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Introduction

Radiations are a natural part of the earth’s environment. They are found naturally in air,
water, soil and rock, as well as in organic matter. Natural radioactivity on Earth is caused by:
1) radiation from outer space (actually, its interaction with atmosphere); 2) presence of
several radioactive nuclides in lithosphere. Natural source of radiation derive from radio-
isotope synthesized during the creation of the solar system. Because of their long half-lives,
they still exist today. Among these, potassium (*’K), uranium (***U and **°U and their

daughters), and thorium (*?

Th and their daughters) are the only radio-isotopes that produce
high-energy gamma rays of sufficient intensity to be used for gamma ray spectrometry.
Gamma ray spectrometry is an excellent tool in evaluating the environmental radioactivity.
The present research project started with the development of a portable detector consisting of
1 liter Nal(T1) crystal for in-situ measurements of rocks or soil.

The main advantages of this instruments compared to laboratory spectrometers are: limited
costs, and possibility of getting results in real-time.

The instrument was developed, according to our purposes, and calibrated at the National Lab
of Legnaro (PD) in accordance with international guidelines of the IAEA and of the ANSI.
The potentiality of the portable detector, was tested by comparing in-situ measures with
analysis performed in laboratory, with both high-resolution gamma-ray spectrometer (HPGe
detector) and ICP-MS.

After the development of the analytical methodology we carried out our research project
focusing the content of natural radioactivity in granite lithotypes used as building materials.
The knowledge of natural radioactivity in building materials (*’K, ***Th and ***U with its
decay series) is important to determining the amount of exposure for people who spend much
of their time indoor (Stoulos et al., 2003). Radiation exposure due to building material can be
divided into external and internal exposure. The external exposure is caused by direct gamma
radiation. According to the radiological protection of the European Commission (RP No. 112,
1999), an inhabitant living in an apartment block made of concrete with average activity
concentrations (40 Bq kg™, 30 Bq kg™ and 400 Bq kg™ for radium, thorium and potassium,
respectively) receives an annual effective dose of about 0,25 mSv. Instead radon inhalation is
responsible for the internal exposure, caused by deposition of its decay products in the

respiratory tract. Many governmental and international organizations (e.g. UNSCEAR,
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European Commission), recently, payed particular attention trying to minimizing the health
risks associated with the exposure to these indoor radiation. All type of building material
contain various amounts of natural radioactive nuclides. Scott & Dickson (1990) analyzed a
large number and wide variety of rocks by laboratory gamma-ray spectrometry, concluded
that the radionuclides concentration show an increase with an increase of SiO,. So acid rocks
such as granites could contain large amount of radionuclides. This conclusion has been one of
the reasons that led us to analyze some granitic rocks present in Sardinia. Where different
granite lithotypes are quarried and commercialized overseas. During the last few years,
granites was very popular and its global production was comparable to that of marble
(Tsirambides, 1996). For the risk assessment the Activity Concentration Index (I) was taken
into account, according to the European Commission (RP No. 112, 1999). The (I) shall not
exceed the limits fixed by the EC, which depend on the dose criterion (doses must not exceed
1 mSv y') and the amount and the way materials are employed (tiles, boards, concrete,
masonries, €.g.).

The excellent response that the portable spectrometer gave on granitoid lithotypes encouraged
us to develop the second part of our project which deals with:

e Employment, in an innovative way, a portable gamma ray spectrometer as a useful
tool for mapping various intrusive complexes and resolve some problems that may
arise in the field survey of the different plutons;

e Estimate the heat derived from radioactive decay of K, eU and eTh in rocks that
formed the Variscan crust with the goal of assess the thermal budget of the Variscan

crust (at 350 and 300 Ma).

The Sardinia-Corsica Batholith (S-CB) is the most largest batholiths of Variscan Age. It was
emplaced during Carboniferous and Permian times (340-280 Ma, Paquette et al., 2003). In
Sardinia, the S-CB have a calc-alkaline affinity and it is related with the Variscan syn- to late
collision stages of the South Variscan belt (Paquette et al., 2003). The granitoid rocks, in
Sardinia, covers about 6000 km” (Ghezzo & Orsini, 1982); this suggests to us how the
cartography of these rocks are very important for understanding the structure of the Variscan
crust. Unfortunately, due to its large size the S-CB in Sardinia, is still poorly known and no
detailed maps of discriminate the different intrusion exists. The only 1:100000 map imposed a
purely petrographic approach. So different intrusions with different age and accessory mineral

content are not discriminated.
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To discriminate among different intrusions, generated from different magmatic pulse within a
composite batoliths, is not a easy task, particularly if different intrusion with similar
petrofacies come in contact. Moreover, the exposure of contacts between different plutons is
not frequent. However, if textural and modal features converge, the only effective way able to
discriminate such intrusions are some laboratory analysis (Radiometric Dating, Chemical
Analysis e.g), the cost of which, is not sustainable when the aim of the survey is the
production of a geological or thematic (dimension stone) map. So testing the portable
spectrometer as a smart tool for a “real time” geochemical discrimination of single intrusion
was a worthy task. The S-CB is an ideal testing area, consisting of several coalescent
intrusions which often are very similar from textural and compositional point of view. After,
focuse our tests on the Budduso pluton and its neighbour intrusions for the following reason:

e Relatively small intrusion (about 70 km?);

e A pluton previously studied (Bruneton & Orsini, 1977; Orsini & Fernandez, 1987;

Barbey et al., 2008);

This intrusive complex is surrounded by the Concas, Sos Canales, Benetutti, Monte Lerno,
and Ala dei Sardi-Tepilora plutons which vary from tonalitic-granodiorites to
leucomonzogranites, which were in turn compared with the Budduso pluton. Given the
excellent results obtained in the Budduso pluton area, we have expanded our horizons by
taking into account to apply the methodology to other intrusive complexes that were much
less studied (Arzachena pluton and its adjacent intrusion).
The thermal structure of the continental crust is, undoubtedly, the main parameters that
controls all geological processes occurring inside the crust as metamorphism, magmatism and
defomation.
Three main sources would have contributed to the thermal budget:

e Radiogenic heat production;

e Moho heat flow;

e Viscous shear heating (poorly developed in literature).

The heat production in the crust is the result for 98% of the decay series **U and ***Th and
the single-step decay *’K (Slagstad, 2008). These elements are concentrated in large quantities

in the crust (especially in the upper and middle crust) and therefore contribute significantly to
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the thermal budget (Jaupart & Mareschal, 2004); various studies lead to a range of 0,7-1,3 uW
m™ for the average rate of crustal heat production (Wedepohl, 1991; Rudnick & Fountain,
1995; Taylor & McLennan, 1995). Another important parameter for characterize the thermal
structure of the crust is quantify the heat conducted though the crust from the underlying
mantle, for example in Corsica Verdoya er al. (1998) took a value equal to 30 mW m™.
Another form of internal heat production is viscous shear heating; several studies have
quantitatively demonstrate that shear heating can produce, at orogen-scale, a surplus of heat of
0,1 pW m™to < 1 uW m™ (Burg & Gerya, 2005). The thermal structure of two model crust
constraints at 350 Ma and 300 Ma was calculated by changing Moho heat flow and Viscous
shear heating, within the range of geologically reasonable values. From the references has
been collected a large number of thermo-barometric constraints, at 350 Ma and 300 Ma, to
verify if the geotherm built with our data fitted with the P-T-t path. Then, the aim of this part
was to evaluate the thermal budget of the Variscan crust by comparing one-dimensional
numerical model (Casini, 2011 in press) with a literature database on PT conditions recorded
at ca. 350 Ma and ca. 300 Ma. In the latter part of this work we have assessed the geodynamic

implications arising from our geotherm.
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Section 1: Principles of radioactivity

1.1 Radioactive decay

The rate at which a particular radioactive material disintegrates, with some exceptions, is
independent on physical and chemical conditions. In general, we can not predict which atoms
will disintegrate at a particular time. Instead, we can predict the average number of atoms that

will disintegrates in a certain time interval. The radioactive decay law is (Fig. 1.1):
N(t)=N,e™

Where N, represents the number of atoms at initial time ¢ = 0, N(?) is the number remaining at

time ¢ and / is the decay constant.
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Figure 1.1: Radioactive decay curve for Carbon-14

Activity is proportional to the number of decays per unit time (its unit is Becquerel that is

equal to one decay per second), as shown in the following expression:

A(t)y=—dN(t)/dt = AN(t) = AN,e

The Specific activity is equal to activity per unit mass and is expressed in Bq/Kg.
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It’s very important to point out that the number of decays in a certain time interval t, is
proportional to the initial number of atoms; hence, the number of daughter atoms is linked via
a linear relationship to the number of parent atoms at time ty (Fig. 1.2).

The decay constant 4 is related to mean lifetime (z) and half-life (7,,) of a radioisotope.

The mean lifetime is defined as:
r=1/2
The half-life is expresses as:

T,,=In2/1=0.693r

At the end of one half-life period of time, one half of the original material remains in the

sample; at the end of two half-lives, one quarter of the original material will still exist, and so

on.

The time trend of the number of parent atoms of a radioactive sample is an exponential

decreasing, while the number of daughter atoms is exponentially increase (Fig. 1.2).
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Figure 1.2: Parent atoms and daughter atoms time trend

Some radionuclides may have more than one channel of decay and decay of each branch is
associated with a well-defined probability, so-called branching ratio. It is the ratio of the

number of particles that decay in a certain way to the total number of particles of the
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radioactive sample. The branching ratio is crucial in the reconstruction of the overall energy
spectrum, since each transition release a certain amount of energy character to specific
channel. All decays are characterized by a decay costant (A) related to the probability that this
process occurs in a period of time. In the case of chain decay process the whole system has a
decay probability linked to the constant A, equal to the sum of the different decay constant,
that is:

M=A Tttt A

In a closed system, starting with a specified amount of a parent element, the number of atoms
of daughter elements and their activity grows gradually, until is reaches the secular
equilibrium. At that time, the activities of each chain elements are identical. Thus the
concentration measurements of any daughter element can be used to estimate the
concentration of any other element in the decay series (Fig 1.3). Under equilibrium

conditions, this relationship can be expressed as follows:

7\,1N1 = 7\,2N2 T, = )\,nNn
U238
N \*
1 B = i,
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Th234
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Paz34 I
N aw,
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Figure 1.3: Secular equilibrium representation. In the case of secular equilibrium incoming and outgoing flow into the vessel of the ***Th are

equal, which means that the incoming and outgoing flow of each element will be equals for each component chain
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1.2 Environmental radioactivity

This section briefly describes the radioactivity sources that can be found on Earth.

Environmental radioactivity can be either natural or man-made.

1.2.1 Natural radioactivity

The natural radioactivity is divided into two categories:
e cosmogenic radionuclides that are continuosly produced in the upper atmosphere by
the action of the cosmic rays.

e primordial radionuclides that have been present since origin of the Earth.
1.2.1.1 Cosmogenic radionuclides

Cosmic rays originate outside of the Earth’s atmosphere. They produce a range of
radionuclides in the atmosphere, biosphere and lithosphere by various nuclear reactions; these
radionuclides are called the cosmogenic radionuclides. The four most important cosmogenic

"Be, '*C and **Na, although a much wider range

radionuclides for human exposure are tritium,
is produced. The most significant of these radionuclides is '*C. The constant generation of '*C

by cosmic rays is used in radiocarbon dating.
1.2.1.2 Primordial radionuclides

Primordial radionuclides are producing in decay chains of three nuclear isotopes (***U, *°U

#32Th), also there is a number of radioisotopes that decay directly into a stable isotope.

and
Among these, the most abundant in nature are *’K, ***U and ***Th.

There are three potassium isotopes, which were found in nature: *’K (93,3%), *°K (0,012%)
and *'K (6,7%). *’K is the only isotope that emits gamma rays (Fig. 1.4). The ratio between
the total abundance of potassium and abundance of YK is known. The gamma ray detection of
%K can be used to estimate the total amount of potassium.

The half-life of **K is 1,3 x 10 years.
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Figure 1.4: Decay scheme of “’K. The decay of *’K can happen in two ways: 1) a p decay to *’Ca, with branching ratio 89,.28%; 2) an
electron capture to excited state of “’Ar, which have very short half-life (1,12 ps), and then decay to the ground state with emission of a

gamma ray with energy equal to 1460,859 keV.

Uranium occurs naturally in three different isotopes with mass numbers equal to 234, 235 and

238. The most abundant isotope is the ***

U, it represents the 99,28% of the natural uranium.
28U, unlike the *°K, do not achieve stability with a single decay, but is characterized by a
decay chain through which it reaches the stable isotope ***Pb (Fig. 1.5). Not all nuclides from
the decay chain produce gamma rays, and, those which were used for detection have energy
equal to 610 keV, 1120 keV, 1740 keV originated from the transition of *'*Bi. The half-life of

280 is 4,47 x 10° years.
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Figure 1.5: Decay chain of 2*U
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Natural thorium consists of only one isotope ***Th, which has a half-life 1,39 x 10'° years.
22Th, like *U, has a decay chain. The gamma emission which were used for detection are
those of the **T1 with energy equal to 580 keV and 2614 keV. The final stable isotope of this
decay chain is “**Pb (Fig. 1.6).

232
232 i Th
Isotope | Qg B decay 14.05 Gyr
Half-life {®2ahio 4083 —
Qo 228 228 228
298 e Ra s “Ac22,”"Th
e 5.75yr 6.15h 1.913yr
o decay 5520 _——
224
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3.66 d
G
520
220 Rn
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216
216 Po
0.145s

y
212 212Pb 574 212 BI 2054 212PO

10.64 h 60.55m |**" | 0.299 ps

6207 % 899k —

208 208T| 5001 ZOBP

3.053m stable
81 82 83 84 86 88 89 90

Figure 1.6: Decay chain of **Th

Generally, all isotopes in uranium and thorium decay chains have mean lifetime shorter than
their parents, and the secular equilibrium can be reached if the system is isolated (Fig. 1.3).

