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ABSTRACT

A variety of signal transduction events are controlled by the opposing, balanced

activities of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs).

Until recently scientists have focused on PTKs, but recent findings have recognized that

PTPs play specific and active roles in the regulation of many physiological processes.

CD148 is a receptor tyrosine phosphatase (RPTP) with a large extracellular

domain and a single catalytic domain. It is expressed on a wide variety of cell types

including fibroblasts, endothelial cells, and hematopoietic cells. A number of studies

have addressed the role of CD148 in the regulation of cell growth and differentiation

using fibroblasts or tumor cell lines. In cultured cells with epithelioid morphology,

including endothelial cells and newborn smooth muscle cells, CD148 transcript levels

are dramatically upregulated as culture density increases. Although CD148 is expressed

on the surface of hemopoietic cells, only a few studies have been published examining

the expression of CD148 in human lymphocytes, especially T cells. These reports

showed that CD148 plays a role in T cell activation where it participates in the

regulation of the T-cell receptor.

In this study, we have analyzed the possible involvement of CD148 in epithelial

growth and cell-cell interactions. Using polarized epithelial cells as a model, we have

applied a transcriptional silencing approach based on lentiviral-mediated RNA

interference. We show that CD148 expression is required for epithelial cell growth

control and proper assembly of epithelial sheets.



Introduction- 5

INTRODUCTION

Protein Tyrosine Phosphatases

Reversible tyrosine phosphorylation, which is governed by the balanced action of

protein tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs), regulates

important signaling pathways that are involved in the control of cell proliferation,

adhesion and migration.

The key regulatory role of protein kinases is clearly established; however, it has

recently become apparent that protein phosphatases can no longer be viewed as passive

housekeeping enzymes, but they partner with kinases in the regulation of signaling

responses. The distinct but complementary function of these enzymes is emphasized by

recent studies, in which kinases have been implicated in controlling the amplitude of

signaling responses, whereas phosphatases are thought to have an important role in

controlling the rate and duration of the response (R. Heinrich et al., 2002; J.J. Hornberg

et al., 2005).

The first PTP was purified in 1988, approximately 10 years after the discovery of

tyrosine kinases (N.K. Tonks et al., 1988). It is now known that PTPs constitute a large,

structurally diverse family of tightly regulated, highly specific enzymes with important

regulatory roles (A. Alonso et al., 2004; J.N. Andersen et al., 2001; A. Ostman and F.D.

Bohmer, 2001).

It is also clear that PTPs have both inhibitory and stimulatory effects on cancer-

associated signaling processes, and that deregulation of PTP function is associated with
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tumorigenesis in different types of human cancer. Recent reports have revealed the

strategic importance of PTPs in the regulation of physiological processes, where they

coordinate the interactions between neighboring cells, participating in tissue

homeostasis, immune response, and embryogenesis (for a review, see T. Mustelin et al.,

2002).

The PTP-superfamily includes 109 genes, compared to 90 human PTK genes,

suggesting similar levels of complexity between the two families. However, the number

of genes only illustrates the minimal level of complexity in the family, as additional

diversity is introduced through the use of alternative promoters, alternative mRNA

splicing and post-translational modifications. This structural diversity is indicative of

the functional importance of the PTPs in the control of cell signaling. It is now apparent

that the PTPs have the capacity to function both positively and negatively in the

regulation of signal transduction. Furthermore, PTPs have the potential to display

exquisite substrate specificity in vivo. Substrate specificity is both dependent on

interactions between the substrates and areas flanking the PTP active site, and on the

subcellular compartmentalization that restricts substrate access (F.G. Haj et al., 2002;

A. Salmeen et al., 2000).

The PTP Gene Superfamily

The members of the PTP superfamily can be classified in classical PTPs and dual-

specificity phosphatases (DSPs). Classical PTPs can only dephosphorylate phospho-

tyrosine residues, since this is the only phospho-aminoacid that can be accommodated

in the depth of their active site cleft. DSPs, on the contrary, can also dephosphorylate

serine and threonine phospho-residues and even phosphoinositol phospholipids.
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Classical PTPs are broadly divided into receptor-like forms and non-receptor

forms (J.N. Andersen, et al., 2001). The receptor-like PTPs (RPTP) have a single

transmembrane domain and variable extracellular domains. Non-receptor PTPs have

striking structural diversity and often contain sequences that target them to specific

subcellular locations or enable their binding to specific proteins (L.J. Mauro and J.E.

Dixon, 1994; A. Ostman et al., 2006).

The intracellular parts of most receptor-like PTPs contain two tandem PTP

domains, the carboxy-terminal one having little or no catalytic activity but possibly

functioning as a site of interaction with regulatory/targeting proteins (E.H. Fischer,

1999). The catalytic PTP domain spans approximately 280 amino-acids and contains a

highly conserved active site with a cysteine residue that is required for catalytic activity.

Dephosphorylation of substrates occurs through a two-step mechanism consisting of the

formation of a covalent PTP phosphate intermediate that is subsequently hydrolyzed

(A. Ostman, et al., 2006).

Dephosphorylation by PTPs occurs with a high degree of specificity, as

demonstrated by the >1000-fold difference in the Km for different phosphopeptides and

by the selective substrate-binding of substrate-trapping PTP variants (A.J. Flint et al.,

1997; Z.Y. Zhang et al., 1993). Some studies have also shown that PTPs preferentially

dephosphorylate certain subsets of phosphotyrosines on proteins that have multiple

phosphorylation sites (M. Kovalenko et al., 2000; C. Persson et al., 2004). Substrate

specificity has at least two determinants; first, significant side-chain interactions occur

between the substrates and areas that flank the PTP active site; second, subcellular

compartmentalization restricts substrate access (F.G. Haj, et al., 2002).

Receptor-like PTPs can be further subdivided into five types based upon common

features found in the extracellular domain (R.J. Mourey and J.E. Dixon, 1994). Type I

receptor-like molecules are represented by the hematopoietic cell-restricted CD45
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family, which have multiple isoforms arising from differential splicing of sequences at

the amino terminus. Type II molecules are the leukocyte common antigen-related

(LAR)-like PTPs (e.g. DLAR in drosophila, mammalian LAR, PTP  and PTP ). This

class of PTPs contains tandem repeats of immunoglobulin-like and fibronectin type III-

like domains resembling neural cell adhesion molecules. With the exception of LAR,

most other LAR-like PTPs are expressed preferentially in neurons, and play

fundamental roles in neuronal development. Type III molecules have multiple

fibronectin type III-like repeats (e.g. mammalian OST-PTP, drosophila DPTP10, and

DPTP99A). PTP  and PTP  represent type IV isoforms, which generally have small

extracellular domains. Type V molecules include PTP  and PTP , which have amino

terminal carbonic anhydrase-like domains. The extracellular domain (ECD) of RPTPs is

important for extracellular interaction. For example, the fibronectin (Y. Fujita et al.,

2002) type III domain, which is found in different kind of proteins (including cell

surface receptors and cell adhesion molecules), could mediate adhesion among PTPs

(P.C. Tsiotra et al., 1996). In fact, it was shown that PTP s molecules interact

homophilically mediating cell-cell aggregation through their FNIII domains (S.M.

Brady-Kalnay et al., 1993).

