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1.1 INFINITESIMAL MODEL AND SELECTION UNDER A FINITE LOCUS MODEL 

1.1.1 The quantitative genetic approach 

Most of the traits of economic interest in livestock have a complex quantitative expression coded by 

a large number of genes and affected by environmental factors. Statistical analysis of phenotypes and 

pedigree information allows to estimate the genetic merit (breeding values) of the animals candidate 

to selection following the Fischer’s infinitesimal model, according to which observed phenotypes are 

determined by an infinite number of loci, each with an infinitesimal additive effect. Under this 

hypothesis, mean of a quantitative trait in a population can be modified choosing the best genotypes 

based on the breeding values estimated using Best Linear Unbiased Predictors (BLUP) methodology. 

In the best situation all sources of information on phenotypes and additive relationships among 

animals are included in a BLUP model to estimate a breeding value for all the animals in the 

population. Thus, the genetic gain (ΔG) per year, for a particular trait, could be obtained according 

the RENDEL and ROBERTSON (1950) formula: 

 

where σ is the genetic standard deviation of the trait, ρ is the accuracy with which the breeding value 

of the selection candidate is estimate, i is the intensity of selection and T the generation interval or 

the average age of parents when their offspring are born.  

Despite a generally considered limited theoretical foundation, the infinitesimal model (generally 

defined as black box approach) allowed to reach high rates of genetic improvement in many livestock 

species in the last decades. (DEKKERS and HOSPITAL 2002). A relevant constraint to the genetic 

progress is represented by the inverse relationship between accuracy of breeding values and 

generation interval, kept constant the other variable in the equation of genetic gain. Hence, the more 

reliable breeding value we want to estimate, the more time we need to wait. The generation interval 

is particularly large for sex-limited traits in the context of progeny testing in dairy cattle (about 60 

months are needed to get the first estimated breeding value for a progeny tested bull). Several 

strategies have been proposed to increase the response to selection. For instance, the use of multiple 

ovulation embryo transfer (MOET) and in-vitro fertilization (IVF) (KRUIP et al. 1991; ROWSON 1971) 

were aimed at increasing the intensity of selection on the female line. Furthermore, in the past 

decades, thanks to the advances in the molecular techniques, a large number of genetic markers have 

been discovered. Possible strategies to use and integrate these new sources of information with the 

aim of enhancing the accuracy of selection has been extensively reviewed and proposed from 

different authors (FERNANDO and GROSSMAN 1989; LANDE and THOMPSON 1990; MEUWISSEN et al. 2001; 

DEKKERS 2004; DEKKERS and HOSPITAL 2002) 
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1.1.2 The finite locus model and the use of Quantitative Trait Loci (QTL) to enhance the 

response to selection 

In the last 20 years, due to the application of advanced techniques in molecular genetics and 

statistics, several chromosomal regions that influence quantitative traits have been discovered. 

Moreover, the finite amount of DNA in the mammalian genome suggests that must be a finite number 

of loci that control the expression of quantitative traits (between 20,000 and 35,000 genes) (EWING 

and GREEN 2000), in contrast with the infinitesimal gene model. HAYES and GODDARD (2001) 

investigated the distribution of the QTL effects in dairy cattle and swine, enforcing the evidence that 

there are few genes with large effect and many of small effect. 

How this relevant amount of knowledge is going to change the selection of farm animals is still an 

open issue. Combinations of molecular and classical quantitative information in a composite 

selection index have been proposed to increase the accuracy of selection (LANDE and THOMPSON 

1990). Several approaches have been indicated to integrate molecular information in current 

breeding programs. The base principle is that genetic markers are available early in life, so that the 

accuracy of breeding values estimated for young animals can be increased and the generation 

interval reduced.  

DEKKERS (2004) defined three types of genetic markers that can be used in practical implementation 

of molecular information into breeding programs: 

1) Direct markers 

2) LD markers 

3) LE markers 

The direct markers are those that code for a functional mutation; the LD markers are loci in 

population–wide linkage disequilibrium (LD) with the functional mutation; LE makers are in 

population-wide linkage equilibrium with the functional mutation, but in LD within family. 

In particular, here we refer to marker assisted selection (MAS) and marker assisted introgression 

(MAI) to indicate the use of genetic markers in linkage disequilibrium with a QTL in breeding 

program (i.e. LD and LE markers). Whilst, in the gene assisted selection (GAS), the causative 

mutation (direct marker) of a gene that affect the expression of a quantitative trait is used for the 

calculation of molecular score of animals. 

Use of molecular data represents an opportunity to enhance the response to selection especially for 

low-heritability traits, or whose phenotype is difficult or expensive to measure or expressed later in 

age. Sex-limited traits, such as milk production in dairy cattle, can be objectives of selection based on 

molecular data, in order to reduce the generation interval. For such traits the molecular based 

breeding value can be available early in life and for both gender (DEKKERS and HOSPITAL 2002). 
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Although advances in molecular genetics have been able to explain part of the genetic variances due 

to QTLs, the possibility of implement this information in a MAS program has been limited by several 

reasons. Firstly, only a limited number of genes have been identified. Secondly, in most cases the 

marker map used in the past were sparse, so that the QTL have been be mapped within very large 

confidence interval. Further, even using LD marker, the selection is not directly on the QTL or gene, 

but on the marker in LD with the QTL. Because of LD decreases across generations due to 

recombination, marker effect needs to be re-estimated frequently. Furthermore, the estimates of the 

QTL effects are generally biased (WELLER et al. 2005) and in particular are overestimated. All these 

issues, together with the relatively high cost of genotyping, have reduced the commercial application 

of marker information collected in more than one decade of researches on QTL mapping in livestock. 

So far, a successful example of MAS have been reported, both for simulated and real data, for the 

French MAS program (GUILLAUME et al. 2008a). The authors showed that marker assisted breeding 

values of Holstein bulls were on average 4% more accurate than the pedigree based breeding values 

(GUILLAUME et al. 2008b). Another example of application of MAS, for pre-selection of bulls before 

entering in progeny testing, has been proposed by BENNEWITZ et al. (2004b). Both of examples are 

based on the application of FERNANDO and GROSSMAN (1989) BLUP model. 

1.1.3  Genome-wide approach to estimate breeding values: challenges and prospectives 

More recently, the availability of high-throughput sequencing techniques allowed  to discover 

thousands of single nucleotide polymorphism (SNP) spread across the whole genome in several 

livestock species. Currently, chips for genotyping animals at more than 50,000 marker loci are 

commercially available (VAN TASSELL et al. 2008) Such a map density is enough to find LD between 

marker and QTL, thus to looking for associations between traits and markers without specific 

knowledge of population structure. 

These new techniques give rise to new opportunities for genetic evaluation of farm animals with a so 

called genome-wide approach (MEUWISSEN et al., 2001). On one hand, this new advance allows to 

explore the genome looking for QTLs and associations between SNP and phenotypes. On the other 

hand, it allows to use directly the marker information to estimate genomic breeding value (GEBV). In 

the former case we talk about genome-wide association (GWA) studies, while in the latter, the term 

genomic selection (GS) is generally adopted. 

MEUWISSEN (2007) defined GS as Marker Assisted Selection on a genome-wide scale. Briefly, the GS 

rely on the segmentation of the genome using a dense marker map in thousands of bits, each 

contributing to the explanation of part of the genetic variance of a quantitative trait. The effect of 

each segment is estimated in a reference population (animal with phenotypes and genotypes). Then 
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effects are used to predict the breeding values of another set of genotyped animals (prediction 

population) without phenotypes. 

MEUWISSEN et al. (2001) first proposed to use dense marker information to predict the breeding 

values of animals. Afterwards, lots of models and approaches – mainly on simulated dataset – have 

been proposed to deal with the statistic key issue of practical implementation of GS: the great 

asymmetry of data matrix i.e., the number of effects (single marker or haplotypes) to estimate is 

highly greater than number of phenotypic records available. 

In brief, potential advantages of using high density markers in genomic evaluation are the following: 

i) each QTL is expected to be in LD with at least one marker; ii) all the genetic variance is taken into 

account in the estimation of breeding values; iii) the animal can be genotyped early in life, and this 

may guarantee a reduction of generation interval; iv) furthermore, a better estimation of mendelian 

sampling term may give rise at lower inbreeding rates (DAETWYLER et al. 2007).  

On the other hand, open challenges of GS are: i) the computational issues and the choice of a suitable 

statistical framework; ii) the size of the reference population, that should be large enough to ensure 

reliable estimates of DGV; iii) the practical implementation of GS in current breeding program, or 

adaptation of breeding program to genomic evaluation; iv) frequency of re-estimation of SNP effects; 

v) comparison of genomic predictions across countries. 

1.2 OVERVIEW OF QTL MAPPING EXPERIMENT IN LIVESTOCK 

Two approaches have generally been used to detect QTLs: the candidate gene approach and the 

anonymous marker approach. The former seeks causative mutations in all possible genes involved in 

the known biology of the considered trait, analyzing if variations of particular regions of DNA are 

significantly associated with variations on phenotypic expression of the trait. The latter, instead, 

assumes that the genes underlying a quantitative trait are unknown, and it makes use of neutral 

markers to scan the genome testing statistically the associations between markers and phenotypes. 

1.2.1 Evolution of QTL mapping techniques in dairy cattle 

Experimental design 

Several statistical techniques to map QTL in animal populations  have been proposed in literature 

(DOERGE 2002;ANDERSSON and GEORGES 2004; RON and WELLER 2007). The segregation analysis 

allows to follow the inheritance of marker alleles from parents to offspring. Most common 

experimental designs used for QTL mapping exploit the pedigree structure of current livestock 

populations to search for linkage disequilibrium between putative QTL and genetic markers. Higher 

power to map QTL is generally reached in back cross design or F2 design. However, these designs 

can be not realistically used in dairy cattle populations, due to the fact that most breeding programs 
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are based on within breed selection (RON and WELLER 2007). However, paternal half sib families are 

very common in dairy cattle due to the extensive use of artificial insemination (AI). Experimental 

designs that exploit such family structure have been extensively used to seek QTLs. The daughter 

design (Figure 1) and the granddaughter design were mostly used for QTL detection (WELLER et al. 

1990) 

 

 

Figure 1 Scheme of daughter design 

 

In the daughter design, groups of offspring of a sire, heterozygous for the marker, are sorted on the 

basis of the allele that they have inherited. Any significant phenotypic difference between the groups 

of offspring suggests that such marker is involved in the expression of a quantitative trait. In the 

granddaughter design genotypes are collected from AI bulls (grandsires) extensively used and 

groups of their sons (sires). The phenotypes are collected from a large number of daughters of the AI 

sires. This design uses marker information over two generation and allows to reduce markedly the 

number of genotype required to get the same power obtainable using daughter design (WELLER et al. 

1990). Variants of these designs have been proposed to reduce the number of genotyping costs, 

which in the past have represented the main economic limit to achieve sufficient power to detect 

QTLs. In particular, selective genotyping (DARVASI and SOLLER 1992), selective DNA pooling (DARVASI 

and SOLLER 1994) fractioned DNA pooling (KOROL et al. 2007) have been proposed to reduce the cost 

of QTL mapping experiments. The rationale of the selective genotyping design is to determinate the 

linkage between marker loci and QTL by genotyping only individuals from the high and low tails of 

the distribution of phenotypes. Pooling DNA from extreme individuals in the tail and testing for 
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linkage on marker allele frequencies derived from pooled samples represents one step beyond the 

selective genotyping and allows to reduces further the costs of genotype determination. 

Using the former designs, only the effect of paternal QTL could be modeled and the contribution of 

maternal line are ignored. Such limitation is expressed by the fact that is not possible to fully exploit 

the informativeness of the markers. Some solutions have been proposed in literature to address this 

issue by using haplotypes. For example, the use of pedigrees with sufficient genetic links and 

identical by descent (IBD) mapping techniques, or combined linkage and linkage disequilibrium 

analysis (LDLA) (MEUWISSEN et al. 2002) have been proposed. The LDLA analysis is almost the same 

of the general pedigree linkage analysis but also included IBD estimates between founders that are 

not related through pedigree but are assumed to be related through a common, unknown, ancestor 

in whom the mutation was supposed to arise (DE KONING 2006). Through fine mapping and 

haplotype analysis it is possible to infer the phase of QTL and to detect haplotype, or single mutation 

for which at the QTL locus the genotype in the parents and offspring are consistent.  

Once identified a block of conserved haplotypes in LD with causal mutation, it is possible to test the 

effect of the haplotype or single mutation on phenotype in the population without need to know the 

structure of the population performing LD mapping. 

Statistical framework 

Different statistical methods have been proposed to map QTLs in livestock population. The simplest 

approach is to perform a single-marker test to find which markers are associated with the 

phenotypic value of the quantitative trait analyzed. The null hypothesis usually tested is that the 

mean of the phenotypic value is not associated to the genotype at a particular locus. Some issues of 

this approach concerned: i) inability to provide an estimate of QTL location or recombination 

frequency between marker and QTL; ii) effect of the size of the sample to obtain sufficient power to 

detect QTL; iii) multiple testing and the choice of an appropriate significance threshold (DOERGE 

2002). 

Some issues of the single-marker analysis were overcome when the availability of genetic markers 

increased considerably due to advances in sequencing techniques. The use of additional genetic 

information on location and order of marker included in a genetic linkage map, not considered in the 

single-marker approach, allowed to calculate the frequency of recombination and the position of 

each marker in a linkage map. The technique of interval mapping (LANDER and BOTSTEIN 1994) 

provided a powerful tool for exploiting genetic information in order to map QTL more accurately. 

This method uses a pair of closed markers bracketing a portion of genome harboring a putative QTL. 

The interval mapping statistically tests for a single QTL at each position along the genome. The 

results are reported as logarithms of the odds (LOD) scores calculated by comparing the value of the 
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likelihood function under the null hypothesis of no QTL segregating with the alternative hypothesis 

of presence of QTL. A value of LOD score of 3 means that there are 1 chance out of 1,000 to reject the 

null hypothesis of no presence of a QTL segregating for such position. All these approaches led to the 

identification of numerous QTL regions in several genome scan carried out across many countries in 

dairy cattle (GEORGES et al. 1995; HEYEN et al. 1999; MOSIG et al. 2001; OLSEN et al. 2002; RON et al. 

2004ASHWELL et al. 2004; BAGNATO et al. 2008). Nonetheless, these QTLs have been mapped with 

moderate to large confidence intervals (QTL region spanning tens of centimorgans (cM) may harbor 

hundreds of genes) and for this reason they have had a limited use in MAS programs. Furthermore, 

the identification of the causative mutation or quantitative trait nucleotide (QTN) that underlying a 

mapped QTL region is even more tricky owing to the lack of direct relationship between phenotype 

and genotype. This is due to the fact that a single QTL explain only a proportion of the phenotypic 

variation, the rest being caused by other QTLs or environmental factors (ANDERSSON and GEORGES 

2004). Multi-step strategies are necessary to detect and validate genes involved in the expression of 

complex quantitative traits (figure 2) (RON and WELLER 2007), and even if experimental evidences 

lead to a suitable candidate gene, is not ever possible to identify a QTN unambiguously (DE KONING 

2006) 

 

 

Figure 2 Multi-step strategy to detect and validate a QTN - modified from (RON and WELLER 2007)  
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1.2.2  Key Experiments and Polymorphisms that affect quantitative traits in livestock 

species 

The existence of mendelian genetic factors affecting the expression of a quantitative trait has been 

demonstrated in a brilliant experiment by SAX (1923) who associated the weight of the seed of 

Phaseoulus vulgaris with the genotype at a locus that controlled the expression of a mendelian trait 

like the color of the seeds. Later, THODAY (1961) put the basis of definition of QTL or major genes 

concepts. However, the idea of increasing the rate of genetic improvement using molecular markers 

date to 1960 when NEIMANN-SORENSEN and ROBERTSON (1961) proposed to use the blood variant 

group (biochemical marker) to select for quantitative traits.  

A work of SMITH (1967) put the basis of marker assisted selection and its usefulness specially: “When 

normal selection is effective, further information on known loci can add only a little to the rate of 

improvement. But if normal selection is not very effective, as for characters of low heritability, or if 

indirect selection on relatives must be used (as for sex-limited or carcass traits) then known loci may 

add significantly to the rate of improvement possible”. 

However, the extensive use of DNA variations started when DNA polymorphism discovery – 

restriction fragment length polymorphisms (RFLPs), minisatellite and microsatellite markers, single 

nucleotide polymorphisms (SNPs) – allowed to build genetic maps. These maps were initially very 

sparse but as soon as new polymorphisms were discovered, denser and denser genetic maps were 

created. The first extensive genome scan using a map covering almost the entire genome (60% of 

coverage) was carried out by GEORGES et al. (1995). Thereafter, several genome scans have been 

performed in livestock species across several countries and different species. These studies mainly 

focused on mapping QTLs, tracing the inheritance of microsatellite markers in group of progeny of 

sires that had different phenotypic expression according different experimental designs.  

Before including a locus involved in the determinism of a quantitative trait in a program of gene or 

marker assisted selection it is necessary to establish the influence of such gene on the phenotype. 

Currently only few polymorphisms in gene sequences have been unambiguously linked to variation 

in quantitative traits (RON and WELLER 2007). Conversely, numerous genomic regions have been 

tested for the association with productive and functional traits, and in literature several 

polymorphisms have been reported to be associated to phenotypic trait values. However, many 

polymorphisms investigated in dairy cattle are suitable candidate genes but clear and concordant 

evidences of QTN have been obtained only in few cases. The K232A substitution in DGAT1 gene 

located on BTA14 and its association with increased milk fat content and protein percentage, and 

decreased milk yield (GRISART et al. 2002; SPELMAN et al. 2002; GRISART et al. 2004) and GDF8 

(affecting double-muscling) in cattle represents one of the most popular example. Other genes 

involved in lipid metabolism FASN and ACC-α (ROY et al. 2006; MORRIS et al. 2007), both located on 



9 
Chapter 1 

 

Giustino Gaspa-“Use of Genomic Information in the Genetic Evaluation of Livestock” 
Tesi di Dottorato Scienze dei Sistemi Agrari e Forestali e dei Sistemi Agrari e Forestali e delle Produzioni Alimentari 

Indirizzo Scienze e tecnologie Zootecniche - Università Degli Studi di Sassari 

chromosome 19, have been reported to affect the milk fatty acid composition. Furthermore a 

polymorphism at the SCD gene (Valine to Alanine substitution at position 239) in chromosome 26 

has been associated to change in milk fatty acid composition and milk production in Cattle (MELE et 

al. 2007; MACCIOTTA et al. 2008). Many other QTL mapping studies have found strong signals in 

chromosomal region and a more extensive review will be provided in chapter 1. 

1.2.3 Linkage Disequilibrium in livestock and QTL mapping 

Linkage disequilibrium is the nonrandom association of alleles in haplotypes at different loci within 

a population. The general principle of identification of QTL is based on the presence of LD between 

QTL alleles and marker loci. Let A and B being two markers in the same chromosome carrying two 

alleles A1 A2, and B1 and B2 respectively. Four different haplotypes (A1B1, A1B2, A2B1, A2B2) are 

possible. If the frequencies of A1, A2, B1 and B2  alleles is 0.5 in the population (random association), 

then the frequency of 0.25 for each haplotype is expected. In these situation the population is in 

linkage equilibrium. Any deviation from 0.25 in the haplotype frequency means presence of LD.  

LD has been exploited in fine-scale mapping studies of human disease loci (CARDON and BELL 2001; 

RISCH and MERIKANGAS 1996) since the increasing availability of haplotype data represents the basis 

for historical or evolutionary inference. In livestock the use of haplotype data is mainly focused on 

identification of DNA regions affecting the expression of quantitative traits. The availability of dense 

map information allowed to use LD information for livestock QTL mapping and genomic breeding 

values estimation. 

Both linkage analysis (LA) and LD mapping are techniques which exploit the LD existing in animal 

population to map QTL in a different way. Linkage analysis (LA) measures the association exploiting 

pedigrees and considers the LD that exist within families. In LA mapping the association between 

markers and QTL is broken down by recombination after few generations whereas LD mapping 

refers to associations between markers within populations of unrelated individuals. In the latter case 

the association persists for a considerable number of generations (i.e. makers and QTL in LD must be 

closely linked). Summarizing, pedigree studies analyze recombination events that involve 

exchanging megabase fragments of chromosomes whilst LD studies deal with fragment measured in 

kilobase. Hence, the allelic states of closely linked loci will be correlated, whereas those of distantly 

linked loci will be more-or-less independent (NORDBORG and TAVARE 2002). The causes of LD in 

natural conditions are different: i) genetic drift associated with reduction of population size; ii) 

mutations; iii) natural or artificial selection that may favor certain allelic combinations; iv) migration 

of a population that is mixed with another gene frequencies (FALCONER, 1996) 

To analyze relationships between markers and QTLs is necessary to introduce the concept of 

distance map that defines the distance separating two genes or markers located on the same 
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chromosome. The unit of distance map (d) (centimorgan (cM)) is not a fixed measure and does not 

correspond to a fixed number of base pairs, but depends on the number of recombinations which 

occur between two genes. Different functions which associate the frequency of recombination (θ) 

with the distance map have been proposed. The simplest function map is d = θ (MORGAN, 1909) or 

Morgan mapping function. Using the Morgan function the θ tends to underestimate d between two 

loci because it takes into account of recombination events occurred only in odd numbers. Other 

mapping function are Haldane (1919) based on Poisson distribution, where  and 

Kosambi function (1944) . 

Measure of LD 

Different formulas have been proposed in literature to measure the extent of LD. Among these D, D’, 

r2 and χ2’are presented below. The measure D was proposed by HILL (1981) 

 

Where freq(A1B1) is the frequency of this haplotype in the population and likewise for the others 

haplotypes. D may be also expressed as function of the rate of recombination θ according to: 

 

D = 0 indicates a state of linkage equilibrium (θ = 0.5), positive values of D indicates presence of 

linkage disequilibrium thus θ will be less than 0.5. 

LD tends to decline in populations because the recombinant gametes (A1B2, A2B1) continue to occur 

from parental (A1B1, A2B2) and vice versa. The process is much slower when the rate of 

recombination (θ) is smaller. This process is described by  where t indicates 

generations passed from generation 0. Figure 3 shows the decrease of LD through generation for 

different recombination rate. 



11 
Chapter 1 

 

Giustino Gaspa-“Use of Genomic Information in the Genetic Evaluation of Livestock” 
Tesi di Dottorato Scienze dei Sistemi Agrari e Forestali e dei Sistemi Agrari e Forestali e delle Produzioni Alimentari 

Indirizzo Scienze e tecnologie Zootecniche - Università Degli Studi di Sassari 

 

Figure 3. Decrease of LD as function of number recombination rate through generation 

 

The measure D is strongly dependent on the frequency of individual alleles and it is not particularly 

useful for comparing the degree of LD between many pairs of loci. HILL AND ROBERTSON (1968) 

proposed a statistics, r², less dependent from allele frequency: 

 

 

 

where freq (Ai) and freq (Bi) are the frequencies of i-th allele of A and B in the population 

respectively. The r² value varies from 0 for a pair of loci with no LD between them to1 for a pair of 

loci in complete LD (NORDBORG and TAVARE 2002). The usefulness of r2 rely on the fact that this 

statistics measure of proportion of variance of QTL explained by a marker in LD with QTL. 

 

Another commonly used measure of LD is D ': 
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The statistical value r² is preferred to D' as a measure of the extent of LD for two reasons: i) D’ is 

strongly dependent on the frequency of individual alleles and ii) D' tends to overestimate LD with 

small samples or for low allele frequencies. 

Previous measures of LD are suitable only for bi-allelic markers. To measure the LD between multi-

allelic markers ZHAO et al. (2005) proposed the statistics χ²' calculated as follow 

 

 

 

Where:  where freq (Ai) is the frequency in the i-th marker 

allele A freq(Bj) is the frequency of the j-th marker allele in B , l is the minimum number of alleles of 

marker A and B. In the case of bi-allelic markers is valid, the following identity χ²'=r² 

 

The use of DNA markers and the development of technologies for their analysis have allowed to 

explore the genomes of animals and to construct very dense genetic maps for all major species of 

livestock (figure 4). These high dense maps may guarantee that markers are tightly linked to QTL, 

enabling the LD mapping techniques to find genome-wide association between markers and 

phenotypes and genomic selection procedure. 

 

 

Figure 4. SNP cattle map http://www.livestockgenomics.csiro.au/cow/cattlemap.html 

http://www.livestockgenomics.csiro.au/cow/cattlemap.html
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Linkage disequilibrium (LD) mapping of QTL exploits population level associations between markers 

and QTL. These associations are more likely due to the small distance between markers in the 

chromosome. These chromosome fragments, tracing back to the same common ancestor, will carry 

identical marker alleles or marker haplotypes. If a QTL is located somewhere within the 

chromosome segment, they will also carry identical QTL alleles. There are many QTL mapping 

techniques which exploit LD, the simplest one is the genome wide association test using single 

marker regression. Some statistical packages are also available to map QTL and conduct Genome-

wide association studies (AULCHENKO et al. 2007b) 

The main factors influencing the power of the association test to detect a QTL are: i) the level of 

linkage disequilibrium (r2 ) between the marker and QTL; ii) the proportion of phenotypic variance 

explained by the QTL; iii) the sample size; iv) the allele frequency of the rare allele of the SNP or 

marker (p). The power is particularly sensitive to low level of frequency (p<0.1); v) the significance 

level a set by the experimenter and the multiple testing issues. 

 

1.3 GENOMIC SELECTION 

The implementation of information about thousands of genetic markers into the current breeding 

programs has become feasible due to the availability of dense markers maps and to the quick 

development of SNP chip technology, now affordable also for some livestock species. Genomic 

selection (GS) is an new and important tool for the genetic improvement of farm animals which 

allows to estimate direct genomic values (DGV) of candidate to selection using dense marker maps 

without need to record the phenotypic performances of the animals (or of its relatives). 

1.3.1 Genomic Selection: principle and applications 

GS relies on the segmentation of the genome in thousands of intervals bracketed by contiguous SNPs 

and on the estimation of SNP (or haplotype) effects across the whole genome. Currently up to 54 K 

SNP chips are commercially available for cattle and 800K will be produced in the very next future 

(Illumina Inc. www.illumina.com). With such a density the chance of recombination between 

markers and QTLs is very low. In other words, each QTL is expected to be in LD with at least one 

marker (MEUWISSEN et al. 2001; CALUS 2010). In the GS framework, each SNP gives its contribution to 

the explanation of the total genetic variance for a quantitative trait, hence potentially the whole 

genetic variance may be explained by the markers (GODDARD and HAYES 2007). 

Different statistical methods have been developed to capture the variance due to the genetic 

markers. Basically, the GS procedure relies on the estimation of the effect of each DNA segment in a 

reference population (animal with phenotypes and genotypes). These estimates are later used to 

http://www.illumina.com/
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predict the breeding values in the prediction population (genotyped animals without phenotypes). 

How to build the reference and prediction populations and how this choice affects the accuracy of 

DGV are still open issues. HABIER et al. (2010) pointed out how the relatedness among animals of the 

reference and prediction populations affects the accuracy of the DGV estimates. However, in the 

general GS framework, the estimation of the SNP effects is carried out in a set of proven bulls (for 

which reliable EBV are available). These estimates are used to predict the DGV of young bulls 

candidate to selection, and hardly these group of bulls are not somehow related in a dairy cattle 

population. 

Several the statistical methods have been proposed for solving the main statistical issue of genomic 

selection: the great asymmetry in the data matrix (also called “p>>n problem”), due to the very large 

number of marker effects that need to be estimated (up to tens of thousands) in comparison to the 

limited number of phenotypic records generally available (around thousands). Several 

methodologies have been suggested to estimate marker effects with the basic aim to reduce the 

number of predictors. such methodologies can be classified into two main categories: i) methods that 

select a subset of original markers on the basis of their relevance to the considered trait, and ii) 

methods that summarize the information of original SNP with a smaller number of derivate variables 

using multivariate or non-parametric statistical technique. A further classification may distinguish 

between the methods that considers equal contribution of each SNP to the genetic trait variance, or 

techniques that assume different variance for each SNP thus taking into account the distribution of 

QTL effects, with many loci with small (or close to zero) effect and very few loci with large effect 

(HAYES and GODDARD 2001). 

 

Advantages & open issues of GS 

Use of GS may allow to achieve an extra genetic gain compared to the classical polygenic EBV 

estimation, due to the higher accuracy of estimated EBVs are, especially for low heritability, sex-

limited and  expensive or difficult to measure traits. Furthermore, the ability to reduce the 

generation interval due to an earlier estimation of the genetic merit is another advantage of using GS, 

considering that potentially each animal could receive an EBV at birth. Although QTL mapping is not 

the main goal of genomic selection, some statistical models (Bayesian methods, in particular) may be 

of help for identifying genome regions that affect a number of economic traits (COLE et al. 2009; 

CALUS 2010).  

GS may radically modify the structure of livestock breeding programs, especially for dairy cattle. The 

potential usefulness of GS could be examined at different level: for instance, the genomic evaluations 

could be used to pre-select young bulls entering progeny test, or to select sire son or sire of dam. In 

the former cases the progeny testing scheme will disappear (GODDARD and HAYES 2007). A dramatic 
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reduction of the cost of the genomic breeding program was predicted in a simulation study by 

SCHAEFFER (2006). Assuming an average accuracy of DGV of 0.75 at the time of birth of the animal, 

Schaeffer estimated a reduction of cost for proving bulls around at 92% with an increase in genetic 

gain twice as the current breeding schemes. The extra genetic progress is due to the reduction of 

generation interval (from 6.5 y to 1.75 y and from 6 y to 1.75 y for sire of sires and sire of dams, 

respectively). Further reduction of the generation interval was predicted for the dam of sire where 

genotyped (from 5 y to 2 y), no predicted changes concerned the dam of dams line of selection 

instead. Moreover an increase of the accuracy in the female side of the pedigree is expected. These 

results were also confirmed by KONIG et al. (2009) in a deterministic simulation carried out to 

compare the progeny test scheme against the genomic breeding program. The authors simulated a 

population of 100,000 cows and measured the discounted profit for a breeding goal of production 

and functionality. According to their findings, if the accuracy of genomic predictions were greater 

than 0.7, an economic advantage of genomic selection programs was up to a factor of 2.59. In both 

examples the increase of genetic gain and reduction of cost were due the reduction of interval 

generation and increased accuracy of DGV of young bulls.  

Although these results seem to suggest that  marker enhanced breeding values can replace the 

traditional genetic evaluation, as pointed out by GODDARD and HAYES (2007) a more realistic solution 

may found in integrating all the sources of information – phenotypes, pedigree and genomic – into an 

improved EBV (GEBV). It is now widely assessed that the use of molecular data may not replace 

phenotypic data recording. Moreover, the genotypes may not be determined for all the animals in the 

population, and alternative solutions could be sought. GODDARD and HAYES (2007), proposed the use 

of selection index theory to combine the DGV and traditional EBV into a genomic breeding value 

(GEBV). Another option provides to estimate genomic predictions in the whole population inferring 

genotypes for un-genotyped animals. Smaller SNP chips have also been proposed as solution to 

increase the quota of genotyped animals (HABIER et al. 2009; WEIGEL et al. 2009), and different 

solutions have been proposed to select the a subset of SNPS (MACCIOTTA et al. 2009; WEIGEL et al. 

2009). 

Open issues for practical implementation of GS in dairy cattle populations concern the size and 

composition of the reference population (CALUS 2010). Although the number of phenotypic records 

is not the only factor that affects the accuracy of DGV, its role is very important because of the 

influence on the cost of GS breeding programs. Simulation studies indicated two thousand 

phenotypic records as the minimum threshold for achieve reliable estimates of DGV (HAYES AND 

GODDARD, 2009). The accuracy of DGV also depend on the statistical methods used to estimate 

marker effects and on the heritability of the traits (MEUWISSEN et al. 2001). According to DAETWYLER 

et al. (2008) the accuracy of marker effects depend on the heritability of the trait and number of 
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phenotypes. Moreover, the optimal composition of the reference population should include a wide 

range of phenotypes and genotypes representative of the entire population. Even if best accuracies 

of DGV have been achieved when juvenile animals are more related to the reference population 

(HABIER et al. 2007; CALUS 2010), these accuracies rapidly decrease as the distance in generations 

between reference and prediction population increases (HABIER et al. 2010). 

Furthermore, re-estimation of markers effects is necessary because the level of LD tend to decrease 

through the generation due to the recombination. Hence, the association between markers and QTL 

are broken down over time. This fact imply a reduction of the accuracy of the DGV when 

chromosome segment effects were predicted from a reference population that is genetically far from 

the juvenile animals. As consequence, the marker effects need to be re-estimated every two or three 

generation (MEUWISSEN et al. 2001; DE ROOS et al. 2007). 

The use of different prediction equations and different methodologies to estimates the SNP effects in 

different countries makes the DGV barely comparable. Some new methodologies are needed to 

standardize the procedure of calculation of international DGV. 