Disequilibrium occurs when one or more decay products are completely or partially removed
or added to the system. In nature, thorium rarely does not reach secular equilibrium, and

potassium has no disequilibrium problems. However, disequilibrium in the uranium decay

238

chain is common, and can occur in several transitions of the ***U decay chain: ***U can be

234 234
U;

selectively leached relative to U can be selectively leached relative to >**U; **°Th and

°Ra can be selectively removed from the decay chain; and finally **

Rn (radon gas) is a
volatile element and can escape from soil and rocks into the atmosphere. Equilibrium can be
restored in days, weeks or even millions of years, according to the half-lives of the
radioisotopes involved. Disequilibrium is a serious source of error in gamma ray

. . . 2141 -
spectrometry. Uranium concentration estimates are based on the measurement of “~ “Bi
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abundance. *'*Bi occur far down in the radioactive decay chain and may not be in equilibrium
with uranium. Uranium concentration is reported as “equivalent uranium” (eU) because it is
based on the assumption of the secular equilibrium. Also, thorium is usually reported as
“equivalent thorium” (eTh), although the thorium decay series is almost always in the secular

equilibrium condition.

1.2.2 The man-made source of radionuclides

Human activities contribute to increase the levels of radionuclides in the environment. Some
activities result in the release of naturally occurring radionuclides to the accessible
environment (e.g. producing phosphoric acid from phosphate rocks). Other activities produce
novel radionuclides, it includes generating electricity with nuclear power plants and nuclear
weapons testing.

The main radioisotopes of anthropogenic origin are: 134Cs, 1311, 137Cs, 239Pu, %Sr and *“Co.

In this Phd thesis the onliest man-made isotope, which was analyzed but not considered in
results, is *’Cs.

Cs is a radioactive isotope of cesium and is mainly generated as a product of nuclear

fission. It has a half-life of 30,07 years and in 94.4% cases it }~ decay in a metastabile isotope

137 137

Ba, the remaining 5,6% are direct B decays in “'Ba. It’s very toxic and highly soluble in

water; its presence in soils and rocks is mainly due to the Chernobyl nuclear accident in 1986.
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Figure 1.7: Decay scheme of "’Cs

Antonio Puccini — Radiometric methods in geological reconstruction, in the prospecting of georesources and evaluation of hazard — PhD.
Thesis in Natural Science — University of Sassari



16

Section 2 - Gamma radiation measurements: theoretical

basis

In this section we consider the main processes that occur when gamma-rays pass through
matter. Gamma-rays interact with atoms of matter through three principal processes:

e photoelectric effect

e compton scattering

e pair production

These processes are fundamental for understanding mechanisms that underlie the generation
of a gamma-ray spectrum. Second part of the section is dedicated to the basic properties of

gamma-ray spectrum.

2.1 Photoelectric effect

The photoelectric effect is important mechanism of low-energy photons interaction with
matter. In this process, photon is absorbed by atom. If the energy of photon is more than the
electron binding energy of the material, electron is ejected. For gamma rays of sufficient
energy the most probable source of the photoelectrons is the most tightly bound or K shell of

the atom, as shown in Fig. 2.1.

Characteristic
radiation

Ejected
O photoelectron

Incident
photon

Figure 2.1: lllustration of the photoelectric absorption process where a gamma ray photon is absorbed and a characteristic X-ray is emitted
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The vacancy created during this ionizing process is filled by an electron from higher shells,
thus leading to the possible emission of X-rays. These X-rays are characteristic of the
absorber material. Thus, if a photon with energy E ejects an electron from the K shell with a

binding energy Ej, then the energy of the ejected electron (£,) will be given by the following:

The recoil energy of the atom is nearly zero and thus can be ignored. In competition to X-ray
production, there is a finite probability that the process will result in the emission of an Auger
electron from the outer shells, rather than X-rays from the inner shells. This process cannot
occur unless the energy of the incident photon, E, is greater than the binding energy of the

inner shell, that is:
E>E,

As the incoming photon is removed or absorbed from the incident beam, the mass attenuation
coefficient is referred to the mass absorption coefficient (t/p), where t is the photoelectric
linear absorption coefficient. The rapid decrease in t/p with increasing £ is illustrated in Fig.

2.2.

,':“ | \. \ K-edge

PR * decrease

0 i 50 3 100 150
Energy of photons (keV)

Figure 2.2: Variation of the mass absorption coefficient with photon energy for the photoelectric process (Modified from Cooper et al.,
2003)

As the photon energy increases, the absorption due to the individual electronic shells becomes
important, but as soon as the energy exceeds a particular shell binding energy then the mass
absorption coefficient, which gives a measure of the probability of interaction, falls rapidly. In

Figure 2.2, the edges refer to the sudden rise in t/p as the energy of the photon approaches the
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binding energy of a shell. Beyond the edges, t/p decreases rapidly, approximately as 1/E*, and

increases with atomic number of the absorber Z* , and thus:

t/p~=2Z°/E’

This proportionality is approximately valid for photon energies up to about 200 keV, but at
higher energies, t/p varies less strongly and decreases as 1/E*, and eventually as 1/E. This
effect is the dominant interaction mechanism for photons of intermediate and low energies
(0,5 to 200 keV). The absorption increases rapidly with the atomic number of the absorber

and this is the main reason why high-Z materials, such as lead, are used for shielding against

y-rays.
2.2 Compton scattering

Compton scattering can be represented as a collision between a photon and an electron can be

considered “free”.

Figure 2.3: lllustration of the Compton scattering process

In the collision photon transfers part of its energy to the electron, according with the

following equation:

1

E,=E -E =E|1-

E
1+ 7 (1-cos )
m,C

where m_ is the electron mass and 0 is the scattering angle.
The energy acquired by electron, therefore, depends on the direction in which the incident
photon is diverted: if 8 = 0°, then E. is equal to 0, and so is not transferred energy to the

detector. If 6 = 180°, then the energy acquired by the electron is the maximum possible, but
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less energy carried by the incident photon. For each possible scattering angle the percentage
of energy transferred to the electron is always less than 100%. Compton scattering is
particularly important at intermediate y-ray energies and increases linearly with the atomic
number of the absorbing material. This process has particular significance in y-ray
spectroscopy where it leads to the so-called Compton edge and is a major source of
background. The mass attenuation coefficient for Compton scattering (o/p) (where o is the
linear attenuation coefficient and p is the density of the scattering medium) is proportional to
the ratio of the electron density of the scattering medium and the energy of the incoming

photon. The mass attenuation coefficient, therefore, decreases with increasing photon energy.

2.3 Pair Production

Pair production is another major process by which photons can interact with matter. During
this process, if a high-energy y-ray interacts with electric field of an atomic nucleus it can
create an electron and its antiparticle, the positron. As a consequence of this process the

photon completely disappears through the following reaction:

E, =2mc’ +T +T,

ere E, is the gamma-ray photon energy, 7, , are the kinetic energies of the electron and the
Where E, is the g y phot ey, T, the kinet g f the elect d th
positron, respectively, and m.c’ is the rest-mass energy for each of the electron and positron
(m is the mass of the electron or the positron and c is the speed of light). In terms of the

energy units MeV, the rest mass of an electron or a positron is 0,511 MeV.
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" - phaton

" ]
Positron [e*)

Figure 2.4: lllustration of the Pair Production process

As each of these particle have a rest-mass equivalent of 0,511 MeV in terms of energy,
equation can be written as follows:

E, (MeV)=1.02+T +7,
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and thus at least 1,02 MeV energy is required for pair production. Any excess energy appears
as kinetic energies of the electron/positron pair, as described by previously equation. In
practice, this process for absorbing y-rays is only important if their energies are greater than
about 1,.5 MeV and becomes dominant for y-ray energies greater than 5 MeV. Since
environmentally important radionuclides do not emit y-rays of these energies, this process is
not very significant. The mass attenuation coefficient for pair production, k/p, where « is the

linear attenuation coefficient and p is the density of the medium, is given by:
k/p=Z(E-1.02)

This equation shows clearly that unlike the other attenuation processes, pair production
increases with increasing of photon energies. It also increases linearly with the atomic number

of the attenuating substances.

2.4 Probability of interaction and attenuation of gamma-ray with

matter

Probability that a photon will interact with matter, expressed by the cross-section o (cm?),
depends on the photon energy, E,, and on the composition of matter. Figure 2.5 illustrates
relationship between scattering, absorption, energy of the incident photon and atomic number
of the absorbing medium. Compton scattering is the dominant process for gamma rays from

natural sources (£ up to 2,615 MeV) (Fig. 2.5).
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Figure 2.5: Interaction of gamma rays with matter
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Typically, gamma ray photons lose their energy through successive Compton scattering
events until, eventually, the remained low-energy photon is absorbed through photoelectric
effect. Under the interaction of gamma rays with matter, the intensity of radiation decreases

with distance from source, following the equation:

I=Ie™"

Where [ is the beam intensity transmitted through the thickness ¢, /) is the initial beam
intensity, ¢ is the thickness of the matter (m) and u is the attenuation coefficient that
represented the probability of interaction per unit length (m™).

Gamma ray are, typically, the most penetrating radiation, because it consists of photons
without mass and electrically neutral (Fig. 2.6). The penetrating depth of gamma rays is about
700 m in air, up to 0,5 m in rocks and few cm in lead and depend on the energy. Gamma rays
have a discrete energy specific for each particular radionuclide. As gamma rays are the most
penetrating component of natural and man-made radiation, they are widely used in the studies

of environmental radioactivity.
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Figure 2.6: Different range of the alpha, beta and gamma rays

Mass attenuation

coefficient. (em®/g) Linear attenuation coefficient (m™')

Isotope Air Rock/soil Air (STP) Regolith (1 g/em?) Regolith (2.8 g/em?) Nal crystal

Potassium 0.0526 0.0528 0.0068 5.28 14.78 18.39
(1.46 MeV)

Uranium 0.0479 0.0482 0.00619 4.82 13.5 16.95
(1.76 MeV)

Thorium 0.0391 0.0396 0.00506 396 11.1 14.85
(2.6 MeV)

Table 2.1: Linear and mass attenuation coefficients for potassium, uranium and thorium isotopes
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2.5 Properties of gamma ray spectra

Gamma rays emitted in potassium, uranium and thorium decay chains, in the case of secular

equilibrium, have characteristic energy line spectra (Figures 2.7, 2.8 and 2.9).
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Figure 2.7 and 2.8: Gamma ray emission line spectra of Potassium (left) and Uranium (right) (Modlified from IAEA — TECDOC — 1363,
2003)
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Figure 2.9: Gamma ray emission lines spectra of Thorium (Modified from IAEA — TECDOC — 1363, 2003)

These are theoretical abstractions that represent the energy distribution of photons emitted
from the source. Each line shows the energy and relative intensity of gamma ray emissions.
However, Compton scattering in the source, in the detector, and in matter between the source
and detector reduced energies that comes from the originals photons. Scattered and
unscattered photons contribution to the gamma ray fluence rate thus depends on the source-
detector geometry and on the amount of material between source and detector. Figures 2.10,
2.11 and 2.12 show the simulated gamma ray flux from K, U and Th at 300 m height
(Kirkegard & Lovborg, 1974).
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Figures 2.10 and 2.11: Simulated potassium (left) and uranium (right.) fluence rates at 300 meter height (Modified from IAEA — TECDOC —
1363, 2003)
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Figure 2.12: Simulated thorium fluence rates at 300 m height (Modified from IAEA — TECDOC — 1363, 2003)

Each radionuclide generates a sharp peak (full-energy peak or photopeak), this peak represent
the energy of directly transmitted photons. The spectrum of Compton scattered photons shows
a continuum of energies up to the maximum energy of the photons emitted by the isotope.
This continuum is due to single and multiple scattering events, which happen between source
and detector. These events are recorded with an energy equal to that transmitted by the photon
to the detector. This energy is less than the energy of the gamma radiation produced from the
source. This type of events generates the Compton continuous within the total spectrum. It is
almost impossible to record the gamma ray flux spectra shown in figures 2.10, 2.11 and 2.12.
This is due to the fact that, in addition to the factors mentioned above, the shape of the
spectrum, which have to be measured, is also a function of the detector response.

The main aspect of the detector response are:

e detector efficiency: it is relates to how the detector absorbs gamma rays;
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e dead time: it is refers to the time, which is necessary to the spectrometer to process

individual photons;

e energy resolution of the detector: it is defined as the full width of a photopeak at half
of the maximum amplitude expressed (FWHM) as a percentage (R):

R(%) = (100* FWHM)/ E

Where E is the energy of the photopeak. Spectrum of photopeak has a Gaussian shape.
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Figure 2.13: Energy resolution of a gamma-ray spectrometer (After IAEA — TECDOC -1363, 2003)

e Heath (1964) gives a good summary to the other factors that influence on the shape of
the pulse amplitude spectrum, such as escape events, accidental summing, and the
characteristic “Compton edge”.

Spectrum measured also includes contribution from background radiation. It is the radiation
produced by external sources. There are three main sources of background radiation:

e Atmospheric radon: It and its daughter products are the main sources of background
radiation. Its daughter products (*'*Bi and *'*Pb) attach to the airborne aerosols and
dust particles and decay with emission of gamma rays.

e Cosmic background: Gamma rays with high energy and atomic particles of cosmic

origin react with atoms and molecules in the upper atmosphere and generate a
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secondary radiation. This secondary radiation reacts with surrounding matter and

produce a “cosmic” background.

Instrument background: It refers to radiation due to trace amounts of K, U and Th in

the detector and surrounding equipment.
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Figure 2.14: Typical gamma ray spectrum
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Section 3 — Gamma ray detection instruments

In this Phd. thesis were used two gamma-ray spectroscopy techniques: high resolution
gamma-ray spectrometry with HPGe semiconductor detectors for measurement (on samples)
in laboratory and portable Nal(Tl) scintillation detectors for in-situ measurement (in most
cases). In general in-situ measurements were applied in the cases of relatively large (about 1
m?) rock outcrop surfaces of homogeneous lithology and laboratory measurements were used
to characterize heterogeneous outcrops (veins). In this section we briefly describe some
important characteristic features of the detectors used in this work:
e Nal(Tl) inorganic scintillation detector

e HPGe semiconductor detector

The principle of operation of both detectors is based on the properties of interaction with
matter (crystal) of gamma radiation. So the whole or part of energy is transferred to matter
constituent electrons where the primary ionization process is broadly the same in both types
of detectors but the collection process is quite different. In semiconductor detectors the
primary ionization electrons lose their energy generating secondary electron-hole pairs which
are collected producing an electrical signal. In scintillation detectors the secondary electron-
hole pairs de-excite emanating electromagnetic radiation (photons) which are collected
through photosensitive devices and converted in electrical signal. The electric signal is
properly amplified and the response function of the detector is sampled and digitalized

through analog-to-digital module (ADC) and a multi-channel analyzer (MCA).
3.1 Basic feature of a gamma radiation detector

Some general properties of gamma radiation detectors which are important for gamma-
spectrometry measurements are:

e energy resolution;

e efficiency;

e dead-time.
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This features are related with the physical properties of the detector and sometimes are

refereed as instrumental limitation, therefore important for the right choice of the instrument.

