0.025)	   3.11x10-‐20	   0.393	  

8:17450500	   rs73198138	   PDGFRL	   A/G	   0.005	   -‐0.899	  (0.203)	   9.55x10-‐06	   	   0.003	   -‐0.884	  (0.213)	   3.38x10-‐05	   0.96	  

12:125533106	   rs183233091	   BRI3BP,	  AACS	   A/G	   0.01	   1.308	  (0.134)	   3.57x10-‐22	   	   0.01	   0.807	  (0.125)	   1.25x10-‐10	   6.36x10-‐03	  

12:121415293	   rs7139079	   HNF1A	   G/A	   0.375	   -‐0.127	  (0.029)	   9.60x10-‐06	   	   0.379	   -‐0.134	  (0.025)	   1.19x10-‐07	   0.849	  

19:45411941	   rs429358	   APOE,	  APOC1,	  
APOC1P1	   C/T	   0.076	   -‐0.248	  (0.051)	   1.53x10-‐06	   	   0.071	   -‐0.228	  (0.047)	   1.02x10-‐06	   0.774	  

	  	   ESR	  (2531	  males/3410	  females)	  

1:25724005	   rs71721472	   RHCE,	  TMEM57	   T/C	   0.305	   -‐0.095	  (0.032)	   2.65x10-‐03	   	   0.291	   -‐0.161	  (0.028)	   1.45x10-‐08	   0.123	  

1:207684359	   rs11117956	   CR1	   T/G	   0.397	   -‐0.102	  (0.029)	   3.65x10-‐04	   	   0.403	   -‐0.215	  (0.025)	   8.51x10-‐18	   2.88x10-‐03	  

11:5248004	   rs76728603	   HBB	   A/G	   0.05	   -‐0.348	  (0.067)	   2.52x10-‐07	   	   0.046	   -‐0.589	  (0.060)	   1.31x10-‐22	   7.75x10-‐03	  

12:125406340	   N/A	   AACS,	  MIR5188	   G/A	   0.008	   1.260	  (0.152)	   2.00x10-‐16	   	   0.006	   0.806	  (0.164)	   9.45x10-‐07	   0.044	  

	  	   MCP-‐1	  (2497	  males/3347	  females)	  

1:159175354	   rs12075	   DARC	   G/A	   0.447	   -‐0.415	  (0.029)	   4.91x10-‐46	   	   0.445	   -‐0.408	  (0.024)	   3.15x10-‐60	   0.859	  

1:159164454	   rs2852718	   CADM3	   C/T	   0.021	   -‐0.223	  (0.103)	   0.03	   	   0.023	   -‐0.450	  (0.084)	   8.33x10-‐08	   0.087	  

1:159175494	   rs34599082	   DARC	   T/C	   0.037	   -‐0.068	  (0.079)	   0.39	   	   0.037	   -‐0.162	  (0.066)	   0.014	   0.359	  

3:46383906	   rs113403743	   CCR2,	  CCR3	   T/G	   0.1	   0.270	  (0.050)	   7.00x10-‐08	   	   0.098	   0.273	  (0.043)	   3.65x10-‐10	   0.959	  

3:46399764	   rs200491743	   CCR2	   A/T	   0.005	   1.115	  (0.199)	   2.50x10-‐08	   	   0.006	   0.516	  (0.170)	   2.40x10-‐03	   0.022	  

16:49072490	   rs76135610	   N4BP1,	  CBLN1	   T/C	   0.005	   0.969	  (0.172)	   1.76x10-‐08	   	   0.006	   0.286	  (0.192)	   0.1378	   8.06x10-‐03	  

	  	   IL-‐6	  (2492	  males/3346	  females)	  

1:154428283	   rs12133641	   IL6R	   G/A	   0.258	   0.123	  (0.030)	   3.98x10-‐05	   	   0.253	   0.117	  (0.026)	   9.58x10-‐06	   0.885	  

9:136142355	   rs643434	   ABO	   A/G	   0.267	   -‐0.223	  (0.030)	   8.29x10-‐14	   	   0.26	   -‐0.218	  (0.026)	   2.18x10-‐16	   0.9	  
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Appendix Table 2. Association signals based on 1000G imputation for the inflammatory markers. The table 
reports top association signals identified with 1000G imputation. Columns are the same as defined in Table 2. Signals 
at novel loci are in bold. Independent signals, indicated in italics, are reported along with the regression coefficients 
from the conditional analysis.  
 