 

1.3.2 Models for Genomic Selection and choice of the statistical framework 

Since the large amount of data, the choice of an appropriate statistical model and the realization of 

an effective algorithm to solve the model represent two main critical point in GS. 

Data editing of SNP genotypes is generally the first step in genomic selection and genome-wide 

association studies. The editing of marker data is needed to clean data from scanning error of 

machinery used to read DNA sequence and to remove uninformative data as well. There is no a 

defined protocol. However, the most frequent edits are: elimination of animals with missing 

genotypes over a low arbitrary threshold (maximum 5% generally), or animals for which is 

demonstrated the inconsistency between pedigree and markers data. Routinely, SNP with minor 

allele frequency (MAF) under a certain threshold (2-5%) are dropped as well as uninformative 

monomorphic markers. Moreover, markers that significantly deviate from Hardy Weinberg (HW) 

equilibrium (p-value 0.01 or 0.05 are the threshold used) are deleted from the analysis.  

The second step for the implementation of GS is the estimation of marker effects. The base model to 

estimate the SNP could be described as: 

 

Where yi is the phenotypic record for the animal i; μ is the general mean; zij is and indicator variable 

for the genotype – coded as 0,1 or 2 for homozygous at first allele, heterozygous and homozygous at 
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second allele, respectively – at locus j for the animal i; gi is the SNP effect at locus j; n is the number of 

marker loci considered and ei is the random residual. 

However, different parameterizations of this model may be adopted as well as a polygenic effect 

could be fitted. The effect of the markers could be treated as fixed or as random. In the latter case the 

variance component associated to the SNP effect may be estimated in different ways. Basically, the 

easiest way is to consider each SNP contributing to the explanation of an equal amount of genetic 

variance. First, the additive genetic variance is estimated (with REML algorithm for instance), then it 

is divided by the number of effects that need to estimate simultaneously. Moreover, haplotype effects 

may be fitted instead of single marker genotypes. The association phase between SNP and QTL do 

not need to be known if SNP effects are fitted instead of haplotypes. This fact may simplify the 

calculation. In fact, sorting SNP markers into haplotypes is generally carried out using probabilistic 

algorithms based on the knowledge on the relationship among animals, or based only on the marker 

information (SCHEET and STEPHENS 2006). Although several softwares are currently available to 

determine the more likely haplotype phases, some of them are quite time consuming. Furthermore, 

the use of the haplotypes increases considerably the number of effects to estimate. Provided that in 

the case of GS the advantage of using haplotypes is relevant only for lower marker density (CALUS et 

al. 2008), it is often convenient to model just the marker genotype effect.  

Once estimated the SNP effects, the next step is the calculation of DGV. DGV computation is 

straightforward according to the formula: 

 

Where DGVi is the direct genomic value of the animal i provided the estimation of SNP effects ĝj at 

locus j. The estimation step may be carried out using many different procedures, nonetheless the 

total direct genomic value of the animal is the summation across the whole genome of the effects of 

the SNP genotypes. 

The model described above is a general model, but different statistical implementations may be 

used. Selection of markers was proposed as a strategy to address to the main statistical issue i.e. 

number of effects that need to be estimate is much larger than number of phenotypic records 

available. As previously said, the different approaches can be grouped into two main categories: 

selection of subset of SNP and use of limited number of derivate variables. 

Selection of SNP subsets 

A simple approach for selecting  SNP subset  could be carried out by using single marker regression 

of SNP genotypes on phenotypes (or ANOVA) in order to evaluate for each SNP a possible significant 

association to the phenotype analyzed (MACCIOTTA et al. 2009; MEUWISSEN et al. 2001). Significance 
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threshold may be adjusted using Bonferroni correction or permutations of data to take into account 

of multiple testing issue. Methods of pre-selection of subset of SNP have been also applied to develop 

low density SNP chips. SNP selection have been carried out both selecting SNPs based on their  

relevance to the phenotype considered and on their location (evenly spaced) along the genome. This 

techniques allowed to reduce up to a factor 100 the number of markers (MACCIOTTA et al. 2010; 

WEIGEL et al. 2009) needed with limited losses in DGV accuracy. Exploiting the machine learning 

theory and variables and features selection techniques – developed in the field of information 

technology (GUYON et al. 2003; KOHAVI and JOHN 1997) – multi-step procedure of selection have been 

proposed to deal with the issues of reduction of dimension of genomic data of mortality rate in 

broilers (LONG et al. 2007). 

Approaches which incorporate the selection step have been proposed and they make use of Bayesian 

statistics. MEUWISSEN et al. (2001) first proposed the use of so called Bayes A and Bayes B methods. 

Briefly, in the Bayes A is the marker data are modeled at two level: at the data level, and at the level 

of variances of SNP effects. If we allow the variance of the effects across SNP to vary, Bayes A 

estimates both SNP effect and their variance simultaneously using a Gibbs sampling algorithm. 

MEUWISSEN et al. (2001) indicated that the distribution of genetic variance across SNP is 

characterized by many loci which no harboring QTL, and few loci which do contain QTL. This fact led 

to a modification of the algorithm. In fact, in the Bayes B method a further step (Metropolis-Hasting) 

is implemented to determine for each locus whether it has an effect on the phenotype or not, in the 

former case the effect of that locus is shrunk to zero. These methods are heavily affected by the prior 

information used to infer the SNP effect as pointed out by some authors (CALUS 2010; GIANOLA et al. 

2009) 

Other alternatives include non parametric methods like kernel reproducing Hilbert space regression 

(KRHS) (GIANOLA et al. 2006; GIANOLA and VAN KAAM 2008) for prediction of total genetic value for 

quantitative traits, using phenotypic and genomic data simultaneously allowing also to model 

interaction among SNPs. Different applications of KRHS have been performed on field data in 

literature on chicken and dairy cattle (GONZALEZ-RECIO et al. 2008; GONZALEZ-RECIO et al. 2009; MOSER 

et al. 2009; DE LOS CAMPOS et al. 2010) comparing such methodology with other models. RHKS 

regression resulted as much accurate as Bayes A approach considering whole genome data and more 

accurate when smaller subsets of informative SNP were used (GONZALEZ-RECIO et al. 2009) 

Use of Derivate variables calculated from SNP data 

The second class of techniques includes methods that summarize the marker information with a 

smaller number of derivate variables. Multivariate techniques like principal component (PC) analysis 

and partial least square regression (PLSR)(WOOLASTON et al, 2007; SOLBERG et al. 2009) have been 
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used to reduce the dimensionality of data matrix. In PC analysis a number of uncorrelated PC 

explaining a large part of the SNP variance are used as predictors instead of the original variable. The 

accuracy of DGV using PC scores as predictor variables in a BLUP were similar to the accuracy 

obtained using the whole set of markers, but required much less computational time (MACCIOTTA et 

al. 2010). When the predictors are many and highly collinear, PLSR may be also used to constructing 

predictive models. Similarly to PC analysis, the main principle of PLSR is to extract orthogonal (i.e. 

uncorrelated) components from the original predictors matrix (latent components) and use them as 

predictors. Differently from PC analysis, which perform the extraction of PC using as criterion the 

maximization of the variance of the predictors matrix, PLSR extracts the latent components with the 

constrain to maximize the covariance between latent components and response variable. PLSR 

resulted a suitable technique to calculate DGV and its performances are similar to other techniques 

more time consuming (MOSER et al. 2009; SOLBERG et al. 2009). The key difference between the two 

class of methods (selection of subset of SNP and use of derivate variable) is that the methods that 

preselect a subset of SNP filter data on criteria that involve the association with the phenotype, 

whilst the multivariate techniques like PCA condense all the marker information into few derivate 

variables that are independent from the phenotypes used. Thus, PCA could be considered as trait 

independent technique. The PLSR method use simultaneously the information both on markers and 

phenotype to extract latent variable and may not be considered trait independent. 

Effect of prior information of estimation of QTL effects 

The estimation of the SNP effects could be carried out following several approaches, but a general 

feature is the assumption about the proportion variance explained by each chromosomal segment. 

To provide the ideal estimation of the SNP effects, such assumption should take into account the 

number of QTL underlying the trait and the prior distribution of QTL effects. However the number, 

the size of the QTL and the distribution of the effects are trait dependent and the number of detected 

QTL is function of the power of QTL mapping experiment (WELLER et al. 1990). Thus, not all the QTL 

have been discovered, but just those ones of biggest effect. HAYES and GODDARD (2001) estimated a 

number between 50 and 100 QTL affecting a generic quantitative trait using a meta-analysis 

approach. The predicted distributions of QTL were consistent with the hypothesis of many genes of 

small effect and few of large effect. They figures agree with the results of CHAMBERLAIN et al. (2007), 

who analyzed the results of a single experiment of QTL mapping and found that at least 30 QTL were 

likely to be segregating in the Holstein population examined for all core production traits. The 

distribution of QTL effects in some cases reflects the aforementioned pattern and clear examples 

have been reported in literature. In particular two polymorphism, K232A in DGAT1 gene and F279Y 

in GHR identified on bovine chromosome 14 and chromosome 20 respectively, explained about 50% 
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and 10% of trait variance of milk fat content and protein content respectively (GRISART et al. 2002; 

BLOTT et al. 2003). These two polymorphisms had a large effect also on the other production and 

quality trait. In particular, DGAT1 which explained such large amount of the trait variance seem to 

confirm the theoretical distribution of many genes of small effect and few genes of large effect. 

However, there are some traits for which this distribution might be not suitable and normally 

distributed QTL effects might be hypothesized (CALUS 2010) 

If reliable prior knowledge of distribution of QTL effect is considered in modeling SNP effects this 

would guarantee a better estimation of SNP effect and a reduced bias. However, different options 

may be chosen when modeling the SNP data. If it is not assumed any shrinkage factor to the variance 

and the SNP genotype is treated as fixed effect, the ordinary least square fixed regression (LS-FR) 

approach is applied. Equal variance contribution of each chromosomal segments to the genetic 

variance may be assumed using for instance a Best Linear Unbiased Prediction (R-BLUP) approach, 

treating the SNP as random factors. Different variance shrinkage factors lambda have been proposed 

(λ). The alternative is to allow variance of each chromosomal segment to vary and to estimate  SNP 

variances and effects simultaneously using a bayesian approach (BAYES) implemented through a 

Gibbs sampler algorithm drawing sample from known density distribution. 

Ordinary Least Square fixed regression (LS-FR) for estimation of SNP effects 

The simplest approach for estimating SNP effects makes no assumption regarding their distribution. 

The GS using LS-FR is a two step procedure. In the first step a subset of SNP are selected on the basis 

of their significant association with the phenotype according to the model  

 

Where  is the general mean, 1n  is a vector of one whose dimension is the number n of records, Qi  is 

a incidence matrix that allocate the i-th SNP genotype to the phenotypic records, gi is the vector of 

effects for the i-th SNP and e is the random residual. With such model each SNP is tested at once and 

a threshold is established to assess whether a SNP is significantly associated to the phenotype. In the 

second step the phenotypes are regressed on the selected SNP genotypes using a multiple linear 

regression. The SNP effects are estimate simultaneously only for the m selected SNP in the previous 

step, following the model: 

 

In this case all the other SNP are not considered and set to zero. This fact leads to an overestimation 

of SNP effects Its magnitude is a function of the number of SNP retained and thus depends on the 

choice of appropriate significance threshold in the first step. Different options could be adopted like 

Bonferroni correction, permutation or false discovery rate (FDR) to deal with the issue of multiple 
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testing, that arise when many null hypotheses are tested at the same time. In this case the theoretical 

alpha usually adopted to control the type error I is not appropriate as one hypothesis was tested 

instead. Some significant results are likely to be expected by chance even all the hypotheses are false 

(BALDING 2006). The threshold should be quite stringent otherwise there would be a degree of 

freedom problem as the number of predictor would be highly larger than phenotypic records and LS-

FR could not be applicable. An additional drawback of such an approach is that only the larger effects 

are captured and consequently not all the genetic variance is  explained by the marker (GODDARD and 

HAYES 2007). All these features make LS-FR estimation an unsuitable tool to estimate SNP effects as 

confirmed by application of LS-FR methods both in simulated and real datasets. Low accuracies of 

DGV predictions were obtained compared to other methods (accuracy of DGV ranged from 0.31 to 

0.36 in MEUWISSEN et al. (2001) and from 0.26 to 0.55 in MOSER et al. (2009) where in both case BLUP 

and Bayesian method performed better). 

R-BLUP approach and simultaneous estimation of whole SNP effects 

A better alternative to LS-FR was proposed to overcome the issue of overestimation and bias of SNP 

effects. A feasible solution is to fit a model that assumes an equal contribution of each SNP to the 

genetic variance of the trait. If the QTL effects are drawn from a normal distribution with constant 

variance across the chromosomal segment, the estimates are BLUP and SNP effects may be estimated 

simultaneously (GODDARD and HAYES 2007). The model is: 

 

in this case the all the m SNP are treated as random effects. X is the incidence matrix of a set of fixed 

effects b, Z (n individuals x m markers) is the incidence matrix that allocates SNP genotype to 

phenotypic record, g is the vector of random SNP effects and e is the vector of random residuals. The 

solution of the mixed model equation is 

 

Covariance matrices of random effects (G) and residuals (R) may be modeled in different ways. In 

the simplest case no interaction is considered between loci, i.e. G and R are diagonal matrix, and 

equal contribution to the genetic variance as diagonal, where λ may assume different values.  

If λ=e
g

as suggested by MEUWISSEN et al. (2001) g
 is estimated from the total additive genetic 

variance divided by the number of SNP fitted i.e. . In R-BLUP all the random effects have a 

common variance and the SNP with largest variance tend to be overestimated reducing the accuracy 

of prediction. Despite the overestimation of SNP effects, this methods lead to a better prediction than 

LS-FR approach. When the assumption of equal variance of each segment sampled from normal 



22 
Chapter 1 

 

Giustino Gaspa-“Use of Genomic Information in the Genetic Evaluation of Livestock” 
Tesi di Dottorato Scienze dei Sistemi Agrari e Forestali e dei Sistemi Agrari e Forestali e delle Produzioni Alimentari 

Indirizzo Scienze e tecnologie Zootecniche - Università Degli Studi di Sassari 

distribution is valid the R-BLUP performances are similar or better than other methods that allow 

variance to vary between SNP (CALUS 2010). 

If the marker effects are normally distributed with constant variance, BLUP is useful tool to estimate 

effects of the markers and hence the DGV. GODDARD (2009) demonstrated the R-BLUP model is 

equivalent to a conventional animal model in which the additive relationship matrix calculated from 

pedigree is replaced by the genomic relationship matrix (G) calculated from marker data, termed as 

Genomic BLUP (G-BLUP). The additive relationship matrix measure the expected fraction of alleles 

shared by the individuals of a population based on pedigree, whilst the genomic relationship matrix 

measure the actual fraction of alleles shared. If the classical animal model  is 

considered, where Z is the incidence matrix that allocate the animal to the phenotypic records, and u 

is the vector o polygenic effects for all the animal in the population, the solution of such model is: 

 

where A-1 is the inverse of additive relationship matrix, and λ=e
u



In the G-BLUP  model G replaces the A matrix. According to  is the genomic 

relationship matrix can be calculated as where , P contains 

the allelic frequencies of the marker expressed as 2(pi − 0.5)., M denotes the matrix that specifies 

which marker alleles each individual inherited. If in M -1 (for the homozygote), 0 (for the 

heterozygote), 1 (for the other homozygote) parameterization is adopted, then the diagonals 

elements of MM’ matrix count how many homozygous loci for each individual, and off-diagonals the 

number of alleles shared by relatives. The division by  scales G to be comparable to the 

numerator relationship matrix A (  With this formulation the mixed model 

equations become: 

 

Where u in this case is the DGV and is equivalent to the DGV calculated estimating the marker effects 

using G-BLUP and summing up the effect for all chromosome segment. Furthermore, HAYES and 

GODDARD (2008) demonstrated that the hereditability of a quantitative trait could be accurately 

estimated using a large number of markers (9,000 markers) to build the genomic relationship matrix 

instead of pedigree based relationship matrix in a simulation study. The additive variance 

component estimated with 5 generation of pedigree was not as much accurate as that one estimated 

using the whole set of markers (table 1)  
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Table 1. True and estimated heritability from marker based and from pedigree (HAYES and GODDARD 2008)  

Method Values SE 

True heritability 0.33 - 

1 generation of pedigree 0.22 0.04 

5 generation of  pedigree 0.26 0.03 

Genomic relationship matrix (1000 markers) 0.21 0.03 

Genomic relationship matrix (5000 markers) 0.30 0.03 

Genomic relationship matrix (9000 markers) 0.32 0.03 

 

 

If the number of markers used to estimate DGV is much larger than phenotypic records, the 

approach of using Genomic relationship matrix in BLUP animal model is more convenient than 

estimate the single marker effects, since much less number of parameters need to be estimated 

(HAYES et al. 2009b). A problem could be represented by the inversion of the G matrix, which in some 

cases may be singular. Efficient algorithms for solving the model have been proposed when large 

dataset are used (LEGARRA and MISZTAL 2008; VANRADEN 2008). 

Factor affecting the accuracy of genomic prediction 

The assessment of goodness of genomic predictions is generally carried out by measuring the 

correlation between the DGV and the true breeding value (TBV) . Since the TBV is available 

only for simulated data, its expectation may be used when the evaluation is carried out on real data. 

The EBV (weighted or not to its reliability) is assumed as golden standard, and Pearson correlation 

coefficient are calculated ( ). Alternative evaluation may be done on the squared correlation 

( )(VANRADEN et al. 2009). An additional criterion to evaluate the genomic prediction is  

generally the bias of prediction measured by the regression coefficient bEBV,DGV between phenotype 

and DGV. 

The characteristics of the reference population affect heavily the accuracy of genomic prediction. 

Number of animals in the reference population (MEUWISSEN et al. 2001; MUIR 2007; HAYES et al. 

2009b), number of markers and the level of LD (CALUS et al. 2008; SOLBERG et al. 2008), heritability of 

the trait considered (MEUWISSEN et al. 2001; KOLBEHDARI et al. 2007) are the main factors affecting 

the accuracy of DGV. Moreover, additive genetic relationships in the reference population captured 

by the SNP affects the accuracy of genomic predictions both in simulated and real data (HABIER et al. 

2007; HABIER et al. 2010).The choice of the statistical model and its parameterization (single 

markers or haplotypes) affect the accuracy of prediction as well (CALUS et al. 2008). 
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Different theoretical formulation have been proposed for calculating the accuracy of DGV in animal 

without phenotypic record. DAETWYLER et al. (2008) proposed a formula to predict the accuracy of 

genomic prediction  for animal without phenotype: 

 

Where h2 is the observed heritability, is the number of phenotypes per number of QTL loci. This 

equation allows to summarize the relationships between some factors affecting the accuracy as 

shown in figure 5, where the heritability was fixed at 0.3, and when the accuracy was evaluated in 

function of the heritability (figure 6) 

 

 

 

Figure 5. Predicted accuracy of DGV in function of  number of phenotype per number of marker loci 

(heritability 0.3 and λ=10,5,2,1,0.5,0.2,0.1) calculated according to the formula of (DAETWYLER et al. 2008) 
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Figure 6 Predicted accuracy of DGV in function of number of phenotype and heritability (1000 loci x 

phenotype). 

 

HAYES et al. (2009b) showed also similar relationships between accuracy of genomic predictions and 

number of phenotypic records in the reference population. In particular, for a quantitative trait of 

heritability of 0.3 and effective population size (Ne) of 100, about 12,500 individuals in the reference 

are needed to predict DGVs of un-phenotyped individuals with an accuracy of 0.7. If only 5,000 

individuals are available a drop in the accuracy (0.5) with the same heritability is observed. A similar 

conclusion may be drawn using a different analytical approach, with the formula of DAETWYLER et al. 

(2008) for instance. By calculating the number of phenotypic records required to achieve the same 

values of accuracy showed by HAYES et al. (2009b) it is possible to observe similar patterns (figure 

7). 

Summarizing, the accuracy of DGV increases with of heritability and number of markers. 

Furthermore, the higher the number of animals with both genotypes and phenotypes the higher DGV 

accuracy in the prediction population. 
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Figure 7. Relationship between number of phenotypic record in the reference population required to get two 

level of accuracy (0.5, 0.7) in function of the heritability calculated according to (DAETWYLER et al. 2008) setting 

5,000 loci per phenotypic records. 
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1.3.3 Accuracy of Genomic Prediction: results from simulated dataset  

Simulations of genomic selection programmes have been largely used to assess the potential of this 

tool for genetic evaluation of farm animals, before real data were available. Since 2001 (MEUWISSEN 

et al. 2001) many simulations have been carried out in literature both to propose suitable models for 

genomic evaluation and also to seek the main factors affecting the accuracy of genomic prediction 

using dense markers. Although strong prior assumptions affect simulation results,  they have been 

useful to develop statistical model and propose solution to main issues of GS.  

Table 2 reports values of DGV accuracies in juvenile animals (without phenotypic records) are 

reported across different studies. Not all the predictions are comparable because of different 

assumptions in simulation, as different number of markers and individuals in the simulated 

population. Main differences concern: the underlying genetic model with effect of QTL purely 

additive (CALUS et al. 2008) or simulation of dominance or epistasis (GIANOLA et al. 2006; GIANOLA 

and VAN KAAM 2008); the distribution of QTL effects and marker frequency; type of marker used; the 

method used to generate the LD (MEUWISSEN et al. 2001; MUIR 2007; KOLBEHDARI et al. 2007); and 

number of generations of random mating (eventually the number of generation of selection 

performed). The results reviewed are grouped on the basis of the methods used to estimate  markers 

effects. 

In general, results from simulated datasets (table 2) are quite in agreement as far as  the accuracy of 

DGV in function of the statistical method is concerned. Bayesian methods (rDGV,TBV 0.380-0.848, with 

several values above 0.70) perform better than BLUP (rDGV,TBV ranging from 0.410 to 0.749) or LS-FR 

methods (0.124-0.610). Semi-parametric methods like RHKS gave results similar or better than 

Bayesian approaches. Multivariate techniques of SNP reduction perform similarly to BLUP approach 

(0.604-0.730).  

Basically, the increase of density of SNP markers results in a better accuracy of prediction 

(MEUWISSEN et al. 2001; MUIR 2007; SOLBERG et al. 2009). Simulated results showed how the 

heritability of the trait affect positively the estimation accuracy (CALUS and VEERKAMP 2007; 

KOLBEHDARI et al. 2007; MUIR 2007) as confirmed also by theoretical expectations (DAETWYLER et al. 

2008; HAYES et al. 2009b). Furthermore, as shown by CALUS and VEERKAMP (2007), the inclusion of 

polygenic effect in the estimation has just marginal positive effects on DGV accuracy both for high 

and low heritability traits. The inclusion of polygenic effect at low level of LD (r2 <0.10) gave positive 

effect only for high heritability traits, confirming the effect of marker density on accuracy of DGV. 

The effect of the inclusion of an increasing number of individuals in the reference population results 

in a better genomic prediction as shown by several authors (MEUWISSEN et al. 2001; MUIR 2007; 

SOLBERG et al. 2008). These results found their theoretical justification in the reduction of the 

statistical asymmetry of data matrix due to the increased sample size. A further simulation carried  
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Table 2. Range of accuracies of genomic prediction across different method in simulated dataset.  

Method  Accuracy Authors 

LS-FR   0.124-0.318 (0.318-0.363) [b] (MEUWISSEN et al. 2001) 

  0.49-0.61 [a] (HABIER et al. 2007) 

BLUP  0.579-0.732 (0.732-0.668)[b] (MEUWISSEN et al. 2001) 

  0.64-0.42[a] (HABIER et al. 2007) 

   (MUIR 2007) 

  0.62-0.79 (0.60-0.75)[c] (KOLBEHDARI et al. 2007) 

  0.499-0.611(0.588-0.630)[d] (PIMENTEL et al. 2009) 

  0.76(0.41)[e] (MACCIOTTA et al. 2010) 

  [k] (GUO et al. 2010) 

BAYES A  0.798 (MEUWISSEN et al. 2001) 

COMMON PRIOR  0.428-0.616(0.719-0.808)[k] (GUO et al. 2010) 

  0.424-0.615(0.711-0.805)[l] (GUO et al. 2010) 

BAYES B  0.708-0.848(0.848-0.737)[b] (MEUWISSEN et al. 2001) 

  0.690-0.860(0.626-0.827) [f] (SOLBERG et al. 2008) 

  0.802-0.821 (0.764-0.798) [g] (SOLBERG et al. 2008) 

  0.55-0.69[a] (HABIER et al. 2007) 

  0.38-0.55(0.36-0.55) [h] (CALUS et al. 2008) 

  0.73-0.79(0.74-0.80) [i] (CALUS and VEERKAMP 2007) 

MIXTURE PRIOR  0.474-0.657(0.745-0.829)[k] (GUO et al. 2010) 

  0.454-0.645(0.733-0.826)[l] (GUO et al. 2010) 

PCA-BLUP  0.604-0.665[g] (SOLBERG et al. 2009) 

  0.70-0.55 (0.73-0.56) [l] (MACCIOTTA et al. 2010) 

PLSR-BLUP  0.611-0.681[g] (SOLBERG et al. 2009) 

MLR (RKHS)  0.59(0.95) [j] (GIANOLA et al. 2006) 

[a] range of DGV accuracy of prediction population when for different time point far from reference population 
[b] range of DGV accuracy for increasing phenotype records from 500 to 2200 and Ne=100 or (decreasing marker density: 
spaced from 1 up to 4 cM, Ne=100) 
[c] range of DGV accuracy for h2=0.5 scenario unequal QTL size and even or random distribution on genome (for h20.05 
scenario unequal QTL size and even or random distribution on genome) 
[d]DGV accuracy obtained applying to different BLUP method (two different Ridge Regression methods) 
[e]DGV accuracy when considering the phenotype as response variable (or polygenic EBV) 
[f] range of DGV accuracy at increasing density of marker loci using SNP genotype or (microsatellite) 
[g]range of accuracy at increasing density from haplotype of SNP or (microsatellite) 
[h]range of accuracy for DGV when h2=0.05 or (h2=0.5) 
[i]range of accuracy when the contribution of polygenic effect is not considered or (consiedered) at decreasing values of h2 
[j]accuracy of DGV for Multiple Linear Regression (MLR)Mixed Model and (RKHS regression) 
[l]accuracy of DGV using raw phenotype as response variable and equal variance of each PC eigenvalues as prior variance 
in the mixed model equation (polygenic EBV as response variable) 
[k]accuracy (squared correlation R2)of DGV using EBV as response variable: from 30 to 100 daughter x bulls h2=0.05 (0.30) 
[l]accuracy (squared correlation R2)of DGV using DYD as response variable: from 30 to 100 daughter x bulls h2=0.05 (0.30) 

 

out by GUO et al. (2010) showed how the influence of response variable (DYD or polygenic EBV) on 

the accuracy of DGV is method-dependent and of moderate effect (0.3 to 3.6% of difference in 
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accuracy). The methods that reduce the number of SNP on the basis or their contribution to the 

variance (or summarize the information of the whole set of marker with few variable) gave the best 

results of DGV accuracy and less biased estimates. 

 

1.3.4 Accuracy of Genomic Prediction: Results from field data 

The main limitations of application of genomic selection on real data are the costs for genotyping the 

animals. In few years the cost of genotyping has drop dramatically and therefore has become feasible 

to genotype a high number of animal. The number of genotyped animal in US (cows included) in 

2010 was around 33,434 (VANRADEN AND TOOKER, 2010). Table 3 reports the level of DGV accuracy 

achieved using real field data of dairy cattle across different methods and traits. The genotyped 

animals reported in the table 3 are all bulls and ranged from 479 to 5,535. Different methods have 

generally been adopted to build the reference and prediction set. In most of cases, older animals are 

used as training to predict the younger candidate to selection (VANRADEN et al. 2009). When the 

number of animals is too small n-fold cross validation are carried out to construct the reference set, 

leaving out for n time a certain percentage of animal and using the rest as training set to predict the 

genomic breeding values of former animals. Better accuracies are obtained when animals are chosen 

randomly (LUAN et al. 2009) to make the reference set, even if this not suitable for practical 

implementation in a genomic breeding program. Another way to build the reference set was carried 

out by HABIER et al. (2010) and put some constraints of relatedness among animal of training and 

prediction to evaluate the effects of additive relationship on DGV accuracy.  

The average number of SNPs used were around 35,000 and about 19,000 for 54 k illumina bead chip 

(http://ww.illumina.net) and Affymetrix panel (http://www.affymetrix.com/) respectively, 

depending on data quality control, editing of SNP data and missing genotypes. The response 

variables used to estimate the SNP effects were both national EBV, de-regressed proof or DYD. 

Differences in accuracy of DGV seem to rely on the number of the animals and relatedness among 

animals of reference and prediction, more than statistical methods. The range of DGV accuracies 

reported across different trait did not show how the estimation of SNP is somehow trait by method 

dependent. The accuracies obtained with LS-FR are the lowest (0.43-0.53), if the high number of 

phenotypic records in this study are considered. Furthermore the LS-FR works better when the 

number of predictors are smaller like in the case of MOSER et al. (2009). The prediction that used G-

BLUP ranged from 0.153 up to 0.74 (R2 = 0.55 in VANRADEN et al. (2009)). Bayesian methods gave 

values of accuracy from 0.128 to 0.790 (R2 = 0.63 for fat percentage in VANRADEN et al. (2009)). 

Finally, the methods like PCA-BLUP or PLSR and RKSH perform similar to G-BLUP. The lowest 

figures for PCA-BLUP are likely to be a consequence of limited sample size. Considering that PLSR 

and PCA-BLUP use a limited number of derivate variables (reducing the original variable up to a 

http://ww.illumina.net/
http://www.affymetrix.com/estore/
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factor 20) and allows to save much more computational time (MACCIOTTA et al. 2010; SOLBERG et al. 

2009) 

 

Table 3. Accuracies of genomic prediction across different methods and traits in real data of dairy cattle 

Method n (reference)1) n SNP2) Accuracy3) Authors 

LS-FR 1,945(1,239) 7,237  0.430-0.530[a] (MOSER et al. 2009) 

G-BLUP  5335 (3,576) 38,416 0.21-0.55[b] (VANRADEN et al. 2009) 

 500(400 ) 18,991 0.153-0.617(0.195-0.609)[c] (LUAN et al. 2009) 

 1181(781) 

1545(1068) 

39,048 0.490-0.620 

(0.450-0.620)[d] 

(HAYES et al. 2009a) 

 1,945(1,239) 7,372 0.560-0.710[a] (MOSER et al. 2009) 

 5,212 (~) 42,302 0.481-0.572(0.510-0.603)[e] (HARRIS and JOHNSON 2010) 

 3863(~2096) 40,588 0.440-0.680(0.170-0.380)[f] (HABIER et al. 2010) 

BAYES     

MIXTURE 500 (400 cv) 18,991 0.128-0.601(0.192-0.612)[c] (LUAN et al. 2009) 

BAYES A 781(1,068) 39,048 0.470-0.710(0.470-0.690)[d] (HAYES et al. 2009a) 

 1,945(1,239) 7,372 0.560-0.710[a] (MOSER et al. 2009) 

BAYES SSVS 781(1,068) 39,048 0.470-0.700(0.405-0.700) [d] (HAYES et al. 2009a) 

BAYES LASSO 4,703(3,305) 32,518 0.612(0.428-0.567†; 

 0253-0.539‡)[h] 

(WEIGEL et al. 2009) 

NONLINEAR 3,576 (1,759) 38,416 0.190-0.630[b] (VANRADEN et al. 2009) 

BAYES B 500(400 cv) 18,991 0.130-0.607(0.189-0.601)[c] (LUAN et al. 2009) 

 3863(~2096) 40,588 0.500-0.680(0.290-0.470)[f] (HABIER et al. 2010) 

PCA-BLUP 863 (749)[479] 40,658 

(37,254) 

[40,179] 

0.210-0.61[g] 

(0.180-0.540) 

[0.280-0.460] 

MACCIOTTA et al, 2010 

 

PLSR-BLUP 1,945(1,239) 7372 0.550-0.700 [a] (MOSER et al. 2009) 

SVR 1,945(1,239) 7372 0.580-0.720 [a] (MOSER et al. 2009) 

n=number of animal in the whole dataset (and in the reference population only) 
1) number of SNP after editing procedure (3 chip set 54 k 25 k 9 k were used) 
2) minimum and maximum DGV accuracies across productive and functional traits and different studies and methods 
[a] range of DGV accuracy of prediction population for Australian economic index 
[b] accuracy were expressed as R2and the range is across production and functional trait 
[c] range of accuracy for milk production trait estimated using 5 fold cross validation for cohort of animal whose 
phenotypes were masked on the basis of year of progeny test or (5 fold cross validation of random animal) to design the 
reference and prediction population 
[d]range of DGV accuracy in Australian Holstein (Holstein +Jersey) population in the reference set with a multi-breed. 
[e]range of DGV accuracy in NZ Hostein Holstein and NZ Jersey both not blending the DGV with Parent Average information 
and (using a blending approach) 
[f] minimum and maximum of DGV accuracy for different constrain of additive relationship when building the reference set 
(DGV due to LD) for milk yield fat yield, protein yield and SCS in German Holstein 
[g] range  of DGV accuracy for Italian Holstein(Italian Brown Swiss) and [Italian Simenthal] building the reference set 
sorting the bulls by year of birth and using 2,564, 2,257, and 2,476 PC respectively. 