3.1.1 Energy resolution

The energetic resolution of a detector is the ability to separate energy lines close to each other.
The definition of detector energy resolution can be represented from the detector response

function to a monoenergetic source of radiation (Fig. 3.1).
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Figure 3.1: Example of response function of a detector to a monoenergetic radiation source

FWHM
HO
where FWHM is the full width at half maximum and HO is the average pulse height. As a rule

R=

of thumb the detector is able to resolve two energies that are separated by more than one value
of the detector FWHM.

There are a number of potential sources of fluctuations in the response of a detector which
result in imperfect energy resolution. If fluctuations are symmetric and independent, then the
response present a Gaussian shape. The main causes of such fluctuation are as follows:

e Statistical noise: the charge carriers produced in the detector is a discrete number and
subject to random variations. An estimate of the fluctuations can be done assuming
that the formation of each charge carriers is described by a Poisson distribution. If
products are n charge carriers, then we expect a standard deviation associated with the
number of carriers (1), then o equal to \n (statistical noise). As n is a large number,

then response function G has Gaussian distribution:

(H-H,)’
G(E)—G\/_e p[ = j
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where Ey is the energy of the peak and A is the photopeak area. The standard deviation
is related to FWHM by the following expression:

FWHM =2.35c

The response of many detector is linear, where the output pulse height are proportional
to the amount energy amount deposited in the detector (Hy = Kn). The energy standard
deviation is 6 = K\n. From this expression can be calculated the resolution due to the
statistical noise:

235

o

R

Resolution increase with increasing of n (this is the reason why semiconductor
detectors are more energy resolution than scintillators detector). Some detectors have
an FWHM calculated greater than that measured experimentally. The fano factor (F

<< [ for semiconductor detectors) is introduced as a correction term. Then, the energy

n

e FElectronic noise: it is related to current fluctuations which occur in electronic circuits

resolution is:

of the detector.
e Fluctuation in charge collection: it is correlated to any loss or incomplete collection

of charge carriers. It depends on the structural characteristic of detector.

3.1.2 Efficiency

The detector efficiency is an important property which allows to relate the number of pulses
registered by instruments with the number of photons emitted by the source. Not all radiation
emitted by the source gives rise to a signal in detector due to various factors (e.g. geometric
configuration, absorption by material interposed between source and detector, response time
of instrument). The efficiency can be conveniently divided in two classes: as absolute

efficiency and intrinsic efficiency.
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Absolute efficiency is defined as:

number of pulses recorded

number of radiation quanta emitted by source

abs

Intrinsic efficiency is determined by the ratio:

number of pulses recorded

int

" number of quanta incident on detector

Absolute and intrinsic efficiency are related by a simple relationship as follows:
Epy =&, Q2
abs int 472_

where Q is the solid angle between detector and source in steradians.

3.1.3 Dead time

29

The dead time is defined as the minimum time required at the detector system to separate two

events in order that they be recorded as two separate pulses. Recording is not instantaneous,

but requires a certain time that depends on the characteristic of detector and electronics.

During this period, detector can be sensitive or insensitive to radiation. If detector is

insensitive, every event that occurs during the dead time is lost. If detector is sensitive to the

arrival of a second event causes a restart of dead time.

3.2 Inorganic scintillation detector

Scintillation counter consist of a hermetically canned scintillator crystal which is optically

coupled with a photomultiplier tube (Fig. 3.2). The scintillation effect depend on the fact that

when certain solid or liquid material, called phosphors, are exposed to ionizing radiation,

excitation of some kind occurs in the material and de-excitation of the material results in the

emission of visible radiation. The prompt emission of visible radiation is also called

fluorescence.
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Figure 3.2: Scintillation counter

The flashes of light produced have very short time duration and low intensity and are not
measured directly. Instead, they are allowed to interact with a photocathode which results in
the release of photoelectrons. These are then multiplied in a device known as a
photomultiplier tube (PM). The light quanta are thus converted into pulses of electrical
charge, which can then be amplified and counted. The inorganic scintillators are the most
important group of solid scintillators. A wide range of substances are now commercially
available as inorganic scintillators. These usually contain at least one and some of them two
elements with high atomic number: Nal(Tl) have an effective atomic number of 49.7. It is the
presence of these elements which provides to the scintillator with its relatively high
efficiency, even for high-energy gamma-rays. Secondly, many of the materials are ‘doped’,
i.e. small amounts of impurities have been deliberately introduced into the main crystal
lattice. For example Nal(Tl) crystal, is a Nal crystal doped with a small amounts of thallium
ions (0.1 % of weight mass), called also activator. This introduction of an impurity ion has
important effects on the quality of the light output from the scintillator. When ionizing
radiation passes through the scintillator, electrons are promoted from a lower to a higher,
excited state. The return of the electron to the lower state results in a fraction of them emitting
a light photon. The activator promotes these transitions and also shift the wavelength of the
emitted radiation into the visible range which better matches the requirements of the
photomultiplier tubes (Fig. 3.3) used in conjunction with the scintillator. This shift in
wavelength also means that the crystal is essentially transparent to the light emitted. It is
important that the light output should be a linear function of the energy of the radiation. Most

scintillator exhibit such behavior and thus provide a linear response with the energy of the
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radiation. The energy resolution of a scintillator is set by the fluctuations in the number of

light quanta generated by radiation of a specific energy.
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Figure 3.2: Band structure of an inorganic scintillator crystal. Activator introduce energy levels into energy gap between conduction band
and valence band

The scintillators are optically coupled to a system of light amplification, the photomultiplier
tube (PM) (Fig. 3.4).
The major components of a PM are:

e Photocatode: it converts photons into a equivalent number of electrons and is
therefore the source of electrons in the photomultiplier tube. The face of the
photomultiplier tube is made of glass on which is coated a material (usually a
combination of alkali metals and antimony), which release electrons when irradiated
with light photons. These electrons, known as photoelectrons, are then accelerated and
focused onto the first dynode of the tube. The sensitivity of the photocatode is
estimated by a parameter named quantum efficiency (QE), defined by the following

formula:

OF = number of photoelectrons emitted

number of photons incident

e Dynode chain: it makes the electron multiplication. When the photoelectrons strike
the first dynode, a number of secondary electrons are produced and emitted from the
surface of the dynode material. These emitted secondary electrons are then accelerated
towards the second dynode, where further secondary electrons are produced. This
process is then repeated down the chain of dynodes. The final bunch of electrons
emitted from the final dynode is then collected by the anode.

e Anode: it converts an electronic current generated in the dynode chain into an

equivalent voltage pulse.
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Figure 3.4: A photomultiplier tube

3.2.1 Nal(T1) detector

In this work we used for in-situ measures a Nal(Tl) detector. Thallium-activated sodium
iodide Nal(Tl) crystal is mainly used as detectors in field gamma ray surveys. It has a density
of 3,66 g/cm’, and can be manufactured in large volumes. It has an exceptional light output: ~
38000 photons per MeV. The detection efficiency of up 100% for low-energy gamma rays but
somewhat less for high-energy gamma rays. The dead time is the order of 10”7 s. The main
disadvantage of Nal(TI) is that the crystal is hygroscopic and so has to be kept perfectly dry
and cannot be exposed in the atmosphere. Consequently, it has to be kept permanently inside
a suitable can and so cannot be used in “window-less” mode. It also has to be taken into

account the possibility of any damage for mechanical or thermal shock.

Figure 3.5: Example of an Nal(Tl) detector

3.3 Semiconductor detector

The semiconductors materials used as radiation detectors are generally made from crystalline

silicon or germanium. In such materials, the atoms are bounded together via valence electrons
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and each atom is bound with other four. In energy terms, these atoms are in the “valence
band”. Above the valence band, lies the “conduction band”. In metals, the energy gap (“band
gap”) between these two bands is small and so electrons are easily promoted from the valence
to the conduction band, where they can travel through the crystal lattice quite freely. This
freedom of movement of electrons in the conduction band is why metals are good electrical
conductors. Conversely, in insulators the band gap is very wide (Fig. 3.6) and virtually no
electrons are found in the conduction band — hence their do not conduct electricity.
Semiconductors lie between these two extremes. In highly pure form of both silicon and
gernanium, the band gap is of order of eV and promotion of the valence electrons from the
valence to the conduction band is only brought about at high temperatures so that these
materials have high resistivity at ambient temperatures. The flow of electrons due to thermal
agitation provides a background signal, which is not associated with the recording of a
radiation events. Therefore such detectors works at low temperatures in order to limit the
number of electron that can jump in the conduction band for thermal agitation. Like inorganic
detectors, these pure materials are “doped” with elements that are either one place above or
below them in the Periodic Table, altering in this way the electronic structure by increasing

the presence of free carriers and effectively reducing the band gap.

Metals Semiconductors Insulators

Conduction Band Conduction Band Conducton Band

E
Valence Band : ' Eg
Valence Band
Valence Band

Figure 3.6: Band structure of metals, semiconductors and insulators

3.3.1 High-purity Germanium detector

In this thesis measurements in laboratory were done using HPGe detectors. Germanium has
an atomic number Z = 32, an energy gap between valence and conduction band E, = 0,67 eV,
and the energy required to create an electron-hole is equal to 2,96 eV at a temperature of -196
°C. To be used as detectors for gamma radiation must be kept at very low temperature
(tipically -196 °C) to minimize the background current caused by thermal agitation; therefore
it is necessary to use a cooling system, tipically consisting from a Dewar vessel in which a

tank of liquid nitrogen (LN>) is kept in thermal contact with detector. To obtain materials of
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high purity is needed to reduce concentrations of impurities up to 10'’ atoms per cm’ and
obtain a depletion region of 10 mm for a reverse bias voltage of 1000 V. The detectors
fabricated with this type of ultra-pure germanium are called HPGe (High-purity Germanium)
(Fig. 3.7). The technique developed to produce ultra-pure crystals is called refining areas:
impurities are progressively eliminated locally heating the germanium. Germanium is melted
in a quartz crucible in which temperature is kept just above melting temperature (959 °C). A
small single crystal seed is cut from the purified crystal precisely along the crystal planes, and
plunged in crucible containing molten Germanium. Before you leave refund some seed and
then extracted with slow rotation. Crystal growth is a process that requires high precision and
this is the reason that limits the size of a semiconductor detector. The crystal has within it a
small amount of impurities: if remaining impurities are acceptors, electrical properties are
those a crystal weakly doped p-type, otherwise n-type. The depletion region is achieved by
creating a diode structure; for example, lithium is evaporated onto a surface of the crystal
weakly doped p-type creating a contact n+ that typical thickness of 600 pm. On another
surface boron ions are inserted with typical thickness of 0,3 um creating a p+ contact. By
applying a reverse voltage charges are separated and create so-called area-discharge which is

the active volume of the detector.

Figure 3.7: HPGe detector

3.3.1.1 MCA_Rad

In University of Ferrara (Physics Department) has been developed a system for measuring

environmental radioactivity called MCA Rad that can measures a large number of samples
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with minimal assistance from an operator (Fig. 3.8). Through this instruments can be
measured all types of material (solid, liquid or gas) and thanks to its high efficiency it allows
measurements of absolute activity with uncertainties of less than 5%. The core of the
MCA _Rad system is made of two 60% relative efficiency coaxial p -type HPGe gamma-ray
detectors having an energetic resolution of about 1.9 keV at 1332.5 keV (*°Co). The new
cooling technology which use mechanical coolers permits to simplify the management of the
system. The detectors are accurately shielded and positioned facing each other 5 cm apart.
With a lead shielding size 20 cm x 25 ¢cm x 20 cm and a core copper shielding size 10 cm x 15
cm x 10 cm, the background recorded in the measuring chamber due to the “°K (1460 keV) is
reduced to 32 counts/hour and that due to the *'*Bi (609 keV) is 14 counts/hour. Samples are
introduced between the two sides of the detector through a rectangular opening of 5 x 10 cm®.
Sample material is contained in a cylindrical polycarbonate box of 75 mm in diameter, 45 mm
in height and 180 cm’® of useful volume, labeled by a barcode. Up to 24 samples can be
charged in a slider moving on gravity and further introduced at the inner chamber through an
automatic “arm” made of copper, lead and plastic closing the lateral hole of the housing. The
mechanical automation consists on a barcode scanner and a set of compressed air driven
pistons, which permits, first the sample identification, and second to introduce/expel the
samples. The full operations is controlled by a PC where a dedicated software runs the

measurements.

Figure 3.8: MCA_Rad system in University of Ferrara
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Section 4: Portable gamma-ray spectrometer

In this section will be describe the basic characteristics and management software of the
portable gamma-ray spectrometer used for in-situ measurements. In addition, we report the

calibration procedure and the differences between MCA Rad and portable spectrometer.
4. 1 Description

The equipment developed at the National Laboratory of Legnaro (INFN) (Fig. 4.1), consists
of a scintillation detector Nal(Tl) crystal of 1L volume coupled with an HV supply,
preamplifier and multichannel Analyzer (MCA) (digiBASE by ORTEC) and governed by a
netbook. In Figure 4.1 is shown the detector and photomultiplier tube canned in an aluminum
case and connected to a integrated signal processor called DigiBASE. The DigiBASE
supplies the high voltage to the detector and sampling of the pulses converting them after
amplification from analog signal coming from the detector into a digital signal. Everything is
connected via a USB cable to a netbook, and finally information is analyzed using two
software: a commercial software called “Maestro” which permits to control the spectrum
acquisition parameters, and “jRadView” a self-programmed software which is used for

spectrum analysis and used to calculate automatically activity concentration of K, U and Th.

Figure 4.1: Portable gamma-ray spectrometer connected to net book.

The main features of this instruments are:

e Measurement quickness: good accuracy in 5 minutes;
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In situ detection of radioisotopes: instrument is able to discriminate different natural

isotopes in situ through a spectral analysis:

Conformity with international guidelines: hardware and software of devices are

constructed by taking as reference IAEA and ANSI international guidelines;

Easy to use: it can be easily managed by single person;

e You can carry out measurements in extreme environment and difficult condition.