It is thought that FNIII domains present in the extracellular portion of CD148

might promote adhesion. In fact, some repeats in its coding sequence include the XGD

sequence, similar to the cell attachment-promoting sequence RGD, which in fibronectin

interacts with members of the integrin superfamily (Fig. 1).
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Fig. 1: Schematic view of the domain composition of all RPTP family members. The intracellular
part consists of one catalytically active PTP domain (blue) and, in some subfamilies, a PTP domain with
little or no catalytic activity (red), which is likely to have a regulatory function.

PTP Activity Is Tightly Regulated

As might be anticipated for a family of enzymes that play critical roles in the

regulation of cell signaling, the activity of PTPs is tightly controlled in vivo by a variety

of mechanisms.
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Some PTPs are themselves regulated by phosphorylation, which can either

increase or decrease their activity (reviewed in A. Ostman and F.D. Bohmer, 2001).

This property has been extensively characterized in the case of CD45 (Y. Wang et al.,

1999) and PTP-PEST (A.J. Garton and N.K. Tonks, 1994). Moreover, both non-

receptor and receptor-like PTPs can be regulated by proteolytic cleavage, which is

normally associated with degradation or translocation of the target protein. Recently,

reversible oxidation of a cysteine residue in the active site has also emerged as an

important inhibitory control mechanism for PTP regulation. The production of reactive

oxygen species (ROS) such as hydrogen peroxide and the resulting post-translational

modification of proteins by reversible oxidation of the active site cysteine have been

implicated in the regulation of tyrosine phosphorylation-dependent signaling pathways,

that are initiated by a wide variety of stimuli including growth factors, hormones,

cytokines and cellular stresses (T. Finkel, 2003).

Interestingly, it was proposed that in a dimeric state the catalytic activity of

RPTPs might be attenuated by reciprocal occlusion of the active sites (A. Weiss and J.

Schlessinger, 1998). This is based on functional analyses of chimaeras of the epidermal

growth factor receptor (EGFR) and the transmembrane PTP CD45, and on structural

and functional studies of PTP .

Several RPTPs Ligands Have Been Identified

Structural variability of the extracellular domains of RPTPs suggests that they

undergo selective ligand interactions, potentially affecting RPTP activity.
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The best characterized example of acute regulation of a RPTP by ligand binding is

the inhibition of RPTP  activity following binding of pleiotrophin (PTN) (K. Meng et

al., 2000). Potential downstream substrates of RPTP , which show increased

phosphorylation in response to PTN, include -catenin, which is a component of the

cadherin catenin cell adhesion complexes, and -adducin (H. Pariser et al., 2005),

which is a cytoskeletal protein that regulates actin filaments.

Moreover, the binding of heterophilic ligands including tenascin, contactin and N-

CAM has been demonstrated for PTP-  (E. Peles et al., 1998). Contactin also binds to

PTP- , and nidogen binding to LAR has been proven (P. O'Grady et al., 1998; L. Zeng

et al., 1999). The extracellular domains of some receptor-like PTPs, such as PTP ,

PTP  and PTP  have been shown to mediate homophilic interactions (S.M. Brady-

Kalnay et al., 1995; J. Sap et al., 1994).

In an intriguing symmetry with the regulation of RPTKs, heparin sulphate

proteoglycans (HSPGs) have now been recognized as playing an important role in the

regulation of RPTP functions. For example, the HSPGs agrin and collagen XVIII were

identified as ligands for RPTP  in neurons (A.R. Aricescu et al., 2002). Recently, Sdc,

which is a transmembrane surface protein on muscle cells, has been demonstrated to

interact with LAR and to positively regulate the function of this RPTP in motor-neuron

growth cones, thereby mediating signaling events that are associated with the axon-

guidance decisions that lead to muscle innervation (A.N. Fox and K. Zinn, 2005).

Many PTP ligands are still unknown, such as the extracellular ligand of CD148.

However, it was demonstrated that Matrigel, a preparation of extracellular matrix

protein, activates the PTP activity of CD148 (M. Sorby et al., 2001). The CD148 ligand

should be searched among Matrigel components.
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PTPs Play Crucial Physiological Roles in Mammalian Tissues

Many PTPs are believed to be involved in the complex role of orchestrating

metabolism, but their specific activity at the moment is unclear. For example PTP1B,

which directly dephosphorylates the insulin receptor, is considered a negative regulator

of insulin and leptin signal transduction pathways (G. Liu, 2003). Many PTPs are

believed to coordinate immune responses. The most representative case is CD45, a

RPTP who acts as a positive regulator of T and B cell receptors by dephosphorylating

the C-terminal negative-regulatory tyrosine residue of SRC-family PTKs (i.e., LCK,

FYN and YES in T cells, and LYN, FYN and BLK in B cells. See T. Mustelin and K.

Tasken, 2003).

It is believed that PTPs also work as regulators of development, but the studies

carried out so far have achieved ambiguous results. Only in the case of neuronal

development, RPTPs were proven to have a central role in modulating neuronal

migration, axon guidance, and synapse formation (S.E. Ensslen-Craig and S.M. Brady-

Kalnay, 2004).

PTPs Partecipate in Cell-cell Junctions

Cell-cell adhesion is critical to the development and maintenance of multicellular

organisms. The stability of many adhesions is regulated by protein tyrosine

phosphorylation of cell adhesion molecules and their associated components. Tight

junctions (TJs) are responsible for the barrier function of many epithelia, whereas

adherens junctions (AJs) and desmosomes mediate strong intercellular adhesion. The
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assembly and function of TJs is typically dependent on the state of AJs, so that

modulating AJ function often affects TJ barrier properties. The major adhesion

molecules in both AJs and desmosomes belong to the cadherin family; however,

cadherins can also contribute to adhesions between cells where distinct junctions do not

develop and where adhesion is more dynamic. Whereas the extracellular domain of

cadherins participates in calcium-dependent homophilic adhesion, the cytoplasmic

domain binds p120ctn and -catenin (Z. Kam et al., 1995; R. Kemler, 1993; M.G.

Lampugnani et al., 1995). The former regulates the stability of cadherins on the cell

surface (A.P. Kowalczyk and A.B. Reynolds, 2004), and -catenin provides a link to -

catenin and the actin cytoskeleton, although the details of the bridge remain

controversial (S. Yamada et al., 2005). Tyrosine phosphorylation of cadherins and their

associated proteins has major effects on the stability of adherens junctions (J.M. Daniel

and A.B. Reynolds, 1997; M.G. Lampugnani et al., 1997). In early work, it was shown

that inhibiting PTPs with pervanadate elevated tyrosine phosphorylation in adherens

junctions and promoted the disassembly of these structures (T. Volberg et al., 1992).

However, the same group later observed that in some situations elevation of tyrosine

phosphorylation first transiently stimulated AJ assembly before resulting in the eventual

disassembly of the same structures. Activation of PTKs or inhibition of PTPs can lead

to increased tyrosine phosphorylation of members of the cadherin-catenin complex,

dissociation of the AJ from the cytoskeleton, and disruption of cell-cell adhesion (J.

Behrens et al., 1993; N. Matsuyoshi et al., 1992; B.A. Young et al., 2003).

For example, phosphorylation of tyrosine residues 755 and 756 on E-cadherin

leads to its ubiquitination and subsequent endocytosis, resulting in loss of junctional

integrity (Y. Fujita, et al., 2002). Similarly, phosphorylation of Tyr658 and Tyr731 in

the cytoplasmic domain of VE-cadherin prevents binding of p120ctn and -catenin,

respectively, and causes a decrease in barrier function. Therefore, maintenance of



Introduction- 14

junctional integrity is regulated in part by reversible tyrosine phosphorylation that

results from a competing balance of PTK and PTP activity.