[h] values of DGV accuracy using whole set of SNPs or (range of accuracy when selecting smaller subsets of SNPs of largest 
effect†, or evenly spaced in the genome ‡) 
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As far as the statistical method adopted is concerned, the Bayesian approach generally outperforms 

the other methods on simulated dataset. Especially Bayes B, which heavily relies on the prior 

assumption of distribution of QTL effect and gave similar results to methods implemented 

calculating the G-matrix in an animal model.  

The NONLINEAR model (VANRADEN et al. 2009) (equivalent of Bayes B of MEUWISSEN et al. (2001)) 

performed quite good, even if the differences between G-BLUP and NONLINEAR approaches are not 

so large.  

Some of the Bayesian methods showed an example of trait-model interaction. Interestingly, G-BLUP 

perform better than Bayesian approaches for some traits. Accuracy of DGV for milk yield in HAYES et 

al. (2009a) was better using G-BLUP approach, rather than Bayesian approach. This result is 

probably due to the genetic determinism of the trait where the number and distribution of gene 

underlying these traits approaches the normal distribution. Conversely, the genomic prediction for 

fat percentage (where DGAT1 explained 50% of the genetic variance) is more accurate using 

Bayesian approach, and in particular Bayes B (where the prior distribution reflect the real 

distribution of QTL effect for fat percentage).  

Additional factors that affect the genomic prediction in real data are the number of SNP used in the 

prediction and the way to chose them (WEIGEL et al. 2009) 
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The large amount of QTL detected in several breeds of cattle should have led through the use of QTL 

information to marker assisted selection of farm animals. The aim to dissect the genetic architecture 

of quantitative traits through QTL mapping has not been fully exploited for several reasons. The 

imprecise location of detected QTL has permitted to use only part of this information in marker 

assisted selection schemes. Moreover designs to detect QTL, especially in dairy cattle, are tightly 

linked to the family structure of the population, and with such imprecise location of QTL only within 

family selection is a possible application. The refinement of the position of QTL detected might allow 

to use this large amount of data yielded in the past decade. 

However thanks to the development of dense genomic map and the SNP chip technology, much more 

data than in the past have been produced, in few years. The use of SNP data should allow to 

overcome the problem of within family selection (the marker is supposed to be in LD with QTL) and 

the cost of genotyping is going down steeply. However new problems and challenges came up. In 

particular how to fully exploit thousands of markers in QTL detection and genomic selection.  

There are several factors that affect the accuracy of genomic predictions, and the model used to 

breeding values estimation is one of the most relevant (at least in simulated studies). In real data, the 

small population size (excluding the US and Canada situation) that characterizes the European 

situation does not allow to reach the minimum number of animal needed to get an accurate genomic 

predictions in comparison to simulation studies. To overcome the problem of large number of 

predictor vs. number of animals, different variable selection techniques have been proposed. In the 

present thesis both the factor affecting the accuracy of genomic prediction and the reduction of 

number of predictor have been developed and compared to recent literature. 

Objective of the Thesis 

The overall objective of the present thesis was to investigate on the use of genetic markers in the 

marker assisted selection of farm animal. In particular, it has been investigate the way to better 

exploit the large amount of QTL data yielded in the recent literature through meta-analysis (chapter 

2). Furthermore, the use of genomic marker to breeding values estimation, the study of the factor 

affecting the accuracy of prediction (chapter 3) and the use of multivariate techniques to reduce the 

number of predictors in genomic selection (chapter 4) have been studied. 
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ABSTRACT 

A large number of quantitative trait loci (QTLs) affecting milk production and quality traits in dairy 

cattle have been reported in literature. A total of 150 papers by 90 authors were found on 29 

scientific Journals for the period January 1995-February 2008. QTL meta-analyses have been carried 

out to estimate the distribution of QTL effects in livestock and to find consensus on QTL position. In 

this study seven selected variables were analyzed both with the Factor Analysis (FA) and Principal 

Component Analysis (PCA). Furthermore, five theoretical distributions (lognormal, weibull, normal, 

exponential and gamma distribution) were used to model QTL effect distributions of milk yield (MY), 

protein yield (PY), protein percent (PP), fat yield (FY), fat percent (FP), type traits (TT) and all milk 

production traits scaled by genetic standard deviation (AT). FA was able to explain 68% of the 

original variability with 3 latent factors: the first factor extracted is highly associated (0.98) to 

marker location along the chromosome and could be considered as a marker map index; the second 

factor shows loadings of 0.74 and 0.84 related to the number of animals involved and to the year of 

the experiment, respectively, and it can be regarded as an indicator of the dimension of the study; 

the third factor is correlated positively to the significance level of the statistical test (0.78), to the 

number of families (0.63) and, negatively, to the marker density (-0.43) and can be interpreted as an 

index of power of the experiment. Same patterns can be observed in the eigenvectors of PCA. Four 

PCs were able to explain about 80% of the original variance. The first two PCs basically underline the 

same structure found with the first two factors, whereas PC3 and PC4 summarize the structure of F3. 

The score that each QTL gets on each factor or PC could be useful tool classify the original QTL 

studies and make them more comparable once that the redundancy of information has been 

removed. The investigation on QTL effect distributions indicates the gamma function as the most 

suitable to fit data for all traits but MY and PP. The lognormal distribution fitted well FY, FP, PY and 

AT data, whereas the Weibull distribution showed a good fit only for FY, FP and PP. 

 

Key words: QTLs, meta-analysis, dairy cattle; marker assisted selection (MAS) 
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2.1. INTRODUCTION 

2.1.1. Genetic marker in animal breeding: a meta-analytic approach 

The infinitesimal model used to explain the inheritance of quantitative traits has been the paradigm 

of selection so far. Its implementation in breeding programmes has yielded considerable increases in 

the genetic level of farm animals, especially for dairy cattle (DEKKERS and HOSPITAL 2002). However, 

being the expression of the economic traits controlled by a finite number of genes (CHAMBERLAIN et 

al. 2007 ; EWING and GREEN 2000), the finite locus model could be more appropriate to describe the 

inheritance pattern. The hypothesis a finite number of loci may led to a model with many genes of 

small effect and few ones with large effect (HAYES and GODDARD 2001). Moreover, the current 

availability of dense marker panel (chips with 54K SNP) allows to use the marker information in the 

prediction of breeding values of bulls and the knowledge of prior distribution of QTL effects may 

help on estimate with high accuracy the markers effect (GODDARD and HAYES 2007). Nevertheless the 

distribution of size of QTL effects is not well established yet for most traits.  

Several genome scan studies carried out on livestock species reported a large number of quantitative 

trait loci affecting economic traits. The main aim of these studies was to integrate this information 

into marker assisted selection programs. However, commercial applications of MAS have been rather 

limited so far (BENNEWITZ et al. 2004b; DEKKERS 2004; GUILLAUME et al. 2008b). Currently, there is a 

general lack of consensus on QTL effects estimation and on chromosomal locations, with an average 

confidence interval for QTL position of more than 20 cM (KHATKAR et al. 2004).  

 

In any case, the large amount of data available in literature may be exploited by meta-analysis to 

draw more general conclusions from results obtained in different experimental conditions, 

population investigated and statistical methodologies. Meta-analytic techniques have been initially 

proposed in social and medical sciences. The use of statistical methods to combine the results of 

independent research studies dates long time ago. Different objectives may be pursued using meta-

analytic approaches and, conversely from classical descriptive review of a general topic, the meta-

analysis may lead to new results. In an earlier application PEARSON (1904) collected correlation 

coefficients from several studies to determine the extent to which inoculation against smallpox 

disease was related to survival. Meta-analyses have often been carried out to analyze a series of 

studies on the same subject in medical science, allowing a quantitative summary of results. The 

meta-analysis is useful when the results of individual studies are conflicting or carried out only with 

limited sample size. In this case the findings are not reliable enough because of low statistical power 

and meta-analytic approach may help to enforce the evidence. 
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Five steps are generally required for conducting a meta-analysis: 

1) clear and complete definition of meta-analytic objective(s); 

2)  search for most relevant paper on the topics; 

3)  definition of the criteria for inclusion of data in the analysis; 

4)  application of an appropriate mathematical-statistical method to fit the data; 

5)  critical evaluation of results. 

 

Two approaches could be generally applied when carrying out a meta-analysis. In the first raw data 

from different experiments on the same topic are pooled and analyzed again with the aim to increase 

the sample size and the power of the experiment. As stated by LANDER and KRUGLYAK (1995), this 

approach would allow more robust results even though in many situation it is not feasible, especially 

when the published literature is too wide as in the case of linkage analysis studies to detect QLTs. 

The second, most common, approach is based on the collection of results from published papers and 

in the statistical correction for the effect of the study in order to draw more general conclusions.  

Different methods have been proposed to meta-analyze the data retrieved from different studies. 

According to LI and RAO (1996) multiple replication studies tend to produce different results. They 

analyzed genetic effects from many independent quantitative sib-pair linkage studies using a 

random effect model . Each study used by LI and RAO (1996) evaluated the same markers using the 

same methodology. In humans, ALLISON and HEO (1998) proposed a meta-analysis technique “under 

the worst-case condition”. Briefly, they analyzed the P-value of five linkage studies that reported 

several markers, tested with different statistical techniques (multiple testing hypothesis and 

multiple marker tested) and with missing data. They pooled the m independent P-values into a single 

test of significance under the null hypothesis of no association in humans between OB genomic 

region and body mass index. They found a strong evidence (P-value =1.5∙10-5) of an association for a 

marker in the Human OB gene.  

 

GOFFINET and GERBER (2000) proposed a mathematical-statistical method for combining results from 

several independent studies which they have tested on simulated data. Later, this technique was 

used by KHATKAR et al. (2004) who analyzed 55 publications on QTL studies conducted on dairy 

cattle performing a meta-analysis looking for consensus on the position of QTLs influencing different 

milk production traits. Finally, HAYES and GODDARD (2001) studied the distribution of the effects of 

QTL in two populations (dairy cattle and pigs). The authors indicate the gamma distribution best suit 

to describe the distribution of effects: 17% QTLs explaining about 90% of genetic variance. HAYES 

and GODDARD (2001) estimated between 50 and 100 genes with a distribution where few QTLs have 

a major effect and many QTLs have small effects. 
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However, QTL meta-analysis techniques present peculiar problems. One is represented by the 

reduced availability of data in published papers: QTL effects are often missed, and marker positions 

are referred to different linkage maps. A common practice in QTL meta-analysis studies to cope with 

missing data is to reconstruct them whenever possible (GOFFINET and GERBER 2000; LANDER and 

KRUGLYAK 1995), or to rescale them in case of different marker maps. A further issue is whether QTLs 

reported in very close positions but with different effects in several studies should be considered the 

same or not. The extraction of one or of more synthetic variables from information reported in 

different QTLs studies could be a way to characterize the researches and to give an index of QTL 

reliability. 

 

The objectives of the present study were: i) to build an updated data base of researches on QTLs in 

dairy cattle in order to carry out a descriptive statistical analysis of QTL results and to conduct a 

meta-analysis; ii) to seek latent variables able to characterize the research using multivariate 

dimension reduction techniques to analyze a data base of published QTLs; iii) to test some 

theoretical distributions to model QTL effect distributions all milk production traits. 

2.2.  MATERIALS AND METHODS 

2.2.1  A data base of Quantitative Trait Loci studies for Dairy cattle  

The relevant literature on dairy cattle QTL mapping was investigated. A total of 150 articles 

published on 29 scientific journals from January 1995 to February 2008 were retrieved (Table 1, 

Figure 1). Moreover, information reported on the following three specific online QTL data bases 

were also used and compared: 

- http://www.vetsci.usyd.edu.au/reprogen/QTL_Map 

-  http://www.animalgenome.org/QTLdb, 

-  http://bovineqtlv2.tamu.edu. 

More than thirty parameters were picked up from the articles (Table 2). A descriptive statistical 

analysis has been carried out with the aim of summarizing the principal features of the database. In 

particular the total number of QTL found and the trend of QTL detected per year; furthermore the 

breeds and the experimental designs used have been descripted. Traits analyzed and number of QTL 

detected per chromosome have been further reported. Several statistical models have been used to 

map QTL in outbreed populations, from less complex (Anova) to a higher level of complexity 

(Bayesian MCMC methods). Here we report a brief classification of the methods adopted and the 

phenotypes used as response variable. The significance value (P-value) is reported for the whole 

dataset. Furthermore, the effect of well-known (or novel detected) polymorphisms on phenotypic 

http://www.vetsci.usyd.edu.au/reprogen/QTL_Map
http://www.animalgenome.org/QTLdb
http://bovineqtlv2.tamu.edu/
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trait values have been used to compare the results of QTL detected in different studies at descriptive 

level (reported as Bos Taurus release 4.1). A graphic description of significance levels of QTL 

affecting milk core traits detected on chromosome 5 for milk production trait is reported . Trait 

analyzed were milk yield (MY), fat yield (FY), fat percentage (FP), protein yield (PY), protein 

percentage (PP). Finally, the effect of QTL affecting milk production traits is described. 

 

Table 1. Journals considered in the analysis and 

number of articles per Journal 

Journal n 

1. Journal of dairy Science 48 

2. Proceedings 17 

3. Animal genetics 16 

4. Genetics 13 

5. Mammalian genome 8 

6. Journal of animal breeding and genetics 6 

7. Animal biotechnology 4 

8. Journal of animal science 4 

9. Journal of applied genetics 4 

10. BMC Genetics 3 

11. Journal of heredity 3 

12. Physiological genomics 3 

13.  Genetics selection evolution 2 

14. Genome research 2 

15. Genomics 2 

16. Italian journal of animal science 2 

17. Animal science journal 1 

18. Asian-Australian journal of animal science 1 

19. Australian journal of agricultural research 1 

20. BMC Genomics 1 

21. BMC Veterinary research 1 

22. Genetics Research Cambridge 1 

23. Genetika 1 

24. Journal of dairy research 1 

25. Pigment cell  research 1 

26. Research in veterinary science 1 

27. Veterinary Research 1 

28. Veterinary Medicina 1 

 

 

Table 2. Variables included in the database of QTL 

for dairy cattle. 

Observed Variable n‡ 
1. QTL or Candidate gene 2651 

2. Mutation 846 

3.  Trait 2650 

4.  Measurement unit 1600 

5.  Breed 2641 

6.  Nation of experiment 2534 

7.  Experimental Design 2311 

8.  Number of family 2108 

9.  Number of sons 1682 

10.  Number of Daughters 928 

11.  Analyzed Phenotypes 2302 

12.  Single-multi QTL model 232 

13.  Software used 2404 

14.  Analytic model 762 

15.  Additive effect 550 

16.  SE additive effect 285 

17.  Dominance effect 142 

18. SE dominance effect 116 

19.  Allelic substitution effect 104 

20.  SE allelic substitution effect 549 

21.  Absolute effect 1065 

22.  Genetic variance explained 353 

23.  Chromosome 2556 

24.  QTL location 1428 

25.  Location confidence interval 566 

26.  Flanking markers 1069 

27. Significance level (chrom-wise) 1250 

28. Significance level (genome-wise) 359 

29. Statistic tests used 1028 

30.  Test value 770 

31.  Multiple test Correction  1491 

32.  Marker map used 1121 

33.  References 2648 

† number entries for which were available the  

variable in the correspond field of the dataset.
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Figure 1 QTL data base construction. 
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2.2.2  Multivariate meta-analysis of QTL mapping studies 

Dataset 

The raw dataset was edited to give more uniformity to the data mined from different studies and to 

organize it for the statistical analyses. To overcome the problem of different map locations, the 

flanking markers were mapped on release 4.1 of the Bos taurus genome sequence 

(www.ensembl.org). Their positions were retrieved from public databases or, when not available, 

was calculated in silico by blasting (http://blast.wustl.edu/) the markers’ nucleotide sequence 

against the genomic sequence. Relationships between position of markers in cM (from published 

paper) and position of markers according to the physical map is shown in figure 2. Records were 

discarded if flanking markers or P-values were not available. Additional variables have been 

calculated from original raw data, and character variables have been transformed into discrete 

numeric variables. After these edits, the final archive consisted of 1,162 records. 

To select the most relevant variable a preliminary exploratory data analysis was carried out 

examining on the whole data set Pearson and partial correlation matrices, and Kaiser’s measure of 

sample adequacy (MSA) (CERNY and KAISER 1977) were calculated. High values of MSA (ranging from 

0 to 1, at least greater of 0.60) indicate a latent structure underlying the data and suitability of the 

archive to multivariate factor (FA) analysis. After that, a variable selection step was carried out using 

a preliminary (FA) (see statistical analysis for full description of the factorial model) on the whole 

set of variables. Only those highly correlated with the common factors were retained. Also redundant 

variables were removed.  

 

Figure 2. Relationship between position in cM and position in Mb estimated by linear regression 

y = 9E-07x + 14.448
R² = 0.6452
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Statistical analysis 

Selected variables were analyzed using the factor analysis  and principal component analysis (PCA). 

In the factorial model the value of the variable Xi for the i-th observation can be decomposed as 

follow: 

i

j

jiji eFbX   (for j=1,m) 

where Fj is the j-th common factor (or latent variable), bij is called factor loading and weighs the i-th 

original variable in the composition of the j-th factor, m is the number of extracted factor, ei is the 

uniqueness of the i-th variable (KRZANOWSKY, 2000). 

Kaiser MSA was used to evaluate the suitability of dataset to FA. The proportion of variance 

explained by the common factors (~70% of the variance of the original variances) as well as the min-

eigen criterion were used to choose the appropriate number of factor to retain. The principal factor 

method implemented in the PROC FACTOR of SAS (SAS INSTITUTE, 1996) was the method used to 

extract the common factors. Factor loading matrix (B) was rotated using the VARIMAX procedure to 

enhance the interpretation of extracted factors. 

 

In the PCA the values of the principal component Yi for the i-th observation is a linear combination of 

the original variables Xj. 

 
j

jiji XaY  (for j=1,p) 

where aij are the component coefficients – eigenvectors corresponding to the m largest eigenvalues 

of the correlation (covariance) matrix of the p original variables. In the PCA the number of the 

components extracted is equal to the number of original variables. The number of PC retained is 

generally function of the proportion of variance explained by the first m PC (m<p). 

The main difference between PC and FA is that PCA is a mere data transformation. PCA explores the 

maximum variability direction in the space of the variable, hence no distributional assumptions are 

required. On the other hand, the model underlying the FA required some distributional assumptions. 

The variance of the original variables is divided into variance explained by the presence of latent 

factor (common variance or communality) and unique variance associated to each specific original 

variable (KRZANOWSKY, 2000). Hence, the PCA explore the variance of the multivariate system and the 

FA the covariance, and both factors and PCs are orthogonal (uncorrelated). 

  



47 
Chapter 2 

 

Giustino Gaspa-“Use of Genomic Information in the Genetic Evaluation of Livestock” 
Tesi di Dottorato Scienze dei Sistemi Agrari e Forestali e dei Sistemi Agrari e Forestali e delle Produzioni Alimentari 

Indirizzo Scienze e tecnologie Zootecniche - Università Degli Studi di Sassari 

Factors scores (F) were then treated as new variables and analysed with the following mixed model 

using the PROC MIXED of SAS (SAS INSTITUTE, 1996): 

F ijklm = DESIGNi + MODELj + TRAITk +STUDYl +eijklm 

DESIGNi = fixed effect of class experimental design (3 levels) 

MODELj = fixed effect of class model (2 levels )  

TRAITk = fixed effect of trait analysed (6 level)  

STUDYl   = random effect of study (75 level) associated to covariance matrix G~(0, I∙g

 

eijklm  = random residual associated covariance matrix R~(0, I∙e

 

 

Table 3. Code of the factor used in the mixed model. 

    

Analytic Model code Traits Code 

Anova 1 MY 1 

Comparison-wise linkage test 1 FY 2 

Mixed model 1 FP 3 

Single Marker Regression 1 PY 4 

Monte Carlo Markov Chain 2 PP 5 

Composite Interval Mapping 2 CT 6 

L+LD mapping 2   

ML approach for QTL mapping 2 Experimental design Code 

Multi-marker Regression 2 DD 1 

Rank-based non-parametric approach 2 GDD  2 

Variance component QTL mapping 2 DD-POOL 3 

MY=milk yield, FY=fat yield, FP=fat percentage; PY=protein yield, PP=protein percentage; CT=conformation trait; 

DD=daughter design, GGD=granddaughter design, DD-POOL= daughter design with DNA pooling 

 

2.2.3 Analysis of distribution of estimated QTL effects for dairy cattle  

Three theoretical distributions (Gamma, Lognormal and Weibull distribution). were used to model 

QTL effect distributions of milk yield (MY), protein yield (PY), protein percent (PP), fat yield (FY), fat 

percent (FP), conformation trait (CT) and all milk production traits scaled by genetic standard 

deviation (AT). All data were retrieved from published QTL mapping experiment and included in the 

analysis on the basis of significance level (p-value<0.05). All the records that reported the QTL 

effects were used. The goodness of fit of three distributions was assessed using Kolmogorov-

Smirnov, Cramer-von Mises and Anderson-Darling tests using PROC UNIVARIATE of SAS (SAS 

Institute, 1996). The null hypothesis tested (H0) is that the distribution follows the gamma 

(lognormal or weibull) distribution. If H0 is rejected the distribution used is not suitable to fit the 

data. Standardization of the QTL effects was carried out by dividing the estimated effects values by 



48 
Chapter 2 

 

Giustino Gaspa-“Use of Genomic Information in the Genetic Evaluation of Livestock” 
Tesi di Dottorato Scienze dei Sistemi Agrari e Forestali e dei Sistemi Agrari e Forestali e delle Produzioni Alimentari 

Indirizzo Scienze e tecnologie Zootecniche - Università Degli Studi di Sassari 

the genetic standard deviation, whenever available from publication. These information were 

retrieved from literature when not reported. In most cases the conformation traits were already 

expressed in unit of genetic standard deviation and no further standardizations were applied. 

The density functions fitted to the experimental data are shown in table 4. Two parameters are 

common to three function: the threshold parameter (θ) and the width of histogram interval (h). The 

threshold parameter θ must be less than the minimum data value and could be set to 0. In the 

present study maximum likelihood estimate of θ was computed from the data.  

 

Table 4. Density function fitted to the QTL estimated effects 

 

The gamma distribution is a two-parameter family of continuous probability distributions. It has a 

scale parameter (σ) and a shape parameter (α). If α is an integer then the distribution represents the 

sum of α independent exponentially distributed random variables, each of which has a mean of α. 

A log-normal distribution is a probability distribution of a random variable whose logarithm is 

normally distributed. If Y is a random variable with a normal distribution, then X = exp(Y) has a 

log-normal distribution; likewise, if X is log-normally distributed, then Y = log(X) is normally 

distributed. It is occasionally referred to as the Galton's distribution and its analytical 

description is given in the table 4. 

The Weibull distribution is a continuous probability distribution. The probability density function of 

a Weibull random variable X is described in table 4. The shape σ parameter and c >0 is the scale 

parameter of the distribution. For values of c = 1 become an exponential distribution. 

 

 

  parameter 

Function Density function fitted Scale Shape Threshold  

Gamma 
 

 

σ α θ 

Lognormal  
 

 

σ ζ θ 

Weibull 
 

 

σ c Θ 
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Goodness-of-Fit tests 

The procedure computes test statistics for the null hypothesis that the values of the analysed 

variable are a random sample from the specified theoretical distribution. For a specified distribution, 

the procedure attempts to calculate three goodness-of-fit tests that are based on the empirical 

distribution function (EDF): the Kolmogorov-Smirnov D statistic, the Anderson-Darling statistic, and 

the Cramer-von Mises statistic. When the p-value is less than the predetermined critical value, the 

null hypothesis is rejected and conclude that the data did not come from the assumed theoretical 

distribution.  

The computational formulas for the EDF statistics use the probability integral transformation 

. If  is the distribution function of , the random variable  is uniformly distributed 

between 0 and 1. Given n observations  computes the values  by applying 

the aforementioned integral transformation. These tests are based on various measures of the 

discrepancy between the empirical distribution function  and the proposed cumulative 

distribution function  

The Kolmogorov-Smirnov statistic (D) is defined as . This class of statistics is 

based on the largest vertical difference between and. . The Anderson-Darling statistic (A2) 

and the Cramer-von Mises statistic (W2) belong to the quadratic class of EDF statistics. This class of 

statistics is based on the squared difference . Anderson-Darling is calculated as 

, whereas the Cramer-von Mises statistic is 

computed as follow  (SAS INSTITUTE, 1996) 

  



50 
Chapter 2 

 

Giustino Gaspa-“Use of Genomic Information in the Genetic Evaluation of Livestock” 
Tesi di Dottorato Scienze dei Sistemi Agrari e Forestali e dei Sistemi Agrari e Forestali e delle Produzioni Alimentari 

Indirizzo Scienze e tecnologie Zootecniche - Università Degli Studi di Sassari 

2.3.  RESULTS AND DISCUSSION 

2.3.1 QTLs Detected for economic traits in dairy cattle 

The 150 articles collected were published between January 1995 and February 2008 and contained 

2,651 records which were included in the data base. The number of publications and, consequently, 

of reported QTLs has increased through the years (Figure 3). The number of records experienced a 

drop in 2008 both because articles were collected until February 2008. A further reason has been 

the decreasing number of QTL mapping studies carried out using microsatellite markers caused by 

new advances in SNP chip technology that allowed to use bi-allelic SNP, mainly with the aim to 

estimate genomic breeding values of the animal. GEBV estimation may be done without specific 

knowledge of QTL size or position.  

Research studies have been carried out mainly on Holstein cattle (HF) (about 77% of the QTL 

records) followed by Brown Swiss (BR), Ayrshire (AYR), Norwegian Red cattle (NRC) and other 

minor breeds including Jersey (JER), Fleckvieh (FLE) and Swedish red and white (SRW) (Figure 4). 

This fact allows for possible comparisons of QTL effects among different breeds or populations.  

Daughter and granddaughter designs (WELLER et al. 1990) were basically the experimental designs 

used, the former being the most frequent probably due to the greater power that could be achieved 

in comparison to the cost of the experiment (Figure 5). Selective DNA pooling (5.7%) and selective 

genotyping have been also used (0.6%). Although the last two designs allow to have a further 

reduction of the cost of the experiment, they were not widely used. They have been used especially 

in experiments carried out in Italy and Israel (COBANOGLU et al. 2005; LIPKIN et al. 1998; MOSIG et al. 

2001; AJMONE-MARSAN et al. 2007; BAGNATO et al. 2008). 

 

 

Figure 3. Number of article of QTL mapping studies and QTL retrieved from 1993 to 2008. 
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Figure 4. Proportion of dairy cattle breeds used in experiment of QTL-mapping. 

 

Figure 5. Proportion of different experimental design on QTL mapping studies 

 

0.2%

1%

1%

2%4%

4%
5%

6%

77,0%

Jersey

Fleckvieh

Swedish red and White

Holstein + Other Breeds

Norwegian Cattle

Other Breeds

Ayrshire

Brown

Holstein 

22,1%

5,7%

69,8%

0,6%

1,7%

DD

DD (selective DNA  pooling)

GDD

GDD (selective genotyping)

Altro



52 
Chapter 2 

 

Giustino Gaspa-“Use of Genomic Information in the Genetic Evaluation of Livestock” 
Tesi di Dottorato Scienze dei Sistemi Agrari e Forestali e dei Sistemi Agrari e Forestali e delle Produzioni Alimentari 

Indirizzo Scienze e tecnologie Zootecniche - Università Degli Studi di Sassari 

In the specific case of outbreed populations, the statistical models used to map QTLs are quite 

different and they depend also on the structure of the resource population. The analytic models used 

and their frequency are summarized in table 5. Multiple marker regression (KNOTT et al. 1996) for 

interval mapping was the most common technique (nearly 60% of the records). Comparison-wise 

linkage tests carried out at individual sire-by-marker level across families were used in about 10% of 

the cases. Single marker regressions and ANOVA summed up to 11%. The remaining analytical 

methods used were about 10% of the researches. The most frequently used response variable were 

Daughter Yield Deviations (DYD) followed by EBVs, Predicted transmitting ability (PTA) and de-

regressed proofs (DRPF) (figure 6). 

 

Table 5. Analytical model used in the experiment of QTL mapping 

Analitic Model   % records  

Multi-Marker Regression (Interval mapping)        57.1 

Comparison-wise linkage test 9.3 

Single Marker Regression  5.7 

Anova   5.6 

ML approach for QTL mapping  5.1 

Composite Interval Mapping   2.9 

Variance component QTL mapping   2.8 

Mixed Model   2.4 

L+LD mapping   2.4 

Monte Carlo Markov Chain   2.2 

Rank-based non parametric approach 1.1 

Other 3.2 

 

 

Figure 6. Response variables used in QTL mapping studies (DYD=daughter yield deviation; EBV=estimated 

breeding value; PTA=predicted transmitting ability; DRPR=de-regressed proof) 
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The average number of genotyped animals per study was 1,181, ranging from 50 to 5,470 depending 

on the experimental design used. Most of studies dealt with production traits (70% of the records) 

(Figure 7), even though a certain occurrence of studies on traits that are becoming of importance as 

breeding goals such as milk fatty acid (MFA) composition, disease resistance, longevity and lactation 

persistency has been highlighted. The highest number of QTLs was detected for protein percentage, 

followed by milk yield, protein yield and milk fat content. This fact underlie that the breeders put 

emphasis on these traits, still being the key breeding goals. Nonetheless, a major interest for 

functional trait is still growing and although few study dealt with conformation traits, the number of 

QTL detected was quite high.  

 

 

Figure 7. Number of publication and Record numbers grouped by traits analyzed. 

 

Figure 8 shows the distribution of the QTL detected for milk production and quality traits by 

chromosome (Bos Taurus autosome (BTA)). It must be pointed out how just 6 chromosome (BTA3-6-

7-14-20-26) cover about 60% of the total number of QTL records. In particular, BTA6 and BTA14 

harbor the major number of QTLs for milk yield and composition: BTA6 for milk yield and protein 

content, and BTA14 for fat percentage, milk yield and protein content. In fact, the role of these 

genomic regions on the determinism of the milk protein content and fat content is well established. 

Casein cluster on BTA6 and DGAT1 on BTA14 respectively (COPPIETERS et al. 1998b; GRISART et al. 
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and PRL receptor (VIITALA et al. 2006) have been mapped on this chromosome. The distribution of 

QTL affecting conformation traits is quite regular across the genome (figure 9) as well as for the 

functional traits (data not shown). 

 

 

Figure 8. Distribution of number of QTL divided by trait records per chromosome  
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Figure 9. Position (cM) of QTL for conformation traits found across different studies along the genome  

 

Table 6 reports the number of QTLs detected across traits according to the significance level. It is 

worth to notice how the most frequent class is that one which groups QTL with P-values less than 

0.01, and about 76% of QTL have been detected with a significance level <0.05. However, a 

suggestive linkage has been reported for 15% of the database. Moreover, a certain number of QTL 

are not significantly associated with a phenotypic trait. 

 

Table 6. Distribution of QTL significance level on 4 class of P-value 

Class P-value nQTL 

1 <0.01 923 

2 0.01-0.05 663 

3 0.05-0.1 322 

4 > 0.1 169 

 

Figure 10 reports for each position the significance level of QTL detected across studies and traits. It 

can be observed that QTLs found in different studies tend to be closer on the chromosomes, often to 
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overlap each other. This result suggests that different study may report the same QTL, even though 

with slightly different positions. However, it must be pointed out that confidence intervals of QTL 

location, when reported in the paper, are quite large (24.2 cM, ranging from 0.2 to 150 cM). Actually, 

values of confidence intervals of QTLs position higher than 20 cM are extremely large for any 

efficient application of MAS (KHATKAR et al. 2004). 

 

 

 

Figure 10. P-values of QTL detected across different studies and traits against position and most significant 

gene and polymorphism affecting dairy traits.  

 

It is remarkable to notice (figure 10) the role of DGAT1 (BTA14) with the lowest p-value followed by 

FAM13A1, ABCG2 and OPN genes and casein cluster genes on BTA6. LEP on BTA3 showed a low p-

values as well as the GHR and PLRL on BTA20. More details about these genes will be provided later, 

but this picture show how the meta-analytical approach, even though merely descriptive, may give a 

picture of the regions that affect phenotypic traits, using gene whose effect is known as “bookmark” 

(similar plots, are quite common using genome-wide approach to detect QTLs with dense maps). 