The equipment is contained in backpack (Fig 4.2). For our measurements we have always
placed instrument on the ground. For a detector placed on the ground, the effective rock

sample has a thickness of approximately 25 cm, a radius of 1 m, and a mass exceeding 100 kg

(IAEA TECDOC-1363, 2003).

Figure 4.2: Spectrometer during in-situ acquisition

4.2 jRadView software

jRadView software was designed, with our collaboration, by the research group of dr. Fabio
Mantovani, and is updated periodically. Algorithms of jRadView software following the main
international guide lines (ANSI, 1999; IAEA TECDOC-1363, 2003). The code allow to
determine the activity concentration of *’K, *'*Bi (**®U decay series), **T1 (**Th decay
series) in Bq kg and to calculate their respective abundance expressed in ppm for uranium
and thorium and in % for potassium. We can also obtain the concentration in the rocks of the
7Cs express in cps through full spectrum analysis as described later. The uranium and

thorium activity concentration and abundances are calculated under the consideration that
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their respective decay series are in secular equilibrium and therefore indicated as equivalent
uranium (eU) and thorium (eTh). With the aim to increase the statistics in a short acquisition
time and extend the analysis beyond the three main radioisotopes (*’K, 2'*Bi and ***T1), we
developed a method for data analysis that consider the full spectrum analysis with non-
negative least square (FSA-NNLS) constrains (Caciolli et al., 2011, in press). Only the energy
range from 300 keV up to 2900 keV is considered in the analysis. Below 300 keV there is a
strong presence of the backscattering events which depends on the atomic number and density
of the surrounding materials. Above 2900 keV only the cosmic ray contribution is present.
Counts recorded in the energy range between 300 and 2900 keV corresponds to about 867
energy bin (3 keV for each channel). With FSA method, the overall spectrum is analyzed as
results of the composition of the basic spectra product by cesium, potassium, thorium,
uranium and background (Fig. 4.3). Overlap of the different components determines the shape
of the spectrum, while weight of each element is determined by its concentration in the
sample.

The events registered in each channel in the measured spectrum, N, can be expressed as:

N(@) = iCkSk )+ B(0)

where N(i) are the count in the channel i; Ci are the concentration of the element k; Sy(1) are
the associated counts to the fundamental spectrum of the element £ in the channel i; B(i) are
the counts in the channel i due to the intrinsic background and the index k stays for *°K, **Th,

231 and P*7Cs.
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Figure 4.3: Total spectrum
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During calibration of the system, carried out by Dr. Fabio Mantovani and its research group
and described in Caciolli et al. (2011, in press), the fundamental spectra (S matrix) are
obtained by solving previously equation with the radionuclide concentrations (the Cy
coefficients). Once the first solution has been obtained, in order to improve the y°
minimization, a trimming procedure is executed by changing the site concentrations (Cy) in

small steps around the measured intervals and repeating the matrix solution.
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Figure 4.4: The sensitive spectra of "’Cs, obtained using the FSA method. Green line is placed to show zero counts level (Modified from

Caciolli et al., 2011, in press)

The x* minimization without any further conditions, which is the base of the FSA method, can
bring to sensitive spectra having energy regions of negative counts. Two evident examples of
this problem are shown in Figure 4.4 and 4.5. The presence of these non physical results
introduces crosstalk effects in the analysis, leading to systematic errors.
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Figure 4.5: The sensitive spectra of **U; obtained used the FSA method. In the small box is reported negative counts (Modified from

Caciolli et al., 2011, in press)
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The NNLS (Non Negative Least Square) constraint (Lawson & Hanson, 1995; Désesquelles
et al., 2009; Boutsidis & Drineas, 2009), which forces the counts on each bin to be zero or
positive, has been for the first time implemented in the FSA algorithm in order to avoid this
problem (Baldoncini, 2010). The sensitive spectra calculated with the new algorithm are
shown in Fig. 4.6, where it can be directly seen a more reliable sensitive spectra with the

NNLS implementation.
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Figure 4.6: Sensitive spectra obtained through the FSA with NNLS constrains (Modified from Caciolli et al., 2011, in press)

4.3 Calibration

Calibration is used to estimate the detector sensitivity in presence of a source of radioactivity.
An instrument with known characteristic is used to determine the concentration of radioactive
elements. Once you know radionuclides concentration and energy distribution of the counts is
possible to determine the sensitivity constants. When sensitivity of the detector is determined
we carried out radiometric measures in the site investigated.
To make a good tool calibration is necessary to create a calibration system consists of several
radioactive sources with properties similar to the following:

e Uniform distribution of the radioisotopes;

e Wide and flat surface that approximates an infinite geological source;

e Low moisture content;

e Sealed surface to prevent the radon escape;

e Low porosity and homogeneity.
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The IAEA recommends to calibrate using artificial pad. An artificial pad is a slab of concrete
containing known concentration of radioelements (Tab. 4.1). The IAEA (IAEA, 1989)
recommended 4 cylindrical concrete pads with dimension: diameter about 3 m and thickness
about 0,5 m. Each of the pads is enriched in either K, U or Th. The fourth pad serves as
background pad. The pads must be sufficiently radioactive to minimize the acquisition time
necessary to have a good statistic, but without distorsions in the spectrum that can determine
constants sensitivity unreliable. For Nal(TI) detector, the ideal concentration must not exceed
the rate of 2000 counts sec™.

Ideal concentration established by the IAEA are given in Table 4.1.

Block Type K (%) eU(ppm) eTh (ppm)

Background 0 0 0
K 8 0 0
U 0 50 0
Th 0 0 125

Table 4.1: Ideal concentration for the calibration blocks

Pad as those of Table 4.1 are impossible to build because you can’t construct pad completely
potassium, uranium and thorium free.
Then you should build blocks that have concentrations equal to those value reported in Table

4.2 following the guideline of the IAEA.

Block Type K (%) eU (ppm) eTh (ppm)

Background 0,5 1,1 1,4
K 6,5 1,1 1,4
U 0,5 50 1,5
Th 0,5 6,4 125

Table 4.2: Real concentration for the calibration blocks

Artificial pads, however, are difficult to achieve and very expensive. For this reason
concentration values of Table 4.2 are used as references for the choice of natural sites. The
calibration sites are outcrop of rocks characterized by a relative abundance of one element
other then. Background measurements are done on small boat in water about 200 meters from
the coast. Natural sites selected for the calibration of the our portable spectrometer, could
satisfy concentration characteristics of an ideal calibration system (Tab. 4.2). Spectrometer

must be place on the ground. Acquision time is 30 minutes. . In each test sites at least 5
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samples are collected, and analyzed with the MCA Rad in laboratory. One sample are
collected under portable spectrometer and others 1 meter away (Fig. 4.7). MCA Rad

measurements during about 1 hour, are affected by a statistical uncertainty of less than 10%.

SAMPLE

Figure 4.7: Example of calibration test

4.4 Portable spectrometer vs. MCA_ Rad

The main differences between portable spectrometer and MCA_Rad are:
e Efficiency: MCA Rad has less efficiency than the portable gamma ray spectrometer;
e Energy resolution: MCA Rad has more energy resolution than the Nal(Tl)
scintillator (Fig. 4.8);
e Measurements length: MCA Rad acquisition time during 1 hour; portable gamma
ray spectrometer during 5 minutes;
e Interaction volume (Figures 4.9 and 4.10): MCA_ Rad interaction volume is about

200 cm’, Nal(T1) portable detector interaction volume is about 785000 cm”;
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e Price: MCA Rad is more expensive than portable gamma-ray spectrometer.
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Figure 4.8: Comparison of Ge and Nal(Tl) spectra, showing the greater resolution of Ge detector (Modified from Baldoncini, 2010)

Figures 4.9 and 4.10: Comparison of portable spectrometer (left) and MCA_Rad (right) interaction volume
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Section 5: Geochemistry of the radioelements in the crust

Natural radioactivity, in the crust, is due to the presence of high concentration of primordial
radionuclides. In this section we describe the distribution of K, U, Th in the crust and some

basic concepts of their geochemistry.
5.1 Distribution of the radioelements in the crust

Most of natural radioactivity in the crust is due to the presence of three elements as K, U and
Th. The average abundance of U, Th and K in the upper crust is about 3 ppm, 10 ppm and
2.33% respectively (Dickson & Scott, 1997). U, Th and K and other minor radioactive
isotopes preferentially concentrate in acid and alkaline rocks. Basic and ultrabasic rocks have

extremely low levels of radionuclides.

Rock type Rock Soil

K(%) Ulppm) Thi{ppm) K% Ulppm) Thippm)
Intrusives
Granitoids 0.3-45(24) 04-78(3.3) 2.3-45(16) 04-39(2.1) 05-78(2.7) 2-37(13)
Gneissic rock 2438(24) 2.136(25) 1855(15)  07-19(13) 1638(22) 6-19(12)
Pegmatite 2.6-5.5(3.7) 03-1(0.7) 0.3-9.6 (2)
Aplites 064(24) 1-8(33) 320 (7)
Quartz-feldspar 1-5(2.9) 1.3-29(1.7) 6-14 (13)
porphyry
Intermediate 0.7-5.6(2.7) 0.1-1.2(0.8) 0.8-6.1(24) 07-34(16) 15-23(19) 29-84(5.6)
mtrusives
Mafic intrusives 0.1-0.8(04) 0.0-1.1(0.3) 0.0-3.1(1.2)
Extrusives
Felsic volcanics 20-44(3.7) 14-13(24) 13-28 (17) 18-32(24) 13-24(21) 10-18(13)
Intermediate 18-41(2.7) 09-56(2.3) 1.5-15(9) 1.0-2.7(1.9) 1.2-3.6(2.1) 4-17(10)
volcanics
Low-K andesites 0.7-09(0.8) 10-25(1.6) 3-8(5) 08-15(1.1) 12-15(1.3) 4-6(3)
Mafic volcanics 03-13(09) 03-13(07) 20-50(30) 02-14(07) 06-25(1.6) 33-13(7.9)
Ultramafic volcanics 02-09(04) 03-09(06) 0040(12) 06 20 6
Sedimentary rocks
Archean shales 04-1.6(0.9) 03-13(09) 1-5(2.7) 0.8 12 3
Other shales 0.1-40(26) 16-38(26) 10-55(19) 0.7-3.0(1.5) 12-5(2.3) 6-19 (13)
Arenites 0.0-55(1.8) 0.7-5.1(23) 4-22(12) 0.1-24(1.3) 12-44(21) 7-18(11)
Carbonates 00-0.5(0.2) 04-29(1.6) 0-29(14)

Figure 5.1: Radioelements concentration of Australian rocks and soil (Average value in brackets) (Modified from Dickson and Scott, 1997)

Magmatic rocks, generally, show an increase of radioelements with increase of SiO, (Fig.

5.2).

Antonio Puccini — Radiometric methods in geological reconstruction, in the prospecting of georesources and evaluation of hazard — PhD.
Thesis in Natural Science — University of Sassari



45

20
K (%) ~
= == Ulppm) / N \
71— = Thippm) /
/. \
5 ‘ 8/ £
;m 9w 3 E g 8 \
= 4] = e & Lt
5 5 s 8 /8 & 7§ \
L & :.n = = @ uw = £
o ° @ = g/ = =) o w =
> = h=] i, o > ] =
o > = a w=f —w 2 o 5 \ =
= L2 5 E 5§ 2 & @ £ 5
5SHE % £ 8§ ¢ E 5 =T 8 § 8
s F 5 Ey £ 3 g 5 7
5 -~ \\E E - =
S - N
A
0
Sicontent —» 22/81

Figure 5.2: K, U and Th average abundances for igneous rocks with increasing of SiO2 content (Modified from Dickson and Scott, 1997)

In sedimentary rocks, radionuclides concentration depends on the environmental conditions
which occurred during deposition and diagenesis. Metamorphic rocks generally retain the
concentration of protolites.

Radioactive elements have an important role both as main constituent and as vicariant
elements of both main and accessory mineral phases. Moreover uptake of radioactive
elements by tunneled mineral phases such as e.g. hollandite, zeolites can increase the content
of exchangeable radioactive nuclides. These nuclides can easily be released if changes of the
physical-chemical condition occur.

Petrogenetic processes (hydrothermal or magmatic) forming primary minerals. They are
important in the distribution of the radioactive nuclides even if supergene processes can

account for very high concentration.
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5.2 Uranium

Uranium is a metallic element of the actinides serie, with atomic number 92. Uranium has
four oxidation states U**, U*", U>" and U®', the most important of which are U*" and U®* (Fig.

5.3).

Oxidizing environments
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Figure 5.3: Eh-pH diagram of the system U-O-H at 298.15 °K and P = 10° Pa (Modified from Takeno, 2005)

The geochemical behavior of uranium is influenced by:
e Redox conditions (Eh),
e pH;

e Water-rocks or water-soils reactions.

The hexavalent form is more mobile in the environment compared with the tetravalent form.

Such a mobility is due to the high solubility of the uranyl complex (UO,)*". Changes in the
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redox conditions may cause uranium reduction to the tetravalent form which is removed from
the solution by precipitation. In reducing environments U precipitates as U;Og (Pitchblende)
or UO; (Uraninite), in sedimentary environments as Autunite. U appears as U*" in igneous
rocks with crystallochemical properties close to Th*" and Light Rare Earth Elements (LREE),
which explains the coherent geochemical behavior of U, Th and LREE in igneous rocks (Bea,
1999). This coherence is lost in hydrothermal and supergene conditions, where uranium is
partially or totally oxidized to U®", which forms soluble complexes combined with the anions:
CO5%, SO4* and PO* (Langmuir & Hermans, 1980). The most abundant uranium minerals

are listed in Table 5.1.