Receptor-PTPs, such as PTP , VE-PTP, and also CD148, as well as the cytosolic

PTPs, PTP1B, and Shp-2, have been shown to bind to members of the cadherin- catenin

complex and to regulate cell-cell adhesion by regulating phosphorylation of the

cadherin-catenin complex. (J. Balsamo et al., 1996; L.J. Holsinger et al., 2002; R.

Nawroth et al., 2002; J.A. Ukropec et al., 2000; G.C. Zondag et al., 2000). A number of

PTPs interact with and dephosphorylate proteins that are involved in the formation and

disassembling of focal adhesions, and are believed to control cell migration (M. Larsen

et al., 2003).
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Fig. 2: Schematic illustration of the dual aspects of protein-tyrosine phosphatases in controlling
cell cell (A) and cell matrix (B) adhesion. Signaling molecules are schematically drawn to illustrate the
principles discussed. PTPs that antagonize mitogenic and adhesion signals are in brown, whereas PTPs
that promote these signals are in green.

Tight junctions, or zonulae occludentes, are the most apical component of the

intercellular junctional complex, which also includes adherens junctions, desmosomes,

and gap junctions. Tight junctions visualized by electron microscopy are regions where

the outer leaflets of plasma membranes from adjacent cells appear to fuse together and

obliterate the intercellular space and may extend in depth from 0.2 to 0.5 m (M.G.

Farquhar and G.E. Palade, 1963). The tight junctions form a barrier to diffusion of

molecules from the lumen to the tissue parenchyma (barrier function), which is not

absolute but rather semi permeable, allowing the selective passage of certain solutes but
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not others (J.M. Anderson et al., 2004; M. Cereijido et al., 2004). Tight junctions also

help maintain cell polarity by forming an intramembrane diffusion fence that restricts

diffusion of lipids in the exoplasmic leaflet of the plasma membrane (M.S. Balda and K.

Matter, 1998; P.R. Dragsten et al., 1981; G. van Meer and K. Simons, 1986).

Fig. 3: The structure of a tight junction. The junctions are shown (A) schematically, (B) in a
freeze- fracture electron micrograph, and (C) in a conventional electron micrograph (B. Alberts, 1994).

A set of different transmembrane proteins such as occludin, claudins, and

junctional adhesion molecule (A.S. Fanning et al.) extend into the paracellular space

and thus are candidates to create the seal, whereas the cytoplasmic plaque consists of a

network of adaptor proteins that anchor the junction to the cytoskeleton and serve as a

scaffold for the recruitment of signaling proteins.

The membrane-associated guanylate kinases (MAGUK), called ZO-1, ZO-2, and

ZO-3, are thought to act as scaffolds for the transmembrane proteins, creating a link to

the peri-junctional actin cytoskeleton, and as signal transducers controlling the
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paracellular barrier (A.S. Fanning et al., 1999). MAGUK proteins are composed of the

following domains:

• Three PDZ (PSD95/Dlg/ZO-1) domains,

• an SH3 domain,

• a GK domain,

• an acidic domain, and

• an actin binding region (L. Gonzalez-Mariscal et al., 2000).

The PDZ1 domain binds to claudins, while the GK domain is the binding site for

occluding (K. Matter and M.S. Balda, 2003). SH3-GK domains are responsible for the

binding to -catenin and afadin (Y. Imamura et al., 1999).

The best-studied protein within the cytoplasmic domain of TJs is the 220-kDa

phosphoprotein ZO-1, which is likely to constitute the major backbone of the TJ plaque

(S. Tsukita et al., 1999). It has been reported that a fraction of ZO-1 accumulates in the

nucleus in growing epithelial cells (C.J. Gottardi et al., 1996).

ZO-1 is down-regulated in breast cancer tissues and during corneal wound repair,

suggesting that expression levels of ZO-1 inversely correlate with the proliferation state

of epithelial cells (Z. Cao et al., 2002; K.B. Hoover et al., 1998). This is also supported

by the observations that ZO-1 becomes stabilized in confluent MDCK cells and that its

expression levels increase with cell density (M.S. Balda and K. Matter, 2000; B.

Gumbiner et al., 1991). These results suggest that ZO-1 may serve multiple purposes

within the cell, such as cell differentiation and regulation of transcription (K.J. Atkinson

and R.K. Rao, 2001; C.J. Gottardi, et al., 1996). Recent findings favor the notion that

ZO-1 is directly involved in the establishment and sorting out of two distinct junctional

domains, belt-like AJs and TJs, during epithelial polarization (J. Ikenouchi et al., 2007).

Tight junction permeability in cell culture is generally measured using either of

two techniques: transepithelial/transendothelial electrical resistance (TER) or
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paracellular tracer flux. TER measurements are commonly used to assess the integrity

of tight junctions. Electrical resistance across a monolayer represents the sum of the

paracellular resistance, which consists of the resistance of the junction and the

intercellular space, and the transcellular resistance, which consists of the resistances of

the apical and basolateral cell membranes (P. Claude, 1978). Paracellular tracer flux

may also be used to measure tight junction integrity. In this method, permeability to

hydrophilic, uncharged paracellular tracers is measured using radioactive or

fluorescently conjugated tracers such as mannitol or dextran.

Fig. 4: Complexity of protein-protein interactions at the tight junction. This figure illustrates some
of the many interactions that occur at the tight junction. Some of these interactions, such as those between
claudins and ZO proteins, are necessary for the structural integrity of the tight junction. Others regulate
signaling pathways that emanate from the junction.
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Many PTPs Act as Tumor Suppressors

In cancer, oncogenic activation of tyrosine kinases is a common feature, and novel

anticancer drugs have been introduced that target these enzymes. Although predictable

on the basis of PTK/PTP antagonism, evidence showing that PTPs can function as

tumor suppressors has become available only recently. The first example was PTEN,

whose tumor suppressor function is associated with the dephosphorylation of the 3-

position in the sugar head group of inositol phospholipids, thereby regulating

phosphatidylinositol 3-kinase-dependent signaling pathways that are associated with

cell survival (M. Cully et al., 2006).

Another well-known tumor suppressor PTPs is SHP-1, a member of the non-TM-

PTPs expressed predominantly in cells of the hematopoietic lineage. SHP-1 is an

important negative regulator involved in signaling through receptors for

cytokine/growth factors. Association of SHP-1 with the majority of these receptors is

mediated by SRC-homology 2 (SH2) domains. SHP-1 acts by dephosphorylating the

receptor and receptor-associated tyrosine kinases. Defective expression of SHP-1, as

seen in the natural SHP-1 gene knock-out motheaten mice, results in hyperplasia of the

erythroid and lymphoid lineages (Q. Zhang et al., 2000).