Finally, the frequency distribution of QTL effects is reported in figure 11. For sake of simplicity 

the distributions for fat percentage, protein yield, milk yield and fat yield were reported. The 

distributions of QTL effects estimated in the collected studies look different according  to the 
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trait analyzed. The distributions of fat percentage and protein yield (figures 11a and 11b 

respectively) look like as there would be many QTLs of small effect and just few QTL with large 

ones. Figures 11c and 11d show the distribution of milk and fat yield respectively. These 

distributions might approximate the normal distribution. 

 

 

 

 

Figure 11. Frequency histogram of absolute values of the effects of QTL retrieved from published paper for fat 

percentage (a), protein yield (b), milk yield (c) and fat yield (d). 

 

Comparison of QTL detected across different studies 

In figure 11 are reported the QTLs detected for most significant chromosomes for five milk 

production and quality traist (MY, FY, FP, PY, PP) and known gene polymorphisms affecting 

productive and functional traits in cattle. In appendix an exhaustive review of all QTLs for dairy 

traits is provided, including more detail about position and significance level. The positions are 

reported in million of bp (Mb). In chromosome 1 (figure 12a) 34 QTLs have been found from 12 

authors across three breeds, being Holstein Friesian most represented. No significant QTLs were 

found for FP.  
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Figure 12. Significant QTL for 5 milk production traits [FP=fat percentage (red circle), FY=fat yield (blue 

diamond), MY=milk yield (green square), PY=protein Yield (open circle), PP=protein percentage (yellow 

triangle)] retrieved from published paper for most significant chromosome across the genome. The solid, 

dotted and dashed lines represent the significance threshold for p-value of 0.05 0.01 and 0.001 respectively. 

Black triangle on the x axis represent the known polymorphism affecting the trait. 
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Three QTLs out of 23 are highly significant (p-values<0.001) for milk yield (106 Mb, 134 Mb) and 

protein percentage (134 Mb) detected from (VIITALA et al. 2003) and (BAGNATO et al. 2008), in 

Finnish AYR and BR respectively. In the genomic region >100 Mb have been found 10 QTLs affecting 

MY, PY and PP under the p-values threshold of 0.05: 5 QTL on PP (MOSIG et al. 2001; BAGNATO et al. 

2008) on BR and HF, 4 QTLs affecting MY on BR and AYR (BAGNATO et al. 2008; VIITALA et al. 2003) 

and 1 QTL on PY on HF (HEYEN et al. 1999). Around the PT-1 gene (a transcription factor acting in the 

pituitary gland controlling the transcription of growth hormone (GH), prolactin (PRL) genes and 

Thyroid stimulating Hormone) are present 6 different QTLs affecting mainly MY and PY. A 

polymorphism in the 3 exon of this gene have been associated to MY and productive live in Holstein 

(HUANG et al. 2008) and growth trait in Qinchuan cattle (ZHANG* et al. 2009). In chromosome 1 it 

possible to observe to QTL region that affect milk traits across different breed. 

 

In the Chromosome 2, twelve QTLs have been reported from 6 studies (figure 12b). Two main 

chromosomal regions affecting MY and PP have been observed at around 27 and 85 Mb. Five QTLs 

are under the 0.05 significance threshold in the 27 Mb region: QTL for MY (VIITALA et al. 2003; 

BAGNATO et al. 2008) on BR and AYR; 3 QTLs on PP (HEYEN et al. 1999; ASHWELL et al. 2004; BAGNATO 

et al. 2008) in HF and BR; 1 QTL affecting FP in HF (ASHWELL et al. 2004). For positions greater than 

70 Mb, five QTLs have been found in three different breed (HF,BR and NRC) in three different 

research studies. Interestingly the QTL affecting MY and PP at position 84 Mb (BAGNATO et al. 2008) 

and PP (MOSIG et al. 2001), are quite close to STAT1 gene (gene that regulates the transcription of 

some other genes involved in milk protein metabolism) which were associated with significant 

increases in milk, fat, and protein yields (COBANOGLU et al. 2006). 

 

Figure 12c show QTLs detected on chromosome 3 for milk production trait. Thirty QTLs from 21 

authors were reported on the graph. Seven QTLs affecting FP (HF, AYR), 2 FY (HF, NRC), 5 MY (HF, 

BR, AYR), 14 PY (HF, BR, AYR) and 2 PP (HF) were found. Seven QTLs overcome the 0.001 

significance threshold: 2 for MY (VIITALA et al. 2003) 4 for PP (HEYEN et al. 1999; ASHWELL et al. 2001; 

VIITALA et al. 2003) and 1 for FP (HEYEN et al. 1999). It is interesting to notice that the high 

concentration of QTLs for PP in the range 10-25 Mb 5 QTL significant were found in 5 different 

studies (HEYEN et al. 1999; PLANTE et al. 2001; ASHWELL et al. 2001; BOICHARD et al. 2003; VIITALA et al. 

2003). Furthermore a possible presence of one or more pleiotropic QTLs affecting MY PP and FP can 

be hypothesized in the region spanning between 15 Mb and 57 Mb. QTLs affecting three milk 

production traits have been detected by the same author in the same resource population around 15 

Mb. Moreover, three QTL affecting MY PP and FP have also been identified in three different studies 

at around 57 Mb. Far from this region map the leptin (LEP) and leptin receptor (LEPR) genes (about 
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80 and 90 Mb respectively) which have been associated to milk production and feed intake (BANOS et 

al. 2008), even though the most common effect of these genes were found for growth trait in beef 

cattle (GUO et al. 2008; KULIG AND KMIEĆ, 2008 Three QTLs out of 23 are highly significant (p-

values<0.001) for milk yield (106 Mb, 134 Mb) and protein percentage (134 Mb) detected from 

(VIITALA et al. 2003) and (BAGNATO et al. 2008) in Finnish AYR and BR, respectively. In the genomic 

region spanning beyond100 Mb,  10 QTLs affecting MY, PY and PP under the p-values threshold of 

0.05 have been found: 5 QTL on PP (MOSIG et al. 2001; BAGNATO et al. 2008) on BR and HF, 4 QTLs 

affecting MY on BR and AYR (BAGNATO et al. 2008; VIITALA et al. 2003) and 1 QTL on PY on HF (HEYEN 

et al. 1999). Around the PT-1 gene (a transcription factor acting in the pituitary gland controlling the 

transcription of growth hormone (GH), prolactin (PRL) genes and Thyroid stimulating Hormone) are 

present 6 different QTLs affecting mainly MY and PY. A polymorphism in the thid  exon of this gene 

has been associated to MY and productive live in Holstein (HUANG et al. 2008) and growth trait in 

Qinchuan cattle (ZHANG* et al. 2009). In chromosome 1 it possible to observe to a QTL region that 

affect milk traits across different breed. 

 

In the Chromosome 2, twelve QTLs have been reported from 6 studies (figure 12b). Two main 

chromosomal regions affecting MY and PP have been highlighted at around 27 and 85 Mb 

respectively. Five QTLs are under the 0.05 significance threshold in the 27 Mb region: QTL for MY 

(VIITALA et al. 2003; BAGNATO et al. 2008) on BR and AYR; 3 QTLs on PP (HEYEN et al. 1999; ASHWELL 

et al. 2004; BAGNATO et al. 2008) in HF and BR; 1 QTL affecting FP in HF (ASHWELL et al. 2004). For 

positions greater than 70 Mb, five QTLs have been found in three different breed (HF,BR and NRC) in 

three different research studies. Interestingly, the QTL affecting MY and PP at position 84 Mb 

(BAGNATO et al. 2008) and PP (MOSIG et al. 2001) are quite close to STAT1 gene (gene that regulates 

the transcription of some other genes involved in milk protein metabolism) that has been found to 

be associated with significant increases in milk, fat, and protein yields (COBANOGLU et al. 2006). 

 

Figure 12c shows QTLs detected on chromosome 3 for milk production trait. Thirty QTLs from 21 

authors were reported on the graph. Seven QTLs affecting FP (HF, AYR), 2 FY (HF, NRC), 5 MY (HF, 

BR, AYR), 14 PY (HF, BR, AYR) and 2 PP (HF) were found. Seven QTLs overcome the 0.001 

significance threshold: 2 for MY (VIITALA et al. 2003) 4 for PP (HEYEN et al. 1999; ASHWELL et al. 2001; 

VIITALA et al. 2003) and 1 for FP (HEYEN et al. 1999). It is interesting to notice that the high 

concentration of QTLs for PP can be found in the range 10-25 Mb. Five QTL were found in 5 different 

studies (HEYEN et al. 1999; PLANTE et al. 2001; ASHWELL et al. 2001; BOICHARD et al. 2003; VIITALA et al. 

2003). Furthermore a possible presence of one or more pleiotropic QTLs affecting MY PP and FP can 

be hypothesized in the region spanning between 15 Mb and 57 Mb. QTLs affecting three milk 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kulig%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kmie%C4%87%20M%22%5BAuthor%5D
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production traits have been detected by the same author in the same resource population at around 

15 Mb. Moreover, three QTL affecting MY PP and FP have also been identified in three different 

studies at around 57 Mb. Far from this region map the leptin (LEP) and leptin receptor (LEPR) genes 

(about 80 and 90 Mb respectively) which have been associated to milk production and feed intake 

(BANOS et al. 2008), even though the most common effect of these genes were found for growth trait 

in beef cattle (GUO et al. 2008; KULIG AND KMIEĆ, 2008). 

 

In the Figure 12e, QTLs detected on chromosome 6 are reported. A total of 192 QTL were retrieved 

from 21 different authors. This chromosome is one of the most investigated, followed by BTA14 and 

BTA20. QTLs for all five milk production traits have been found. In particular: 25, 36, 45, 54 and 32 

QTLs were identified for FP, FY, MY, PP and PY respectively. Thirty-eight QTLs were under the 

significance threshold of 0.001. In particular: 5 QTLs on FP detected by OLSEN et al. (2004) in NRC; 4 

QTLs for FY both in HF and NRC (KUHN et al. 1999; OLSEN et al. 2004; SZYDA et al. 2005); 3 QTLs for 

MY in BR, HF and AYR identified by (VIITALA et al. 2003; SZYDA et al. 2005; BAGNATO et al. 2008) 

respectively. However, PP shows the highest number of QTLs detected (18 QTLs) on HF, BR, NRC and 

AYR  (SPELMAN et al. 1996; ASHWELL and VAN TASSELL 1999; ASHWELL et al. 2001; MOSIG et al. 2001; 

OLSEN et al. 2002; VIITALA et al. 2003; OLSEN et al. 2004; BAGNATO et al. 2008;). Finally, two QTLs were 

detected for PY by (OLSEN et al. 2004; SZYDA et al. 2005). The lowest P-values were found for a QTL 

region in LD with four genes (FAM13A,OPN, ABCG2 PPARGC1A) located at around 40 Mb and for the 

casein cluster at position 88 Mb. All of these genes showed polymorphisms associated with milk 

protein production. In particular FAM13A1 (COHEN et al. 2004), a bovine gene close to a cluster of 

genes coding for proteins of the extracellular matrix, is revealed to be in LD with some QTLs as it 

affected the milk protein production. ABCG2 and OPN are genes very close each other that have been 

found to be associated with milk protein yield (SCHNABEL et al. 2005; RON et al. 2006; SHEEHY et al. 

2009). OPN have been also found to be related to mastitis resistance (ALAIN et al. 2009). These two 

genes have been also indicated as conflicting QTN for milk protein content by DE KONING (2006). The 

whole casein cluster – αs1-casein (CSN1S1), αs2-casein (CSN1S2), β-casein (CSN2) and κ-casein 

(CSN3) – is a well known region that influence the quantity of milk protein. Several protein variants 

have been characterized in dairy cattle. Novel polymorphisms have been recently associated to 

difference in milk protein for CSN1S1 in German cattle (KUSS et al. 2005). Polymorphisms in CSN1S2 

gene have been associated to difference in milk yield traits in German fleckvieh (BRAUNSCHWEIG, 

2008). Furthermore, novel polymorphisms (CSN2) affecting milk production traits in NRC (NILSEN, 

2009), and concentration of milk protein variants (HALLÉN et al. 2008) have been found. 

Polymorphism on CSN3 gene have also been associated to concentration of milk protein variants 

(HALLÉN et al. 2008) . 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kulig%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kmie%C4%87%20M%22%5BAuthor%5D
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Figure 13. Significant QTL for 5 milk production traits (FP=fat percentage, FY=fat yield, MY=milk yield, 

PY=protein yield, PP=protein percentage) retrieved from published paper for most significant chromosome 

across the genome. The solid, dotted and dashed lines represent the significance threshold for p-value of 0.05 

0.01 and 0.001 respectively. 
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Both chromosomes 14 and chromosome 20 showed a high number of QTLs detected (figure 13a, 

figure 13c respectively). 

Chromosome 14 (figure 13a) harbors 148 QTLs detected in 21 studies: 69 QTLs for FP, 22 QTLs for 

FY, 22 QTLs for MY, 27 QTLs affecting PP and 8 QTLs influencing PY. Mostly, the QTLs on this 

chromosome influence the milk fat content, but also the protein content and milk yield. Association 

with other production and functional traits is provided in appendix I.  

The majority of significant QTLs were located in the centromeric region spanning around 10 cM. At 

least 15 studies reported QTL for fat percentage in a region of 10 cM from centromere in HF, FLE and 

NOR (GEORGES et al. 1995; COPPIETERS et al. 1998a; COPPIETERS et al. 1998b; RON et al., 1998; ASHWELL 

et al. 2001; HEYEN et al. 1999; RIQUET et al. 1999; KIM and GEORGES 2002; WINTER et al. 2002; 

BOICHARD et al. 2003; THALLER et al. 2003; VIITALA et al. 2003; ASHWELL et al. 2004; KUHN et al. 2004; 

FONTANESI et al. 2005). Moreover, 8 significant QTLs influencing FY have been detected in the same 

genomic region ( HEYEN et al. 1999; ASHWELL et al. 2001; LOOFT et al. 2001; KIM and GEORGES 2002; 

VIITALA et al. 2003; ASHWELL et al. 2004; BENNEWITZ et al. 2004a). Six QTLs for MY and 8 QTLs for PP 

were also detected in a10 cM region. This genomic region harbors one gene that heavily affects the 

milk fat content and milk traits in general. GRISART et al. (2002) refined the position of this QTL to a 3 

cM chromosome interval bracketed by two microsatellite markers BULGE13 and BULGE09.They 

identified a strong candidate gene, Diacyl Glycerol Acyl Transferase (DGAT1) and a non-conservative 

lysine to alanine (K232A) substitution which showed an effect on milk fat content and other milk 

traits. Moreover, they report that  DGAT1 explained about 50% of the phenotypic variance for fat 

percentage. The same authors gave further evidence of DGAT1 as QTN. GRISART et al. (2004) have 

expressed both DGAT1 alleles in Sf9 cells line by using in vitro assay to evaluate level of expression 

of K allele of DGAT1. They have shown that the K allele is characterized by a higher Vmax of the 

enzyme in producing triglycerides than the A allele. Moreover, SCHENNINK et al. (2007) and 

SCHENNINK et al. (2008) found that DGAT1 K232A polymorphism has a clear influence on milk-fat 

composition. K Allele is associated with more saturated fatty acid, a larger fraction of C16:0; and a 

smaller fractions of C14:0, unsaturated C18 and CLA. 

 

Although the aforementioned results demonstrate how the genetic determinism of fat synthesis 

(milk fat content and composition) is largely explained by one gene, some authors suggested 

(BENNEWITZ et al. 2003) additional sources of genetic variance on this chromosome for milk fat 

content. Basically, the hypotheses explored were i) the presence of one or more DGAT1 additional 

alleles segregating in cattle population that were not previously identified ii) a second quantitative 

trait locus affecting these traits iii) or both hypothesis. KUHN et al. (2004) showed that alleles of the 

DGAT1 promoter in the 5' non-coding region derived from the variable number of tandem repeats 
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(VNTR) polymorphisms influence milk fat content in animals homozygous for the allele 232A at 

DGAT1. This promoter VNTR polymorphism influences the number of potential Sp1 binding sites 

(site that harbor DNA sequence to bind transcription factor) and therefore might regulate DGAT1 

expression and also milk fat content (FURBASS et al. 2006). In addition, KAUPE et al. (2007) detected a 

dominant mode of effects for the DGAT1 K232A and promoter VNTR alleles. 

Hypotheses that not involve VNTR polymorphism have been proposed by GAUTIER et al. (2007) that 

gave a further evidence of the potential presence of other genes underlying the milk fat traits by 

studying Normande, French Holstein and Montebeliarde breeds. In their researches, VNTR 

polymorphisms explained only a small fraction of the variance of the QTL for fat percentage in the 3 

breeds simultaneously after correction for the effect of the K232A polymorphism. Therefore, their 

results suggest the existence of at least one other causative polymorphism not yet described. KAUPE 

et al. (2007) carried out a joint analysis of DGAT1 and another neighbor gene CYP11B1. KAUPE et al. 

(2007) found that CYP11B1 and DGAT1 together explained more of the variation in milk production 

traits than DGAT1 alone. Further analyses of segregation and characterization of DGAT1 in cattle 

population across different breeds in different countries were reported by BANOS et al. (2008), CONTE 

et al. (2010), LACORTE et al. (2006), PAREEK et al. (2005) and SANDERS et al. (2006). 

Figure 13c shows 79 QTLs for milk production traits detected on BTA20 in 13 studies (GEORGES et al. 

1995; ARRANZ et al. 1998; ASHWELL et al. 2001; MOSIG et al. 2001; PLANTE et al. 2001; OLSEN et al. 

2002; BLOTT et al. 2003; ASHWELL et al. 2004; VIITALA et al. 2006; BAGNATO et al. 2008). The detected 

QTLs were 14, 8, 17, 27 and 13 for FP, FY, MY, PP and PP respectively. Thirteen QTLs were found to 

be highly significant (P-value <0.001) and spanning from 29 Mb to 46 Mb region and affect mostly PP 

(in HF and AYR) and secondly MY, FP and PY.  

 

 

One or more QTLs with pleiotropic effects seems to be recognizable in the genomic region described 

above. Indeed, in that region have been identified two polymorphism in the GHs Receptor (F279Y 

substitution)(BLOTT et al. 2003) and PL receptor (VIITALA et al. 2006) genes that are heavily involved 

in the milk synthesis process. Moreover, 18, 24 and 23 QTLs affecting milk production traits where 

also detected on chromosomes 21, 23 and 26 respectively. In particular, the PRL gene that has been 

mapped on chromosome 26 is a suitable candidate to explain part of genetic variance of this 

chromosome (BRYM et al. 2005; SCHENNINK et al. 2009; LÜ et al. 2010). Furthermore, the A239V 

substitution in SCD gene  has been associated to a greater content of cis-9 C18:1 (AA genotype) and 

total monounsaturated fatty acids and a higher C14:1/C14 ratio in comparison to VV genotype (MELE 

et al. 2007). Furthermore the same polymorphism in SCD has been associated to a higher level of 

milk and protein yield (MACCIOTTA et al. 2008). 
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QTLs found across different studies and breeds may used to enforce the evidence of presence of a 

region that affect a quantitative trait. However, the key question is: “QTLs detected in different 

studies are or not the same?”. Using a visual inspection of dataset is not possible to answer to this 

question. Although analytic tools need to be used to compare statistically QTLs found in different 

studies, a graphic may be still useful to evaluate in a qualitative way the amount of QTL and the 

genomic region most explored and drawn preliminary conclusion. The result of a multivariate meta-

analytic techniques have been reporter below. 
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2.3.2 A multivariate Meta-analysis approach  

The results of a preliminary exploratory data analysis are reported in figure 14 and table 7. The table 

7 shows the Pearson and partial correlation matrices among all 18 variables retrieved from 

published articles and public databases. Some of the variables collected are highly correlated, but the 

majority shows low to moderate Pearson correlations. Looking at the partial correlation, these are in 

most of the cases lower than person correlations but not systematically. The idea is that there may 

be some latent structures of the data , even if not so clearly identified. Indeed, the MSA is not very 

high (0.53). Figure 14 shown the result of preliminary eigenvalue extraction on the whole dataset for 

the selection of a subset of variable which run the analysis with. The optimal number of factors 

retained where carried out on the basis of proportion of variance explained and min-eingen criterion 

(retain only the eigenvalues greater than one) indicate that 6 factor satisfied both criterion (at least 

70% of variance explained). 

 

Figure 14. Scree plot of eigenvalue of FA carried out to preselect the variable (6 factor were retained) 

 

Figure 15 and figure 16 report the factor loadings, i.e. the correlations among common factors and 

original variables. The criterion used to choose a subset of variables was to retain those that 

saturated all the six factor (factor loading at least greater than 0.70) excluding the redundant 

variables. 
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Table 7. Pearson correlation(above the diagonal) and Partial correlation (below the diagonal) among the variable used in FA.(in bold are highlighted the 

Pearson correlation correlations greater than 0.30, in red the Partial correlation whenever they were lower than Pearson Correlation for the same 

couple of variables) 

 

Nfam 
 

Fsize 
 

Ds 
 

Dipv 
 

Mod 
 

SigC 
 

Dist 
 

Year 
 

Mden 
 

Peakp 
 

Posf 
Mf1 

Posm 
Mf2 

Fsize_ 
class 

Anim 
 

Anim_ 
class 

Mden 
class 

Pos_ 
class 

Mar_ 
dist 

Nfam * -0.25 -0.37 -0.43 -0.55 -0.38 0.15 -0.29 0.13 -0.36 -0.01 -0.41 0.93 0.01 0.00 0.24 -0.36 -0.51 

Fsize -0.49 * 0.92 0.33 0.10 -0.13 -0.03 0.48 -0.33 -0.19 -0.22 -0.09 -0.09 0.95 0.94 -0.53 -0.19 0.06 

Ds -0.33 0.09 * 0.43 0.40 -0.14 0.01 0.58 -0.34 -0.16 -0.22 -0.04 -0.18 0.87 0.83 -0.51 -0.16 0.12 

Dipv -0.14 0.07 0.19 * 0.36 -0.11 0.17 0.55 -0.47 0.22 0.01 0.26 -0.29 0.21 0.24 -0.55 0.22 0.28 

Mod -0.48 -0.60 0.38 0.04 * -0.05 -0.02 0.37 -0.10 0.09 0.05 0.06 -0.42 0.02 -0.07 -0.10 0.09 0.03 

Sigc -0.13 -0.10 0.06 -0.37 -0.06 * -0.34 -0.36 -0.23 0.33 -0.03 0.39 -0.39 -0.21 -0.13 -0.18 0.33 0.58 

Dist 0.66 0.56 0.51 -0.11 0.33 0.04 * 0.56 0.21 -0.19 -0.17 -0.24 0.07 -0.10 -0.10 0.24 -0.18 -0.20 

Year -0.56 -0.50 -0.43 0.22 -0.33 -0.11 0.94 * -0.21 -0.05 -0.18 -0.05 -0.24 0.39 0.33 -0.32 -0.04 -0.02 

Mdens 0.47 0.43 0.31 -0.10 0.25 -0.17 -0.69 0.63 * -0.09 0.11 -0.16 -0.03 -0.35 -0.41 0.92 -0.09 -0.27 

Peakp 0.07 0.17 0.00 0.06 0.15 0.06 -0.16 0.05 -0.17 * 0.68 0.78 -0.44 -0.29 -0.26 -0.10 1.00 0.39 

PosfM1 -0.04 0.06 -0.01 0.04 0.03 -0.09 -0.01 -0.04 -0.10 0.29 * 0.51 -0.07 -0.23 -0.25 0.15 0.67 -0.09 

PosfM2 0.17 0.05 0.05 0.01 -0.05 -0.11 0.00 -0.03 0.07 0.00 0.50 * -0.48 -0.21 -0.17 -0.19 0.78 0.72 

Fsize_class 0.59 -0.25 0.13 0.26 0.07 -0.05 -0.03 -0.05 -0.13 0.00 0.12 -0.16 * 0.18 0.18 0.08 -0.44 -0.51 

Anim 0.65 0.58 0.54 -0.23 0.40 -0.04 -0.94 0.90 -0.69 -0.12 -0.01 0.04 -0.01 * 0.98 -0.51 -0.29 -0.07 

Anim_class -0.59 -0.38 -0.52 0.22 -0.39 0.07 0.89 -0.88 0.68 0.10 0.00 -0.10 0.12 0.96 * -0.58 -0.25 0.01 

Mden_class -0.56 -0.50 -0.39 0.05 -0.35 0.04 0.86 -0.82 0.92 0.21 0.09 -0.10 0.07 0.85 -0.85 * -0.11 -0.31 

Pos_class -0.06 -0.17 0.00 -0.06 -0.15 -0.05 0.16 -0.05 0.17 1.00 -0.27 0.01 0.00 0.12 -0.10 -0.20 * 0.39 

Mar_dist 0.04 -0.08 0.33 0.05 -0.10 0.20 -0.25 0.22 -0.23 -0.03 -0.49 0.75 -0.03 -0.28 0.34 0.29 0.02 * 

Nfam=number of family ;Fsize= average size of the family;Ds=Experimental design;Dipv=dependent variable (EBV-DYD-PTA or DeReg Proof); Mod=model used;SigC=level of significance (p-value)  

Dist=distance  Year=year of the experiment;Mden=marker density;Peakp=peak position of QTL; PosfMf1=flanking marker position1;PosmMf2=flanking marker position 2;Fsize_class=classes of family 

size; Anim=number of animal in the experiment; Anim_class=classes of animal size for the experiment; Mdenclass=classes of marker density; Pos_class=class of position for QTL; Mar_dist=distance 

between flanking markers. 
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Figure 15. Pattern of Factor loading for the first 3 factor extracted in FA. 

 

 

Figure 16. Pattern of factor loading for the factor 4 to factor6. 

 

Number of Animals, year of the experiment, flanking marker distance, QTL peak position, 

significance level, number of families, density markers were retained as original variables for FA and 

PCA applications. Model and experimental design were chosen as classificatory variables. 
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Figure 17 report the scree plot of 7 eigenvalues and proportion of variance explained by the factor 

using FA on the subset of 7 variables chosen to perform FA and PCA. 

 

 

Figure 17. Pattern of Eigenvalues and variance explained by all 7 eigenvalues of correlation matrix and 

variance explained by 3 common factor retained after rotation of loading coefficient matrix. 

 

 

Table 8 reports Factor loadings and eigenvectors for the FA and PCA, respectively. Factor analysis is 

able to explain 68% of the original variability with 3 latent factors: the first factor extracted is highly 

associated (factor loading of 0.95) to marker location along the chromosome and could be 

considered as a marker map index; the second factor shows the highest factor loadings (>0.70) for 

the number of animal involved and year of the experiment respectively, and it can be regarded as an 

indicator of the dimension of the study; the third factor is correlated to the significance level of the 

statistical test (0.78), number of families (0.63) and, negatively, to the marker density (-0.43). It can 

be named as index of power of the experiment. Same patterns can be observed in the eigenvectors of 

PCA. Four PCs are able to explain about 80% of the original variance. The first two PCs basically 

underline accurately the same structure found with the first two factors in FA, whereas PC3 and PC4 

summarize the structure of F3. The score that each QTL get on each Factor or PC could be useful to 
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classify the original QTL records and make them more comparable once that the redundancy of 

information has been removed. 

 

Table 8. Factor loading of varimax rotated factor (FA) and eigenvector of PCA (PCA) 

Original variable   FA    PCA  

 F1 F2 F3  PC1 PC2 PC3 PC4 

Number of Animals 0.14 0.74 0.02  -0.04 0.57 -0.26 0.29 

Year -0.08 0.84 0.00  -0.19 0.57 -0.34 -0.22 

Flanking Marker Distance 0.95 0.05 -0.02  0.61 0.28 0.07 -0.02 

Peak Position 0.95 0.00 -0.04  0.62 0.23 0.07 0.02 

Significance level 0.21 -0.16 0.78  0.03 0.18 0.74 -0.38 

Number of families -0.15 0.10 0.63  -0.21 0.22 0.47 0.76 

Density markers 0.36 -0.43 -0.51  0.39 -0.36 -0.21 0.38 

Variance Explained (%) 29 21 18  30 21 17 12 

 

The results of the use of the factor scores calculated for each QTL record as response variable in a 

mixed model were reported in table 9 and Figure 17. 

Table 9 indicate that all the classificatory factors included in the model were highly statistically 

significant excluding the effect of the model for the factor 2. The estimated least square means of the 

effect included in the model were reported in figure 18.  

 

Table 9. Results of PROC MIXED 

 P-value 

Factor F1 (map index ) F2 (dimension) F3 (power) 

Experimental Design    0.0094 <0.0001    0.0094 

Model <0.0001    0.641 <0.0001 

Trait <0.0001    0.0011 <0.0001 

 

Factor 1 allows to separate DD and GDD from DNA pooling. The estimated factor score for Factor 2 

are quite large for DD and DD pool opposite to DD pool that showed a negative values. Apart from 

the sign, a possible explanation of these values may be found looking at the interpretation of the 

factor. There is no clear explanation for LS mean of factor 1. If the factor 2 is considered as index of 

the size of the experiment, it is possible to argue that DD is a design that generally involve larger 

sample size in order to achieve a reasonable power to detect QTL, while DNA pooling experiment 

generally reduce the size of the experiment and pool of DNA from milk sample to increase the 

experimental data point. The lowest figure is for GDD, probably due to the fact that for reach the 
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same power of DD less animal are needed (WELLER et al. 1990). Looking at the LS mean for the third 

factor (power of the experiment) it is possible to note that DNA pool and GDD obtained similar values, 

maybe because the power of this experimental design are comparable. The estimated LS means for 

the model are quite similar for factor 1 and factor 2 (NS) and basically differs for the 3 factor. As the 

model indicated with 2 are generally more complex, it might be related to the higher predictive 

ability of these models. As far as the trait there is no difference or just slight difference among 

different trait in the values of the LS means for the three factors. Another remark worth to make is 

the quite large SE of these estimate. This quite complicate the results interpretation of the meaning 

of the factors. 

 

Figure 18. Ls means (and standard error) of three classificatory factor (Experimental design, model and trait) 

for factor 1, factor2 and factor 3  

 

2.3.3 Distribution of QTL effects 

The estimation of the effects of QTLs was carried out on 648 QTLs because of lack of data for most of 

the articles. Figure 19 reports the fit of the three distributions for all the traits analyzed. 

Figure 19a shows the distribution of effects for milk production traits considered together (milk, fat, 

and protein yields) expressed in genetic standard deviations. The distributions of effects for traits 

milk yield, fat percentage, protein percentage, fat yield, protein yield and conformation traits (SD) 
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are reported in figures 19b-g. Tables 10 ,11, and 12 reports the parameter when gamma function 

lognormal or Weibull is used to fit the QTL effect respectively. The gamma distribution fits all the 

traits except for milk production and the protein percentage (Table 10).  

 

Table 10. Parameters of Gamma distribution used to fit QTL effects  

Trait N Mean±sd  Scale (σ) Shape (α) Goodness of fit 

AT (DSg) 148 0.76 ± 0.41  0.24 2.87 * 

MY (Kg) 115 189.9 ± 134.2  94.57 2.00 NS 

FY (Kg) 79 9.33 ± 4.57  2.24 4.16 * 

PY (Kg) 80 7.02 ± 3.49  1.73 4.04 * 

FP (%) 87 0.0013 ± 0.0008  0.00059 2.21 * 

PP (%) 48 0.0005 ± 0.0003  0.00016 3.23 NS 

CT (DSg) 91 0.81 ± 0.33  0.13 6.12 * 

* test not significant (p-value>0.05), NS all the test are significant (p-value<0.05) the null hypothesis is rejected.  

Lognormal distribution is suitable for fat yield and fat percentage, and milk production traits 

considered together (Table 11). 

 

Table 11. Parameters of Lognormal distribution used to fit QTL effects 

Trait N Mean±sd  Scale (ζ) Shape (σ) Goodness of fit 

AT (DSg) 148 0.77 ± 0.46  -0.416 0.55 * 

MY (Kg) 115 189.3 ± 134.2  4.97 0.73 NS 

FY (Kg) 79 9.41 ± 5.18  2.10 0.51 * 

PY (Kg) 80 7.09 ± 4.02  1.81 0.52 * 

FP (%) 87 0.0013 ± 0.00113  -6.87 0.73 * 

PP (%) 48 0.0005 ± 0.00032  -7.74 0.57 NS 

CT (DSg) 91 0.82 ± 0.33  -0.29 0.43 NS 

* test not significant (p-value>0.05), NS all the test are significant (p-value<0.05) the null hypothesis is rejected.  

Finally, the Weibull distribution (Table 12) adequately fitted only fat yield and protein and fat 

percentage. The estimated parameters of mean for the gamma, weibull and lognormal distribution 

are quite similar across traits and distributions, whilst the gamma distributions present the lower 

standard deviation. 