Uranium Minerals Chemical Formula % U0yppm U
Minerals with U as major constituent

Uraminite, (Prtchblende) Uy

Betafite (U.Ca)Nb, Ta. Ti) O aHy O

Huttonite ThS10, 100-20000 ppm
Uranospherite (BiO)y U0, )(OH);

Thorite, Uranotherite ThSi04, (Th 17510, 1-35%
Thorianite, Urancthorianite ThO, (Th, 1IN0, 5%

Common accessory rock forming minerals

Zircon Zr5i0, %%

Xenotime YR, 5%

Monazite {REE. Th)PO, 100-20000 ppm
Allanite {Ca.AlFe Mg) silicate 10-2000 ppm
Apatite Cas(POy):(F.CLOH) 5-200 ppm
Sphene CaTi510, 10-500 ppm

Table 5.1: The most important uranium minerals (Modified from IAEA — TECDOC — 1363, 2003)

Uraninite is common as minute inclusions in the rock forming minerals in granites or as large
grains in mineralized granites and pegmatites. Uraninite also occurs in hydrothermal veins
and sedimentary rocks. The accessory minerals zircon, monazite, apatite, allanite and sphene
are common in igneous and metamorphic rocks, of which zircon and monazite are the most
resistant to weathering. As U becomes mobile under supergene conditions, a large variety of
U®" minerals may form. This explains the variety of minerals found in uranium deposits,
including silicates, phosphates, carbonates, sulphates, vanadates, molybdates, niobates,

tantalates and titanates (Bea, 1999).
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5.3 Thorium

Thorium is a chemical element with atomic number 90. Thorium is an actinide with oxidation
state Th*" in solution (Fig. 5.4). Thorium shows high affinity with elements such as U, Ce and
Zr. Thorium can be dissolved in acid solutions and its solubility is enhanced by humic acids
(Chopin, 1988). It less soluble in water where exhibits strong colloidal characteristics giving
rise to hydroxyl compounds and insoluble silicates that may precipitate. Th*" has strong
tendency to form complex ions which combined with chloride, fluoride, nitrates, sulfates and
carbonates are easily soluble. This complex ions are able to mobilize thorium under certain

conditions of Eh and pH.

Th[4+] ~

S ThO,(s)

Eh(V)
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—
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Figure 5.4: Eh-pH diagram of the system Th-O-H at 298.15 °K and P = 10° Pa (Modified from Takeno, 2005)
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Thorium is a constituent of accessory minerals such as zircon, monazite, allanite and

xenotime, apatite and sphene. Table 5.2 lists these with their average Th content, along with

other minerals that have Th as a major constituent.

Thorium Minerals Chemical Formula % ThO,
Minerals with Th as major constituent

Huttonite ThS104 80
Thorite, Uranothorite ThS104, (Th,1U)S10y 50, < 50
Cheralite (Th,Ce, Ca)}Si04PQy) 30
Thoriamte, Uranothorianite ThO,, (Th,U)O, 80, < 80
Common accessory minerals

Monazite (REE.Th)POy4 10
Xenotime YPO, 0.4-1
Zircon ZrS10, 0.01-1
Allanite (Ca,Al Fe Mg) silicate 0.1-1
Apatite Cas(PO4)3;(F.CLLOH) 0.001-0.1
Sphene CaTiSi0s 0.001-0.1
Epidote CaFe” ALQ.OH(81:07)(81:04) 0.005-0.05

Table 5.2: The most important thorium minerals (Modified from IAEA — TECDOC — 1363, 2003)

5.4 Potassium

Potassium is a lithophile element and is monovalent under natural conditions (Fig. 5.5).
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Figure 5.5: Eh-pH diagram of the system K-O-H at 298.15 °K and P = 10° Pa (Modified from Takeno, 2005)
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Most K occurs in felsic rocks as alkali-feldspar. Alkaline lavas can exceed 6% of K, K in
granitoids is 3,5% on average. Mafic and ultramafic rocks contain much lower concentrations,
with average K content ranging from 0.58 to 0.75 %. The feldspar mineral series, the
feldspathoids leucite and nepheline, and the micas biotite and muscovite, together contain
virtually all the potassium in magmatic and metamorphic rocks respectively. Some
amphiboles contain up to 1 % K. Table 5.3 lists the common minerals of which K is an

essential constituent and some other common K-bearing minerals (Mittlefehldt, 1999).

Potassium Minerals Chemical Formula % K

Roack forming silicate minerals

Feldspars (K Na)AlSi;0g;(Na,, Cay ) Al-xS1;+X0gq—.13

Alkali-feldspar (K, Na)AlSi;0g 13
Microcline KAlIS1;04 13
Orthoclase KAlISi;Og 13
Sanidine KAlISi;Oq 13
Leuctte KA1S81:04 17
Nepheline (Na, K)AlIS104 23
Biotite K(Mg,Fe)jAISEDm(OH)J 8
Muscovite KALAISI;O(0H)) 8
Phlogopite KMg3A1813013[:0H)3 8
Hornblende (K, Na)p.1(Na,Ca)x(Fe Mn Mg T1,Al)s(S1,A1)s0-(OH.F)» 1

Other K-minerals

Alunite KAJg(SD4):(DH)G
Glauconite (K.Ca,Na)_(Al Fe™ Fe*Mg),[(OH)~/Aly 15513 ¢5010]
Sylvite KCl

Table 5.3: The most important potassium minerals (Modified from IAEA — TECDOC — 1363, 2003)

Thesis in Natural Science — University of Sassari

Antonio Puccini — Radiometric methods in geological reconstruction, in the prospecting of georesources and evaluation of hazard — PhD.



51

Section 6: The Sardinian Variscan Crust

The Sardinia—Corsica Microplate (S-CM) exhibits one of the most complete and best-
preserved transects of the southern European Variscides, and it can be divided into the
following tectono-metamorphic zones: a Foreland Zone in the SW with either very low grade
or no metamorphism; a Nappe Zone in the SE and central parts of the island (subdivided into
external and internal nappes, with several stacked tectonic units), affected by low grade

metamorphism; an Inner Zone in the north, with medium to high grade metamorphism (Figure

6.1).
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Figure 6.1: Tectonic sketch map of the Variscan basament of Sardinia (Modified from Carmignani et al., 2001)
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The Foreland and Nappe zones are also characterised by a Middle Ordovician angular
unconformity (Sardic Unconformity: Carmignani et al., 2001, and references therein), which
is also recognised in the Eastern Iberian Plate (Casas-Sainz & de Vicente, 2009; Navidad et
al., 2010). Along the southern boundary of the Inner zone an eclogite-beareing belt is
exposed, which was supposedly considered a suture zone (Cappelli et al., 1992; Carmignani
et al., 1994). The protolith of the eclogite has been dated at 457 + 2 Ma, the high-pressure
event is Devonian (Cortesogno et al., 2004; Giacomini et al., 2005; Franceschelli et al.,
2007). Eclogites have MORB signatures, and are embedded within a metapelitic-
metarenaceous complex hosting also homogeneous quartzite beds (metacherts?),
orthogneisses, and metabasite with high-medium-P granulite metamorphic imprint
(Franceschelli et al., 2007). The deformation, localized in low-strength shear zones, and the
geometric association of rock bodies with different metamorphic record, point to a mélange of
rocks tectonically sampled from diverse crustal levels within a channel flow, probably linked
to the subduction of a lower Paleozoic ocean (Cappelli et al., 1992). Throughout the external
nappes (Carmignani et al., 1994), the sedimentary record and fossil content is generally
preserved, and several volcano-sedimentary complexes are stacked in the Nappe Zone (Di
Pisa et al., 1992; Carmignani et al., 1994) (Figure 2). This collisional structure is well
preserved after the post-collisional evolution and the emplacement of the huge Sardinia-
Corsica Batholith (S-CB) (Figure 6.2). The S-CB stretch over 10.000 Km® and its
composition is mostly monzogranitic with minor amounts of granodiorite/tonalite and 1% of
gabbroic masses. Leucogranites are common and equal in volume at the granodiorites. Most
authors interpreted the origin of the S-CB purely in terms of post-collisional gravitational
collapse of the mountain chain (Carmignani et al., 1992; Ferré & Leake, 2001). A model of
generalized vertical shortening account for the generation of hybrid magmas during
progressive decompression. Over the past decades, it has been demonstrated that
decompression-related melting played a major role during the formation of the S-CB (Rossi &
Cocherie, 1991; Ferré & Leake, 2001). Crustal extension may effectively results in a
pronounced thermal anomaly that have the potential for generating melts in the uppermost
subcontinental mantle, and also in the felsic lower crust by self-feeding mechanisms (Ferré &
Leake, 2001). Anatexis of the Variscan crust is a major event in the Corsica-Sardinia block
from about 350-345 Ma (Ferrara et al., 1978; Giacomini et al., 2006). The early melts consist
of trondhjemitic leucosomes that reflect focused anatexis of metasediments by muscovite

dehydration melting (Cruciani et al., 2008). Somewhat younger leucosomes characterized by
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granodioritic and granitic composition testify slightly higher solidus temperatures and
increased rates of melt production, however the petrologic difference between these two
generation of melts is generally explained in terms of source heterogeneity rather than

changing PT conditions (Cruciani ef al., 2008; Macera ef al., 2011).

——

HERCYNIAN BASEMENT

Figure 6.2: Intrusive complexes reported with orange color (Modified from Carmignani et al., 2001)

The majority of authors separate the late stage of regional anatexis and the growth of the C-
SB assembly on the base of circumstantial field evidences, however there is no
geochronological constraints supporting this interpretation. The only certain conclusion is that
the growth of the batholith is mainly due to anatexis of a variscan crust with some contribute
of subcrustal melts (Zorpi et al., 1991). Based on field relationships, U-Pb zircon ages and
petrologic considerations, Rossi and Cocherie (1991) and Ferre & Leake (2001) distinguished
three main magmatic suites within the S-CB. The early magmatic sequence (U1) developed in
northern Corsica around 340 Ma (Paquette et al., 2003) during N-S shortening. Ul melts
gave rise to high-K/Mg calc-alkaline plutons that emplaced at depths ranging from mid-
crustal levels (< 0.37 GPa according to Ferré¢ & Leake, 2001) up to the surface. Between
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about 320-280 Ma, the composition of the granitic melts evolved to lower MgO compositions,
producing the large granodioritic and monzogranitic U2 plutons, which form the largest part
of the S-CB (del Moro et al., 1975; Ferre & Leake, 2001; Paquette et al., 2003; Oggiano et
al., 2005, 2007). Only a few studies have attempted to reconstruct the tectonic setting that
brought to the emplacement of U2 plutons (Rossi & Cocherie, 1991; Gattacceca et al., 2004;
Kruhl & Vernon, 2005). The observation that most of the U2 early melts (around 320 Ma)
were emplaced within narrow emplaced within narrow strike-slip shear zones (Gébelin et al.,

2009) suggests that they formed during the

Ordovician

transitional phase from  bulk shortening to
extension. The alkaline suite U3 is the last
magmatic phase in the S-CB and includes ~250
Ma post-orogenic plutons emplaced at very
shallow structural levels (P < 0.2 GPa) and sub-
volcanic complexes not exposed in north Sardinia

(Cocherie et al., 2005).

b Silurian-Devonian

Crustal features similar to that of Sardinia and
Corsica occur both in France (Maure Massif,
Central Massif, Pyrenees) and Spain (Coastal
Catalan Chain).

The fittings with these south European regions is

obvious considering that the nowadays position of

GONDWANA the Sardinia-Corsica Block is the consequence of

c Late Carboniferous

2 < BRITAIGNE the Burdigalian counter-clockwise rotation of this

I . .
ST microcontinent as consequence of the roll-back

Crust remnants
-

and slab retreat of the insubric slab subducted
_ beneath the south-european margin (i.e. Sardinia
Corsica crust) (Malinverno & Ryan 1986;
Carmignani et al., 1995, Oggiano et al., 2009 and

SARDINIA ==+ | reference therein).

Figure 6.3: Paleogeographic reconstruction of the Hercynian of South Europe: a) Ordovician paleogeography (Modified from Vai &
Cocozza, 1986 and Paris & Robardet, 1990), b) Silurian-Devonian paleogeography; c) Late Carboniferous paleogeography (Modified from
Matte, 1986 and Franke, 1989). Sa: Central and southern Sardinia; Co: Corsica and northern Sardinia; No: Normandie; Cm: Cantabrian

chain; Aq: Aquitaine; Mn: Montaigne Noire; Ns: Nova Scotia.
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The age of the rifting phase is dated to Oligocene (from 30 to 24 Ma) followed by a short
Early Miocene oceanic accretion (ages ranging from 23 to 15 Ma, Ferrandini et al., 2000).
Then the structural pre-drift directions, namely Variscan, have to be restored of ~30° with
respect to the stable Europe. Pre-mesozoic geometry of the belt was an orogenic curved belt
that reaches from Spain, the Massif Central. The belt have a double vergence, with a central
wide range of high and medium-grade metamorphic rocks exhumed from mid-crustal layer
before late Carboniferous. The N vergence continues to north of the Alps through Ardenne,

up to Bohemia.
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Section 7: Evaluation of Hazard

7.1 Introduction

A large part of Sardinia, approximately 6000 km?® (Ghezzo & Orsini, 1982), consists of
granitic rocks of the Sardinia-Corsica Batholith (S-CB). The S-CB is deeply related to the
evolution of the south European Variscan belt (Paquette et al., 2003). The batholith emplaced
in a time interval of about 60 Ma, from 340 Ma to 280 Ma. The long period of emplacement
reflects important differences in terms of chemical-mineralogical composition and texture.
Texture variability gives different “drawings” at these granites, a feature that makes them
interesting as dimension stones for a wide variety of usages, including flooring, columns,
ashlars or other architectonic elements. Therefore, the knowledge of their natural radioactivity
is very important for the evaluation of the amount of public exposure.