A more complex picture is now emerging in relation to the roles of PTPs in

cancer. In fact, overexpression of PTP  has been shown to cause persistent activation of

the PTK Src, with concomitant cell transformation, suggesting a positive role for this

PTP in tumorigenesis (X.M. Zheng et al., 1992). More recently, several potential tumor

suppressors have been identified among the classical PTPs, including receptor PTPs

such as CD148 (C.A. Ruivenkamp et al., 2002) and PTP  (encoded by PTPRK). An

analysis of mutations in PTP genes in colorectal cancers also identified several

candidate tumor suppressors the most frequently mutated was the receptor PTP .
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In addition to inactivating mutations in the intracellular PTP domains, a large

number of missense mutations were detected in the extracellular segment of this

receptor-like PTP, which highlights the importance of this domain for the function of

the enzyme, and its potential role in ligand binding. Similar observations were made for

two other RPTPs, LAR and PTP . The spectrum of potential tumor suppressor PTPs has

now broadened with the observation of epigenetic regulation by hypermethylation of

CpG sites in the promoters of several members of the PTP family (S.T. Jacob and T.

Motiwala, 2005).

These include the receptor PTPRO (also known as GLEPP1) in hepatocellular

carcinoma and lung cancer, Src-homology-2-domain-containing protein tyrosine

phosphatase-1 (SHP1) in leukaemia and lymphoma, FAP1 in hepatocellular carcinoma

as well as the dual specificity phosphatases PTEN in breast cancer and mitogen-

activated-protein-kinase phosphatase-3 (MKP3) in pancreatic cancer. In principle, such

gene-silencing events might be a target for anti-cancer therapies.

CD148

State of the Art

CD148 is a type-III RPTP with a broad pattern of tissue expression. It is

expressed on fibroblasts and endothelium, as well as epithelial and hematopoietic cells

(L.G. Borges et al., 1996; H. Honda et al., 1994; J.M. Osborne et al., 1998). The CD148

gene, also known as Ptprj, is located on chromosome 11p11.12 in humans, and consists

of 25 exons distributed over 150 Kb of genomic DNA (H. Honda, et al., 1994). The
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protein contains a bulky extracellular domain of 970 aminoacids organized in eight

fibronectin type III repeats, a 25-aminoacid long transmembrane domain and a 342

aminoacid cytoplasmic portion with a single catalytic domain. Its mass varies from 200

to 250 KD depending on different N- or O-glycosylations in the extracellular domain.

Fig. 5: Schematic view of the CD148 molecule.

Biochemical Activity of CD148

As mentioned above, the activity of many PTPs may be regulated by

phosphorylation, and this seems to occur in the case of CD148. Jallal et al. reported that

CD148 is tyrosine-phosphorylated after stimulation with epithelial growth factor (EGF)

(B. Jallal et al., 1997), although no change in phosphatase activity was documented.
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Even if it does not affect CD148 phosphatase activity, this phosphorylation event

might have an important role in promoting interactions with SH2-containing proteins

involved in the metabolic networks in which CD148 signal transduction pathways

participate.

Although protein dimerization is a key mechanism that simulates PTK activity,

PTPs are generally not regulated in this way. Some lines of evidence, however, suggest

that CD148 could indeed dimerize. In fact, the transmembrane domain contains the

same dimerization consensus sequence (C.N. Chin et al., 2005) found in RPTP , whose

dimerization inhibits its phosphatase activity (G. Jiang et al., 1999). It is not clear if

dimerization inhibits or induces CD148 phosphatase activity, since experimental data

lead to conflicting results. For example, in lymphocytes CD148 dimerization (induced

by cross-linking) was shown to induce proliferation (S.G. Tangye et al., 1998); on the

contrary, in endothelial cells dimerization induced by a bivalent antibody seems to act

in an opposite way, promoting CD148 activation (T. Takahashi et al., 2006).

CD148 Is Involved in Cell Contact Inhibition

CD148 is a PTP whose activity influences many aspects of cellular metabolism,

but it is especially known for its role in promoting cell contact inhibition. The first

paper on CD148 reported that its expression gradually increased in fibroblasts that

became confluent. For this reason CD148 is also known as DEP-1 (i.e. Density

Enhanced Phosphatase-1: A. Ostman et al., 1994). The molecular mechanisms

accounting for this phenomenon are unknown, but they might be induced by a

homophilic interaction between the FNIII motifs of CD148 located in adjacent cells, as
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similar observation have been already reported for PTP  and PTP  (M.F. Gebbink et

al., 1993; J. Sap, et al., 1994).

Expression of CD148 is increased more than 10-fold in many cell types as they

approach confluence, suggesting it contributes to cell-cell adhesion and growth contact

inhibition (A. Ostman, et al., 1994). CD148 is present at the apical surface of

endothelial cells, but also co-localizes with VE- cadherin at intercellular junctions (T.

Takahashi et al., 1999; T. Takahashi et al., 2003), and it indirectly associates with VE-

cadherin by binding to p120ctn, -catenin (plakoglobin), and -catenin. CD148

regulates their phosphorylation state, preserving their interactions with the cadherins

and promoting cell-cell adhesion (L.J. Holsinger, et al., 2002).

The role of CD148 in organizing cell-cell junctions is supported by the

observation that in cells lacking strong cell-cell adhesion, such as fibroblasts,

overexpression of CD148 results in a change in cadherins localization from discrete

areas of cell-cell contact to large areas reminiscent of the continuous AJ found in

epithelial cells (L.J. Holsinger, et al., 2002; S. Kellie et al., 2004).

CD148 Substrates

A number of studies in cell culture have indicated an antagonistic role of CD148

in growth factor signaling by direct dephosphorylation. Targets identified so far include

the platelet-derived growth factor receptor (PDGFR), the vascular endothelial growth

factor receptor, (VEGFR) and the hepatocyte growth factor/scatter factor receptor

(HGFR/SF). Platelet-derived growth factors and their cognate receptors are important

regulators of cell proliferation, cell migration, cell differentiation, and cell-matrix
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interactions. CD148-mediated specific dephosphorylation of PDGFR (M. Kovalenko, et

al., 2000) was shown to influence PDGF transduction pathway, inducing a strong

reduction of the phospholipase C  (PLC ) activation and the extracellular signal-

regulated kinase phosphorylation(M. Tijsterman et al., 2002). Since these molecules are

involved in cell proliferation, it is believed that CD148 could control cell proliferation

through PDGFR. On the other hand, the phosphoinositide 3-kinase (PI3K) activation

was only slightly affected, suggesting a less important role of CD148 in cell survival.

Kappert et al. identified CD148 as the dominating factor determining PDGF-

phosphorylation and VSMCs proliferation in injury-induced neointima formation. In

support of these findings, cultured CD148-/- cells displayed increased PDGF-dependent

cell signaling. Hyperactivation of PDGF-induced signaling was also observed after

siRNA-down-regulation of CD148 in VSMCs (K. Kappert et al., 2007).

Moreover, CD148 indirectly increases cell-matrix adhesion by activating Src via

its interaction with PDGFR (E. Jandt et al., 2003). CD148-Src relationships were

accurately investigated by Pera et al. Not only did they show a specific interaction

between CD148 and Src, but they also identified the phosphotyrosine residue

dephosphorylated by CD148, namely PY529, the one involved in Src activation.

Interestingly, other proteins involved in the adhesion process, like the focal adhesion

kinase (FAK) and paxillin, were shown to be phosphorylated and therefore activated

after Src CD148-dependent dephosphorylation (I.L. Pera et al., 2005).