 

Table 12. Parameters of Weibull distribution used to fit QTL effects 

Trait N Mean±sd  Scale (δ) Shape (c) Goodness of fit 

AT (DSg) 148 0.76 ± 0.41  0.86 1.97 NS 

MY (Kg) 115 191.6 ± 138.4  210.3 1.40 NS 

FY (Kg) 79 9.37 ± 4.58  10.58 2.15 * 

PY (Kg) 80 7.03 ± 3.56  7.94 2.06 * 

FP (%)  87 0.0013 ± 0.0009  0.001 1.46 * 

PP (%) 48 0.0005 ± 0.0003  0.0005 1.73 NS 

CT (DSg) 91 0.81 ± 0.32  0.91 2.69 NS 

* test not significant (p-value>0.05), NS all the test are significant (p-value<0.05) the null hypothesis is rejected.  
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Figure 19. QTL effect fitted with Lognormal (red line), Weibull (blu line), Gamma (yellow line), Normal (black 

line) and exponential (green line) distribution for all the effect standardized (a), milk yield (b), fat percentage 

(c), protein percentage (d), fat yield (e), protein yield (f) and conformation traits (g). 
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e f 
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These findings confirm, even if only partially, results reported by Hayes and Goddard (2001) for 

dairy cattle. Indeed, HAYES AND GODDARD (2001) suggested the gamma distribution as the most 

suitable to describe the distribution of the effects of QTLs. The difference with the results presented 

in this work regards the estimated parameter values, probably due to the effect of standardization 

adopted. Results seem to confirm the general hypothesis of the existence of a large number of QTL 

with small effect and few with great effect. However, the distribution of these effects is different 

across traits, probably because of the existence of QTLs with large effects on some quantitative traits.  

 

2.4 CONCLUSION 

A large amount of information on QTLs has been yielded by researches carried out on dairy cattle 

during the last fifteen years. More emphasis has been put on production traits, although some 

reports on milk nutritional quality and functional traits can be found. However, the use of different 

phenotypes, marker maps, statistical techniques make the comparison of results across studies 

rather difficult. In any case meta-analysis techniques used for removing redundant information and 

validating the position and the effects of QTLs give just some indication on the possibility of using 

this technique to score the QTL according to their reliability. A preliminary analysis of distributions 

partially confirm the suitability of the Gamma to model the QTL effects. This results seems to confirm 

the general hypothesis of the existence of a large number of QTLs with small effects and of a few 

ones with large effects. 
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APPENDIX-TABLE OF QTLS DETECTED FOR ALL THE DAIRY TRAITS 

 

 

Trait symbol Trait  Trait symbol Trait 

ANG Angularity PL Productive Live 
BC Body capacity PLE Pleiotropic milk traits 
BDPT Body depth PP Protein Percentage 
BODY Body PY Protein Yield 
BSE BSE QFL Quality feet and leeg 
CBA Calves born alive (%) RANG Rump angle 
CCT Canonical conformation t, RES Disease resistance 
CDPT Chest depth RLNG Rump Length 
CE Calving Ease RLSR Reare leg set rear view 
CWDT Chest width RUH Rear udder height 
DAIR Dairyness RUW Rear udder Width 
DPR Daughter Pregnancy rate RWDT Rump width 
DSP Degree of spotting SCS Somatic Cell Score 
DYS Dystocia SIZE Size 
FA Foot angle SL Suspensory legament 
BDPT Body depth SS Structurally soundness 
FP Fat Percentage STAT Stature 
FTP Front teat placement STBI Still birth 
FUA Fore udder attachment STR Strength 
FY Fat Yield TDSV Teat distance side view 
GLNG Gestation length TPLA Teat placement 
HD Heel depth TW Thurl width 
HOCK Hocks TWR Twinning rate 
HS Height at sacrum TYPE Type 
IMPL Implantation UATT Udder Attachment 
MAST Mastitis UBAL Udder Balance 
MSP Milking speed UC Udder Cleft 
MY Milk Yield UCI Udder Composite Index 
NRR9 Non-Return Rate  UH Udder Height 
OR Ovulation rate UWDT Udder Width 
PERS Persistency VT Veterinary treatment 
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Trait Breed Chromosome Mb cM -Log (P-value) Authors 

BSE HF BTA_01 80108790 125 3.48 [1] 

FER HF BTA_01 80109564 62 5.3 [2] 

FP HF BTA_01 3278784 
 

0 [3] 

FP HF BTA_01 3278784 24 2.3 [4] 

FY HF BTA_01 3278784 
 

0 [3] 

FY HF BTA_01 3278784 22 3 [4] 

MY BR BTA_01 12014673 15.4 5.93 [5] 

MY HF BTA_01 3278784 
 

3 [3] 

MY HF BTA_01 3278784 8 3 [4] 

MY AY BTA_01 106572226 135 3.54 [6] 

PERS HF BTA_01 139481488 170 3.51 [7]  

PP BR BTA_01 134014694 122.1 7.53 [5] 

PP HF BTA_01 50565088 
 

0 [3] 

PP HF BTA_01 74946884 64.9 6.21 [8]  

PP HF BTA_01 3278784 22 2.3 [4] 

PY HF BTA_01 3278784 
 

3 [3] 

PY HF BTA_01 154015460 118 5.65 [9] 

PY HF BTA_01 3278784 11 2.3 [4] 

RANG HF BTA_01 32587282 40 6.5 [2] 

SCS HF BTA_01 144026580 125 3 [10] 

SCS DC BTA_01 144026580 
 

4.61 [11] 

TPLA HF BTA_01 133500304 119 4.61 [12] 

UC HF BTA_01 133500304 119 3 [12] 

BDPT HF BTA_02 27001226 21 4.61 [12] 

BODY HF BTA_02 27001226 21 4.61 [12] 

CCT HF BTA_02 116972326 
 

8.11 [13]  

CDPT HF BTA_02 32534842 40 5.12 [2] 

CWDT HF BTA_02 131258043 139 7.42 [14] 

FP HF BTA_02 33504782 29 4.61 [15] 

MY BR BTA_02 27001226 11.9 6.06 [5] 

MY AY BTA_02 19162554 44 9.21 [6] 

PERS HF BTA_02 131258043 139 3 [7]  

PL HF BTA_02 126230233 101.5 11.51 [16] 

PL HF BTA_02 63664600 79 4.2 [17] 

PP HF BTA_02 27001226 16 4.61 [15] 

PP BR BTA_02 27001226 11.9 4.07 [5] 

PP HF BTA_02 27001226 41 7.82 [9] 

PP HF BTA_02 66618342 56.3 9.9 [8]  

PY NR BTA_02 66618342 
 

0.01 [18] 

STAT HF BTA_02 27001226 24 4.61 [12] 

STR HF BTA_02 5896219 3 3 [12] 

TDSV HF BTA_02 32534842 38 5.55 [2] 

TW HF BTA_02 5896219 2 3 [12] 

UATT HF BTA_02 5896219 2 3 [12] 

FA HF BTA_03 85593845 65 3 [12] 

FP HF BTA_03 57075572 49 4.61 [15] 

FP HF BTA_03 15255799 16 7.01 [9] 

FP HF BTA_03 22409217 34 5.52 [19] 

FP HF BTA_03 40108772 
 

4.61 [20] 

FP AY BTA_03 10506133 1 3 [6] 

FY HF BTA_03 15255799 16 4.99 [9] 

FY NR BTA_03 8717459 14 4.27 [21] 
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Trait breed Chromosome Mb cM -Log (P-value) Authors 

MAST NR BTA_03 89151424 110 4.27 [22] 

AST DC BTA_03 104524038 
 

4.61 [11] 

MY HF BTA_03 30143222 32 4.61 [15] 

MY BR BTA_03 57075572 68 6.25 [5] 

MY HF BTA_03 15255799 16 4.76 [9] 

MY AY BTA_03 57075572 62 9.21 [6] 

PP HF BTA_03 23673607 36 7.42 [13]  

PP HF BTA_03 30143222 29 4.61 [15] 

PP BR BTA_03 44989616 59.4 5.04 [5] 

PP HF BTA_03 15255799 24 4.61 [2] 

PP HF BTA_03 15255799 16 8.11 [9] 

PP HF BTA_03 117410651 115 3.22 [8]  

PP HF BTA_03 22409217 34 5.3 [19] 

PP AY BTA_03 10506133 1 9.21 [6] 

PY HF BTA_03 30143222 39 4.61 [15] 

PY HF BTA_03 15255799 16 5.18 [9] 

SCS NR BTA_03 974625 30 0 [22] 

SCS DC BTA_03 122601311 
 

4.61 [11] 

BDPT HF BTA_04 5426681 4 3 [12] 

FP SR BTA_04 99603227 73 4.96 [23] 

FY SR BTA_04 99603227 79 4.71 [23] 

MAST NR BTA_04 75297570 82 3.12 [22] 

MAST DC BTA_04 75297570 
 

4.61 [11] 

MY BR BTA_04 85616671 87.3 4.02 [5] 

MY SR BTA_04 99603227 79 4.42 [23] 

PL HF BTA_04 25416102 32 4.62 [9] 

PP BR BTA_04 85616671 87.3 9.11 [5] 

PP SR BTA_04 99603227 95 4.61 [23] 

PP HF BTA_04 25416102 24.3 7.6 [8]  

SCS NR BTA_04 114265410 120 0 [22] 

SCS HF BTA_04 6898946 3.1 0 [24] 

STAT HF BTA_04 27407874 28 3 [12] 

TLNG HF BTA_04 70177264 63.9 11.51 [16] 

TLNG HF BTA_04 70177264 
 

8.52 [13]  

ANG HF BTA_05 38773802 31 6.5 [14] 

BC HF BTA_05 38773802 154 7.13 [14] 

CDPT HF BTA_05 104045902 124 4.61 [2] 

DAIR HF BTA_05 26701704 46 3 [12] 

FP HF BTA_05 78209773 87 4.61 [15] 

FP HF BTA_05 104045902 90 4.74 [9] 

FP NR BTA_05 111918714 120 4.71 [21] 

FY NR BTA_05 46178414 
 

6.91 [18] 

FY NR BTA_05 78209773 115 4.02 [21] 

FY HF BTA_05 14382552 63 3.65 [19] 

HS HF BTA_05 104045902 124 11.51 [2] 

MY AY BTA_05 78209773 98 4.29 [6] 

OR HF BTA_05 104045902 107 10.56 [25] 

PP BR BTA_05 14382552 17.3 4.16 [5] 

PP HF BTA_05 51912073 55.4 3 [8]  

PP HF BTA_05 7023104 0 3.17 [19] 

PY HF BTA_05 7023104 0 2.66 [19] 

PY AY BTA_05 60836475 77 3 [6] 



83 
Appendix 

 

Giustino Gaspa-“Use of Genomic Information in the Genetic Evaluation of Livestock” 
Tesi di Dottorato Scienze dei Sistemi Agrari e Forestali e dei Sistemi Agrari e Forestali e delle Produzioni Alimentari 

Indirizzo Scienze e tecnologie Zootecniche - Università Degli Studi di Sassari 

Trait breed Chromosome Mb cM -Log (P-value) Authors 

       RANG HF BTA_05 104045902 112 4.61 [12] 

RLNG HF BTA_05 104045902 124 5.91 [2] 

RUW HF BTA_05 14382552 18.8 8.52 [16] 

RWID HF BTA_05 104045902 124 8.11 [2] 

SCS HF BTA_05 45122505 54 4.61 [15] 

SCS HF BTA_05 104045902 90 6.32 [9] 

SCS SR BTA_05 7023104 
 

3 [26] 

SIZE HF BTA_05 38773802 123 6.5 [14] 

STAT HF BTA_05 104045902 122 5.78 [14] 

TLNG HF BTA_05 26701704 43 4.61 [12] 

TWR HF BTA_05 51937550 65 2.91 [27] 

TWR NR BTA_05 71198741 80 5.38 [28] 

TYPE HF BTA_05 104045902 109 4.61 [12] 

UATT HF BTA_05 104045902 112 4.61 [12] 

BODY HF BTA_06 65910741 85 5.12 [29] 

BSE HF BTA_06 26679810 60 4.41 [1] 

CBA HF BTA_06 47949144 58 4.02 [17] 

CCT HF BTA_06 90235201 
 

8.52 [13]  

DAIR HF BTA_06 13407380 0 6.03 [14] 

DSP HF BTA_06 65910741 83 9.21 [10] 

FA HF BTA_06 55021812 67 3 [12] 

FP HF BTA_06 34553110 49 4.61 [15] 

FP HF BTA_06 26679810 0 0 [30] 

FP HF BTA_06 13407380 41 0 [31] 

FP HF BTA_06 26679810 46 4.61 [32] 

FP HF BTA_06 13407380 23 0 [4] 

FP NR BTA_06 53249618 41 13.82 [21] 

FP NR BTA_06 34553110 
 

9.21 [33] 

FP HF BTA_06 44167400 54 3 [34] 

FP AY BTA_06 75218590 95 3 [6] 

FY HF BTA_06 55021812 30 0 [30] 

FY HF BTA_06 13407380 41 0 [31] 

FY HF BTA_06 1005847 68 3 [35] 

FY HF BTA_06 26679810 31 0 [32] 

FY HF BTA_06 44167400 
 

3.77 [61] 

FY HF BTA_06 52471030 55 9.21 [36] 

FY HF BTA_06 51320395 56 0 [4] 

FY NR BTA_06 44167400 
 

9.21 [33] 

FY HF BTA_06 11830912 7 0 [34] 

FY HF BTA_06 47949144 9 9.57 [37] 

FY AY BTA_06 95684727 101 3 [38] 

FY HF BTA_06 13407380 27 0 [39] 

G HF BTA_06 93912529 122 4.61 [15] 

HS HF BTA_06 26679810 54 6.03 [2] 

MAST NR BTA_06 26679810 37 7.42 [22] 

MSP HF BTA_06 117551813 160 4.83 [2] 

MY BR BTA_06 11830912 8.2 4.19 [5] 

MY HF BTA_06 59094958 32 0 [30] 

MY HF BTA_06 1005847 91 0 [31] 

MY HF BTA_06 1005847 71 0 [35] 

MY HF BTA_06 26679810 40 0 [32] 
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MY HF BTA_06 26679810 42 3 [4] 

MY NR BTA_06 43424290 37 3.96 [21] 

MY NR BTA_06 56279887 
 

4.96 [33] 

MY HF BTA_06 140491 108 3 [34] 

MY HF BTA_06 44167400 13 4.61 [40] 

MY HF BTA_06 47949144 17 7.8 [37] 

MY AY BTA_06 13407380 70 3.24 [38] 

MY AY BTA_06 26679810 66 3.69 [6] 

MY HF BTA_06 26679810 45 0 [39] 

PERS HF BTA_06 47949144 77 3.91 [7]  

PLE HF BTA_06 52471030 68 4.2 [35] 

PLE HF BTA_06 26679810 58 4.61 [32] 

PP HF BTA_06 75218590 91 8.52 [16] 

PP HF BTA_06 75218590 
 

9.21 [13]  

PP HF BTA_06 95684727 106 4.61 [15] 

PP BR BTA_06 110450962 101.4 3.93 [5] 

PP HF BTA_06 88531297 98 7.82 [2] 

PP HF BTA_06 44167400 19 0 [30] 

PP HF BTA_06 13407380 41 3 [31] 

PP HF BTA_06 26679810 46 4.61 [32] 

PP HF BTA_06 26679810 35.5 3.91 [8]  

PP HF BTA_06 13407380 42 3 [4] 

PP NR BTA_06 53249618 41 13.82 [21] 

PP NR BTA_06 34553110 
 

9.21 [33] 

PP HF BTA_06 110450962 99 3 [34] 

PP HF BTA_06 44167400 13 9.21 [40] 

PP AY BTA_06 13407380 71 3.58 [38] 

PP AY BTA_06 26679810 66 9.21 [6] 

PY HF BTA_06 15892433 24 4.61 [15] 

PY HF BTA_06 55021812 29 0 [30] 

PY HF BTA_06 1005847 41 0 [31] 

PY HF BTA_06 1005847 71 3 [35] 

PY HF BTA_06 26679810 31 0 [32] 

PY HF BTA_06 56279887 58 4.96 [36] 

PY HF BTA_06 26679810 42 0 [4] 

PY NR BTA_06 43557420 
 

8.25 [33] 

PY HF BTA_06 44167400 54 3 [34] 

PY HF BTA_06 47949144 17 9.72 [37] 

PY HF BTA_06 44167400 49 0 [39] 

QFL HF BTA_06 65910741 89 5.81 [29] 

RWDT HF BTA_06 47949144 62 5.74 [2] 

RWDT HF BTA_06 65910741 87 4.07 [29] 

SCS NR BTA_06 1005847 7 0 [22] 

SL HF BTA_06 65910741 88 4.07 [29] 

STAT HF BTA_06 26679810 66 3.77 [29] 

STBI HF BTA_06 44167400 58 4.02 [17] 

STR HF BTA_06 26679810 70 2.92 [29] 

TLNG HF BTA_06 93912529 133 3 [12] 

TPLA HF BTA_06 65910741 88 6.21 [29] 

BDPT HF BTA_07 70880326 95 3 [12] 

CBA HF BTA_07 3519 9 3.86 [17] 

CE HF BTA_07 3519 10 4.02 [17] 
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DYS HF BTA_07 3519 10 4.02 [17] 

FA HF BTA_07 70880326 83 4.61 [12] 

FER HF BTA_07 103078178 120 5.6 [2] 

FER HF BTA_07 3519 11 8.11 [41] 

FP HF BTA_07 8362905 29 5.3 [41] 

FY HF BTA_07 16073893 84 5.12 [2] 

FY HF BTA_07 103354 30 15.94 [41] 

HD HF BTA_07 29549377 32 4.83 [2] 

MY HF BTA_07 18374198 30 4.61 [15] 

MY BR BTA_07 58272906 72.9 3.83 [5] 

MY HF BTA_07 95653326 115 5.43 [9] 

MY NR BTA_07 8362905 
 

0 [18] 

OR HF BTA_07 5044158 57 7.26 [25] 

PL HF BTA_07 61803055 71 4.61 [15] 

PL HF BTA_07 23902610 74 6.38 [41] 

PP BR BTA_07 16073893 25.4 3.46 [5] 

PP HF BTA_07 3519 0 6.21 [8]  

PY HF BTA_07 18374198 30 4.61 [15] 

PY HF BTA_07 95653326 115 5.55 [9] 

PY NR BTA_07 8362905 
 

0 [18] 

PY HF BTA_07 3519 29 8.11 [41] 

SCS HF BTA_07 40615252 
 

9.21 [13]  

SCS HF BTA_07 40615252 67 4.61 [15] 

SCS HF BTA_07 105987669 128 5.74 [9] 

SCS HF BTA_07 61803055 107 3.69 [17] 

SCS DC BTA_07 40615252 
 

4.61 [11] 

SCS HF BTA_07 7256641 60 8.25 [41] 

STBI HF BTA_07 3519 9 3.86 [17] 

TWR HF BTA_07 20486029 31 3 [27] 

TWR NR BTA_07 95653326 109 3.02 [28] 

CE HF BTA_08 115008873 116 4.61 [12] 

DYS HF BTA_08 71007272 93 3.22 [17] 

FP HF BTA_08 92684519 
 

3.52 [42] 

MAST NR BTA_08 43269174 46 0 [22] 

PP HF BTA_08 92684519 
 

4.32 [42] 

PP BR BTA_08 3138003 2.7 3.31 [5] 

PP HF BTA_08 16349773 19.1 8.11 [8]  

PY HF BTA_08 92684519 
 

3.21 [42] 

RWDT HF BTA_08 7642 140 7.26 [2] 

SCS NR BTA_08 43269174 54 4.26 [22] 

SCS HF BTA_08 14657850 17 3 [10] 

SCS DC BTA_08 14657850 
 

4.61 [11] 

STBI HF BTA_08 71007272 93 3.35 [17] 

TWR HF BTA_08 92684519 116.7 6.91 [43] 

CCT HF BTA_09 48829387 
 

9.21 [13]  

CDPT HF BTA_09 91998 127 4.96 [2] 

CE HF BTA_09 88747991 96 3 [12] 

FP HF BTA_09 47964403 
 

0 [3] 

FY HF BTA_09 53855608 71 3 [3] 

FY HF BTA_09 9083186 37 3 [39] 

MAST SR BTA_09 76757514 145 4.61 [26] 

MY BR BTA_09 17864617 24.1 3.84 [5] 
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MY HF BTA_09 53855608 71 0 [3] 

MY HF BTA_09 63072434 60 3.61 [19] 

MY HF BTA_09 40095010 44 0 [39] 

PERS HF BTA_09 48829387 56 3.91 [7]  

PP HF BTA_09 9977152 
 

0 [3] 

PP HF BTA_09 48829387 44.9 2.53 [8]  

PP HF BTA_09 48266906 44 2.76 [19] 

PY HF BTA_09 47964403 
 

3 [3] 

PY HF BTA_09 9083186 21 0 [39] 

RANG HF BTA_09 66959287 
 

9.21 [13]  

RANG HF BTA_09 63072434 58 4.61 [12] 

RES SR BTA_09 48829387 130 4.61 [26] 

SCS SR BTA_09 96877725 120 4.61 [26] 

SS HF BTA_09 76757514 61 3 [12] 

STR HF BTA_09 76757514 64 3 [12] 

UBAL HF BTA_09 48829387 48 5.12 [2] 

 
HF BTA_10 78024227 80 3.08 [17] 

BDPT HF BTA_10 21780794 46 4.61 [12] 

CE HF BTA_10 78024227 87 4.71 [17] 

DYS HF BTA_10 77769031 83 4.27 [17] 

FY HF BTA_10 3760237 25 3 [3] 

MY HF BTA_10 95242673 98 4.61 [15] 

MY BR BTA_10 94089479 100 7.68 [5] 

MY HF BTA_10 3760237 25 0 [3] 

MY HF BTA_10 57843327 62 3 [19] 

NRR9 HF BTA_10 34378167 48 3.19 [17] 

PP HF BTA_10 15297220 24.7 3.51 [44] 

PP BR BTA_10 94089479 100 3.76 [5] 

PP HF BTA_10 3760237 
 

0 [3] 

PP HF BTA_10 14270604 19.3 3.22 [8]  

PP HF BTA_10 93046118 85 4.2 [19] 

PP HF BTA_10 78024227 
 

5.99 [62] 

PY HF BTA_10 3760237 
 

0 [3] 

SCS HF BTA_10 87757725 86 4.71 [2] 

SCS HF BTA_10 34378167 49 3.61 [17] 

SCS DC BTA_10 87757725 
 

3 [11] 

STBI HF BTA_10 77769031 80 3.08 [17] 

STR HF BTA_10 21780794 42 3 [12] 

TWR HF BTA_10 25659564 41 6.91 [43] 

UATT HF BTA_10 78024227 116 3 [12] 

FP HF BTA_11 93600688 106 0 [32] 

FY HF BTA_11 86753945 90 4.61 [15] 

FY NR BTA_11 86753945 83 4.27 [21] 

MAST SR BTA_11 25860118 22 3 [26] 

MY BR BTA_11 10563705 19.4 7.33 [5] 

MY HF BTA_11 39676942 67 3 [32] 

PERS HF BTA_11 93353307 124 6.27 [2] 

PP BR BTA_11 10563705 19.4 7.38 [5] 

PP HF BTA_11 39676942 67 3 [32] 

PP HF BTA_11 10563705 9.5 4.61 [8]  

PY HF BTA_11 43765564 83 4.61 [15] 

PY HF BTA_11 93600688 106 0 [32] 
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RANG HF BTA_11 104015545 146 4.96 [2] 

RES SR BTA_11 25860118 22 6.91 [26] 

SCS SR BTA_11 39676942 45 6.91 [26] 

STBI HF BTA_11 29768216 32 3.22 [17] 

ANG HF BTA_12 38773802 31 6.5 [14] 

CCT HF BTA_12 67356645 
 

7.26 [16] 

FY NR BTA_12 11451506 
 

4.61 [18] 

FY AY BTA_12 14953932 28 9.21 [6] 

MY BR BTA_12 47633280 50.4 4.83 [5] 

MY AY BTA_12 14953932 21 5.07 [6] 

PP BR BTA_12 67356645 83.6 3.04 [5] 

PP HF BTA_12 14953932 21.4 2.3 [8]  

PP AY BTA_12 14953932 10 9.21 [6] 

PY NR BTA_12 11451506 
 

5.3 [18] 

PY AY BTA_12 14953932 21 3.83 [6] 

TWR NR BTA_12 11451506 10 2.76 [28] 

BSE HF BTA_13 12147149 55 3.11 [1] 

CCT HF BTA_13 45835686 
 

9.21 [13]  

FA HF BTA_13 45835686 54 3 [12] 

FUA HF BTA_13 4443382 0 9.21 [14] 

FY HF BTA_13 30550744 28 2.67 [19] 

HOCK HF BTA_13 15494818 53 3.41 [29] 

HS HF BTA_13 68284220 74 5.52 [2] 

MSP HF BTA_13 68284220 94 4.83 [2] 

MY HF BTA_13 59914941 84 4.61 [15] 

MY BR BTA_13 12147149 23 3.79 [5] 

PP HF BTA_13 29963861 34 4.61 [15] 

PP BR BTA_13 15494818 27.6 4.72 [5] 

PP HF BTA_13 12147149 14.8 20.03 [8]  

PP NR BTA_13 15494818 32 5.3 [21] 

PY HF BTA_13 59914941 77 4.61 [15] 

RANG HF BTA_13 39013400 54 7.42 [2] 

RLSR HF BTA_13 15494818 54 4.07 [29] 

STR HF BTA_13 15494818 51 3.44 [29] 

TDSV HF BTA_13 4443382 8 7.6 [2] 

TLNG HF BTA_13 12147149 39 5.12 [29] 

TYPE HF BTA_13 59914941 62 3 [12] 

UATT HF BTA_13 59914941 63 4.61 [12] 

UCI HF BTA_13 59914941 64 4.61 [12] 

UD HF BTA_13 59914941 72 3 [12] 

UH HF BTA_13 59914941 66 4.61 [12] 

UWDT HF BTA_13 59914941 63 3 [12] 

CCT HF BTA_14 9188082 
 

9.21 [13]  

FA HF BTA_14 51171085 54 3 [12] 

FEC HF BTA_14 11778542 11 4.61 [15] 

FP HF BTA_14 33620332 
 

4.01 [42] 

FP HF BTA_14 9188082 6 9.21 [13]  

FP HF BTA_14 1198414 4 4.61 [15] 

FP HF BTA_14 262181 0.3 4.61 [45] 

FP HF BTA_14 3940258 0 11.51 [2] 

FP HF BTA_14 3940258 5 6.91 [63] 

FP HF BTA_14 1198414 0 4.61 [46] 
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FP HF BTA_14 1198414 0 25.33 [9] 

FP HF BTA_14 444082 0.01 260.19 [47] 

FP HF BTA_14 17162375 24 0.69 [32] 

FP HF BTA_14 444082 1 11.51 [48] 

FP HF BTA_14 1198414 5 3 [49] 

FP HF BTA_14 3940258 
 

16.12 [20] 

FP HF BTA_14 3940258 
 

9.21 [62] 

FP AY BTA_14 1198414 0 9.21 [6] 

FP FL BTA_14 1198414 0 9.21 [50] 

FTP HF BTA_14 33620332 
 

11.51 [16] 

FTP HF BTA_14 33620332 
 

9.21 [13]  

FUA HF BTA_14 33620332 
 

11.51 [16] 

FUA HF BTA_14 33620332 
 

9.21 [13]  

FY HF BTA_14 9188082 6 9.21 [13]  

FY HF BTA_14 1198414 4 4.61 [15] 

FY HF BTA_14 262181 0.3 4.61 [45] 

FY HF BTA_14 3940258 0 6.81 [2] 

FY HF BTA_14 1198414 0 10.82 [9] 

FY HF BTA_14 444082 0.01 56.31 [47] 

FY HF BTA_14 33620332 42 0 [32] 

FY HF BTA_14 1198414 6 4.61 [51] 

FY HF BTA_14 3940258 
 

9.21 [62] 

FY AY BTA_14 1198414 0 5.3 [6] 

MAST NR BTA_14 61416682 60 6.32 [22] 

MAST DC BTA_14 73839050 
 

4.61 [11] 

MY HF BTA_14 33620332 
 

3.5 [42] 

MY BR BTA_14 3940258 5.1 2.99 [5] 

MY HF BTA_14 262181 0.3 4.61 [45] 

MY HF BTA_14 3940258 5 4.61 [63] 

MY HF BTA_14 1198414 0 4.61 [46] 

MY HF BTA_14 65029647 101 5.26 [9] 

MY HF BTA_14 444082 0.01 67.15 [47] 

MY NR BTA_14 61416682 
 

3.58 [18] 

MY HF BTA_14 1198414 0 4.61 [51] 

PERS HF BTA_14 262181 1 4.61 [7]  

PP HF BTA_14 73839050 86 7.6 [16] 

PP HF BTA_14 73839050 6 9.21 [13]  

PP HF BTA_14 1198415 1 4.61 [15] 

PP BR BTA_14 1198414 0 4.47 [5] 

PP HF BTA_14 262181 0.3 4.61 [45] 

PP HF BTA_14 3940258 0 11.51 [2] 

PP HF BTA_14 3940258 5 4.61 [63] 

PP HF BTA_14 1198414 0 3 [46] 

PP HF BTA_14 1198414 0 5.34 [9] 

PP HF BTA_14 17162375 21 0 [32] 

PP HF BTA_14 76576330 79.7 5.81 [8]  

PP AY BTA_14 7864999 50 9.21 [6] 

PY HF BTA_14 65029647 74 4.61 [15] 

PY HF BTA_14 262181 0.3 4.61 [45] 

PY HF BTA_14 444082 0.01 24.34 [47] 

PY HF BTA_14 1198414 6 4.61 [51] 

RANG HF BTA_14 24666782 33 3 [12] 
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SCS HF BTA_14 33620332 37 4.65 [42] 

TPLA HF BTA_14 39554394 48 3 [12] 

TWR HF BTA_14 34157877 67.9 6.91 [43] 

UC HF BTA_14 39554394 51 4.61 [12] 

UCI HF BTA_14 33620332 
 

9.21 [16] 

BODY HF BTA_15 47822871 45 3 [12] 

FY NR BTA_15 54031734 
 

6.91 [18] 

HD HF BTA_15 40147387 30 5.78 [2] 

PERS HF BTA_15 8203267 0 3.91 [7]  

PY NR BTA_15 54031734 
 

3.69 [18] 

RES SR BTA_15 71313406 
 

4.61 [26] 

SCS HF BTA_15 40147387 34 4.61 [15] 

SCS HF BTA_15 40147387 40 7.6 [2] 

STAT HF BTA_15 40147387 37 4.61 [12] 

TPLA HF BTA_15 47822871 52 4.61 [12] 

TW HF BTA_15 47822871 48 3 [12] 

TYPE HF BTA_15 47822871 47 4.61 [12] 

UATT HF BTA_15 40147387 36 4.61 [12] 

UC HF BTA_15 47822871 55 4.61 [12] 

UCI HF BTA_15 47822871 45 4.61 [12] 

UD HF BTA_15 40147387 37 4.61 [12] 

FEC HF BTA_16 65420458 81 4.61 [15] 

MY BR BTA_16 37105151 54.1 5.78 [5] 

MY NR BTA_16 23314 
 

0.62 [18] 

PP BR BTA_16 18978724 30.2 3.23 [5] 

PP HF BTA_16 3905436 11.5 7.13 [8]  

PY NR BTA_16 23314 
 

0.4 [18] 

TYPE HF BTA_16 23314 1 3 [12] 

UD HF BTA_16 47816804 61 4.61 [12] 

BSE HF BTA_17 60983439 144 6.5 [1] 

CE HF BTA_17 28901254 69 4.61 [12] 

FP HF BTA_17 41819506 0 3.77 [19] 

MY BR BTA_17 116972326 92.1 3.63 [5] 

MY HF BTA_17 41819506 33 2.92 [19] 

PERS HF BTA_17 41819506 48 3.91 [7]  

PL HF BTA_17 63940959 68 7.42 [9] 

PP BR BTA_17 116972326 92.1 3.62 [5] 

PY HF BTA_17 63940959 96 4.61 [15] 

PY HF BTA_17 41819506 28 3.15 [19] 

RANG HF BTA_17 6750519 8 5.3 [2] 

TLNG HF BTA_17 54265266 78 3 [12] 

UH HF BTA_17 28901254 69 3 [12] 

 
HF BTA_18 38773802 75 6.21 [17] 

BODY HF BTA_18 1809898 0 3.22 [29] 

CCT HF BTA_18 7236416 
 

9.21 [13]  

CE HF BTA_18 5909692 53 3.47 [17] 

DPR HF BTA_18 17914774 28 4.61 [52] 

DYS HF BTA_18 5909692 53 3.47 [17] 

FEC HF BTA_18 38773802 14 4.61 [15] 

FP HF BTA_18 62032979 
 

3.32 [42] 

FUA HF BTA_18 38773802 68 7.01 [14] 