Natural radioactivity on Earth is caused by radiation from outer space and radioactive decay
of lithophile elements in the lithosphere, mainly represented by *°Ra, >**Th and *’K. Because
of peoples spend most time indoors (Stoulos et al., 2003), they expose themselves to
radiations in two ways: I) from gamma-radiation caused by external sources, and II) from an
internal radiation due to inhalation and accumulation of radon and related its decay products
in the respiratory tract. Many governmental and international organizations (UNSCEAR,
European Commission, OECD etc...) have recently focused particular attention on trying to
minimize the health risks associated with the exposure to these indoor radiations.
Radionuclides are widely distributed in the crust and their concentration is not homogeneous.
Generally, highest values are found in acid igneous rocks (Dickson & Scott, 1997) such as
granite, which is a very popular building material. For this reason, we developed a portable
gamma-ray spectrometer in order to allow fast and in-situ survey on the Sardinian granite
outcrops. The main aim of this screening was to collect a thorough database on the natural
radioactivity of Sardinian granites. Then, results were used to address both the hazard related
to the natural radioactivity of the most popular granitic dimension stones exploited in

Sardinia, and the geochemical variation within and amongst plutons.
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7.2 Materials and methods

7.2.1 Rocks investigated

A preliminary survey on several Sardinian plutons, ranging in composition from quarz-
diorites to leuco-monzogranites, allowed us to get basic constraints on the distribution of the
natural radioactivity carriers within the S-CB (Fig. 2). Based on a preliminary report which
gave a bunch of very high radioactivity values, we decided to analyze more in detail seven
Sardinian granitoids traded worldwide as dimension stones. These rocks are known as Rosa
Beta, Ghiandone, Giallo San Giacomo, Rosa Cinzia, Grigio Malaga, Bianco Sardo and
Grigio Perla (From Fig. 7.1 to Fig. 7.7).
Rosa Beta and Ghiandone are the most commercialized Sardinian granites, exploited in more
than 150 quarries (RAS, 2007). Rosa Beta is characterized by a general pink coloration due to
the abundance of Kfs phenocrysts (2-3 cm); the Ghiandone is quite similar to Rosa Beta,
however it shows a more apparent porphyritic texture defined by larger Kfs phenocrysts (up
to 12 cm).

Giallo San Giacomo is a leuco-monzogranite, actually very appreciated. Its coloration stems
from selective weathering of biotite, and oxidization of Fe-Mg minerals which gives the rock
its yellowish coloration. The Rosa Cinzia is a monzogranite characterized by pinkish
coloration and equigranular structure. This granite has finer grain than Rosa Beta. It exploited
only in 3 quarries near the town of Tempio Pausania.

Grigio Malaga, Grigio Perla and Bianco Sardo all belong to the Budduso pluton (Barbey et
al 2008) and represent, respectively, the less, intermediate and the most differentiated portion
of the pluton. The Grigio Malaga is a tonalitic granodiorite showing a well-foliated structure
evidenced by the shape preferred orientation of the mafic enclaves and of relatively
amphibole-biotite-rich domains; the Grigio Perla is a monzogranite characterized by a greysh
coloration and, finally, the Bianco Sardo is a leuco-monzogranite with overall whitish

coloration
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Figures 7.1, 7.2, 7.3 and 7.4: Lithotypes exploited in Gallura region (from left to right): Ghiandone, Rosa Beta, Rosa Cinzia e San

Giacomo; Figures 7.5, 7.6 and 7.7: Lithotypes exploited in Goceano region (from left to right): Grigio Malaga, Grigio Perla, Bianco
Sardo

7.2.2 Radioactivity measurements

347 in situ radioactivity measurements were carried out through the portable gamma-ray
spectrometer on several Sardinian plutons. More in details, 147 in situ measurements were
carried out on the selected dimension stones (21 for each rock type). The accuracy and
reliability of the portable gamma-ray spectrometer was controlled at each measurement site,
by replicating one in situ analysis in laboratory with both the HPGe and ICP-MS methods.

The difference between results obtained with the portable gamma-ray spectrometer and both
the HPGe and ICP-MS instruments is generally small: the discrepancy between I values
calculated fromseven measurements performed by Nal(Tl) in-situ and HPGe in laboratory is
less than 18,27% and less than 14,29% if we compare the measurements obtained by Nal(Tl)
and ICP-MS (Tab.7.1). This small differences might reflects the usual variability observed
within rocks, therefore both methods would be equally valid to characterize the natural
radioactivity of granites. This small differences reflect the usual variability within the same
lithotypes and it can be considered satisfactory, taking into account that the Nal(TI)
measurements are weighted on a slightly lower than 1 m® rocks volume whereas both HPGe

and ICP-MS analyzes a spot sample .
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Lithotypes HPGe ICP-MS Nal Nal vs. HPGe | Nal vs. ICP-MS
| | | % %

Rosa Cinzia 0,89+0,02 0,86+0,004 1,02+0,01 12,75 15,69
Ghiandone 0,74+0,02 0,740,004 0,66+0,01 10,81 10,81
Grigio Perla 0,90£0,02 0,850,004 1,04+0,01 13,46 18,27
Giallo San Giacomo | 0,86+0,02 0,82+0,004 0,94+0,01 8,51 12,77
Rosa Beta 0,75%0,02 0,760,004 0,73%0,01 2,67 4,11
Bianco Sardo 0,84+0,02 0,7240,004 0,87+0,01 3,45 17,24
Grigio Malaga 0,60+0,02 0,71x0,004 0,70£0,01 14,29 1,41

Table 7.1: Difference of the Activity Concentration Index (I) between portable gamma-ray spectrometer (Nal) and Lab analysis

7.2.3 Activity Concentration Index

In granitic rocks, which are widely used as structural (ashlars, columns..) and ornamental
materials (coating, tiles..), radioactivity can be evaluated through the Activity Concentration
Index (I), an index proposed by UNSCEAR (1993) and European Commission (RP no. 112,
1999) that allows one to evaluate the dose rates in air from different combinations of the three
radionuclides considered.

Within the European Union, the risk threshold gamma-ray dose has been established atl mSv
yr'. It is therefore recommended that controls should be based on a dose in the range 0,3-1
mSv yr'. Building materials avoid all restrictions concerning radioactivity if the annual
effective dose is 0,3 mSV at the most.

According to the European Commission (RP no, 112, 1999), the I index is derived for

identifying whether a dose criterion is met:

I = (Ara/300) + (A11/200) + (Ak/3000)

The I should not exceed the value reported in table 7.2, depending on the dose criterion and

amount of materials used in dwelling construction.
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Dose Criterion 0,3 mSv a’ 1 msV a™

Material used in bulk amounts, 1<0,5 <1
e.g. concrete
Superficial and other materials
with restricted use: tiles, boards,
etc....

Table 7.2: Limited suggested by the European Commission for use of building materials (Modified from RP No. 112, 1999)

7.3 Results and discussions

The preliminary survey reveals that Sardinian granites have quite a large radioactivity
variability (Fig. 7.8 and fig. 7.9).

In Fig 7.8 and 7.9 we reported the total activity and the I index relative to the 347 in situ
measurements carried out on several Sardinian plutons. The mean value of the total specific
activity is 1512417 Bq Kg™'; the average value of I is 1+0,01.

The total specific activity ranges from 338 Bq Kg™' to 2330 Bq Kg™'; the I value varies from
0,22 to 2,08. 159 measurements, which represent about 45,8% of total measurements, show I
values higher than 1.

Taking into account the world-wide average of *°K, **U and **Th activity concentration in
the earth’s crust (400, 40, 40 Bq Kg™' respectively (RP No.112, 1999)), we can say that 343,

204 and 329 measures exceed these values, respectively.

5 £
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Figure 7.8: Activity Concentration Index histogram of the 347 in-situ measurements
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Figure 7.9: Total Activity (expressed in Bq kg') histogram of the 347 in-situ measurements

These data highlighted that almost half of the sampled localities exceed the threshold value
recommended in the European Union; this makes indispensable a survey of radioactivity
before using these rocks as building materials. A detailed characterization of the seven

selected dimension stones, taken as representative of presently traded materials, is reported in

Table 7.3.

Activity 0K Activity B8y Activity Z2h | Total Activity
Lithotypes | Measures K(%) | eU(ppm) | eTh(ppm) | (BqKg?) (Bq Kg™) (Bq Kg™) (Bq Kg™)
Rosa Beta 21 4,29+0,45 | 3,08+0,54 | 14,38+1,49 13444141 40+7 586 14394151
Ghiandone 21 4,08+0,7 | 4,37+1,02 | 18,05+2,62 1278+219 54+13 7311 1391+233
G. San
Giacomo 21 5,05+0,47 | 3,49+1,61 17,28+2,3 1582+147 43+20 7019 16861151
Rosa Cinzia 21 4,89+0,26 | 3,66+0,77 | 18,83%0,89 1533180 459 764 1653+82
Grigio
Malaga 21 3,17+0,46 | 2,02+0,46 | 15,76%1,25 1000+152 25+7 6315 1081+157
Grigio Perla 21 4,63+0,61 | 2,4610,46 | 16,17+1,12 | 14504191 3046 6615 15414195
Bianco
Sardo 21 4,79+0,25 | 3,15+0,59 | 14,01+1,95 1487492 39+7 5748 1581494

Table 7.3: In this table are listed the average values, weighted with their instrumental uncertainty, with respective standard deviations of

the abundance, the activity concentration of K, eU and eTh for 7 litotypes and the total specific activity.
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The **U average concentration range from 2,02+0,46 ppm (Grigio Malaga) to 4,37+1,02
ppm (Ghiandone), whereas the **U average specific activity range from 25+7 Bq Kg'1
(Grigio Malaga) to 54+13 Bq Kg'1 (Ghiandone).

The average value of ***Th concentration have been found to lie between 14,011,95 ppm and

18,83+0,89 ppm in the Bianco Sardo and Rosa Cinzia, respectively. The 232

Th average
specific activity vary from 57+8 Bq Kg'1 (Bianco Sardo) to 76+4 Bq Kg'1 (Rosa Cinzia).

The “K average concentration vary from 3,17+0,46% (Grigio Malaga) to 5,05+0,47%
(Giallo San Giacomo) and the “°K mean specific activity vary from 1000+152 Bq Kg
(Grigio Malaga) to 1582+147 Bq Kg™' (Bianco Sardo).

These data show that all the lithotypes exceed the world reference for **K and **Th activity
concentration values, whereas about the ***U activities, only Grigio Malaga, Grigio Perla and
Bianco Sardo show values lower than 40 Bq Kg™'.

The calculated I values varies from 0,73+0,07 in Grigio Malaga to 1,04+0,05 in Rosa Cinzia
(Fig. 1). Only the Rosa Cinzia and Giallo San Giacomo granites exceed the limit imposed for

building materials. Their utilization as ornamental stones, say in manufactures requiring a

limited volume of material, is instead allowed because the I-value don’t exceed the limit of 6.

Activity Concentration Index

1,2 /
|

0,6 -
0.4 -

0,2 -

D T T T T T T 1
Fosa Beta Ghiandone Giallo San Rosa Cinzia Grigic  Grigio Perla Bianco
Giacomo Malaga Sardo

Figure 7.10: Activity Concentration Index (1) in granite lithotypes considered

Antonio Puccini — Radiometric methods in geological reconstruction, in the prospecting of georesources and evaluation of hazard — PhD.
Thesis in Natural Science — University of Sassari



63

7.4 Conclusions

This work highlighted that Sardinian dimension stones show a large variability in terms of
concentration of radioactive elements. This makes indispensable some a priori evaluation of
their total activity before proceeding with exploitation and trading. Based on the activity
threshold indicated by the European guidelines in fact, more than 45% of the plutons
investigated must be considered unsuitable for use in large amount including structural
component (e.g. concrete, masonries) and, thus, may represent a serious problem for health.
The dimension stones analyzed in this work (most of which are still currently exploited) have
almost always a I below the recommended limits, making these granites suitable as superficial
materials; only the Rosa Cinzia and Giallo San Giacomo granites can’t be used as structural
elements (concrete, masonries, etc...) because their value is slightly above the limit fixed by
the European Commission.

The portable gamma-ray spectrometer has proven to be an ideal tool for expeditious in situ
measurements, allowing to get large amount of data nearly in real time. Furthermore, the
portable device analyzes a larger amount of rock respect to the laboratory instruments,
therefore the analyses made directly on the field are expected to be statistically sound.
Another non-trivial advantage of the portable instrument is its relatively low cost. The
portable spectrometer highlights a good reliability and the possibility to detect even small
different of concentrations of radioisotopes in different lithologies. Comparison among
portable gamma ray spectrometer and laboratory analyses (HPGe and ICP-MS) shows slight
differences that can be attributed to the different amount of material analyzed which, being
more in the in-situ measurement, provide us a measure weighted on a much larger volume of
rock.

In conclusion we can say that the portable gamma-ray spectrometer is a powerful tool for
evaluating the possibility of exploitation of new quarries and in general a useful device to

perform low-cost, fast and accurate radioactivity surveys on granitic rocks.
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Section 8: Employment of portable gamma-ray
spectrometer in survey and mapping of intrusive

complexes

8.1 Previous approach and cartographic evolution in Sardinia

Over the past 50 years the S-CB has been investigated using different approaches. The first
attempts to characterize the S-CB have been made during the sixties (Simboli, 1962; Conti,
1966) by the means of a purely petrographic approach. In these early works, the S-CB was
distinguished into :

e Basic masses;

e Tonalites and granodiorites;

e Monzogranites;

e Leucomonzogranites;

without paying attention to the parental relationships between magmatic pulses and plutonic
complexes. Only in the eighties some researcher tried to distinguish between different plutons
based on a rough timing of intrusion (mainly Rb-Sr whole rock methods) relative to the
Variscan tectonics. This approach lead Ghezzo & Orsini (1982) to distinguish syn-, late- and
post-tectonic granites, implicitly referring to the main Variscan collisional phase.

Finally, starting from the early nineties, the S-CB was re-considered in terms of coalescent
plutons and studied by the means of a combined structural and petrologic approach (Cherchi
& Musumeci, 1992).

The evolution of cartographic databases basically follows from the research approach
established at the time of mapping. In many areas only 1:100000 scale maps are available,
which were constructed following a petrographic approach. Obviously, as we can see in
Figure 8.1, the vast majority of granites is represented with a single color, as the leading part

of the S-CB consists of monzogranites. These maps are practically useless.
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Only in 2005 the first CARG project map 1:50000 scale on the Sardinian batholith (Fig. 8.2,

Arzachena Map) was published. This map represents a significant step forward compared to

previous maps. Indeed, granitoid rocks were first mapped based on the concept of being part

of a specified pluton, which is distinguishable from other plutons. Unfortunately, the 1:50000

scale maps are still very few, therefore many areas of the S-CB remains uncovered with such

detail.
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Figure 8.2: Arzachena map 1:50000 scale
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8.2 Shortages in survey of intrusive complexes

Structural analysis is a prerequisite to survey granitic complexes. Such analysis can be made

by the means of several methods, including:

® Study of magmatic anisotropies (Magmatic flow) patterns: As we can see in Figure

8.3, magmatic flow allow us to rebuild plutons geometry.