Another growth factor receptor dephosphorylated by CD148 is Met, the receptor

for HGF/SF, that has an expression pattern overlapping with CD148. Met induces

mitogenic, motogenic, and morphogenic responses after ligand activation by recruiting

a number of signaling and docking molecules, and has been implicated in the

phosphorylation of cell junction proteins. Disruption of normal signaling through Met

has been implicated in certain cancers. Met presents various tyrosine residues which
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could potentially be dephosphorylated, but CD148 preferentially dephosphorylates

PY1349 and PY1365. The first one promotes the recruitment of signaling and adapter

molecules including Gab1, while the second one is essential in mediating morphogenic

signals. CD148 does not dephosphorylate the phosphotyrosine of the activation loop, so

it does not inhibit the kinase activity of Met. However, it may modulate Met

downstream transduction pathway controlling the specificity of its activity (H.L. Palka

et al., 2003).

Although one of the first identified functions of CD148 was its role in contact

inhibition (A. Ostman, et al., 1994), the biochemical pathway that controls this

mechanism is still poorly understood. Lampugnani et al. approached the problem by

studying CD148 behavior in confluent endothelial cells, where CD148 was found to be

enriched at cell junctions. Confluent endothelial cells stimulated with VEGF do not

proliferate and show a reduced phosphorylation of VEGFR2. This study showed that

CD148 specifically dephosphorylates VEGFR-2 only if it co-localizes with cadherin

and VEGFR-2, a cluster occurring exclusively in confluent cells (M. Grazia

Lampugnani et al., 2003). Altogether, these data suggest an important role for CD148 in

cell-cell contacts and adherens junctions turn-over.
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Fig. 6: Protein-tyrosine phosphatases (PTPs) can antagonize receptor-tyrosine kinase (RTK)
signaling through direct receptor dephosphorylation, as described for DEP1-mediated dephosphorylation
of platelet-derived growth factor (PDGF) receptors.

CD148 Acts as a Tumor Suppressor

Like many phosphatases, CD148 plays a role in cancer, its down-regulation being

documented in different kinds of tumors. Additionally, in cultured breast cancer cells

CD148 re-expression led to a five- to ten-fold reduction in cell growth (M.M. Keane et

al., 1996). Similar findings were later reported in pancreatic, thyroid, and colon cancer

cells (C.A. Ruivenkamp, et al., 2002; F. Trapasso et al., 2000; F. Trapasso et al., 2004).
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CD148 re-expression was also described to induce differentiation in breast and thyroid

undifferentiated tumor cells (R. Iuliano et al., 2003; M.M. Keane, et al., 1996). To

understand the role of CD148 in cancer, many studies were carried out to analyze Ptprj

gene status in human tumors. The most thorough analysis identified Ptprj as the

functional gene at the mouse colon-cancer susceptibility locus, Scc1 (C.A. Ruivenkamp,

et al., 2002). This locus was originally defined based on its segregation with colon

cancer susceptibility after crossing cancer-resistant and cancer-susceptible mouse strains

(C.J. Moen et al., 1996). Sequence differences in Ptprj between the cancer-susceptible

and cancer-resistant strains were also identified, supporting the theory that tumor-

susceptibility is conferred by certain Ptprj variants.

Ptprj status has also been analyzed in human tumors (R. Iuliano et al., 2004; C.A.

Ruivenkamp, et al., 2002). Loss of heterozygosity, occurring in the absence of acquired

mutation in the remaining allele, has been found in breast, colon, lung and thyroid

cancers, implicating Ptprj haploinsufficiency as a transforming mechanism in humans.

In association with these studies, different allelic variants of human Ptprj were

identified; these variations result in CD148 proteins that have differences in their

extracellular-domain residues (C. Ruivenkamp et al., 2003).

CD148 Regulates Cell Growth and Cell Cycle

The tumor-suppressive role of CD148 was clearly displayed in experiments where

highly malignant thyroid cells, after transduction by a retrovirus carrying CD148,

appeared to acquire a normal phenotype and showed increased adhesion, restoration of

differentiation, reduced proliferation and decreased tumorigenicity (F. Trapasso, et al.,
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2000). The same report established that CD148 induced a G1 growth arrest by

suppressing the degradation of the cyclin-dependent kinase inhibitor p27kip1 protein.

The antiproliferative role of CD148 has also been associated with somatostatin, an

endogenous negative regulator of proliferation whose activity is mediated by a family of

five G protein-coupled receptors (named SSTR1 5). Interestingly, somatostatin

antiproliferative effect is reported only in CD148-coexpressing cells. The inhibition of

cell proliferation caused by somatostatin treatment is due to an increased activity of

CD148, which directly dephosphorylates ERK1/2 (A. Massa et al., 2004).

CD148 role in controlling endothelial cell proliferation is essential for the

development of a well structured vascular system, which is at the basis of a correct

embryo formation. Homologous recombinant mice were generated expressing a mutant

CD148 (CD148 CyGFP), from which cytoplasmic phosphatase sequences had been

removed and substituted in frame by sequences encoding enhanced green fluorescent

protein (EGFP) to create a CD148/GFP fusion protein. In the first days of embryo

development, a normal endothelial differentiation occurred, but after E8.5, when CD148

expression appears evident, endothelial progenitor cells began to proliferate in an

uncontrolled way. Developmental consequences were severe and knock-in embryos

died at 10.5 days of gestation, with failed developmental vascularization and growth

retardation (T. Takahashi, et al., 2003).

It must be noted however, that recently Trapasso et al. showed that mice deficient

for CD148 were viable, fertile, and showed no gross anatomical alterations (F. Trapasso

et al., 2006). This result could be accounted for by redundant pathways operating in

early development.
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CD148 Is Expressed in the Hematopoietic Tissue

CD148 is ubiquitously distributed throughout the hematopoietic tissue, but its

expression level is quite variable among cell lineages. The highest levels are found in

macrophages, then in B cells, neutrophils and erythroid cells. T cells show the lowest

level of CD148, but its expression markedly increases upon T-cell receptor (TCR)

activation (J. Lin et al., 2004).

Despite its abundant distribution, CD148 role in hematopoietic cells is far from

being elucidated; only few studies have investigated the increased expression of CD148

in T cells. In these cells, CD148 is thought to act as a critical regulator of the signal

transduction cascade induced by TCR activation, contrasting T cell proliferation. The

identified CD148 molecular targets are LAT and PLC 1, whose dephosphorylation

inhibits fundamental transduction pathways (J.E. Baker et al., 2001). The inhibitory role

of CD148 only occurs in the last phases of T-cell activation, due the formation of the

immunologic synapse at the interface between T-cell and the antigen presenting cell

(APC). The immunologic synapse is formed by proteins organized in an ordered

structure, from which proteins not involved in T-cell activation are excluded. Also due

to its large extracellular domain, CD148 is excluded from the immunologic synapse and

normally does not inhibit TCR activation. Only at the end of T-cell activation, with the

dissociation of the immunologic synapse, does CD148 interact with its substrates and

down-regulates TCR activity. Exclusion from the immunologic synapse is therefore a

stratagem to prevent the premature termination of T-cell immune response (J. Lin and

A. Weiss, 2003).

Macrophages are the hematopoietic cells where CD148 is more abundantly

expressed, suggesting its important role in their function. As previously discussed,

CD148 controls proliferation and differentiation in many cell types. Consistent with this
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finding, in macrophages a down-regulation of CD148 expression after colony-

stimulating factor-1 (CSF-1) stimulation and an up-regulation after lipopolysaccharide

(LPS) was documented (J.M. Osborne, et al., 1998). Little is known about CD148 role

in eosinophils; the only available data suggest that it might control degranulation and

induce superoxide anion generation (V. del Pozo et al., 2000).