FY HF BTA_18 62032979 
 

4.83 [42] 
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FY HF BTA_18 63005888 84 4.61 [15] 

GLNG HF BTA_18 38773802 17 6.91 [14] 

MY HF BTA_18 62032979 
 

5.15 [42] 

MY BR BTA_18 42313982 54.7 3.01 [5] 

MY NR BTA_18 21390609 39 5.81 [21] 

NRR9 HF BTA_18 62032979 111 4.71 [17] 

PERS HF BTA_18 42313982 88 3.51 [7]  

PL HF BTA_18 18182789 104 4.27 [17] 

PL HF BTA_18 21390609 33 4.61 [52] 

PP HF BTA_18 9741926 10 4.83 [2] 

PP HF BTA_18 42994567 55 4.96 [8]  

PY HF BTA_18 62032979 
 

4.11 [42] 

PY HF BTA_18 42994567 62 3 [15] 

PY NR BTA_18 42313982 79 4.02 [21] 

SCS HF BTA_18 62032979 78 4.55 [42] 

SCS HF BTA_18 17914774 26 4.61 [15] 

SCS HF BTA_18 65544902 117 6.21 [17] 

SCS HF BTA_18 21390609 34 4.61 [52] 

SCS DC BTA_18 38773802 
 

4.61 [11] 

SCS HF BTA_18 38773802 70 4.58 [14] 

STAT HF BTA_18 1809898 0 5.3 [29] 

STBI HF BTA_18 38773802 75 6.21 [17] 

UATT HF BTA_18 17914774 33 3 [12] 

UBAL HF BTA_18 54084213 98 7.6 [2] 

UCI HF BTA_18 17914774 26.2 7.01 [16] 

UCI HF BTA_18 17914774 29 3 [12] 

UD HF BTA_18 17914774 36 4.61 [12] 

UH HF BTA_18 17914774 28 4.61 [12] 

BSE HF BTA_19 57735277 97 5.17 [1] 

C10: HF BTA_19 29320502 71 4.61 [53] 

C12: HF BTA_19 29320502 71 4.61 [53] 

C14: HF BTA_19 29320502 68 4.61 [53] 

C18: HF BTA_19 29320502 75 3 [53] 

C6:0 HF BTA_19 29320502 68 3 [53] 

C8:0 HF BTA_19 29320502 71 4.61 [53] 

FP AY BTA_19 57735277 67 9.21 [6] 

FTP HF BTA_19 32701737 67 5.74 [14] 

FY HF BTA_19 62787919 134 6.65 [2] 

MY BR BTA_19 59427053 95 3.82 [5] 

OR HF BTA_19 56748922 65 10.56 [25] 

PY HF BTA_19 57735277 138 4.83 [2] 

RANG HF BTA_19 57735277 118 6.07 [2] 

TLNG HF BTA_19 45986139 76 3 [12] 

TWR HF BTA_19 36257751 57 4.61 [27] 

TYPE HF BTA_19 29936789 
 

6.91 [16] 

UBAL HF BTA_19 10888948 30 5.71 [2] 

BDPT HF BTA_20 29489060 36 3 [12] 

BODY HF BTA_20 29489060 38 3 [12] 

DAIR HF BTA_20 15028800 30 3 [12] 

FP HF BTA_20 12701617 32 6.21 [54] 

FP HF BTA_20 28328789 44.1 3.45 [55] 

FP HF BTA_20 29489060 34 4.61 [63] 
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Trait breed Chromosome Mb cM -Log (P-value) Authors 

FP HF BTA_20 41842995 
 

0 [3] 

FP AY BTA_20 29489060 37 3.36 [56] 

FUA HF BTA_20 38026113 
 

9.21 [13]  

FY HF BTA_20 2125027 10 2.3 [54] 

FY HF BTA_20 38026113 46 5.36 [55] 

FY HF BTA_20 41842995 
 

0 [3] 

FY HF BTA_20 2125027 8 3.1 [19] 

FY AY BTA_20 34302734 41 3.13 [56] 

MY HF BTA_20 14200868 32 3.82 [54] 

MY HF BTA_20 43633141 68 4.61 [15] 

MY BR BTA_20 41842995 55.1 5.74 [5] 

MY HF BTA_20 38026113 43 8.62 [55] 

MY HF BTA_20 41842995 
 

0 [3] 

MY HF BTA_20 23797437 33 2.92 [19] 

MY AY BTA_20 46038915 89 6.27 [6] 

MY AY BTA_20 41842995 59 5.78 [56] 

PP HF BTA_20 12701617 38 2.99 [54] 

PP HF BTA_20 38026113 
 

8.11 [13]  

PP HF BTA_20 29489060 40 4.61 [15] 

PP BR BTA_20 11573135 19.1 4.22 [5] 

PP HF BTA_20 38026113 48.4 5.76 [55] 

PP HF BTA_20 23797437 38 5.65 [2] 

PP HF BTA_20 29489060 34 6.91 [63] 

PP HF BTA_20 41842995 
 

3 [3] 

PP HF BTA_20 26586164 31.2 2.41 [8]  

PP AY BTA_20 46038915 68 3 [6] 

PP AY BTA_20 12701617 24 4.95 [56] 

PY HF BTA_20 2125027 10 3 [54] 

PY HF BTA_20 38026113 43 10.2 [55] 

PY HF BTA_20 12701617 
 

0 [3] 

PY NR BTA_20 38026113 66 3.3 [21] 

PY HF BTA_20 6101483 16 4.14 [19] 

PY AY BTA_20 12701617 31 6.91 [56] 

RANG HF BTA_20 6101483 8 3 [12] 

RLNG HF BTA_20 23797437 34 5.81 [2] 

RWDT HF BTA_20 23797437 24 5.78 [2] 

SCS HF BTA_20 15028800 29 4.61 [15] 

STR HF BTA_20 29489060 38 4.61 [12] 

TPLA HF BTA_20 2125027 2 4.02 [29] 

TW HF BTA_20 29489060 38 4.61 [12] 

UBAL HF BTA_20 23797437 30 5.12 [2] 

FA HF BTA_21 2094150 6 3.96 [29] 

FP HF BTA_21 20054369 
 

3.46 [42] 

FY HF BTA_21 10367149 
 

4.01 [42] 

MY HF BTA_21 10367149 
 

6.65 [42] 

MY BR BTA_21 57556325 62.7 3.72 [5] 

MY HF BTA_21 34036511 56 7.26 [9] 

MY AY BTA_21 8909340 24 9.21 [6] 

PERS HF BTA_21 2094150 0 3.22 [7]  

PL HF BTA_21 20054369 
 

3.28 [42] 

PL HF BTA_21 20054369 
 

11.51 [16] 

PL HF BTA_21 59291339 85 5.28 [9] 
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Trait breed Chromosome Mb cM -Log (P-value) Authors 

PP HF BTA_21 20054369 
 

3.13 [42] 

PP BR BTA_21 9394817 13.5 4.04 [5] 

PP HF BTA_21 22766375 32.3 4.61 [8]  

PY HF BTA_21 10367149 
 

4.41 [42] 

PY HF BTA_21 34036511 56 8.52 [9] 

SCS HF BTA_21 22766375 33 5.99 [9] 

SCS DC BTA_21 22766375 
 

3 [11] 

TWR HF BTA_21 2094150 2 4.61 [43] 

PERS HF BTA_22 54321063 82 3.22 [7]  

PP HF BTA_22 46132838 77 4.61 [15] 

PP BR BTA_22 4782800 2.9 8.76 [5] 

PP HF BTA_22 56718263 76.1 5.81 [8]  

PY HF BTA_22 18850289 30 4.61 [15] 

RANG HF BTA_22 46132838 
 

9.21 [13]  

RANG HF BTA_22 33485870 60 3 [12] 

SCS HF BTA_22 46132838 80 4.61 [15] 

SCS HF BTA_22 3375978 0 5.99 [9] 

SCS DC BTA_22 32628727 
 

4.61 [11] 

STAT HF BTA_22 46132838 72 3 [12] 

 
AY BTA_23 65502 1 3 [57] 

CCT HF BTA_23 39932757 
 

9.21 [13]  

CE HF BTA_23 43918282 62 3 [12] 

FA HF BTA_23 39932757 84 3.82 [29] 

FP HF BTA_23 27119120 
 

3.68 [42] 

FP HF BTA_23 48643240 67 0 [32] 

FY HF BTA_23 19935307 
 

3.27 [42] 

FY HF BTA_23 18058703 22 0 [32] 

FY HF BTA_23 27119120 28 2.36 [19] 

MSP AY BTA_23 19935307 53 3 [57] 

MY BR BTA_23 34858817 52.3 4.4 [5] 

MY HF BTA_23 48643240 67 0 [32] 

MY AY BTA_23 65502 4 9.21 [6] 

PL HF BTA_23 19935307 
 

3.81 [42] 

PP HF BTA_23 39932757 
 

4.61 [42] 

PP BR BTA_23 28066444 42.9 2.91 [5] 

PP AY BTA_23 13796393 27 9.9 [57] 

PP HF BTA_23 26374724 34 0 [32] 

PP HF BTA_23 65502 7.2 7.42 [8]  

PP AY BTA_23 46038915 21 3.75 [6] 

PY HF BTA_23 39932757 
 

4.61 [42] 

PY HF BTA_23 26374724 34 0 [32] 

QFL HF BTA_23 39932757 84 5.52 [29] 

RUH HF BTA_23 39932757 84 3.1 [29] 

SCS HF BTA_23 27119120 
 

4.61 [42] 

SCS HF BTA_23 27501397 41 4.61 [15] 

SCS HF BTA_23 33375215 52 5.45 [9] 

SCS SR BTA_23 48643240 
 

3 [26] 

SCS HF BTA_23 13796393 18 3 [10] 

SCS HF BTA_23 33375215 
 

4.61 [20] 

SCS DC BTA_23 13796393 
 

4.61 [11] 

TLNG HF BTA_23 39932757 82 5.12 [29] 

TWR HF BTA_23 1942523 0 3.01 [27] 
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Trait breed Chromosome Trait cM -Log (P-value) Authors 

TWR NR BTA_23 13796393 30 2.8 [28] 

UATT HF BTA_23 65502 16 3 [12] 

UCI HF BTA_23 65502 17 3 [12] 

UD HF BTA_23 27501397 49 3 [12] 

VT AY BTA_23 26374724 34 3 [57] 

BDPT HF BTA_24 6924621 11 3 [12] 

BODY HF BTA_24 6924621 14 3 [12] 

CE HF BTA_24 6924621 22 3 [12] 

PP BR BTA_24 7100282 8.1 3.08 [5] 

PP HF BTA_24 31275642 33.9 2.66 [8]  

STR HF BTA_24 6924621 16 3 [12] 

UATT HF BTA_24 44208720 48 3 [12] 

UCI HF BTA_24 44208720 51 3 [12] 

UD HF BTA_24 58327320 56 3 [12] 

FA HF BTA_25 32930967 39 3 [12] 

MAST SR BTA_25 7044904 
 

3 [26] 

MY AY BTA_25 32930967 70 9.21 [6] 

PERS HF BTA_25 32930967 73 3 [7]  

PP BR BTA_25 11948951 14.4 3.91 [5] 

PP AY BTA_25 792146 0 3 [6] 

PY AY BTA_25 11948951 44 5.95 [6] 

RES SR BTA_25 7044904 
 

6.91 [26] 

SS HF BTA_25 13184868 7 3 [12] 

FP HF BTA_26 33950591 
 

3.14 [42] 

FP HF BTA_26 34484440 38 3.04 [19] 

FP AY BTA_26 16342189 15 3 [6] 

FY HF BTA_26 33950591 
 

5.6 [42] 

FY HF BTA_26 40946785 57 11.51 [2] 

FY HF BTA_26 10183115 14 6.91 [58] 

FY HF BTA_26 16342189 3 4.61 [19] 

MY BR BTA_26 3238814 2.8 9.16 [5] 

MY HF BTA_26 16342189 15 3.17 [19] 

PP BR BTA_26 18820032 27 5.69 [5] 

PP HF BTA_26 18820032 24.8 4.61 [8]  

PY HF BTA_26 40946785 57 7.82 [2] 

PY HF BTA_26 41702323 64 6.91 [58] 

PY HF BTA_26 16342189 11 3.44 [19] 

SCS HF BTA_26 33950591 
 

4.36 [42] 

SCS HF BTA_26 18820032 0 7.13 [9] 

SCS HF BTA_26 33950591 39.7 0 [24] 

SCS DC BTA_26 41702323 
 

2.3 [11] 

TLNG HF BTA_26 39215378 31 3 [12] 

CE HF BTA_27 29881182 36 4.61 [12] 

DAIR HF BTA_27 24204135 
 

9.21 [13]  

DAIR HF BTA_27 24204135 32 3 [12] 

DAIR HF BTA_27 29881182 40 4.61 [59] 

FEC HF BTA_27 40821483 62 4.61 [15] 

FP HF BTA_27 46111584 
 

3.04 [42] 

FP HF BTA_27 29881182 46 3 [59] 

FY HF BTA_27 5199747 5 4.61 [15] 

FY HF BTA_27 18479665 21 3 [59] 

MAST NR BTA_27 30072300 45 4.2 [22] 
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Trait breed Chromosome Mb cM -Log (P-value) Authors 

MAST DC BTA_27 39065010 
 

4.61 [11] 

MY HF BTA_27 46111584 
 

3.86 [42] 

MY BR BTA_27 5199747 0 4.21 [5] 

MY HF BTA_27 18479665 21 3 [59] 

MY AY BTA_27 17759641 29 9.21 [6] 

PP HF BTA_27 46111584 
 

3.55 [42] 

PP BR BTA_27 18262877 55.8 3.52 [5] 

PP HF BTA_27 18262877 15 11.74 [8]  

PP HF BTA_27 39065010 52 0 [59] 

PY HF BTA_27 46111584 
 

3.54 [42] 

PY HF BTA_27 18479665 21 3 [59] 

PY AY BTA_27 17759641 29 3 [6] 

SCS HF BTA_27 5199747 8 5.52 [17] 

SCS HF BTA_27 38664639 54 0 [59] 

STAT HF BTA_27 12434722 6 3 [12] 

FA HF BTA_28 30799797 48 3 [12] 

FEC HF BTA_28 30799797 48 4.61 [15] 

IMPL HF BTA_28 6096065 4 7.82 [2] 

MY HF BTA_28 17830350 33 4.61 [15] 

MY BR BTA_28 34662525 49.4 3.97 [5] 

PP HF BTA_28 40177670 
 

7.82 [13]  

PP BR BTA_28 34662525 49.4 4.55 [5] 

SS HF BTA_28 17830350 26 3 [12] 

TPLA HF BTA_28 35158600 4 5.12 [2] 

UATT HF BTA_28 9383790 8 3 [12] 

UC HF BTA_28 6096065 4 5.91 [2] 

UCI HF BTA_28 17830350 26 4.61 [12] 

UH HF BTA_28 17830350 25 3 [12] 

UWDT HF BTA_28 9383790 16 3 [12] 

FA HF BTA_29 35638708 34 3 [12] 

MS HF BTA_29 10024112 20 6.21 [29] 

MY HF BTA_29 10024112 1 4.61 [15] 

MY HF BTA_29 11748185 0 5.13 [9] 

MY NR BTA_29 37259742 
 

4.61 [18] 

MY AY BTA_29 17774915 34 9.21 [6] 

PP BR BTA_29 21307382 24.2 3 [5] 

PP HF BTA_29 2688744 0.9 2.81 [8]  

PY HF BTA_29 11748185 10 4.61 [15] 

PY HF BTA_29 11748185 0 5.71 [9] 

PY AY BTA_29 17774915 28 3 [6] 

SCS HF BTA_29 46403679 50 4.61 [15] 

SS HF BTA_29 35638708 34 3 [12] 

UH HF BTA_29 17774915 16 3 [12] 

UWDT HF BTA_29 17774915 13 3 [12] 

BSE HF BTA_X 1124718 58 7.82 [1] 

FY HF BTA_X 70009047 
 

3.27 [60] 
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EVALUATION OF SOME FACTORS OF VARIABILITY OF ACCURACY 

OF GENOMIC BREEDING VALUES 
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ABSTRACT 

With the aim to assess the effect of some factors of variability of accuracy of direct genomic value 

prediction (DGV) a simulation of animal population have been carried out. Two thousand animal of 

training (animal with genotypes and phenotypes) and 6000 animal of prediction spanning over 3 

generation have been used to assess the effect on DGV accuracy of the following factors: i) 

heritability, ii) number of marker, iii) number of Daughter per bull to calculate DYD, iv) number of 

QTL and v) generation of random mating. DGV accuracies during the generations showed a 

downward trend, higher drop have been reported to single marker vs haplotype. The DGV accuracy 

increased with the heritability. The influence of the density of markers on DGV accuracy was positive 

as well. The analysis of the effect of different number of daughters per bull on the accuracy of DGVs 

showed that the number of daughters per bull selection schemes currently used in progeny testing 

(50 to 120 daughters per bull tested) is sufficient to obtain good accuracy of genomic prediction. 

Furthermore, the number of QTL had a limited positive effect on accuracy of genomic prediction, 

whereas the number of generation of random mating does not show any clear pattern. 

Key words: Direct genomic values, accuracy of prediction, genomic selection, DYD 
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3.1 INTRODUCTION 

In the recent years, the use of marker assisted selection programs in livestock has been constrained 

by poor knowledge on causal mutations affecting the expression of traits of economic interest 

(DEKKERS 2004). Dense SNP maps allowed the prediction of Direct Genomic Breeding Values (DGV) 

based on the estimation of SNP genotype effects on the considered trait using a genome-wise 

approach (MEUWISSEN et al. 2001). Briefly, Genomic Selection (GS) rely on the segmentation of the 

genome using a dense marker map in thousands of bits, each contributing to the explanation of part 

of the genetic variance of a quantitative trait. The effect of each segment is estimated in a training 

population (animal with phenotypes and genotypes). Then effects are used to predict the breeding 

values of prediction population (animals without phenotypes). 

Possible advantages of GS over the conventional selection are the reduction of the generation 

interval, the increase of accuracy of the female side of the pedigree (SCHAEFFER 2006) and the 

reduction of costs for progeny testing (KONIG et al. 2009). One major issue in DGV estimation is 

represented by the large number of predictors (for example 50K SNPs for cattle) and the relatively 

small number of records available. Furthermore, accuracy of genomic prediction are affected by the 

methods used to estimate the marker effects but also from the genetic model adopted and its 

variability factor. The study of the factor affecting the variability of DGV is by simulation may be 

useful to improve the accuracy of genomic prediction.  

3.1.2 Factor affecting accuracy of genomic prediction  

There are many factor that affecting the DGV estimates. Accuracy of genomic prediction is generally 

done measuring the correlation between the DGV and the true breeding value (TBV)  

alternatively, evaluation may be done on the squared correlation ( )(VANRADEN et al. 2009). 

Additional criteria to evaluate the genomic prediction is generally the bias of prediction measured by 

the regression coefficient bTBV,GEBV between phenotype and DGV. 

 

Some feature of the reference population may affect the accuracy of genomic prediction. Number of 

animals in the reference population (MEUWISSEN et al. 2001; MUIR 2007; HAYES et al. 2009b), number 

of markers and the level of LD (CALUS et al. 2008; SOLBERG et al. 2008), heritability of the trait 

considered (MEUWISSEN et al. 2001; KOLBEHDARI et al. 2007) are for instance factors known to have an 

effect on the accuracy of DGV. Moreover, additive genetic relationship in the reference population 

captured by the SNP influence the accuracy of genomic predictions both in simulated and real data 

(HABIER et al. 2007; HABIER et al. 2010). The choice of the statistical model and its parameterization 

(single markers or haplotypes) affects the accuracy of prediction as well (CALUS et al. 2008; HAYES et 
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al. 2009b) showed also similar relationship between accuracy of genomic predictions and number of 

phenotypic records in the reference population. The accuracy of DGV increases for increasing values 

of heritability and number of markers. Furthermore, the higher the number of animals with both 

genotypes and phenotypes the higher DGV accuracy in the prediction population. To assess the 

extent of some factors known to have an effect on DGV accuracy a simulation was carried out.  

 

The objective of the present work was to evaluate some of the factor that may affect the accuracy of 

DGV estimation. In particular, the effect of the heritability of the trait, of number of markers, 

underlying QTLs, daughters per bull used in the calculation of daughter yield deviation (DYD), and 

number of previous generations of random mating on the accuracy of genomic prediction using a 

wide range of values were investigated. 
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3.2 MATERIALS AND METHODS 

In order to assess the main factors of variability that affect the accuracy of direct genomic breeding 

values estimation (DGV) an animal population was simulated using the programming language 

FORTRAN 95. In attempt to reproduce the main genetic and technical features of a simplified animal 

population, the simulation was divided into five main stages (Figure 1): 

i) creation of a base population; ii) random mating of the initial population for n generations; iii) 

estimation of marker effects and DGV calculation in the training population (TRAIN, n); iv) DGV 

estimation in the generations of prediction for the animals without phenotypes (PRED, n + i) using 

the haplotype (or SNP) effects estimated in the TRAIN population; v) assessment of the accuracy of 

DGV estimation using correlation between true breeding values of animals (TBV) and DGV. 

 

 

 

 

 

Figure 1. Basic scheme of the simulation 
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3.2.1  Set up the population 

A base population of 1000 females and 50 males was generated. For each animal, two chromosomes 

of one Morgan (M) each were simulated (one of paternal and one of maternal origin). The creation of 

the chromosomes was carried out following the stages below described. 

Assignment of allele frequencies at SNPs and QTLs. 

The first step was the random assignment of the genotypes for each SNP and QTL. Both QTLs and 

SNPs were supposed to be bi-allelic and alleles were coded as 1, 2 (SNP) and 11, 12 (QTL). The allelic 

frequencies of QTLs and SNPs were sampled from a uniform distribution (0,1). Figure 2 shows the 

part of the Fortran code used to define the allele frequencies. Then, QTL values were assigned to the 

QTL alleles assuming that each QTL explained a different proportion of genetic variance. Individual 

QTL variance was sampled from a gamma distribution with parameters (scale α=1.66; shape β=0.42) 

according to MEUWISSEN et al. (2001) Since the gamma distribution provides only positive values, the 

signs of the values of QTL effect were randomly assigned. The simulated phenotypic variance was set 

to 100 and the genetic variance was obtained according to the value of heritability chosen. True 

breeding values were calculated summing up the QTL effects across the whole genome. The 

phenotypic values were obtained adding random noise to the TBV, further detail will be provided 

later. 

 

 

Figure 2 Calculation of allele frequencies of SNPs and QTL in the population. 

 

!allelic frequency calculation (SNPs and QTLs) 

 

DO i=1,nmar 

  fSNP(i)=0.5 

  DO j=1,TimeArray(3)!randomize the random generator 

   CALL random_number(fSNP(i))!  

  ENDDO 

ENDDO 

 

!frequenza del primo allele 

 

DO i=1,nqtl 

  DO j=1,TimeArray(3) 

CALL random_number(fall_qtl(i))!  

  ENDDO 

ENDDO 
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Generation of chromosomes 

Once that simulation parameters were set, the positions of QTLs and SNPs were assigned along the 

chromosome using odd and even position for SNP and QTL respectively (Figure 3). The base 

population was created through the construction of 100 male chromosomes and 2000 female 

chromosomes (sex ratio 1:20) using the parameters generated in the aforementioned steps.  

An example of the data files generated to estimate genomic breeding values is provided in figure 4. 

For each animal, the 2 lines (paternal and maternal chromosome respectively) reports the genotypes 

at n SNP markers loci. Individual Contents of phenotypes and TBV files have been also reported. 

 

 

Figure 3. Scheme of a Chromosome 

 

 

Genotype file 

 

id  snp_1 snp_2 … snp_n 

1  211111221111111222111121211122222212112221222211112212112112112 

1  112211112111111122222221221111222212121212222211222211112212111 

2  121112111211121122111212121112221222221212222121112222112112111 

2  221111122211111112121111221111121222221211212211112211112222212 

3  112211111212111122212122221112222221222222222211212212112222121 

3  121211122112111122111111221121222211222212222211112222111111121 

4  121112212221111222112211221111222212111111222212112221112122112 

4  211111222212111111121211211112222212121212212221211222112222212 

… ………………………………………………………………………………………………………………………………………………………………………  

 … ……………………………………………………………………………………………………………………………………………………………………… 

 

Phenotype file 

 

id dyd tbv 

  1  2.29802   8.88061 

2 -5.05271 -11.06883 

  3 -7.62868 -13.53531 

  4  3.31583   3.64366 

  …       …   … 

  …   …   … 

   

Figure 4 Example of the files that the program generates to estimate breeding values genomic population 

simulated. 
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3.2.2.  Generation of Random mating 

Once created the base population, the program generated the new animals through iterations until a 

specific condition was met. This Fortran code (Figure 5) was used to perform a certain number of 

generations of random mating and to replace animals according the culling rate. Furthermore, for 

each generation, the program calculates the value of linkage disequilibrium (LD) in the population 

by calculating the statistic r2. Firstly, allele frequencies were calculated (denominator of the 

formula), secondly D2 was computed counting the haplotype of contiguous SNP (numerator of the 

formula). Chromosomes of the next generations were created by sampling the first allele at j-th locus 

with a probability of 50% from parental chromosomes. In the following loci, alleles were sampled on 

according to the recombination rate (θ). Haldane mapping function was used to calculate the 

recombination ratio according to the distance between markers. Each QTL was supposed to be in the 

middle of the interval bracketed by contiguous markers. The animals for the next generation were 

chosen according to the culling rate (fixed at 50%) by randomly selecting 50% of the population 

which replaced the culled animals. 

 

  cont=1 

  

 DO Generation=1,ngen 

  

 ………………………… 

 ………………………… 

  

  Mating(crom1male,crom1fem,crom2male,crom2fem) 

  Replacing(crom1male,crom1fem,crom2male,crom2fem)  

  LD(crom1male,crom1fem,crom2male,crom2fem) 

 

 …………………………  

 …………………………  

  cont = cont +1 

  

 ENDDO 

Figure 5. DO loop  to perform the random mating 

 

3.2.3  Estimation of markers effect in the training population 

Twenty five generations of random mating were performed. After that, the population size was 

expanded to 2000 animal. Two thousand male were used as training population to estimate the 

effects of chromosomal segments. The TBV of selected animals were calculated summing up the 

values of the chromosome segment, previously assigned (Figure 6). 

The next step was to create the phenotypes of the daughters. A value of DYD (Daughter Yield 

Deviation) expressed as a deviation of the average production of daughters was assigned to each 

bull. Firstly, half of the genetic contribution from his father (DYgen) was calculated for each 
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daughter, then DYD were calculated sampling from a normal distribution N ~ (DYgen, ) where  

was the phenotypic variance (Figure 6)  

 

 

!TBV Calculation  

 DO i = 1,n_animals 

TBV(i) = sum(QTL_val1(i,:))+ sum(QTL_val2(i,:))  

 ENDDO 

  

 !CALCULATION OF DYD SAMPLED FROM NORM ~(DYgen,Var_PHEN) 

  

 DO i = 1,n_animals 

 DO j = 1,DYDperbull 

   DYphen(i,j)= gen_norm(DYgen(i,j),var_Phen)  

 ENDDO 

 ENDDO 

  

 DO i = 1,n_animals 

   DYD(i) = sum(DYPhen(i,:))/DYDperbull 

 ENDDO 

Figure 6. TBV Calculation and bulls’ DYD sampling step coded in Fortran  

 

The estimation of the markers effects and DGV calculation for the training generations were carried 

out using two kind of predictors: haplotypes of contiguous markers (HAP) or marker genotypes 

(SNP). The HAP approach implies the construction of haplotypes of contiguous markers along the 

genome. The effect of all possible haplotypes (Figure 7) bracketed by adjacent SNPs were estimated 

using BLUP methodology and treating the haplotypes as random effects:  

 

Where DYD is the vector of phenotypes,   is the overall mean, Hapj is the random effect of the j-th 

haplotype and e the vector of random residual, associated to diagonal covariance matrices 

G~(0, ) and R~(0, ). The contribution of each SNP haplotype to the variance of the trait was 

assumed to be equal (i.e., 2gi=2g /number of haplotypes,).  

 

Figure 7 Sample of haplotypes of pair of contiguous markers 
 

1 1

1 2

2 1

2 2
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In the second approach the DGV were calculated using regression of DYD on individual SNPs using 

the BLUP method and treating the SNP genotype as random effect. In this case the model used was 

 

where DYD is the vector of phenotypes,  is the overall mean, SNP is the random effect of genotype 

in the j-th SNP and e is vector of the random residual. SNP and e were associated to covariance 

matrices G~(0, ) and R~(0, ) respectively. Also in this case, the contribution of each SNP 

genotype to the variance of the trait was assumed to be equal. 

The DGV for the i-th animal of the training population were calculated using the formula 

 

Where  is the overall mean, Z is the incidence matrix of predictors (SNP or Hap) and ĝ the vector of 

solutions (SNP or Hap) respectively. 

  

3.2.4  Calculation of DGV for prediction generations 

Three generations of prediction (PRED1, PRED2 and PRED3) were simulated using random mating 

and replacement rate of 50% and no selection was performed. Once calculated, TBVs of the 

generation n+ i (i ≤3), genotypes of the candidate bulls were generated and DGVs were calculated. In 

the successive generations, DGV were calculated using the values of SNP effects estimated in the 

TRAIN generation according to: 

 

where the Z matrix is the incidence matrix of HAP (or SNP) for the animals without phenotypes. 

 

3.2.5 Accuracy of DGV 

The accuracy of the genomic estimation both in the generation of training and prediction was 

evaluated using the correlation between TBV and DGV as follow 

 

3.2.6  Simulated scenarios 

In the Table 1 are reported the input values used to run the simulation. The population in the base 

scenario was structured as reported in Table 2. The size of the initial population was 1000 females 

and 50 males with a sex ratio of 1:20, the replacement rate was 50% each generation (each 
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generation is replaced 50% of animals both males and females). Each bull was evaluated on the basis 

of the phenotype of 50 daughters and expressed as DYD. Each animal was represented by two 

chromosomes, one of paternal origin and one of maternal origin, with dimensions of 100 cM. The 

number of markers per chromosome was equal to 301 which divided the genome into 300 bits. 

Twenty bi-allelic QTLs were randomly distributed across the chromosome and h2 of 0.5 were 

simulated. The rate of recombination, equal to 0.0016, was calculated using the Haldane function θ = 

½ (1-e-2d), where d= map distance. For each scenario 30 replicates were performed. 

 
Table 1. Inputs of simulation in the base scenario. 

Symbol Parameter of the simulation Values 

Nmarkers  Number of markers 301 

Intervals  Number of intervals bracketed by contiguous SNP 300 

nQTL  Number of QTL 20 

Genomel  Length of the genome expressed in cM 100 

Nmales  Number of males 50 

Nfemales  Number of females 1000 

DYDperbull  Number of daughters per bull 50 

Ngenrm  Number of generations of random mating 25 

Nrepl  Number of Replicates 30 

h2  Heritability 0.5 

Nalleli  number of alleles per QTL 2 

Recombination rate  Θ 0.0016 
 

 

The output of the program are different but the most relevant processed during the simulation were: 

i) genotypes and phenotypes of training individuals; 

ii) genotypes and phenotypes of prediction individuals; 

iii) location and values of QTL; 

iv) level of linkage disequilibrium in all generations (r2). 

Final results of the program were the accuracies expressed as correlations between TBV and DGV 

both for training and prediction generations using both haplotypes and single marker genotypes. 

Scenarios 

Starting from a population with the characteristics described above, five different scenarios were 

simulated. In all scenarios the size of animals (1000 males and 50 females) and the number of alleles 

per QTL were kept constant. The number of markers, number of QTLs, the number of daughters per 

bull (DYD), the heritability of the trait and the number of generations of random mating were 

changed at once for each scenario simulated.  
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The table 3 provide a description of the parameter used in the simulated scenarios. 

i) In the first scenario, the effect of the heritability of the traits on the accuracy of DGV was evaluated. 

Very low heritability values (0.1) up to the extreme values (0.9) were tested; ii) in the second 

scenario the effect of the number of markers on correlations between TBV and DGV was evaluated. 

From 151 markers to 1001 markers per chromosome were simulated; iii) in the third scenario the 

number of daughters per bulls required to estimate the genetic merit of bull (DYD) was varied (from 

10 daughters per bull to 150); iv) in the fourth simulation the effect of the number of QTL was tested 

(from 15 QTL up to 25 with an increment of 5). It was also tested a more extreme scenario with 100 

QTLs; v) in the fifth scenario the effect of number of previous random mating generation were 

simulated, let the number of generation of random mating varying from 5 to 100 generations. 