 

SNP	   rs	  name	   Nearest	  
Gene	  

Effect	  
allele	  /	  
Other	  

Freq	   pvalue	   Effect	  
(StdErr)	   RSQR	   Type	  

ADPN	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

3:186562865	   rs73185702	   ADIPOQ	   A/G	   0.159	   7.31x10-‐23	   0.249	  
(0.025)	  

0.98	   Intronic	  

hsCRP	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

1:159684665	   rs3091244	   CRP	   A/G	   0.428	   5.28x10-‐27	   0.207	  
(0.019)	  

Genotyped	   intergenic	  

12:121423659	   rs9738226	   HNF1A	   A/G	   0.355	   2.65x10-‐09	  
-‐0.120	  
(0.020)	   0.998	   Intronic	  

12:125766568	   rs142361132	   TMEM132B	   T/C	   0.011	   3.05x10-‐17	   0.762	  
(0.090)	  	   0.92	   intergenic	  

19:45411941	   rs429358	   APOE	   C/T	   0.073	   2.14x10-‐11	   -‐0.240	  
(0.036)	  

0.99	   nonsyn	  

ESR	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

1:25769212*	   rs36055238	   TMEM57	   I/R	   0.316	   3.70x10-‐08	   -‐0.110	  
(0.020)	  

0.917	   	  intergenic	  

1:207690871	   rs10863358	   CR1	   C/G	   0.401	   8.53x10-‐18	  
0.153	  
(0.018)	   0.997	   intronic	  

11:5072356	   rs186042619	   OR52J3	   G/A	   0.048	   1.28x10-‐16	   -‐0.349	  
(0.042)	   0.894	   	  Intergenic	  

12:125835147	   rs75220528	   TMEM132B	   C/G	   0.01	   4.14x10-‐15	   0.703	  
(0.089)	  

0.847	   intronic	  

MCP-‐1	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

1:159175354	   rs12075	   DARC	   A/G	   0.446	   1.19x10-‐96	   -‐0.405	  
(0.019)	  

0.999	   nonsyn	  

1:159162174	   rs2814767	   CADM3	   G/T	   0.023	   7.82x10-‐17	  
-‐0.524	  
(0.063)	   0.973	   intronic	  

1:159175494	   rs34599082	   DARC	   C/T	   0.037	   6.62x10-‐12	   -‐0.340	  
(0.049)	   0.998	   nonsyn	  

3:46391788	   rs17141006	   CCR2	   T/G	   0.099	   2.67x10-‐15	   0.269	  
(0.034)	  

1	   intergenic	  

IL6	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

1:154428283	   rs12133641	   IL6R	   G/A	   0.25	   3.92x10-‐09	   0.123	  
(0.021)	  

0.974	   intronic	  

9:136143120	   rs613534	   ABO	   G/A	   0.262	   5.50x10-‐27	  
-‐0.221	  
(0.020)	   0.998	   intronic	  
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Description of meta-analysis participating cohorts 

Cohorts: 

Seven populations were used in this study. They are known as the TwinsUK WGS 

cohort, the TwinsUK GWAS cohort, the Avon Longitudinal Study of Parents and 

Children (ALSPAC) WGS cohort, the ALSPAC GWAS cohort, the SardiNIA cohort, the 

ValBorbera cohort and the Busselton Health Study (BHS) cohort. 

All human research was approved by the relevant institutional ethics committees. 

 

Cohorts description: 

Twins UK: The Twins UK cohort consists of 12,000 twins of northern European/UK 

ancestry, aged 16–82 yr, from St Thomas’ UK Adult Twin Registry (TwinsUK), a 

volunteer sample recruited in the United Kingdom without selection for particular traits 

(www.twinsuk.ac.uk/). It has previously been shown to be representative of singleton 

populations and the UK population in general. 

 

ALSPAC: ALSPAC is a geographically based UK cohort that recruited pregnant women 

residing in Avon (Southwest England) with an expected date of delivery between April 1, 

1991, and December 31, 1992. A total of 15,247 pregnancies were enrolled, with 14,775 

children born (see www.alspac.bris.ac.uk.). The ALSPAC cohort was the only child 

cohort used in this study however both the hypothalamic-thyroid axis and the impact of 

thyroid status on metabolism is considered to be generally comparable between children 

and adults. 
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SardiNIA: see The SardiNIA Project section. 

 

ValBorbera (INGI): The Val Borbera (INGI) population is a collection of 1,785 

genotyped samples collected in the Val Borbera Valley, a geographically isolated valley 

located within the Appennine Mountains in NorthWest Italy. The valley is inhabited by 

about 3000 descendants from the original population, living in 7 villages along the valley 

and in the mountains. The valley was inhabited by about 10,000 people in the 19th 

century when endogamy was >80%. Participants were healthy people between 18 and 

102 years of age that had at least one grandfather living in the valley. 

 

Busselton: The Busselton Health Study (http://bsn.uwa.edu.au) includes a series of cross-

sectional health surveys carried out since 1966 of residents of Busselton, a rural town 

with a predominantly Caucasian population, located in the southwest of Western 

Australia 36. In 1994-5, there was a follow-up study of people who had participated in 

previous studies. Participants completed a health questionnaire, underwent physical 

examination, and gave a venous blood sample in the morning after an overnight fast. 
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