The work described herein addresses the role of CD148 in epithelial tissues with a

somatic knock-down approach.

Choice of the Experimental System

RNA Interference

Gene silencing mediated by double-stranded RNA (dsRNA) is a sequence

specific, highly conserved mechanism in eukaryotes. Originally recognized in plants

and lower organism (C. Napoli et al., 1990; F. Ruiz et al., 1998) the phenomenon was

recently extended to almost all eukaryotic organism, including mammals (S.M. Elbashir

et al., 2001a). RNA interference (RNAi) is believed to have originated in order to

protect the genome against invasion by mobile genetic elements such as viruses and

transposons (M. Tijsterman, et al., 2002; P.M. Waterhouse et al., 2001), and to

orchestrate developmental programs. The elements responsible for RNAi are short

interfering double stranded RNA (siRNA) molecules originated in the cell cytoplasm by

the activity of an RNase III, called Dicer, which cleaves long doubled-stranded RNA.

siRNAs are 21 23 nucleotide long and present symmetric 2-3 nt 3  overhangs and 5 -

phosphate and 3 -hydroxyl groups (S.M. Elbashir et al., 2001b). siRNAs are then
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incorporated into an RNA inducing silencing complex (L. Gonzalez-Mariscal, et al.,

2000), which unwind the siRNA duplex and guide the antisense strand to its

homologous target mRNA for the endonucleolytic cleavage (A.M. Denli and G.J.

Hannon, 2003). RNAi mediated by the introduction of long dsRNA has been used as a

method to investigate gene function in various organisms; however, the applicability of

this approach is limited in mammals because the introduction of dsRNA longer than 30

nt induces a sequence non-specific interferon responses. This impasse was broken with

the introduction of synthetic siRNAs which can efficiently and specifically silence gene

expression (S.M. Elbashir, et al., 2001b).

The design of this molecules should be accurately studied considering not only the

sequence of the fragment but also the target mRNA whose secondary structure can

sometimes affect the efficiency of silencing. Another mechanism that is lacking in

mammalians cells is the siRNA amplification mechanisms that confer RNAi potency

and longevity in lower organisms (Y.L. Chiu and T.M. Rana, 2002). Prolonged gene

silencing has become possible even in mammalian cells with the development of

expression vectors allowing for the production of shRNAs that can be converted by

Dicer into functional siRNAs. There are different choices of vector-driven systems but

most are based on the production of a single RNA from a pol III-driven plasmid that

forms a stem-loop structure in which the sense and antisense strands form the stem of

the hairpin. Termination of transcription at a stretch of thymidine bases results in the

generation of a 2 4 bp uridinenucleotide overhang at the 3  end, identical to the

overhang that is normally produced by the Dicer enzyme (J.Y. Yu et al., 2002).

Recently, another even more powerful strategy was developed, retroviral-mediated

delivery of siRNA, which allows the integration of the siRNA into the target cells in

order to almost permanently silence the expression of a gene (G. Tiscornia et al., 2003).
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Lentiviral Vectors

Lentiviral vectors are versatile tools for gene transfer given their ability to stably

integrate into target cells irrespective of proliferative status. They are replication-

incompetent derivatives of Lentiviruses, therefore belonging to the large Retrovirus

family of viruses (which also includes Oncoroviruses and Spumaviruses).

Lentiviruses are lipid-enveloped viruses containing a homodimer of linear,

positive-sense, single stranded RNA genomes of 7-11 kilobases. Following entry into

the target cells, the RNA genome is retro-transcribed into linear double stranded DNA

(provirus) and integrated into the host genome and serves as a template for the

production of progeny virions. All retroviral genomes have two long terminal repeat

(LTR) sequences at their end. LTRs and neighboring sequences act in cis during viral

gene expression and packaging, retrotranscription and integration of the genome. The

LTR sequences frame the tandem gag, pol and env genes encoding the structural

proteins, nucleic-acid polymerases/integrases and surface glycoprotein, respectively

(S.P. Goff, 2001). Lentiviruses have a more complex genome; in addition to the gag,

pol, and env genes, they encode two regulatory genes, tat and rev, essential for

expression of the genome, and a variable set of accessory genes (R. Desrosiers, 2001).

Fig. 7: Schematic drawing of the HIV provirus.
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Integration into the host genome is a fundamental feature of retroviruses. An

important difference between prototypic retroviruses and lentiviruses are the basic

requirements for integration: the former are dependent on cell cycling, and viral gene

transfer can only occur in host cells that are actively replicating at the time of infection

(D.G. Miller et al., 1990). In contrast, lentiviruses can transduce non-dividing cells (L.

Naldini et al., 1996), because the lentiviral genome is actively transported into the

nucleus (A. Follenzi et al., 2000; V. Zennou et al., 2000). Lentiviral vectors are

replication-incompetent derivatives of lentiviruses (HIV-1 in our system) whose

genome has been segregated into distinct units to improve the biosafety properties of the

system. A number of non essential viral genes have been removed, and cis-acting

sequences have been split from genes required in trans. The first generation of HIV-

based vectors comprised all HIV-1 protein except Env and was constituted by 3

plasmids: (1) the packaging construct, which contained all the viral genes driven by the

CMV promoter; (2) the transfer vector, which contained HIV-1 cis-acting sequences

and the expression cassette for the trangene; (3) the envelope-coding plasmid, which

encoded a heterologous envelope protein for pseudotyping the vector particles (L.

Naldini, et al., 1996).

A major step towards improved biosafety was the deletion of four additional

genes that encode virulence factors (Vpr, Vif, Vpu and Nef) whose removal did not

affect the transducing vector effectiveness (R. Zufferey et al., 1997). The more recent

third-generation lentiviral vectors (see Fig. 8) retain only three of the nine genes present

in the genome of the parental virus (gag, pol and rev), minimizing the risk for the

development of replication-competent particles (RCR). In fact, the tat gene was deleted

and the transfer vector transcription was supported by replacing the 5  U3 region with

the RSV promoter. The Rev gene was also removed from the packaging construct and

inserted in a fourth plasmid with an upstream RSV promoter (T. Dull et al., 1998). In
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addition, these vectors carry a 400 bp deletion in the U3 region of the 3  LTR of the

provirus, which is copied at the 5  during reverse transcription thus generating

transcription-dead LTR sequences. Vectors with this design are known as self-

inactivating  (SIN), and strongly reduce the likelihood of insertional mutagenesis (R.

Zufferey et al., 1998).