 

Table2. Parameters of the simulation for different scenarios simulated 

Parameter h2 Markers DYD QTLs N gen RM 

h2 0.1-0.3-0.5-

0.7-0.9 

301 50 20 25 

Markers 0.5 151-201-251-301-

351-401-801-1001 

50 20 25 

DYD 0.5 301 10-30-60-90-

120-150 

20 25 

QTLs 0.5 301 50 10-15-20-

25-100 

25 

N gen RM 0.5 301 50 20 5-15-25-

50-100 
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3.3  RESULTS AND DISCUSSION 

The basic assumptions of the simulation have been verified. A first control on the distribution of 

variability explained by each QTL, assigned by sampling from a gamma distribution (α = 1.66, β = 0.4 

according to MEUWISSEN et al. (2001) was carried out considering the estimated values of individual 

marker effects. Figure 8 shows, for a single replicate of a single scenario, the values of the estimated 

effects for 301 SNPs across the genome simulated. Most of the loci have a value between 0 and 0.7, 

while only a few SNPs have a value greater than 1 and a marker with a value much larger than all the 

others were found. A similar situation was described for fat percentage in dairy cattle (GRISART et al. 

2002). The trait simulated was supposed to be under control of a polygenic system that include a 

gene with major effect  

 

Figure 8 Estimates of effect for all the SNP markers 

 

Correlations between GEBV, TBV were computed both for the generations of training and for those 

of prediction. Furthermore, the regression of DGV on TBV have been calculated to test the program 

(Figure 9).  
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Figure 9 Regression of DGV on true breeding values (TBV) generated by simulation for 2000 animals of 

training population for the base scenario. 

 

Correlation between DGV and TBV calculated for the training population (table 3) were high and 

statistically significant.  The correlation between DGV and TBV for the generation of prediction are 

presented in table 4. The correlations in the prediction generation (Table 4) are systematically lower 

than training, probably due to the fact that the association between marker and QTL was broken 

down by recombination. The correlation drop from PRED1 to PRED3 even though  

 
Table 3. Correlations (p-value) among DGV, TBV in the generation of training (haplotype above the diagonal, 

single marker below the diagonal) 

 DGV TBV 

DGV 
* 

0.913 
(p<0.001) 

TBV 0.899 

(p<0.001) * 
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Table 4. Correlations (standard deviations) between DGV and TBV in the generations of prediction for the 

base scenario. 

 DGV accuracy 

 PRED1 PRED2 PRED3 

HAP 0.829 
(0.030) 

0.754 
(0.046) 

0.669 
(0.069) 

SNP 0.682 
(0.059) 

0.520 
(0.071) 

0.404 
(0.082) 

 

the loss of accuracy is less when the HAP approach were adopted. The SNP approaches gave lower 

figure due to the effect of marker density as shown by CALUS et al. (2008) that demonstrate at lower 

marker density the estimates using haplotype are more accurate than single markers. 

These results indicate the goodness of the method used to estimate the value of individual segments 

of the genome (HAP or SNP). The method is able to capture a significant proportion of the variance 

of the simulated trait, but also the ability of simulation to reproduce the phenomenon under study. 

The correlation between TBV and DGV in the first generation of PRED1 (Table 4) is lower than the 

previous generation of predictions, due to allelic recombination, occurred during meiosis, between 

some markers and QTL associated. The calculation of DGV for the new generations using the values 

estimated in the previous generation leads to the introduction of an error due to the fact that these 

segments (haplotypes or markers) are no longer the associated with the QTLs. The decrease in 

correlation is also confirmed for later generations in agreement to the findings of MUIR (2007). 

Under the assumptions adopted the simulation can be suitable to describe the inheritance of trait 

controlled by polygenic complex and, therefore, to study the factors of variability of DGV. 

 

3.3.1  Effect of heritability on accuracy of DGV  

Figures 10 and 11 show the correlations between TBV and DGV as function of the heritability for 

HAP and SNP approach respectively. The correlations show an upward trend for increasing values of 

heritability and for all generations, with a marked increase for heritability between 0.1 and 0.5. The 

accuracy reach a plateau for values of heritability higher than 0.5. Similar results were obtained by 

different authors with simulated data (CALUS and VEERKAMP 2007; KOLBEHDARI et al. 2007) and these 

finding are in agreement with theoretical estimates (DAETWYLER et al. 2008). 
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Figure 10. Trends of DGV accuracy as function of the heritability of the trait with the HAP approach. Each line 

represent a different generation. 

 

 

Figure 11. Trends of DGV accuracy as function of the heritability of the trait with the SNP approach. Each line 

represent a different generation. 
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DEATWYLER et al. (2008) have proposed an analytical approach to predict the accuracy of GEBV in 

function of certain parameters, according to the following formula: 

 

where  is the accuracy in function of   NG/NP (ratio between the number of loci and number of 

phenotypes) and the observed heritability. Figure 12 shows the trend of theoretical accuracies 

function of number of available phenotypes (2000) and h2. These predictions are in agreement with 

the results obtained with this simulation using the approach based on haplotypes when comparing 

the number of phenotypes used in the simulation. 

 

Figure 12 Accuracy of the DGV as function of heritability and number of phenotypes used (NG = 300 loci) 

according to (DAETWYLER et al. 2008). 

 

The trend of accuracy showed a scale factor, with decreasing correlations, from TRAIN to PRED, and 

within the prediction generation, from PRED1 to PRED3. This drop in accuracy was probably due to 

the recombination events that occurs during simulated segregation, and therefore, it became larger 

through generations. The loss of accuracy is further influenced by the parameterization of the model 

and the heritability of the trait. The correlations obtained with the SNP approach (Figure 13a) show 

a downward trend across the generation as well as with the HAP approach (Figure 13b). However, 

the accuracy in the TRAIN was the same for both approaches and irrespective from heritability 

(accuracies around 0.8 and 0.9 for heritability of 0.1 and 0.9 respectively both in HAP and SNP). It is 
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worth to notice how the rate of decline of the accuracy is much higher for the SNP approach (from 

0.8 to 0.37 and from 0.9 to 0.4 for h2 of 0.1 and 0.9 respectively) in comparison to the HAP approach 

(from 0.8 to 0.52 and from 0.91 to 0.68 for h2 of 0.1 and 0.9 respectively). For the HAP approach 

seems that the rate of decrease is greater for low heritability values. Whilst in SNP this pattern was 

not found. 

 

 

Figure 13 DGV Accuracy over generations for Different h2 approach with HAP (a) and SNP (b) each line 

represent a different value of h2 

 

This may be explained examining previous finding (CALUS et al. 2008; CALUS and VEERKAMP 2007; 

KOLBEHDARI et al. 2007; MUIR 2007). In fact, it has been demonstrated that the haplotypes may 

guarantee a more reliable estimation of DGV at lower marker density in comparison with single 

markers approaches. Furthermore, CALUS and VEERKAMP (2007) reported that the difference 

between the two approaches decreased with increasing of LD (the greater difference were found for 

r2 ≤ 0.10) reaching similar accuracies for r2 values close to 0.2. In the present simulation the average 

level of LD was found to range between 0.020 to 0.027 – as consequence of the marker density that 

in the base scenario was about 3 fold less than the density used in CALUS and VEERKAMP (2007). 

These differences could be explained by this fact.  

The average level of LD varies according to the effective population size, for distances between 300 

and 400 kb (average distance between markers of this simulation) varies between 0.05 in Human 

(TENESA et al. 2007) and 0.2 in cattle (SVED 1971; ZENGER et al. 2007) proposed to calculate the 

expected level of LD using the following formula: 

 

where N = effective population size, c = distance between markers in Morgan  
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The r2 calculated according to the theoretical expectation is equal to 0036 and was 0.01 higher than 

observed  

Summarizing, the DGV accuracies increase at increasing level of h2 both in TRAIN and PRED 

generation. Moreover, the average correlations in PRED were systematically lower when SNP was 

applied that also showed the greater decrease in average correlation across generation. The 

differences between single marker and haplotypes could be largely due to the low level of LD 

generated by the simulation, is due to actual size is not comparable to that of livestock populations, 

which due to lack of selection in the simulated population. To evaluated the effect of the marker 

numbers in the next paragraph are considered increasing number of markers to estimate the DGV. 

 

3.3.2  DGV accuracy as function number of markers 

Figures 14 and 15 show the trend of DGV accuracy depending on the number of markers used for 

HAP and SNP approaches respectively. The accuracy for generation of training ranges from 0.84 

(151 markers) to 0.94 (1001 markers) and 0.81 (151 markers) to 0.94 (1001 markers) when using 

the single SNP and HAP approach respectively. Whilst, the two approaches for PRED generation gave 

very different results. The accuracy increases with the number of markers for both methods 

although to a lesser extent for the single marker approach. It seems that PRED individuals (PRED3 to 

PRED1 in order) experience a greater advantage in higher marker density rather than TRAIN 

individuals, both in HAP (figure 14) and SNP methods (figure 15). Furthermore, the accuracy 

decreases systematically moving from TRAIN to PRED3. The accuracy drop is smaller in the case of 

the use of haplotypes: from TRAIN to PRED3 average accuracies ranged from 0.81 to 0.36 (101 to 

1001 markers) and from 0.94 to 0.51 (101-1001 markers) for SNP approach; accuracies ranges were 

0.84-0.53 (101-1001 markers) and 0.94-0.80 (101-1001 markers) for HAP approach instead. The 

increase in the number of markers, being constant the genome length, implies an increase in the 

density of markers and an increased level of LD. The differences in accuracy when using haplotypes 

instead of individual markers are negligible for high levels of r2 (r2> 0.4). In contrast to very low 

levels of r2 haplotypes provide an higher level of accuracy than individual SPN markers as previously 

reported (CALUS et al. 2008). Variations of the accuracy rely on the number of markers, this finding is 

in agreement with result found by SOLBERG et al. (2008) that showed higher accuracy for higher 

marker density. However, MUIR (2007) showed a decrease of accuracy as the number of markers 

increased. Compared to their findings, the results obtained in the present simulation partially 

overlapped for the generation of training. This can be partly explained by the assumptions made in 

this simulation.  
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Figure 14 DGV accuracy as function of number of markers with the HAP approach for training and prediction 

generation 

 

 

Figure 15 DGV accuracy as function of number of markers with the SNP approach for training and prediction 

generation 
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3.3.3  DGV accuracy and number of daughters per bull (DYD) 

The figures 16 and 17 show DGV accuracies calculated with different number of daughters per bull 

(from 10 up to 150) using haplotypes and marker genotypes, respectively. The correlation between 

TBV and DGV increases markedly up to 60 daughters per bull, beyond this limit increases in accuracy 

are lower. The average DGV accuracy ranged from 0.76 to 0.90 (TRAIN) and from 0.50 to 0.72 

(PRED3) for increasing number of daughters when HAP method were used (figure 16). Although, no 

difference in the DGV accuracies were found increasing the number of daughters for the TRAIN 

individuals, marked drop in accuracy were experienced in the PRED generation (figure 17). At least 

60 progeny seems to be required to obtain a acceptable level of accuracy. The upward trend of DGV 

accuracy as function of number of daughter per bull found in the present study confirms the findings 

of other authors (SCHAEFFER 2007, GUO et al. 2010). 

  

Figure 16 DGV accuracy as function of number of daughter x bull with the HAP approach for training and 

prediction generation 

 

For the same scenarios, the DGV accuracy in PRED generations using SNP approach had lower values 

and showed greater decrease across generations (figure 18a) when compared with the HAP 

approach likewise for the previous scenario (figure 18b). 
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Figure 17. DGV accuracy as function of number of daughter x bull with the SNP approach for training and 

prediction generation 

 

The residual variance was supposed to be equal for all the DYDs but in actual data each bull may 

have a different number of daughters. This fact may affect the estimation of DGV if not correctly 

taken into account, for example weighting the phenotype by number of daughters. (GUO et al. 2010) 

in a simulation study showed that when different number of daughters were considered and DYD 

were weighted by their reliability, different results across different methods. were obtained In 

particular, these authors found that DGV accuracy increases around 3-4% (depending on estimation 

methods) when the DYD were weighted by their reliability. 

 

Figure 18. DGV accuracy across generation as function of number of Daughter per bull (from 10 to 150) with 

the HAP (a) and SNP approach (b) each line represent a different number of daughter per bull. 
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3.3.4 DGV accuracy and number of QTL 

The average DGV accuracies across generations as a function of the number of QTL spread in the 

genome is reported in figure 19a and figure 19b for the HAP and SNP approach respectively. The 

accuracy of genomic predictions is slightly affected by the number of simulated QTLs. It is worth to 

notice that only a slight increase of DGV accuracy for increasing number of QTL (from 10 to 100) for 

HAP (figure 19 a) and SNP (figure 19b) approach has been detected, even though the increase in 

accuracy seem to be to some extent greater with the SNP method in comparison to the HAP methods. 

In any case the differences in accuracies are negligible. 

 

 

 

Figure 19 DGV accuracy through generation as function of number QTL using HAP (a) and SNP (b) approach. 

Each line represent a different number of QTL 

 

The effect of number of QTL on the accuracy seem to be very small. Such results are in agreement 

with SCHAEFFER (2007) who tested a simulation similar to the one performed in the present study to 

estimate the effect of main factors of variability of DGV accuracy. Schaeffer found that the effect of 

the number of QTL on DGV accuracy were only marginal (table 5). These results are quite in 

accordance with figures obtained by GASPA et al (2009) on simulated data. They found an average 

accuracy of prediction in the training generations of  0.90 when 10 QTLs were simulated. and 0.94 

with 20 QTLs. The accuracy in the prediction generations were 0.66 and 0.72 for 10 and 20 QTLs 

respectively. This results seem to indicate a low influence of number of QTLs in the genome and DGV 

accuracy. However, the results are difficult to compare because of different number of replicates (30 

in the present simulation vs 10 replicates) and different methods to generate the base population 

(use of mutation drift model) In any case the effect of number of QTL seems to be positive associated 

to higher accuracy. 
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Table 5. Effect of number of QTL and genome length on the accuracy in 3 prediction generation after 100 

generation of random mating. modified from SCHAEFFER (2007). 

Genome length 100 cM 200 cM 300 cM 

 
nQTL 

 generation 40 80 80 160 160 240 

101 0.86 0.87 0.86 0.86 0.85 0.85 

102 0.81 0.80 0.78 0.77 0.74 0.74 

103 0.79 0.78 0.76 0.75 0.72 0.72 

 

3.3.5  DGV accuracy and number of generation of Random mating 

The figure 20 shows the trend of accuracy through generation as function of number of previous 

generation of random mating for HAP (figure 20a) and SNP approach (figure 20b). This step of the 

simulation is important for the creation of linkage disequilibrium between markers and QTLs. It 

seems that there is no clear effect of the number of random mating generations. However in the SNP 

approach there is more variability of response. Being the number of generations of random mating a 

factor that affect the amount of linkage disequilibrium. 

 

 

Figure 20 DGV accuracy through generation as function of number of previous generation of random mating 

(gen RM) using HAP (a) or SNP (b) and approach. 
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3.4  CONCLUSIONS  

The results of this work have highlighted the importance of some factors of variability in the 

efficiency of genomic selection. The approach used, despite all the limitations that characterize the 

simulations – such as the simplified assumption of the genetic structure (a pair of chromosomes) – 

was useful to mimic some features that characterize the genome of livestock species. The simulated 

population was used to evaluate the influence of various factors on the genetic determinism of the 

quantitative trait and on the accuracy of the genetic merit of selection candidates measured with 

markers. Overall, accuracies in the estimation of DGV of this study confirmed the recent literature 

when BLUP is used in the process of estimating the marker effects and on the features studied in 

populations of training. In particular, the analysis of variation in the accuracy of the DGV indicates 

that the best results on traits of high-moderate heritability, whereas poor accuracies were obtained 

for low heritability traits. Then, it seems important to investigate further the relationships between 

the heritability and other factors that influence the estimates as, for example, the number of animals 

used, the prediction model and the pre-selection of more informative markers . The results obtained 

with different number of markers showed higher accuracy for high density map a and more 

persistent over the generations. The behavior of the DGV accuracies during the generations is surely 

of great interest for practical applications of genomic selection. In fact, one of the biggest problems in 

GS is the identification of the number of generations after which it is necessary re-estimate values of 

individual. The influence of the density of markers on this parameter, highlighted in this work, 

deserves further study. However, the analysis of the effect of different number of daughters per bull 

on the accuracy of DGVs showed that the number of daughters per bull selection schemes currently 

used in the current progeny test (50 to 120 daughters per bull tested) is sufficient to obtain good 

accuracy of genomic prediction. Furthermore, the number of QTL (kept constant the number of 

markers) seems to have a slight positive effect on accuracy of genomic prediction, whereas the 

number of generation of random mating does not show any effect on the DGV accuracy in the 

present simulation. 

A possible improvement of the simulation could be achieved by introducing a number of generations 

of selection – introducing a factor that affect the amount of LD – in order to obtain a population with 

characteristics more similar to livestock populations  
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CHAPTER 4 

USE OF EIGENVALUES AS VARIANCE PRIORS IN THE PREDICTION OF 

GENOMIC BREEDING VALUES BY PRINCIPAL COMPONENT ANALYSIS 
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ABSTRACT 

Genome wide selection aims at predicting genetic merit of individuals by estimating the effect of 

chromosome segments on phenotypes using dense SNP marker maps. In the present paper, principal 

component analysis was used to reduce the number of predictors in the estimation of genomic 

breeding values for a simulated population. Principal component extraction was carried out either 

using all markers available or separately for each chromosome. Priors of predictor variance were 

based on their contribution to the total SNP correlation structure. The principal component 

approach yielded the same accuracy of predicted genomic breeding values obtained with the 

regression using SNP genotypes directly, with a reduction in the number of predictors of about 96% 

and computation time by 99%. Although these accuracies are lower than those currently achieved 

with Bayesian methods, at least for simulated data, the improved calculation speed together with the 

possibility of extracting principal components directly on individual chromosomes may represent an 

interesting option for predicting genomic breeding values in real data with a large number of SNPs. 

The use of phenotypes as dependent variable instead of conventional breeding values resulted in 

more reliable estimates, thus supporting the current strategies adopted in research programmes of 

genomic selection in livestock.  

Key words: SNPs, genomic selection, principal component analysis, eigenvalues. 
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4.1.  INTRODUCTION 

4.1.1 Use of genome-wide molecular information into breeding program: issues and 

application 

Marker Assisted Selection (MAS) programs have had limited commercial applications till early 

2000’s due to the fact that most of reported marker-QTL associations had been found within families 

but were in linkage equilibrium across the population (HAYES and GODDARD 2001; DEKKERS 2004; 

KHATKAR et al. 2004). The availability of genome-wide dense marker maps for several animal species 

has recently allowed the prediction of genomic breeding values (GEBV) by estimating marker 

haplotype effects on phenotypes (MEUWISSEN et al. 2001; GODDARD and HAYES 2007). Genome wide 

selection relies on highly dense markers whose effects on phenotypes are estimated on a training 

population and then used to calculate GEBV both for training individuals and animals with only 

marker genotypes available (for example, young animals without phenotypes or estimated breeding 

values). A reduction in generation interval, an increase of accuracy in the cow side of the pedigree 

and a decrease of selection costs are the expected advantages of an efficient genome wide selection 

over traditional selection (KONIG et al. 2009; SCHAEFFER 2006).  

High density SNP maps fulfill the basic requirement of genome wide selection, i.e. the analysis of 

genome bits having large and persisting population-wide linkage disequilibrium (MUIR 2007). 

However, the use of dense marker platforms results in a large number of effects to be estimated 

(many thousands) in comparison with the relatively small amount of phenotypes available (often 

just a few thousands). Such a data asymmetry raises several statistical issues, such as collinearity 

among predictors and multiple testing (GIANOLA and VAN KAAM 2008). To cope with such a problem, 

several methods of reduction of the number of predictors without a large decrease in accuracy have 

been proposed. 

Selection of relevant SNP by single marker regression on phenotypes may improve results in 

genome-wide association studies (AULCHENKO et al. 2007a; LONG et al. 2007), but it leads to a 

decrease of GEBV accuracy (MEUWISSEN et al. 2001). Bayesian methods that select SNP by evaluating 

their individual contribution to the variance of the trait, such Bayes B method (MEUWISSEN et al. 

2001; FERNANDO et al. 2007a; VANRADEN 2008), usually give best GEBV accuracies when simulated 

data with few QTLs are modeled. However, results on actual data indicate that BLUP estimation, 

which assumes an equal contribution of all marker intervals to the genetic variance, performs only 

slightly worse than Bayesian methods in GEBV prediction (HAYES, et al 2009; VANRADEN et al. 2009).  
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Moreover in all the above mentioned techniques, markers are selected according to their relevance 

on the variability of the phenotype analyzed. Consequently, specific sets of markers may be required 

for different traits (HABIER et al. 2009). 

4.1.2. Multivariate approach to reduce dimension of SNP data 

Multivariate dimension-reduction techniques may offer an alternative approach based on the 

evaluation of the contribution of each marker locus to the total SNP (co)variance structure. Principal 

component analysis (PCA) has been used for analyzing complex genetic patterns in human genetics 

(CAVALLI-SFORZA and FELDMAN, 2003; PASCHOU et al. 2007) and for selecting markers in genome-wide 

association studies. SOLBERG et al. (2009) used principal component analysis and partial least 

squares regression (PLSR) to reduce the dimensionality of predictors in genomic selection. Both 

principal component (PC) and PLSR showed comparable accuracies with Bayes B when lower 

marker densities were fitted, whereas the gap between methods increased with the number of 

markers used. SOLBERG et al. (2009) concluded that reduction in computational complexity provided 

by multivariate methods did not counterbalance their lower accuracy compared to Bayes B. Such 

considerations are justified by the low cost of calculation time and by the computational speed that 

can be provided by optimized techniques such as parallel computing. On the other hand, it is 

reasonable to expect that denser SNP platforms will be very soon available for livestock species and 

dimensionality will again represent a relevant problem.  

In their proposal, SOLBERG et al. (2009) regressed phenotypes on principal component scores 

extracted from the SNP matrix using the single value decomposition approach with an assumption of 

equal variance of each PC score. The choice of priors of marker effects represents a crucial point for 

genomic models (DE LOS CAMPOS et al. 2009). On the other hand, the ordinary method for calculating 

PC relies on the eigenvalues of the correlation matrix of starting variables that measure the 

contribution of each PC to the original variance of predictors. Thus eigenvalues can be used as priors 

of predictor effect for the calculation of GEBV. It is worth remembering that eigenvalues have been 

already incorporated in mixed model algorithms to optimize calculations for variance component 

estimation (DEMPSTER et al., 1984; TAYLOR et al. 1985).  

In the present paper, principal component analysis is used to perform a BLUP prediction of GEBV in 

a simulated data set to test the ability of this technique to reduce the number of predictors without 

decreasing GEBV accuracy. Moreover, the feasibility of extracting PC from dense commercially 

available SNP platforms is tested.  
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4.2.  MATERIAL AND METHODS 

4.2.1 Data  

The data set was generated for the XII QTLs – MAS workshop 

(http://www.computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html). The base population 

consisted of 100 individuals (50 males and 50 females). The genome had six chromosomes (total 

length 6 M), with 6,000 biallelic SNP, equally spaced at a distance of 0.1 cM. A total of 48 biallelic QTL 

were generated, with positions sampled from the genetic map of the mouse genome. QTL effects 

were sampled from a gamma distribution with parameters estimated by HAYES and GODDARD (2001). 

Initial allelic frequencies of both SNP and QTL were set to 0.5. Then 50 generations of random 

mating followed. Generations 51 to 57 were used to create the experimental population of 5,865 

individuals. Generations 51 to 54 (4,665 individuals, TRAIN data set) had pedigree, phenotype, and 

marker information available. For the last three generations (1,200 individuals, PRED data set) only 

pedigree and marker information were available. True breeding values (TBV) were considered as 

the sum of all QTL effects across the entire genome. Phenotypes were generated by adding 

environmental noise to the TBV. Further details on the simulation can be found in LUND et al. (2009). 

Polygenic breeding values (EBV), being among the most frequently used dependent variable in GEBV 

prediction with real data, were also predicted. EBV, additive genetic (σ2a) and residual (σ2e) variance 

components were estimated with a single trait animal model that included the fixed effects of sex 

and generation, and the random additive genetic effect of the animal. The pedigree relationship 

matrix included 5,939 animals. 

4.2.2. PCA analysis.  

Principal component analysis aims at synthesizing information contained in a set of n observed 

variables (M1, ..., Mn) by seeking a new set of k (k<n) orthogonal variables (PC1,…, PCk) named 

principal components. PC are calculated from the eigen decomposition of the covariance (or 

correlation) matrix of M. The jth PC is a linear combination of the observed variables: 

PCj = α1jM1  + … + αnjMn 

where coefficients αij are the elements of the eigenvector corresponding to j-th eigenvalue. PC are 

usually extracted in a descending order of the corresponding eigenvalue that measures the quota of 

variance of original variables explained by each PC (MORRISON, 1976; KRZANOWSKY, 2003). 

 

http://www.computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html
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A SNP data matrix M with m rows (m=5,865, the number of individuals in the entire data set) and n 

columns (n=5,925, the number of SNP markers that were found to be polymorphic) was created. 

Each element (i, j) corresponded to the genotype at the the j-th marker for the i-th individual. 

Genotypes were coded as -1, 0 or 1, according to the notation used by SOLBERG et al. (2009). 

Data editing is usually recommended when handling dense marker maps (Wiggans et al. 2009), 

either to correct for data quality (i.e. genotyping not successfully performed) or to avoid possible 

estimation biases due to a severe unbalancement of genotypes. However, considering that in the 

present simulated data only 288 markers had minor allele frequency (MAF) <0.05, while 47 deviated 

significantly (P<0.01) from the Hardy-Weinberg equilibrium and this deviation may be attributable 

to drift, only the 75 monomorphic SNP were discarded from the analysis. Such a choice is, at least 

partially, supported by results of CHAN et al. (2009) that pointed out that SNP attributes commonly 

considered in SNP data editing, such as MAF or deviation from Hardy-Weinberg equilibrium, have 

actually a very small effect on overall false positive rate in genome-wide association studies. 

PCA was carried out on M and the number of PC (k) retained for further analysis was based on both 

the sum of their eigenvalues and the obtained GEBV accuracy. PC extraction was performed either on 

all SNP simultaneously (PC_SNP_ALL) or separately for each chromosome (PC_SNP_CHROM). Scores 

of the k selected PC were calculated for all individuals. Marker haplotypes may be more efficient than 

genotypes in capturing marker-QTL association, especially in outbred populations where it may 

differ between families (CALUS et al. 2008). Thus, PCA was performed also on haplotypes constructed 

from pairs of adjacent marker loci, either using all loci together (PC_HAP_ALL) or separately per 

chromosome (PC_HAP_CHROM). 

4.2.3. Predictor effect estimation and GEBV calculations.  

Dependent variables used in the analysis were either phenotypes or polygenic EBV. For the 

estimation of the effects of predictors, records of the 4,665 individuals of the TRAIN data set were 

analysed with the following mixed linear model: 

y = Xb + Zg + e 

where y is the vector of either phenotypes or EBV, X is the design matrix of fixed effects (mean, 

sex=1,2; generation=1,2,3,4 for phenotypes; only mean for EBV), b is the vector of solutions for fixed 

effects, Z is the (m x k) design matrix of random effects, where each element corresponds to the 

score of the k-th component for the m-th animal of the training generations, g is the vector of 

solution for random regression coefficients of PC scores, e is the random residual. Covariance 
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matrices of random PC effects (G) and residuals (R) were modeled as diagonal I(σ2ai) and I(σ2e), 

respectively.  

BLUP methods used for estimating SNP effects usually assume an equal contribution of each SNP 

locus to the variance of the trait, sampled from the same normal distribution, i.e. σ2
aj=σ2

a/n 

(MEUWISSEN et al. 2001; VANRADEN et al. 2009). In the present work, two different options were 

compared. The first is the above mentioned equality of variances. The second starts from the 

consideration that PC scores were used as predictor variables and their contribution to the original 

SNP covariance structure is quantified by the corresponding eigenvalue (λ). Thus, variances of PC 

effects were calculated as σ2aj=(σ2a/k)∙λj. 

G matrix diagonality, commonly implemented in BLUP methodologies for estimating SNP marker 

effects (MEUWISSEN et al. 2001; VANRADEN 2008), relies on the assumption that marker effects in a 

large population are uncorrelated (VANRADEN et al. 2009). With the use of PC scores, such an 

assumption is consistent with the orthogonality between PC (MORRISON, 1976). BLUP solutions were 

estimated using Henderson’s normal equations (HENDERSON 1985). 

In order to have a comparison with the most straightforward estimation method, SNP effects were 

estimated directly by using the same mixed linear model but with Z indicating the design matrix of 

the 5,925 polymorphic SNP genotypes (coded as 0, 1 and 2, i.e. on the basis of the number of alleles). 

Covariance matrix G was assumed to be diagonal as I(σ2a/n). A Cholesky decomposition was used to 

solve mixed model equations (HARVILLE, 1997). 

Overall mean and effects of PC scores or SNP genotypes (ĝ) estimated on the TRAIN data set were 

then used to predict GEBV both in TRAIN and PRED individuals. as  

 

where GEBV is the vector of predicted genomic breeding values and Z is the matrix of the PC scores 

or SNP genotypes of all individuals.  

Accuracies of prediction where evaluated by calculating Pearson correlations between GEBV and 

TBV for the PRED generations. Bias of prediction was assessed by examining the regression 

coefficient of TBV on GEBV (MEUWISSEN et al. 2001). Goodness of prediction was evaluated also by 

the mean squared error of prediction (MSEP) calculated as  

 

where n is the number of individuals in the PRED generations, and by its partition in different 

sources of variation related to systematic and random errors of prediction (TEDESCHI 2006). 
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4.3 RESULTS 

4.3.1  PC analysis 

The pattern of eigenvalues of the correlation matrix of SNP genotypes obtained with PCA of all 

markers simultaneously is reported in Figure 1 (only the first 1,000 eigenvalues are plotted for 

brevity). A smooth decrease in the amount of variance explained by each successive PC can be 

observed, with a plateau between 250 and 300 PCs (about 84% of variance explained). A number of 

principal components between 200 and 300 could therefore be considered adequate for describing 

the original variance of the system.  

GEBV accuracies for different numbers of retained PC (from 50 to 600) using all SNP simultaneously 

and eigenvalues as variance priors are reported in Figure 2. Accuracy for both training and 

prediction generations increases till a plateau, reached at about 250-300 PC. Increasing further the 

number of retained PC does not result in an increase of accuracy, probably due to the small amount 

of variance explained by each additional variable. Similar results were obtained by SOLBERG et al. 

(2009) that report best accuracies when 350 PC were extracted from 8,080 bi-allelic markers 

distributed on 10 chromosomes. However, SOLBERG et al. (2009) found a rather decreasing trend of 

the correlation between GEBV and TBV for larger numbers of PC. Based on the accuracy of GEBV 

prediction, 279 PCs (83% of the original variance) were retained in the present work for 

PC_SNP_ALL and PC_HAP_ALL approaches. In the analysis carried out on individual chromosomes, to 

keep the same number of predictors of the previous approach, 46 and 47 PC for chromosomes 1-3 

and 4-6 were retained, respectively. 

 

 

Figure 1. Pattern of the eigenvalues of the correlation matrix of SNP markers. 
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Figure 2. Pattern of correlations between genomic breeding values (GEBV) and true breeding values (TBV) 
when principal components are extracted from all SNP genotypes simultaneously and eigenvalues are used as 
priors, for different number of retained PC (white bars=training individuals, black bars=prediction 
individuals). The continuous line represents the amount of variance explained by the corresponding number of 
PC. 

 

4.3.2 Accuracy and bias of GEBV 

Average GEBV accuracies obtained using phenotypes are, for the three prediction generations, 

around 0.70 (Table 1) when an equal contribution of PC score on the variance of the trait is assumed, 

similar to those reported by SOLBERG et al. (2009). Accuracies increase by about 10% (to an average 

of 0.75) when eigenvalues are used in the diagonal of the G-1 matrix of mixed model equations. In 

general, results are of the same order as in previous literature reports for BLUP estimation on 

simulated (MEUWISSEN et al. 2001; FERNANDO et al. 2007b; MEUWISSEN 2009) and real data (VANRADEN 

et al. 2009; HAYES, et al 2009). Correlations obtained when all SNP were used as predictors are equal 

to those obtained with PC with eigenvalues as priors. On the other hand, a remarkable difference in 

calculation speed between the two methods has been observed: about six hours for the SNP_ALL 

approach and 3 minutes for the principal components, using a computer with a dual core processor 

2.33 GHz and 3.26 MB RAM. Slight differences can be observed between estimates of PC carried on 

all chromosomes or separately for each of them. Moreover, same results have been basically 

obtained when genotypes at single markers or haplotypes were used, in agreement with previous 

reports for high density markers (HAYES et al. 2007; CALUS et al. 2008;). 

GEBV accuracies are larger when phenotypes instead of EBV are used as dependent variables (Table 

1). This is particularly evident when all SNP are used as predictors (on average 0.75 vs 0.39). Also 
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the drop of accuracy between TRAINING and PRED generations is more evident for EBV-based 

predictions (Figures 3 and 4). 