Figure 8.4: Orange line trace the development of magmatic flow in this outcrop
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e Behavior of contacts: Contacts between two magmatic rocks are classified as ductile
contact (fig 8.5) if they bridge two rock-types while parental melts were hot, and sharp
contact (“chilled margin” or “magmatic breccia”, fig 8.6 and fig. 8.7), meaning a

contact that separates a cold rock from hotter ones.

Figures 8.6 and 8.7: Example of “magmatic breccia” (sx.) and “chilled margin” (dx.)
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A thorough structural analysis can be easily done where outcrops are large and contacts are
exposed. Unfortunately, these conditions are not the rule. Compositionally similar terms of
different plutons may be misinterpreted based on field evidences alone.

So if the field data are ambiguous laboratory analysis such as radiometric dating and chemical
analysis are unavoidable. These analysis are certainly helpful but require high costs in terms

of money and time.

8.3 Geological setting

8.3.1 The Budduso Pluton and surrounding intrusions

The Budduso Pluton belongs to the so-called U, high-K calc-alkaline plutonic association
(about 305-290 Ma, Barbey et al., 2008), and consists of tonalites, granodiorites,
monzogranites and leuco-monzogranites.

The internal structure of the pluton consists of three concentric shells that show a normal
magmatic differentiation from tonalitic-granodioritic facies in the external shell to
monzogranitic and leuco-monzogranitic facies in the core. Three magmatic units have been
distinguished on the basis of petrography and fabric (Fig. 8.8):

e The Outer unit: It consist of banded, medium- to coarse-grained, porphyritic
biotite/hornblende granodiorites and tonalites (Oul), and of porphyritic biotite
monzogranites (Ou2);

e The Middle unit: It is a layered, medium-grained, porphyritic biotite monzogranite.
Bruneton & Orsini (1977) distinguish two subunits based on the amount of biotite,
which is lower in the internal subunit (Mu2) than in the internal one (Mul);

e The Inner unit: It consist of homogeneous, coarse-grained, leucocratic monzogranites

(Tw).

The Budduso Pluton has relatively small size (about 70 km?) and is surrounded by several
intrusions (Concas, Sos Canales, Benetutti, Monte Lerno and Tepilora plutons, which range in

composition from tonalitic-granodiorites to leuco-monzogranites).

Antonio Puccini — Radiometric methods in geological reconstruction, in the prospecting of georesources and evaluation of hazard — PhD.
Thesis in Natural Science — University of Sassari



69

i | I LI T T T L] T
++9‘6++++9“291-‘r++++
-Aladei Sardi -+ == -+ -+ + =+ +
massif + + ‘Y’ + + + + 4+
40°39'
+ + + + + A + + + + +
X + +  +
+ + +
+
+
3 \\\\\"* +
25 +
+ + + + +
+ + + +
+ + Concas+ +
+ 4+ - massif +
+ + + + +
+ + + -
+ + + +7%
\ A_.&' + + 77
Qui
‘
%Qq"',llil’ “‘ W ]///
T B +-—---Benetutt| massnf+-- /_///z
2] L L
Ou, Mu, lu = Quter, Middle and Inner units m Surrounding granites
@, @, ... = Sampling quarries: I:I Leucomonzogranites (lu)
1 = Ghisoni, 2 = Mannu Graniti
3 =Bua, 4 = Ferreri Biotite monzogranites (Mu2)
5 = Sarda World Granit, 6 = Fratelli Gemelli o _
7 = Gramont, 8 = Nieddu Ij Biotite monzogranites (Mu1)
9 = Santa Tanca - Biotite granodiorites (Ou2)
. Township _/ Road Hornblende-bearing biotite
granodiorites (Ou1)
T~ _ Fabric ~~ Fault m Metamorphic country rocks

Figure 8.8: Geologic map of the Budduso Pluton (Modified from Barbey et al., 2008)

8.3.2 The Arzachena Pluton and its neighbour intrusions

Arzachena (AZN) pluton (311+6/-4 Ma, Oggiano et al., 2005) belongs to the high-K calc-
alkaline magmatic association. The pluton is an elliptical, sill-shaped, intrusion elongated
about SSE (Oggiano et al., 2005). The pluton show an inverse magmatic differentiation from
the external shell with prevailing leuco-monzogranites, to the core made up of granodiorites.
AZN consists of three distinct shells organized into a concentric structure:
e Granodiorite (Inner Unit): It is the most mafic term of the intrusion and it is a
medium-grained, slightly porphyritic, hornblende/biotite-granodiorite exposed along

the southern margin of the pluton and inner part;
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e Porphyritic biotite-monzogranite (Middle Unit): It represents the principal rock
type of the AZN. It consists of strongly porphyritic biotite-monzogranite which grades
internally to a slightly more differentiated megachrystic biotite/muscovite
monzogranite.

e Leuco-monzogranite (Outer Unit): It consist of fine-grained leuco-granites (biotite <

5 wt.%) and represent the more evolved magmatic products.

The Arzachena pluton is one of the major calc-alkaline intrusive unit of the S-CB. Its
surrounding intrusions are: Barrabisa Pluton (Granodiorite), Maddalena Pluton
(Monzogranite) and other intrusive complexes such as S. Antonio di Gallura (Gabbro to

Leucomonzogranite) and Aglientu (Monzogranite) complexes.

8.4 Results and discussion

8.4.1 The Budduso pluton and its surrounding intrusion

63 measurements with the portable gamma-ray spectrometer were carried out on the Budduso
pluton (21 for each magmatic unit). All measurements were acquired in-situ and then plotted
on eTh vs. K, eTh vs. eU and eU vs. K graphs (Fig. 8.9, 8.10 and 8.11). Taking into account
these values, we noted that:

e The distribution of radioactive elements is not homogeneous, but mimic almost
perfectly the petrologic zonation of the pluton there is a direct correlation from
tonalites to leucomonzogranites and K and eU abundance. The eTh abundance instead
has an opposite behavior, in fact it increases from tonalites to monzogranites, and
decreases again from monzogranite to leucomonzogranites;

e measurements taken close to the contacts between different facies of the intrusion
show transitional values, reinforcing the hypothesis that the distribution of radioactive

elements is controlled by petrologic processes.
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Figures 8.9, 8.10 and 8.11: eTh vs. K, eTh vs. eU and eU vs. K graphs of the Budduso Pluton.
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After analyzing cogenetic facies (belonging to the same pluton) of Budduso intrusive

complex, we compared these measurements with those of surrounding intrusions. The

granodiorites and tonalites of the Pattada intrusive unit are very similar to and seems

continuous with the Budduso intrusion; these show meaningful difference in terms of K/U

and, particularly, K/Th ratios (Fig. 8.12, 8.13, 8.14). As for the monzogranites and the leuco-

monzogranites, striking differences arise between the different terms of Budduso and their

petrographic equivalent in P.ta Tepilora, M.te Lerno, Concas and Benetutti granites which

supposedly belong to different intrusive complexes.
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Figures 8.12, 8.13 and 8.14: eU vs. K, eTh vs. K and eTh vs. eU graphs of the Budduso Pluton and its neighbour intrusion
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8.4.2 The Arzachena Pluton and its adjacent intrusion
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79 measurement were carried out on the Arzachena pluton (11, 31 and 37 for granodiorite,

monzogranite and leucomonzogranite respectively). As for the Budduso pluton, all acquired

in-situ measurements were plotted as eTh vs. K, eTh vs. eU and eU vs. K graphs (Fig. 8.15,

8.16 and 8.17).
These results highlighted that:

e The pluton is internally heterogeneous and subdivided into three distinguishable terms,
namely Granodiorite, Monzogranite and Leuco-monzogranite;

e The abundance of K, eTh and eU is directly correlated with increasing acidity of the
pluton terms, except San Giacomo facies (leuco-monzogranite);

e Two different groups of leuco-monzogranite correspond to the different magmatic
terms of AZN pluton: San Giacomo Facies (Cuccuru, 2009) and San Pantaleo facies
(Oggiano et al., 2005) with low and high abundances of eU respectively;

e The measurements taken close to the contacts between different facies of the intrusion

show transitional values.
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Figure 8.15, 8.16 and 8.17: eTh vs. K, eU vs. K and eTh vs. eU graphs of the Arzachena pluton
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Figure 8.18 shows a comparison between the granodiorites of Arzachena and Barrabisa: we
can see that the two group of rocks have important differences in terms of eTh/eU. Based on
the eTh/eU ratio, these quite similar rocks can be easily divided into two distinct group (Fig.

8.18). This means that these granites are different, probably, belong to two different intrusive

complexes.
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Figure 8.18: Comparison between Arzachena granodiorites and Barrabisa granodiorites
The Arzachena monzogranites (mnz) show very important differences in terms of eU/eTh
relative to their neighboring rocks (Pulchiana belongs to Sant’Antonio intrusive complex),
although all look very similar. We interpret this discrepancy as an effect of coalescence

between different, possibly unrelated, intrusive complexes.
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Figure 8.19: Comparison between the Arzachena monzogranites (mnz) and its neighbour monzogranites (Aglientu, Maddalena, Pulchiana)
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Finally, we have compared the Arzachena leuco-monzogranites (Imz) with the Monte Pinu
(belongs to Sant’Antonio plutons) leuco-monzogranites (Imz). Figure 8.20 shows that these
two groups of leuco-monzogranites can be distinguished quite well. Then, as for other
magmatic facies, we interpreted the two leuco-monzogranites as equivalent part of different

plutons.

35

MP Imz
] u ] group

# Arzachena lmz

BMantz Pinu lmz

15 1

AZN Imz
group
10 T T T T T

r 3 4 5 & 7 g 3 10
=U {ppm]

Figure 8.20: Comparison between Arzachena and Monte Pinu leucomonzogranites (Imz)

8.5 Conclusions

These results show that K, eU and eTh concentration in cogenetic facies (namely, to different
rocks that belong to the same pluton) with different composition are generally different,
whereas similar facies show similar values. On the other hand, granitoids of similar
composition belonging to different plutons may show different K, eU and eTh concentrations,
although this may be an ambiguous feature. This work demonstrated that the portable
spectrometer may be an ideal tool for doing near real time geochemical analysis of granitoids,
helping field-work.. In conclusion, this trial seems to encourage the employment of portable
gamma-ray spectrometer for survey and mapping of the intrusive complexes. Indeed, in
Appendix B, we have attached the geologic map of the Sardinian batholith that we renewed,

and that we are completing, with the crucial help of the portable gamma-ray spectrometer.
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Section 9: Thermal budget of the European Variscides

9.1 Introduction

The Variscan Belt (Fig. 9.1) is quoted as a reference example for hot collisional orogens
where shallow gradients outstripping 30-40°K/km pave the way for the development of
diagnostic sillimanite — andalusite - cordierite assemblages and anatexis at upper-crustal
levels (Schulmann et al., 2008). Hot geotherms were diffusely established around the
Carboniferous-Permian boundary, ca. 300 Ma, after a period of crustal thickening
characterized by much lower gradients. Three main sources would have contributed to the
thermal budget: heat flowing out from the mantle, radiogenic heat production, and viscous
shear heating (Burg & Gerya, 2005). Mantle is inferred to be the main contributor in the
French Massif Central (Ledru et al., 2001; Gébelin et al., 2009; Faure et al., 2010), Bohemian
Massif (Janousek & Holub, 2007; Klein et al., 2008), and Iberian zone (Pin et al., 2008;
Martinez-Catalan et al., 2009). In all these areas, a mechanism of slab break-off or thermal
erosion is generally invoked to explain the strong attenuation of geotherms. However, Lexa et
al. (2011) challenged this view demonstrating that temperature in excess of 900°C were
reached in the lower crust of the Bohemian Massif because of radioactive decay. In this model
there is no reason to assume an increment of heat flux across the Moho, whereas HT-
metamorphism is a consequence of melt-induced rheological adjustments of thick orogenic
roots. Shear heating was generally considered insignificant and never computed in previous
works. Here we focus on the thermal budget of the Variscan crust by comparing one-
dimensional numerical models with a literature database (Fig. 9.1) on PT conditions recorded
at ca. 350 Ma and ca. 300 Ma. Most petrologic data at ca. 350 Ma, age of Barrowian-type
metamorphism (Bellot & Roig, 2007; Giacomini et al., 2008; Skrzypek et al., 2011), can be
well reproduced by a purely conductive geotherm, assuming realistic values of Moho heat
flow. Subsequent attenuation of the thermal structure requires instead upward advection of

heat by melts. These results are discussed in terms of different end-members tectonic models.
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Figure 9.1: The Variscan Europe. a = Giacomini et al. (2008); b = Giacomini et al. (2005), ¢ = Kotkova et al. (1996), d = Stipska et al.
(2004); e = Medaris et al. (1995); f = Szrypek et al. (2011); g = Pin & Vielzeuf (1983), Costa et al. (1993); h = Becker (1997), Cook et al.
(2000); i = Pereira et al. (2010); j = Rubatto et al. (2010), k = Guillot & Menot (1999); | = Duguet et al. (2007); m = Bellot & Roig (2007);
n =Vila et al. (2007); o = Cruciani et al. (2008); p = Langone et al. (2010); q = Reche et al. (1998); r = Casini et al. (2010); s = Braga &
Massonne (2008); t = Villaseca et al. (1999), Fernandez-Suarez et al. (2006); u = Braga et al. (2001); w = Ledru et al. (2001); x = Vavra
etal. (1999).

9.2 Numerical modeling

Unpredictability of thermal conductivity, Moho heat flow and, to some extent, crustal
composition, makes two opposite approaches to numerical modeling equally valid: (1)
deterministic, and (2) stochastic. Both strategies have several shortcomings that depends on
the statistical accuracy of experimental inputs in the first case, and on the physical pertinence
of the relevant variability functions in the latter.

Our simple numerical code uses an hybrid deterministic-stochastic method to solve the heat

conduction equation expressed in the form:

T =Ty + (Qo+ LEn)z/k — Zyz?/2k. (1)
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Where T is the surface temperature [K], Qo is the heat flowing out from the mantle [mW m™],
k is thermal conductivity [W m™'K™], z is depth [km], L is the thickness of the conductive
layer [km], and 3y is a term that account for the heat produced in the crust [uW m™] as Iy =
(H;+Hs), where H; indicates radioactive heat production rate, and Hj is a term that accounts
for viscous shear dissipation in the crust according to Burg & Gerya (2005). Thermal
diffusivity () and specific heat capacity of rocks (c,) are related to k as k = kpc,. Both « and
cp variables are not linear in T at constant pressure (Whittington et al., 2009), so the code
calculate iteratively the value of thermal conductivity by correcting an input value (ko),

arbitrarily taken as 3 + 0.5 W m™'K™' for temperature changes.