Fig. 8: Basic structure of the 4-plasmid lentiviral system used (T. Dull, et al., 1998). The construct
in B is the viral genome containing viral genetic components required in cis and the expression cassette
for the transgene; A contains structural viral genes required in trans; C drives expression of REV
(required for efficient nuclear export of viral transcripts), and D drives the expression of the envelope
(VSV-G).
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Further improvements were made to enhance viral transduction efficiency, such as

the insertion of the WPRE (Woodchuck hepatitis virus post-transcriptional regulatory

element) in the 3  untranslated region of the vector (R. Zufferey et al., 1999), or the

incorporation of the polypurine tract (cPPT) of the pol gene upstream of the expression

cassette (A. Follenzi, et al., 2000). The procedure for lentiviral vector production

consists in the co-trasfection of the four plasmids into 293T cells, a particularly efficient

packaging cell line. Vector preparations are usually concentrated by ultracentrifugation

(see Materials and Methods) to purify particles and increase titers.
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MATERIALS AND METHODS

Cell Lines

A431 (human epidermoid carcinoma), Caco-2 (human colon adenocarcinoma),

and 293T (human renal epithelium) cells were cultured at 5% CO2 in Dulbecco s

modified Eagle s medium containing 10 % fetal bovine serum, 100 units/ml penicillin,

100 g/ml streptomycin and 2mM L-glutamine. D-MEM/F-12 (1:1) medium and RPMI

1640, containing 10 % fetal bovine serum, 100 units/ml penicillin, 100 g/ml

streptomycin and 2mM L-glutamine were used for T84 (human colon carcinoma) and

THP-1 (human acute monocytic leukemia) cells, respectively, and they were cultured in

the same conditions.

ShRNA Design

shRNAs were constructed according to previous identified siRNAs (Galimi

unpublished). Each hairpin contained a double-stranded stem of 19 29 bp, identical in

sequence to the target mRNA; the 2 strands of the stem are connected by a loop of 6 9

bases, which is removed by Dicer to generate effective siRNAs. The constitutive

expression of the shRNAs is driven by an RNA polymerase III (pol III) promoter.
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Fig. 9: Schematic drawing of a shRNA (D.M. Dykxhoorn et al., 2003).

We used a human U6 snRNA promoter to obtain stable and efficient suppression

of CD148 gene. Transcription terminates at a stretch of five thymidine nucleotides, and

the nascent RNA is processed in such a way that the 3 -terminus will contain two

uridine nucleotides, resembling the ends of natural siRNAs. Three different shRNA (#

1525, # 785 and # 884) were produced against the nucleotide sequence of the gene for

the extracellular domain of human CD148 from validated target sequences (Galimi

unpublished).

As appropriate controls we used lentiviral vectors carrying a silencing cassette

against human cyclophilin gene (PPIB), or lacking a silencing cassette, carrier of the

GFP cassette only.

siRNA sequences (sense strand) for human CD148 and human cyclophilin B gene

are (Tab. 1):

CD148-1525 siRNA 5  GAG TCG TCA TCT AAC TAT A dTdT 3

CD148-745 siRNA 5  CCA ACC AAT GTG ATC TTA A dTdT 3

CD148-884 siRNA 5  CAG CGA CTT CAT ATG TAT T dTdT 3

HuCyclophilin siRNA 5  TGG TGT TTG GCA TTG TTC dTdT 3

Tab: 1.
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Lentiviral Vector Constructs

In the old version, the shRNA cassette was cloned between the GA and the REE

sequence of the pLV616 transfer vector plasmid. The pLV616 vector contains a gene

marker cassette between the cPTT and the WPRE sequence. The cassette is composed

of a hEF1a promoter followed by the GFP and neo genes, which are connected by an

IRES (internal ribosome entry site) sequence.

In the new version, a NheI site was inserted within the 3  U3 region of the

p156RRL-sinPPTCMVGFPPRE LTR. The hU6shRNA#1525Pol III Terminator

template was cloned from the old constructs by using the primers

GGCATTGAGCTAGCAGCA-GGCTTAGATCTGAA LV (forward) and

GGCATTGAGCTAGCATCTCCTCCTCC-AGGTCT (reverse). The design of the

primers incorporated a NheI site which allowed the insertion of the 2 shRNAs into the

NheI site of the p156RRLsinPPTCMVGFPPRE plasmid.

The resulting genome construct was therefore characterized by two shRNA

cassettes inserted into the 2 LTR and by a shorter gene marking cassettes composed by

the CMV-GFP gene.
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Fig. 10: Alternative genome structures of nLV-shRNA (P. Carmeliet et al., 1999) and LV-shRNA
(down) lentivectors. The structure shown at the top allows for high titer and higher level of gene
silencing, due to the shortest overall genome size and double copy of the siRNA cassette.

ShRNA Hairpin Cassette Design for hCD148#745 and hCD148#884

The generation of shRNA-hCD148#745 and shRNA-hCD148#884 initially

required designing PCR primers with siRNA coding sequence. Briefly, two separate

PCR reactions have been performed for each siRNA: the first one produced the U6

region and the sense strand of the hairpin, using primers forward NheI-pLVshRNA and

reverse specific for each siRNA (Rw-U6-745, Rw-U6-884).

The second PCR reaction amplified the loop region with the antisense strand of

the hairpin, followed by the pol III terminator by using primers reverse NheI-

pLVshRNA and forward specific for each siRNA (Fw-U6-745, Fw-U6-884) , (see Tab.

2, below). Then, PCR fusion has been set up. The PCR products were subcloned into

the new p156RRLsinPPTCMVGFPPRE plasmid after restriction enzyme digestion with

NheI.
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It was restriction mapped and also the sequencing reaction to confirm the integrity

of the plasmid.
PC

R
1 FwNheI-pLVshRNA 5  GGC ATT GAG CTA GCA GCA GGC TTA GAT CTG AA 3

Rw-U6-primer-745 5  TTA ATC TCA TGA ATT AAG ATC ACA TTG GTT GGC
GGT GTT TCG TCC 3

PC
R

2 Fw-U6-primer-745 5  TTA ATT CAT GAG ATT AAG ATC ACA TTG GTT GGC TTT
TTA CCC AGC 3

RwNheI-pLVshRNA 5  GGC ATT GAG CTA GCA TCT CCT CCT CCA GGT CT 3

PC
R

1 FwNheI-pLVshRNA 5  GGC ATT GAG CTA GCA GCA GGC TTA GAT CTG AA 3

Rw-U6-primer-884 5  TAT TTC TCA TGA AAA TAC ATA TGA AGT CGC TGC
GGT GTT TCG TCC 3

PC
R

2 Fw-U6-primer-884 5  TAT TTT CAT GAG AAA TAC ATA TGA AGT CGC TGC TTT
TTA CCC AGC 3

RwNheI-pLVshRNA 5  GGC ATT GAG CTA GCA TCT CCT CCT CCA GGT CT 3

Tab. 2: Up: shRNA 745 PCR primers. Down: shRNA 884 PCR primers.

Fig. 11: Construction of shRNA hairpin cassette by PCR fusion.
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Lentiviral Vector Production

Recombinant lentiviruses were produced by transient co-transfection in 293T cells

using the calcium-phosphate protocol. About 3X106 cells were plated the day before in

a poly-L-lysine coated 15 cm plates. A total of 50.6 g of endotoxin-free plasmid mix

was used for the transfection of one dish: 22.5 g of the transfer vector plasmid, 14.6 g

of the packaging plasmid pMDLg/p RRE, 5.6 g of pRSV.Rev, 7.9 g of the envelope

plasmid pMD.G. The precipitate was formed by adding plasmids to a final volume of

1.125 l of CaCl2 0.25 M, mixing well, then adding 1.125 l of 2X BBS while

vortexing. After an incubation of 15  the mix was added dropwise onto 293T cells and

the plate was incubated at 3% CO2 for 16 hours, when medium was changed and cells

were reincubated at 5% CO2.

Infectious lentiviruses were harvested at 48 and 72 h post-transfection and filtered

through 0.22- m-pore cellulose acetate filters as described (T. Dull, et al., 1998; L.