 
Table 1. Pearson correlations between predicted genomic breeding values and true breeding values, for 
different estimation methods, using either phenotypes or polygenic breeding values (EBV) for the PREDICTION 
generations and assuming either equal variance contribution for each PC or eigenvalues as variance priors. 

Method Phenotypes EBV 

SNP_ALL 0.76 0.41 

 Equal variance 

PC_SNP_ALL 0.69 0.53 

PC_SNP_CHROM  0.70 0.55 

PC_HAP_ALL 0.68 0.54 

PC_HAP_CHROM 0.71 0.56 

 Eigenvalues 

PC_SNP_ALL 0.76 0.57 

PC_SNP_CHROM  0.73 0.56 

PC_HAP_ALL 0.75 0.56 

PC_HAP_CHROM  0.73 0.55 

(SNP_ALL = all 5,925 SNPs; PC_SNP_ALL = principal components extracted from all SNP genotypes simultaneously; 

PC_SNP_CHROM = principal components extracted from SNP genotypes separately for each chromosome; PC_HAP_ALL  = 

principal components extracted from all SNP haplotypes simultaneously; PC_HAP_CHROM = principal components 

extracted from haplotypes separately for each chromosome) 

 

These findings are confirmed by values of regression coefficients of TBV on GEBV (Table 2). 

Moreover, b values for methods based on PC are similar to those reported by SOLBERG et al. (2009) 

when equal variances were assumed whereas they are closer to one (about 0.85) when eigenvalues 

are used as variance priors.  

The decomposition of the mean squared error of prediction for some of the considered scenarios is 

reported in Table 3. MSEP is always smaller (about a half) when GEBV are calculated using 

phenotypes. Its partition highlights a great relevance of components related to the bias of prediction 

(i.e. mean bias, inequality of variances) in the approach that fits directly SNP genotypes (about 79%).  
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Figure 3. Correlations between genomic breeding values (GEBV) and true breeding values (TBV) in the 
different approaches when phenotypes were used as dependent variables (SNP_ALL = all 5,925 SNP; 
PC_SNP_ALL = principal components extracted from all SNP genotypes simultaneously; PCA_SNP_CHROM = 
principal components extracted from SNP genotypes separately for each chromosome; PCA_HAP_ALL = 
principal components extracted from all SNP haplotypes simultaneously; PCA_HAP_CHROM = principal 
components extracted from haplotypes separately for each chromosome). 

 

Figure 4. Correlations between genomic breeding values (GEBV) and true breeding values (TBV) in the 
different approaches when EBV were used as dependent variables (SNP_ALL = all 5,925 SNP; PC_SNP_ALL = 
principal components extracted from all SNP genotypes simultaneously; PCA_SNP_CHROM = principal 
components extracted from SNP genotypes separately for each chromosome; PCA_HAP_ALL = principal 
components extracted from all SNPS haplotypes simultaneously; PCA_HAP_CHROM = principal components 
extracted from haplotypes separately for each chromosome). 
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Table 2. Regression coefficients (bTBV,GEBV) of True breeding Value on Predicted Genomic Breeding Value 
(GEBV) for the different estimation methods using either phenotypes or polygenic breeding values (EBV) for 
the PREDICTION generations and assuming either equal variance contribution for each PC or eigenvalues as 
variance priors. 
 Trait 

Method Phenotypes EBV 

 bTBV,GEBV s.e. bTBV,GEBV s.e. 

SNP_ALL 1.08 0.027 1.15 0.073 

 Equal variance 

PC_SNP_ALL 0.63 0.019 1.08 0.049 

PC_SNP_CHROM  0.67 0.019 1.13 0.048 

PC_HAP_ALL 0.61 0.019 1.08 0.049 

PC_HAP_CHROM  0.65 0.018 1.11 0.047 

 Eigenvalues 

PC_SNP_ALL 0.88 0.021 1.33 0.055 

PC_SNP_CHROM  0.84 0.022 1.28 0.055 

PC_HAP_ALL 0.88 0.022 1.32 0.056 

PC_HAP_CHROM  0.83 0.023 1.26 0.056 

(SNP_ALL = all 5,925 SNPs; PC_SNP_ALL = principal components extracted from all SNP genotypes simultaneously; 

PC_SNP_CHROM = principal components extracted from SNP genotypes separately for each chromosome; PC_HAP_ALL  = 

principal components extracted from all SNP haplotypes simultaneously; PC_HAP_CHROM = principal components 

extracted from haplotypes separately for each chromosome) 

 

Methods based on PC extraction are characterized by a prevalence (about 80%) of random terms, 

measured by the random error and by the incomplete covariation. The use of eigenvalues as variance 

priors results in the lowest MSEP and, compared to the other PC-based method, in a reduction of the 

slope bias and the highest relevance of random variation. These differences can be clearly seen from 

the plots of TBV versus GEBV for the PC_SNP_ALL approach using equal (Figure 5a) or eigenvalue-

based (figure 5b) variance. The latter shows a regression slope closer to the equivalence line (y=x) 

and a smaller value for the intercept, that indicates a smaller systematic underestimation of TBV. 

The composition of MSEP becomes very similar across the different methods when EBV are used as 

dependent variables, with a reduced incidence of random components and a larger relevance of 

unequal variances compared to the phenotype-based estimates (Table 3). 
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Table 3. Mean squared error of prediction (MSEP) decomposition (%) and coefficient of determination (r2) for 
the PREDICTION generations in some scenarios using either phenotypes or polygenic breeding values (EBV) .  
 Phenotype 

 SNP_ALL PC_SNP_ALL1 PC_SNP_ALL 2 

MSEP 1.55 1.48 1.02 

Mean Bias (UM) 72.2 53.5 56.9 

Unequal variances  (US) 6.9 0.6 1.9 

Incomplete covariation (UC) 21.9 45.9 41.2 

Slope bias (UR) 0.22 11.1 1.1 

Random errors (UD) 27.6 35.4 42.0 

r2 0.57 0.48 0.57 

 EBV 

MSEP 2.96 2.88 2.72 

Mean Bias (UM) 72.0 75.1 74.6 

Unequal variances  (US) 13.9 8.9 11.9 

Incomplete covariation (UC)   14.1 16.0 13.5 

Slope bias (UR) 0.01 0.00 0.7 

Random errors (UD) 27.9 24.9 24.7 

r2 0.17 0.28 0.33 

(SNP_ALL= all 5,925 SNPs; PC_SNP_ALL 1= principal components extracted from all SNP genotypes simultaneously and 

equal contribution of each SNP to the variance of the trait; PC_SNP_ALL 2 principal components extracted from all SNP 

genotypes simultaneously and contribution of each SNP to the variance of the trait proportional to the eigenvalue 

Note that UM+ US+ UC= UM+ UR+ UD=100% 

 

Actually, the comparison of plots of TBV versus GEBV estimated with the PC_SNP_ALL approach 

using phenotypes (Figure 5a) or EBV (Figure 5c), clearly shows a reduced range of variability and a 

higher underestimation (as evidenced by the larger value of the regression intercept) for EBV-based 

GEBV. 

4.3.3.  Interpretation of PC 

An interesting feature of principal component analysis is the possible technical interpretation of 

extracted variables. Figure 6 reports score averages for the first two PC that together explain about  
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Figure 5a. Plot of true breding values versus genomic breeding values predicted using phenotypes when 
principal components are extracted from all SNP genotypes simultaneously and variance contribution of the 
PC scores in the estimation step is assumed equal (continuous line= regression line of TBV on GEBV; dotted 
line= equivalence line, y=x). 
 

 

Figure 5b. Plot of true breeding values versus genomic breeding values predicted using phenotypes when 
principal components are extracted from all SNP genotypes simultaneously and variance contribution of the 
PC scores in the estimation step is based on their eigenvalues (continuous line= regression line of TBV on 
GEBV; dotted line= equivalence line, y=x 
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5% of the original variance of the system, calculated for each generation. Averages of the second PC 

ranged gradually from negative values for the first three generations to positive for the last three 

generations. A possible explanation of the ability of the second PC to distinguish individuals of 

different generations can be found in its negative correlation with the average observed 

heterozygosity per animal (-0.26) that tends to decrease from older to younger generations (Figure 

7).  

 

 

Figure 5c. Plot of true breeding values versus genomic breeding values predicted using phenotypes when all 
SNP genotypes are used as predictors (continuous line= regression line of TBVs on GEBVs; dotted line= 
equivalence line, y = x). 

 

Figure 6. Plot of the average scores of the first two principal components for seven generations. 
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Figure 7. Pattern of the average observed heterozygosity in different generations. 

 

4.4.  DISCUSSION 

4.4.1 Advantage and issue of using PC to estimate GEBV. 

Main objectives of the work are to assess the effect of reducing predictor dimensionality in genomic 

breeding value estimation using PCA and to test the effect of structuring the variance contribution of 

PC with their eigenvalues  

PCA allows an efficient description of the correlation matrix of biallelic SNP with a markedly smaller 

number of new variables (4.7%) compared to the original dimension of the system. Such a huge 

decrease has a straightforward impact on the calculation speed of GEBV, with a reduction of more 

than 99% of computing time achieving the same accuracy of predicted GEBV using all SNP. 

Compared to other methods of reduction of predictors where SNP are selected based on their 

position along the chromosome (VANRADEN et al. 2009) or their relevance with the trait considered 

(HAYES et al., 2009), the multivariate reduction approach limits the loss of information because each 

SNP is involved in the composition of each PC. 

GEBV accuracies obtained in the present work agree with a previous report on the use of PCA to 

estimate genomic breeding values (SOLBERG et al. 2009) when an equal contribution of each principal 

component to the variance of phenotypes is assumed. This approach follows the common BLUP 

assumption of equality of variance of predictors, usually criticized for its inadequacy to fit the widely 

assessed distribution of QTL i.e,. many loci with a small effect and very few with large effect (HAYES 

and GODDARD 2001). However, when eigenvalues are used as prior of PC variance, accuracies 
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increase by about 10%. These figures highlight the importance of an accurate modeling of the 

variance structure of random effects in GEBV estimation.  

 

Bayesian methods estimate variances of different chromosome segments combining information 

from prior distribution and data (MEUWISSEN et al. 2001). These methods usually give the best 

performance (accuracies >80%) when simulated data are fitted, whereas results obtained on real 

data seem to indicate a substantial equivalence with the BLUP approach (HAYES et al., 2009; 

VANRADEN et al. 2009). A common explanation is that, in Bayes method, assumptions on prior 

distributions of parameters are more difficult to infer when real data are handled. The use of 

eigenvalues as variance priors rely only on data, i.e. the SNPs correlation structure, and does not 

require assumptions on prior distribution.  

A potential drawback in the calculation of GEBV using PCA is represented by PC extraction. In the 

present work, about 40 minutes were needed to process a SNP data matrix of 5,865 rows and 5,925 

columns. The commercially available SNP panel for cattle has 54K marker loci, although about 40K 

are retained on average after editing (HAYES et al., 2009). Such a marked increase of columns, usually 

not accompanied by a comparable increase of rows (i.e. phenotypic records), may lead to statistical 

and computational problems if PC are extracted treating all SNP simultaneously. However, results of 

the present study indicate that PC may be calculated separately for each chromosome, keeping the 

same GEBV accuracy. It should be remembered that the number of SNP per chromosome is not far 

from current dairy data (on average 1,200-1,300) (HAYES et al., 2009; VANRADEN et al. 2009; WIGGANS 

et al. 2009). Thus PCA carried out on individual chromosomes may be of great interest for real data, 

also considering the substantial biological orthogonality among chromosomes. The availability of 

denser marker maps (i.e. 500K SNP) will represent a challenge for the method, although the number 

of PC to be retained does not seem to increase linearly with the number of original variables. Missing 

genotypes is a potential problem for computation of PCA, which requires data in each cell. Although 

edits that are normally carried out on SNP data leave only a few missing cells per animal, they are 

spread across different markers and this may lead to a severe reduction in the number of records. 

Missing data can be reconstructed using appropriate algorithms as those described by (GENGLER et al. 

2007) or others implemented in softwares of common use such as PHASE or PLINK. 

4.4.2. GEBV accuracy using phenotype or EBV. 

Of particular interest is the difference in GEBV accuracy obtained when using phenotypes vs. 

polygenic EBV as dependent variable. Polygenic EBV are phenotypes corrected for additive 

relationships among animals based on pedigree information. On the other hand, in GEBV predictions 

the genetic similarity between animals is accounted for by the specific combination of marker 
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genotypes possessed by each individual. Therefore, the use of EBV as dependent variable in GEBV 

prediction may be regarded as redundant in terms of exploitation of genetic relationships.  

 

This behavior is particularly evident for the regression using all SNP markers. In this form, the 

calculation of GEBVs is equivalent to the use of an animal model with the additive genetic effect 

structured by the genomic relationship matrix (GODDARD 2009). Such a double counting of genetic 

relationship resulted in a evident reduction of the variability of GEBV compared to true breeding 

values. From a statistical standpoint, EBV are model predicted values and may not be suitable as 

dependent variable in further analyses (TEDESCHI 2006). Results of the present study, although 

obtained on simulated data, may more accurately reflect the reality of genomic selection 

programmes in cattle. In previous studies, EBV were generally the dependent variable. This is 

because true breeding values are not available on real data and EBV estimated with a high accuracy 

(>0.90) may represent a sort of golden standard for cross validations. However, the tendency now 

seems to move toward the use of partially corrected phenotypes such as de-regressed proofs or 

Daughter Yield Deviations (HAYES et al., 2009; VANRADEN et al. 2009).  

4.4.3. PC as indicator in population genetics. 

Finally, an interesting side product of PCA used to reduce the dimensionality of predictors in genome 

wide selection is represented by the extraction of synthetic variables that can have a technical 

meaning. Researches in human and animal genetics have highlighted the role of PC as indicators of 

population genetic structure: for example, the top eigenvectors of the covariance matrix show often 

a geographic interpretation (CHESSA et al. 2009; PRICE et al. 2006). Usually, the meaning of the i-th PC 

in terms of relationship with the original variables is inferred from the structure of its eigenvector. In 

the present study, such an evaluation was not feasible, probably due to both the relatively small 

amount of variance explained by each PC and the large number of original variables considered (i.e. 

the 5,925 SNP). However, one of the top PC was able to reflect the genetic variation among 

generations, although the discrimination between individuals of different generations was rather 

fuzzy, as expected, given the small amount of variance explained. However, this last point deserves 

some additional consideration. An assessed criterion in choosing which PC to retain is to look at their 

eigenvalues. However, sometimes the PC associated  with the largest eigenvalue does not have a 

defined meaning whereas successive PC characterized by smaller eigenvalues may contain more 

relevant or biological information (JOMBART et al. 2009). In the case of the present work, a meaning of 

the second PC as indicator of genetic drift, which should be the only reason of variation of genotypic 

frequencies in the simulated generations (LUND et al. 2009) could be hypothesized. 
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The discovery of chromosomal regions affecting quantitative traits date 1923 with the experiment of 

(SAX 1923) who demonstrated the association between a gene associated to the locus that regulates 

the color of the seeds of phaseoulus vulgaris and the weight of the seeds. (THODAY 1961), with a 

publication entitled The location of polygenes gave a contribution to the formulation of the concept of 

Quantitative Trait Locus (QTL). The basic idea of improving the accuracy of the estimation of the 

genetic merit of an individual, i.e. his estimated breeding values (EBV), by using genetic markers 

(blood group in cattle) known to be associated to an effect on phenotype was already developed in 

the sixties (NEIMANN-SORENSEN and ROBERTSON 1961). However, the systematic use of DNA variation 

became feasible only some decades after, when the discovery of some classes of polymorphisms as 

restriction fragment polymorphisms (RFLPs), minisatellites and microsatellite marker) allowed to 

map gene with a discrete effect on quantitative traits. From the first extensive genome scan carried 

out by (GEORGES et al. 1995), several genome investigations have been performed in livestock species 

across several countries using different breeds. These studies mainly focused on QTL mapping by 

tracing the inheritance of microsatellite markers in group of progeny of sires that had different 

phenotypic expression according different experimental designs. Theoretically, the discovery of DNA 

regions that affect the traits of economic interest should have resulted in the use of marker 

information into marker assisted selection (MAS) programmes. Approaches to estimate the genetic 

merit of individuals in MAS schemes using BLUP have been proposed by FERNANDO and GROSSMAN 

(1989). Moreover, approaches based on selection index theory have been suggested to combine 

classical polygenic EBVs with marker information (LANDE and THOMPSON 1990) in order to maximize 

the response to selection. In spite of the large number of QTL mapping studies that have been carried 

out and the amount of markers found to be associated to quantitative traits, commercial 

implementations of MAS have been limited for several year for three main reasons: the relatively 

small amount of variance explained by the detected QTLs (except few limited cases); the nature of 

most of the markers found to be associated with phenotypic differences, which are in linkage 

equilibrium in the population; the imprecise estimate locations of the QTL, mapped using the linkage 

analysis. 

In the present chapter, the limit of application of MAS in cattle and results and the drawback of using 

meta-analysis to refine the position of QTLs will be discussed. In the second part of the chapter it will 

be discussed the evolution of high throughput sequencing technology that allowed to sequence the 

entire genome and to develop panel of tens of thousands of single nucleotide polymorphisms (SNP) 

used also to provide estimation of genomic breeding values. The genomic selection (GS) as defined 

by MEUWISSEN (2007) could be seen as special case of MAS on wide scale. Theoretical formulations 

and statistical methods to deal with such high number of marker data have been initially proposed 

by MEUWISSEN et al. (2001) thereafter, many statistical model have been proposed in literature to 
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capture the genetic variance due to the SNPs. As the model adopted, as well as other factors, 

influence the accuracy of genomic prediction, in the second part it will be presented the factors that 

affect the accuracy. In the third part the use of a particular statistical model (PCA) to cope with the 

curse of dimensionality that affect the genomic selection implementation will be treated. 

5.1 QTL DETECTION AND MAS PROGRAM. 

In the original preposition, QTL mapping had to enable the identification of genes underlying 

economic quantitative traits in alternative to the candidate gene approach. Initially, the focus on QTL 

mapping was on milk production traits, but later the expectation was higher specially for low 

heritability traits, functional and reproductive traits, as genetic improvement of these traits 

according to the classical quantitative genetic model were slow and costly (DEKKERS 2004). The 

theoretical advantage of MAS scheme over traditional selection has also been confirmed by 

computer simulation. According to MEUWISSEN AND GODDARD (1996) the expected genetic gain 

increases using markers in breeding scheme were worthwhile to justify cost of genotyping. These 

authors found that and large extra rates of genetic gain (up to 64% for traits measured on the 

candidate, but high also for trait measured in the relatives of candidates), especially in the case of 

continuous detection of QTL. 

After more than 15 years of QTL mapping studies just few example of unambiguous associations of 

gene with phenotypic expression have been reported in literature. DGAT1 in dairy cattle is an 

example of one polymorphism that explain around 50% of the genetic variance for milk fat content 

followed by GHR that explained about 10% of genetic variance of milk yield. Other markers which 

have been associated with production or functional traits explained very low percentage of genetic 

variance. This fact led to a substantial inefficiency of MAS, considering the cost of genotyping 

especially for functional traits, for which the expected advantage were higher. The low genetic 

variance explained by markers have been pointed out also by MANOLIO et al. (2009) in a recent study 

where the authors made some hypotheses about the causes of low genetic variance captured by SNP 

markers. In particular, they referred to missing heritability in human height (very high heritable 

traits with h2 estimates greater than 80%) where the SNP assay capture only the 5% of the genetic 

variance. Causes of these fail may be found in the structure of Genome (Copy number variation 

(CNV) of gene which have not taken into account in SNP association studies) and the rare variants of 

allele having a great contribution to the genetic variance but very low allelic frequency (in GWAS and 

GS studies allele with MAF < 0.2 or 0.5 are discarded). 
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Despite the expected benefit of the use of markers in breeding scheme, MAS on large scale had a 

limited application till the early 2000’s. Successful examples of MAS in its original formulation are 

reported for German (BENNEWITZ et al. 2004b) and French experiences (GUILLAUME et al. 2008b). 

Although the number of sire genotyped in the French MAS program was quite high (16,000 animal 

genotyped for 43 markers underlying 12 QTL region) the average accuracy of MAS-EBVs was just 

around 4% higher than in case of  polygenic EBVs for unphenotyped animals (GUILLAUME et al. 

2008b). In the German MAS programme, around 5 thousand animals were genotyped and 13 

markers underlying 3 QTL region affecting milk production traits were used. Whole pedigree and top 

down approach to preselect bulls before entering in the progeny test scheme have been proposed in 

France and German respectively, both using the FERNANDO and GROSSMAN (1989) MAS-BLUP 

procedure. 

Another reason that may to explain the limited MAS implementation is that QTLs have mostly been 

mapped with very large confidence interval (CI), due to the low marker density and use of LE 

markers (KHATKAR et al. 2004). Furthermore, in some cases the low power of the experiment 

together with the high cost of genotyping and low percentage of variance explained by QTL 

compromised the application of MAS program as originally designed. As shown by SCHROOTEN (2003) 

and reported in figure 1, for low heritability the power to detect QTLs under a certain size was low. 

The Increase of the sample size allow to have more power to detect QTL of small size. Statistical 

techniques that allow to fully exploits pedigree information from maternal line have been developed, 

they have been barely applied (DE KONING 2006; RON and WELLER 2007).  

 

 
Figure 1. Power to dected QTL as function of variance due to QTL and heritability for different size 

granddaughter design (Gx_Sy (N) where x=no. Grand Sire, y = no. of sire, N= no. of animal) (from Schrooten 

2003) 
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To refine the position of QTL under 2-3 cM CI, statistical methods have been proposed (identity by 

descend QTL mapping (RIQUET et al. 1999) and combined Linkage disequilibrium and linkage 

analysis approach (FARNIR et al. 2002; MEUWISSEN et al. 2002). Likewise the previous case these 

techniques had not a broad diffusion, at least in animal breeding field, probably for their relevant 

theoretical and computational complexity. 

 

Meta-analysis techniques may lead to a better exploitation of a large amount of data that have been 

produced in more than a decade of research in this field. The meta-analysis of QTL mapping studies 

is a quite complicate tasks due to the great heterogeneity of published results: i) some values are 

missed (sometimes the effects of the QTL, or the statistical significance); ii) size of the experiment; 

iii) experimental design used; iv) different breed used; v) different genetic map, vi) genetic model 

and vii) statistical methodology used. Moreover, many hypotheses are generally tested 

simultaneously and multiple testing issues arose. Different authors addressed this issue in different 

ways (Bonferroni correction, False Discovery Rate (FDR), Proportion of False positive (PFP), Q-

values, Bootstrapping, Permutation test, ecc.). All these difference in data processing and hypothesis 

testing further complicate the comparison of QTL across studies. All these problem should be taken 

into account when the comparison of results is carried out. For instance, the main question is 

generally :”Are QTLs found in different studies on the same chromosomal region the same?”. In other 

scientific fields, meta-analysis is generally carried out combining data from different experiments 

with the aim to increase the power of the meta-analysis experiment and to extend the range of 

variability of the variable under exam, excluding the random effect of the study. Thus, meta-analysis 

could be also used in a predictive fashion. The case of QTL is a quite difficult case and different 

approaches have been used in literature instead (KHATKAR et al. 2004; SMARAGDOV et al, 2006).  

The approach developed in chapter 1 of  the present thesis follows a different logic from other 

published meta-analysis but challenges the same statistical issues of QTL meta-analysis, specially for 

the high heterogeneity of QTL data. The aim of the present study was to find some latent variables 

able to aggregate the information provided by different sources of  variability (7 variables that 

characterize each QTL record were used) able to measure the reliability of a specific QTL to be of 

interest for a particular trait. Multivariate factor analysis was used at this purpose. Three common 

factor were found associated marker map index, the dimension of the study and the power of the 

experiment. However, the use of these variables to classify the QTL do not help to address the issue of 

scoring unambiguously the QTL on the basis of their “reliability”. 

The methodology suggested by GOFFINET and GERBER (2000) rely on the identification of the 

consensus position for n QTL detected in n published reports. The method evaluates the goodness of 

fit criteria (Likelihood Ratio Test (LRT), Aikake Information Content (AIC), ecc) of the data with 1,2 
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or n different QTLs hypothesized (in the worst case scenario 1 different QTL for each study). This 

approach has been adopted by KHATKAR et al. (2004) to find consensus on position of QTLs. They 

found the aforementioned constraints due to the incomplete information provided in the published 

papers, and about half of the published reports were discarded because they did not meet the basic 

requirement to be analyzed. They summarized the information of 55 papers aggregating QTLs for 

milk production traits in the most frequent analyzed chromosomes in dairy cattle (BTA3, BTA6, 

BTA9, BTA14, BTA20). In particular, in chromosome 6 they found two precise regions (49 cM and 87 

cM) that aggregated several QTLs across different studies. Nevertheless, this approach led to a too 

wide 95% CI of the QTL position in most cases (shorter CI were found for QTL mapped in more 

precise way in the original studies). For the implementation on MAS program this approach may be 

useful to reduce the number of effect and variance components to estimate (considering for example 

less genomic regions). Conversely, this information may not be exploited in the whole population 

because the CI were still too large. The drawbacks presented here about QTL meta-analysis were 

also found in another study (SMARAGDOV et al, 2006) with different methodology but with similar 

conclusion on refinement of QTL position.  

 

5.2  SIMULATION OF GENOMIC SELECTION 

None of the approach of meta-analysis lead to a fully exploitation or this large amount of marker 

data. Solution came out just after the bovine genome sequence were available, due to the 

development of high throughput sequencing technology (VAN TASSELL et al. 2008). The huge 

availability of genetic markers – 54 K SNP chip available for cattle at relatively low cost per SNP and 

800 K SNP-chip in project – allow to use LD markers to map QTL, or to predict directly the genomic 

breeding values (DGV) of genotyped animal with no phenotypic records (MEUWISSEN et al. 2001). 

DGV are then combined with the traditional EBV in a genome enhanced breeding value (GEBV) as 

shown by VANRADEN et al. (2009). The DGV estimation led to the development of different models 

with different predictive ability. 

The genome-wide approach for estimating the breeding values of selection candidates  allowed to 

overcome the issues of the position and effect of QTL. In fact, each marker is likely to be in LD with at 

least one QTL and so for that reason the position is no longer a key element. From the predictive 

point of view and breeding values estimation, the knowledge of the position of QTL may be negligible 

in a genome-wide approach. Conversely, if this tool is used to map QTL, the dense genetic map allow 

to have more precise location of QTL on genome. In both of cases ad hoc statistical methods have 

been developed to deal with the great asymmetry of data matrix (tens of thousands of predictors and 

hundreds/thousands of experimental data point). Even if there are cases where the number of 



151 
Chapter 5 

 

Giustino Gaspa-“Use of Genomic Information in the Genetic Evaluation of Livestock” 
Tesi di Dottorato Scienze dei Sistemi Agrari e Forestali e dei Sistemi Agrari e Forestali e delle Produzioni Alimentari 

Indirizzo Scienze e tecnologie Zootecniche - Università Degli Studi di Sassari 

genotyped animals approaches the number of markers, as happens in the US genomic programme 

with almost 40000 animal for around 40000 SNP after editing (VANRADEN AND TOOKER, 2010) have 

been overcome increasing the sample size. However, the population size is generally lower than this 

figure, especially in Europe where national breed association handle genomic selection programmes 

independently. The issue of sample size is of course enhanced in the case of minor breeds  

The size of the population as well as the heritability of the trait and the statistical model used to 

predict DGV affect heavily the accuracy of the genomic prediction. The first optimistic estimates 

(MEUWISSEN et al. 2001; SCHAEFFER 2006), have been resized when real data come out across 

different breed in several country. The DGV accuracy drop is limited for population where the 

training set is quite high. The main factors affecting the accuracy of genomic predictions according to 

the study presented in the simulation presented in the current thesis were: i) the marker density, ii) 

the heritability iii) the number of daughter per bulls required to compute the daughter yield 

deviation, and finally the iv) choice of the predictors used in the statistical model (haplotype or 

single marker genotype), even though this latter factor is indirectly linked to the marker density as 

shown by CALUS et al. (2008). In all scenarios simulated the BLUP was used to estimate the marker or 

haplotype effects. However the choice of an appropriate statistical model affect the accuracy of 

prediction as well.  

5.3  PCA APPLIED TO GENOMIC SELECTION 

Several models have been tested in simulations but mainly BLUP, Bayesian method, multivariate and 

non parametric methods have been used. Several simulations shown that Bayesian methods 

performed better than BLUP and other methods in DGV predictions, especially for high density 

marker maps (MEUWISSEN et al. 2001; SOLBERG et al. 2008). However the application of these bunch of 

methods to real data showed that the differences among methods were less relevant than in 

simulated dataset across studies. In particular BAYES, G-BLUP , PCA or PLSR approach perform in 

most case similarly. 

In the present thesis, principal component (PC) analysis was presented with the aim to reduce the 

number of predictors in the estimation of genomic breeding values for a simulated population. Priors 

of predictor variance were based on their contribution to the total SNP correlation structure. The PC 

approach yielded the same accuracy of predicted genomic breeding values obtained with the 

regression using SNP genotypes directly, with a reduction in the number of predictors of about 96% 

and computation time by 99%. The high number of predictors generally used in genomic selection 

require a selection or reduction of dimensionality of the data matrix. In some case (ordinary least 

squares models) the high number of predictors in comparison with the data point do not allow to 

have enough degree of freedom (MEUWISSEN et al. 2001). In any case a pre-selection step may be 
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required also for other methods. The BLUP approach can overcome the problem of degree of 

freedom, adding some penalization (lambda) to the solution allowing to shrunk toward 0 the domine 

of the solutions (figure 2).  

 

Figure 2. BLUP solution with different values of lambda (100 and 5000) in a simulated dataset with 2000 

observation and 5000 marker. Data were simulated using R statistical Package 

 

Figure 3. Mean squared error of prediction (MSE) as function of sample size and number of predictors 
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These results were obtained a simple simulation of a dataset of 2000 individual and 5000 markers, 

but similar results have been also showed by PIMENTEL et al. (2009). However introduction of these 

penalization introduce bias in the predictions. In figure 3 has been shown the Mean squared error of 

prediction (MSEP) for a dataset downloaded from in function of number of predictor and sample 

size. The MSEP decrease as the number of phenotypic record increase, but increase dramatically as 

soon the number of predictor grow. 

The choice of an appropriate values of lambda is discussed in literature and different approach have 

been adopted (estimation of the genetic and residual variance with REML approach and division of 

by the number of effect to estimates; the estimation of lambda in a Bayesian context is carried out 

introducing some prior information about the distribution of this random variable). In figure 4a is 

reported the MSE for a simulated dataset (BLR package v2.1 http://cran.r-project.org/) for different 

value of shrinkage factor lambda. Whilst the figure 4b shows as the degree of freedom drop down for 

higher values of lambda. The figure 4a indicate empirically that a value of lambda around 10 in this 

case minimize the MSE and allow a sufficient number degree of freedom to estimate the DGV 

shrinking toward 0 the solution of the system of equation. 

 

  
Figure 4. (a) MSE and residual sum of square (RSS) for a dataset of 599 records and 1477 markers 

as function of lambda parameter (b) trend of degree of freedom as function of lambda (data 

generated from Wheat lines were recently genotyped using 1447 Diversity Array Technology 

(DArT) generated by Triticarte Pty. Ltd. (Canberra, Australia; http://www.triticarte.com.au).  

 

The PCA allow to have less bias estimated of DGV, reducing dramatically the number of effects to be 

estimated in the training generations. Furthermore the use of variables that are uncorrelated among 

them reduce the problem of collinearity as well. 
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Some results in real data seems to confirm the goodness of PCA methodology. Figure 5 showed the 

regression of DGV on calving ease (CE) polygenic EBV of 323 Piedmontese bulls divided into training 

set (5a) and validation bulls (5b). In both dataset the estimates of PC approach produce estimate that 

are less biased than whole BLUP approach. The low R2 for the second regression may be due to the 

low sample size, and even in this extreme case the PC perform better than the BLUP approach 

(AJMONE et al, 2010)  

 

 

 

Figure 5. Regression between DGV predicted using the PC (PC_DGV) or all markers (M_ALL_DGV) and 

polygenic EBV for calving ease bulls in the set of reference (a) and in bulls estimates (b). 

 
 

The reduction of predictors, so seem to be a way to deal with the major issue on genomic selection 

and although the accuracies of PC are lower than those currently achieved with Bayesian methods, at 

least for simulated data, the improved calculation speed together with the possibility of extracting 

principal components directly on individual chromosomes may represent an interesting option for 

predicting genomic breeding values in real data with a large number of SNPs. Furthermore the 

increasing availability of marker data is leading toward a more easy solution of the curse of 

dimensionality. Even though soon denser chip (800 K) will out in the marker and this will open new 

challenge in DGV estimations. In this context, PCA may be a suitable solution to speed up the 

calculation without losing too much in accuracy. 
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