The models assume a stratified crust composed of sedimentary lid, metamorphic or granitic
middle crust, and essentially granulitic lower crust (Table DR2). The composition and
thickness of layers was determined from geologic constraints and geophysical data sets
(Banka et al., 2002; Finetti, 2005; Guy et al., 2011; Palomeras et al., 2011). Details of
experimental parameters are given in Fig. 2. The database (Table 9.1 and 9.2) on heat-
producing elements composition of the Moldanubian zone was compiled by adding 405 new
data collected in the C-S massif to 215 measures, mainly granulites and sedimentary rocks,
taken from the literature. Assuming compositional homogeneity, that is different rock types
were smoothly distributed within the layers, average H, is simply estimated by weighting rock
type compositions to their relative abundance at the relevant times. Given a present-day
crustal thickness of = 40 km, of which = 20 km of granulitic lower crust (i.e., Guy et al.,
2011), the sedimentary lid is drawn from the thickness of Carboniferous basins (Pochat &
Van den Driessche, 2011). Assuming that melts for late Carboniferous batholiths were
sourced in the lower crust (Orejana ef al., 2011; Lexa et al., 2011), the middle crust at ca. 350
Ma and ca. 300 Ma is sized to balance the volume of post 350 Ma melts. Although this
configuration would represent an oversimplification of the Variscan geometry, we choose to
keep our models as simple as possible to emphasize the interaction between the heat potential
of the crust and the variation of Qo, which is a first-order approximation of mantle dynamics

(Jaupart & Mareschal, 2007).
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Measures Mean U Mean Th Mean K Mean A Composition Gross
number (ppm) (ppm) (%) (MW m®) (%) volumetric
Lithotype heat
production
(uwW m®)
Upper Crust
Pelite*" 22 1214215 144+42 29+14 3.9+5.1 0.678
Sandstone* ' 14 76+52 13.7+47 23+19 28+12 0.322
Total Upper Crust 3.54+0.78
Middle Crust
Metasediment* ' 48 341 15141 3414 2305 0.175
Metavolcanic* ™% 53 78+46 11.8+45 5+14 34+13 0.113
Metatexite* * 36 26+17 9.1+58 34%15 1.7+0.9 0.552
Orthogneiss* 7% ** 56 52+3.9 13.7+72 4708 28+1.2 0.098
Amphibolite™™ 88 #* 45 0.7+0.7 1516 07+03 04+0.3 0.062
Total Middle Crust 2.02+1.15
Lower Crust
Eclogite™ ' 6 0.9+0.9 1.3+2.1 0.3+0.6 04+0.5 0.2
Felsic granulite® *** 1. 885 ### 48 17+15 46+55 35+1.2 12+06 0.465
Mafic granulitg*: T *+ TTT ## wewx 20 04+0.3 3.7+£5.1 1815 0.6+0.5 0.335
Total Lower Crust 0.84 £0.42

*Measured using a portable gamma-ray spectrometer in-situ.

"Measured with a HPGe detector in laboratory.

SSiebel et al., 1997.
#Cruciani et al., 2008.

**Cortesogno et al., 1995.

T Giacomini et al., 2005.
SSFranceschelli et al., 2005.
MGémez—Pugnaire et al., 2003.
***Cocherie et al., 1994.

™ Janousek et al., 2004.

888 Janousek et al., 2007.
##\fillaseca et al., 1999.
****Galan & Marcos, 1997.

Table 9.1: Average radionuclides concentration and heat production at 350 Ma
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Measures Mean U Mean Th Mean K Mean A Composition  Gross volumetric
Lithotype number (ppm) (ppm) (%) (MW m™®) (%) heat production
(W m?)
Upper Crust
Pelite* " 22 12.0+21.3 14.4+42 28+13 39+5 0.678
Sandstone* ' 14 75+52 13.6 +4.7 23+18 27412 0.322
Total Upper Crust 3.51+0.85
Middle Crust
Metasediment* 48 341 15.1 £ 4.1 33+14 23+05 0.175
Metavolcanic* ™3 53 77+45 11.8+4.5 49+14 33+13 0.112
Metatexite* * 36 26+16 9+58 33+15 1.7+0.9 0.13
Orthogneiss* ™ % ** 56 52+38 13772 46+08 2.8+1.2 0.098
Leucogranite* 88 5+24 18.6+5.9 57+0.7 3.2+09 0.13
Monzogranite* 122 4119 17.9+4 51+0.9 28+07 0.195
Granodiorite/Tonalite* ' 62 28+13 13.7+3.9 3.8+0.8 21+06 0.098
Amphibolite™ %8 # 45 0.7+0.7 15+1.6 0.6+0.3 04+0.3 0.062
Total Middle Crust 2.46 £0.95
Lower Crust
Eclogite™ ' 6 0.9+0.9 1321 0.3+0.6 0405 0.2
Felsic granulite* *+* TTT. 885, ### 48 17+15 46+55 34+1.1 1.1+05 0.465
Mafic granulite* T *++ TTT ### 20 04+0.3 3.7+5.1 1815 06+0.5 0.335
Total Lower Crust 0.79+0.36

*Measured using a portable gamma-ray spectrometer in-situ.
"Measured with a HPGe detector in laboratory.
SSiebel et al., 1997.
*Cruciani et al., 2008.

**Cortesogno et al., 1995.

M Giacomini et al., 2005.

SSFranceschelli et al., 2005.
”#Gémez-Pugnaire et al., 2003.

***Cocherie et al., 1994.

M Janousek et al., 2004.

S8 Janousek et al., 2007.

Villaseca et al., 1999.
****Galan & Marcos, 1997.

Table 9.2: Average radionuclides concentration and heat production at 300 Ma
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9.3 Variscan geotherms compared with P-T-t data sets

The thermal structure of two model crusts constrained at 350 and 300 Ma was calculated by
changing Q, and Hg within the range of geologically reasonable values. A basal temperature
of 1523.15 K is considered equivalent to positioning the astenosphere directly at the base of
the crust, therefore models that exceed this limit were not discussed. As shown in experiment
350-12 (Fig. 9.2C), early Carboniferous geotherms support a variation of Qq from 4.0 to 13.9
mW m™ assuming that viscous shear dissipation contributes to 0.15 pW m™ to Zy. Obviously,
geotherms become hotter and their geometry more flat as Qo goes to its upper bound.
Increasing the H contribution from 0 to 0.8 pW m~ with 5.0 mW m™ Q, (Fig. 9.2D) still gets
hotter geotherms, however the net heating effect of viscous shear dissipation is smaller than
Qo. Yet, the shape of geotherms becomes rapidly steeper as H; rise to its upper bound value of
1 uW m> (Burg & Gerya, 2005). Based on a set of experiments performed at variable Qg
changing H; over its bounds, we selected the run of experiment 350-17 as the one that best fit
the set of thermobarometric constraints compiled from a literature data base (Fig. 9.2A).
Importantly, the quadratic best fitting to P-T-t data gives a high-correlation regression curve
(Fig. 9.2A) that is almost indistinguishable from the calculated geotherm and assures the
points might represent a realistic snapshot on the 350 Ma Variscan thermal structure.

Late Carboniferous geotherms, instead, might support Qo ranging from 12.7 to about 23.5
mW m™ for H, lower than 0.3 uW m™ (Fig. 9.2E). The effect of changing Hy is shown in the
experiment 300-21: given the reduced crustal thickness, increasing Hs up to its upper bound
does not modifies significantly the shape of the geotherm (Fig. 9.2F). It is immediately
apparent from inspection of our preferred result shown in experiment 300-27 (Fig. 9.2B) that
no reasonable conductive geotherm matches the ca. 300 Ma P-T-t data points, although the
quadratic regression curve is geotherm-like shaped. Best-fitting the set of thermobarometric
constraints on the middle crust would (Fig. 9.2E) requires, in fact, a mantle heat flow of 35 —
45 mW m™. These Qvalues fall within the range of extensional regions such as the Basin and
Range and the Rhine Graben (Jaupart & Mareschal, 2007) but violate dramatically the limit
of 1523.15 K at the Moho, reaching temperature well above the amphibolite solidus. Finally,
it should be noted that for mantle heat flow higher than 23.5 mW m™ there is no way to

reproduce the PT conditions recorded by most lower crustal rocks at that time (Villaseca et
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al., 1999; Braga et al., 2001; Fernandez-Suarez et al., 2006; Vila et al., 2007; Cruciani et al.,
2008; Galli et al., 2011).
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Figure 9.2: The calculated geotherms at 350 and 300 Ma. a = Giacomini et al. (2008); b = Giacomini et al. (2005); ¢ = Kotkova et al.
(1996); d = Stipska et al. (2004); e = Medaris et al. (1995); f = Szrypek et al. (2011); g = Pin & Vielzeuf (1983), Costa et al. (1993); h =
Becker (1997), Cook et al. (2000), i = Pereira et al. (2010), j = Rubatto et al. (2010); k = Guillot & Menot (1999); | = Duguet et al. (2007);
m = Bellot & Roig (2007); n = Vila et al. (2007); o = Cruciani et al. (2008); p = Langone et al. (2010); q = Reche et al. (1998); r = Casini
etal (2010); s = Braga & Massonne (2008); t = Villaseca et al. (1999), Fernandez-Suarez et al. (2006); u = Braga et al. (2001); w =
Ledru et al. (2001); x = Vavra et al. (1999).
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9.4 Implications for geodynamic models

Understanding the geodynamic significance of the Variscan HT-LP metamorphism requires
assessing the heat potential of the mantle in Carboniferous times. Temperature variation in the
sub-continental mantle is likely controlled by heat conduction within lherzolites and thermal
inflation from the convecting astenosphere. Because of lherzolites have negligible heat
production rates and low thermal conductivity, the sub-continental mantle is actually an
insulator rather than a source of heat. Therefore, the Moho heat flow may be roughly
considered function of the lithospheric mantle thickness. The reference Moho heat flow in
stable continental shields ranges between only 12-18 mW m™ (Jaupart & Mareschal, 2007)
although the upper bound might be extended to 24 mW m™ depending on the models
assumed for thermal conductivity, composition and thickness of the crust (Russell et al.,
2001). The permitted limit for Qo in regions characterized by steady-state conductive
geotherms would be thus lower than 25 mW m™. Values as high as 60-75 mW m™ are instead
typical of extending regions such as the Basin and Range province (Ketcham, 1996) or hot
spots like Hawaii (Harris ef al., 2000), because of transiently convective thermal regimes.
This requires delamination and thinning of the sub-continental mantle or, for upper bound
values, positioning the astenosphere directly at the base of the crust. In active compressional
margins the geotherm is not in equilibrium because of crustal thickening and erosion (Jaupart
& Mareschal, 2007). Disequilibrium of the thermal structure would be even more amplified
by intervening slab break-off or stretching of the sub-continental mantle, yet models predict
that the upper mantle will recover near steady-state conditions by less than 10 Ma (Davies &
von Blanckenburg, 1995). Short timescales for thermal perturbation at the base of the crust
are indeed confirmed by present-day low Qo values in the Alps or the Himalayan range, which
are close to that of shield regions (Vosteen et al., 2003). Our models calculated at ca. 350 Ma
require Moho heat flow between only about 4 and 14 mW m? to reproduce the data set
compiled from P-T-t paths of the Moldanubian zone (Fig. 2A). This argues for a purely
conductive regime and near-equilibrium conditions in the sub-continental mantle at the time
of eo-Variscan HP metamorphism. Interpretation of the predicted Moho heat flow during the
HT event is less obvious. The high temperatures recorded across different crustal sections
have been frequently explained in terms of increased mantle heat flow due to delamination of

the lithosphere or slab breakoff. The timing of HT-LP metamorphism however does not
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match the likely age of slab break-off in the Variscan belt, bracketed between ca. 360-370 Ma
(the oldest age of metamorphic minerals) and ca. 340-335 Ma (the oldest age of sin-collisional
Mg-K plutons, Paquette et al., 2003; Finger et al., 2007). Possibly a tighter window could be
proposed by emphasizing the exhumation age (ca. 340-345 Ma) of HP granulites (Stipska et
al., 2004; Giacomini et al., 2008; Pereira et al., 2010). Fast vertical extrusion of lower crustal
slices is actually predicted as side effect of breakoff (Davies & von Blanckenburg, 1995).
These early Carboniferous ages of these events rules out the slab breakoff model, as near-
equilibrium Moho heat flow would be quickly recovered at least 25-30 Ma before the onset
of HT metamorphism. Numerical results (Fig. 9.2B) are in good accordance with the geologic
evidences. The predicted Moho heat flow should be in fact lower than 24 mW m>,
surprisingly close to the mean value of a stable geotherm, to avoid unrealistically high
temperatures never recorded in the lower crust (Orejana et al., 2011). Any model supporting
delamination of the lithospheric mantle would require at least 40-70 mW m™ of basal heat
flow (Polyak et al., 1996); and still higher values are expected if ongoing breakoff places the
hot astenospheric mantle directly at the base of the crust (Davies & von Blanckenburg, 1995).
Based on these arguments, we propose that HT metamorphism in the Variscan belt is related
to focused melting in the lower crust, softening of the orogenic roots and collapse of the upper
crust. This interpretation best accommodates the sequence of petrologic events and provide a
simple explanation for the role of late Carboniferous anatectic batholiths as hot geotherms in
the middle crust and near-isothermal conditions in the lower crust require vigorous advection

of melts (Depine et al., 2008).
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APPENDIX A

347 in-situ measurements have been made for
the risk assessment
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APPENDIX B

Geological map of the Sardinian batholith
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APPENDIX C

Database of the heat production in the Variscan
crust at 350 Ma and 300 Ma

*Measured with a HPGe detector in laboratory.
Cruciani et al., 2008.
bCortesogno et al., 1995.
‘Giacomini et al., 2005.
Franceschelli et al., 2005.
“Cocherie et al., 1994.
fJanousek et al., 2004.
£Janousek et al., 2007.

"Galan & Marcos, 1997.

Siebel et al., 1997.
Villaseca et al., 1999.
"Gomez-Pugnaire et al., 2003.
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UPPER CRUST (LAYER 1)
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MIDDLE CRUST (LAYER 2)
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