Naldini, et al., 1996). Recombinant lentiviruses were concentrated by

ultracentrifugation (2 h at 50.000 g) and subsequently purified on a sucrose 20%

gradient (2 h at 46.000 g). The resulting pellet was resuspended in 200 l of Hank s

buffer. Vector concentrations were analyzed by using an immunocapture p24-gag

ELISA (Alliance, DuPont/NEN).
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GFP Lentiviral Vector Titration

293T cells were plated in a 24-well-plate and transduced in 200 l medium 36

hour later with 3-fold dilution of the virus prep (0.1 l to 1.46 104 l from the

concentrate). Medium was changed after over-night incubation (0.5 ml/well).

Cells were counted in one well at the time of infection, they should be 10-15 104

per well. After 4-5 days the last effective dilution was checked in the following way.

293T cells were detached with 0.5 ml of EDTA 0.5 mM, resuspended and the

percentage of green-fluorescent cells were analyzed by flow cytometry.

The specific activity (T.U./ml) on the samples was calculated in the linear range,

according to the formula (P x N) / (100 x V). Where P is the number of GFP-positive

cells in a given well (in %), N is the number of cells per well, V is the volume of virus

used for infection of that well (in ml).

Safety Check

5X104 of HIV-permissive cells (C8166, 293G, or HeLa-CD4) were plated in 24-

well plate and transduced with 1 l of concentrated vector. Confluent cells were split

1:10 for 7 passages and 200 l medium were checked for p24. The undiluted medium

should have no detectable p24.
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Lenti-shRNA Validation

A431, Caco-2 and THP-1 cells were seeded on a 24-well dish and transduced with

1 l of nLV-sh-hCD148, or with 1 l of nLV-GFP at a confluence of 70%. CD148

expression was detected by flow cytometry 7 days, 2 weeks and 5 weeks post

transduction as described. Cells were harvested, counted, and resuspended in ice-cold

staining buffer (PBS + 3% FBS). Subsequently, primary antibodies were added. A431,

Caco-2 and THP-1 cells were stained with a mouse anti-human CD148 antibody 143-41

(Biosource) at a final concentration of 10 g/ml. The cells were then incubated at 4°C

for 30 minutes, and they were washed twice in staining buffer. The secondary antibody

used in these experiments was Alexa Fluor® 647 goat anti-mouse IgG1 at a final

concentration of 10 g/ml. Cells were then incubated at 4°C for 25 minutes in the dark,

washed twice, and then resuspended in 500 l of staining buffer. Samples were finally

analyzed on FACScan flow cytometer (Becton Dickinson) using Cellquest software

(Becton Dickinson). CD148 expression was analyzed 10 days post-transduction.

Transcript Analysis

T84 wild-type cells were plated in a 24-well plate, at different cell densities

(160.000, 80.000, 40.000, 20.000, 10.000 and 5.000 cells/well). 4 days later, medium

was removed and CD148 mRNA levels were measured by bDNA assay (QuantiGene®

Reagent System, Bayer).
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A431 and Caco-2 Growth Curves

A431 and Caco-2 wild-type or CD148 KD were plated in a 96-well plate at a

density of 1000 cells and 2000 cells per well for A431 and Caco-2 cells, respectively.

Cell proliferation was measured every 24 hours for 9-14 days by an ATP quantitation

assay (CellTiter-Glo). The percentage of died cells was calculated by PI incorporation.

200.000 cells were resuspended in PBS and 2 l of PI (BD Bioscience) was added

immediately before flow cytometry analysis.

Immunocytochemistry

To examine the subcellular distribution of CD148 in Caco-2 cells, 12 X 104 cells

per well were planted onto glass coverslips (155411 Nalge Nunc International,

Rochester, NY), and transduced the following day with 1 l of nLV-sh-hCD148 or with

CMV-GFP vector.

After 8 days, the cells were washed twice in PBS and fixed in 4% w/v ice-cold

paraformaldehyde.

Following fixation, cells were washed twice in PBS, permeabilized in 0,1% Triton

X-100, washed 3X in PBS, and then blocked in PBS containing 1% w/v BSA for 60

min.

Subsequently, primary antibodies were added. Caco-2 cells were stained with

rabbit polyclonal anti ZO-1 (Zymed, San Francisco, USA), rabbit polyclonal anti

occluding (Zymed) and mouse monoclonal anti CD148 (143-41).
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The cells were then incubated at 4°C over night, and then washed twice in PBS

buffer.

As secondary antibody, Alexa Fluor® 647 goat antirabbit IgG and Alexa Fluor®

488 goat antimouse IgG were used. Stained cells were then added to DAPI to label cell

nuclei and kept in the dark until evaluated with confocal microscopy.

Confocal Microscopy

A confocal laser scan microscope (LSM 510) was used to analyze the intracellular

localization of ZO-1, occluding and CD148. All images were imported into Adobe

Photo Impact 8 for preparation of figures. No digital manipulations have been

performed.

Transepithelial Electrical Resistance (TER) Measurements

TER was measured using an Endohm for 24 mm & Costar Snapwell  cup

(World Precision Instruments, Sarasota, Fla.) and calculated as  cm2 by multiplying it

with the surface area of the monolayer. The resistance of the supporting membrane in

Snapwell filters is subtracted from all readings before calculations.

Caco-2 cell monolayers were grown as confluent monolayers on a Snapwell insert

permeable support containing a 12 mm diameter 0.4µm pore polycarbonate membrane,

until they were polarized. Cells were seeded in 500µl at a density of 2X105 cells/well

and, at confluence, transduced with 1 l of LV-sh-hCD148#1525, or with 1 l of LV-

GFP.
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Cells were fed apically and basolaterally with 1ml and 1,5ml fresh medium,

respectively every other day. Cells were incubated at 37oC, 5% CO2 for 28 days. CD148

knock-down cells were compared to untransduced and to LV-GFP-transduced. TER was

measured at 0 day before adding lentiviral vector, and then every other day.

Three independent experiments were done to ensure consistent results. Mean

values ± standard deviation for TER were calculated.
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RESULTS

Expression of CD148 is Cell Density-Dependent in Epithelial Cells

In order to study the density-dependent behavior of CD148 expression, T84

epithelial cells were plated at different densities and after four days in culture CD148

transcript levels were measured by bDNA analysis. As shown in fig. 12, CD148 mRNA

levels increased as the culture became confluent.
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Fig. 12: Analysis of CD148 transcripts at various cell densities.
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Production of LV-shRNAs Specific for Human CD148

To investigate the role of CD148 in cultured cells, we chose a gene silencing

approach mediated by short interfering RNAs (siRNAs). A previous investigation had

identified a number of siRNA triggers specific for human CD148 that efficiently down-

regulated its protein expression (Galimi, unpublished results).

To achieve high-efficiency and long term CD148 silencing, we used a lentiviral

gene delivery system. Lentiviral vectors allow for the integration of expression cassettes

for short-hairpin RNAs (shRNAs) into the genome of the target cell, resulting in down-

regulation of the specific gene. Moreover, lentiviral vectors can transduce a wide variety

of cell lines and primary cells, including non-dividing cells.

For the initial experiments, three different lentiviral vectors were generated: one

carried shRNA specific for the human CD148 (LV-sh-hCD148), a second carried an

unrelated shRNA sequence with no detectable silencing effect used as a negative control

(LV-sh-scrambled), and an empty  vector carried the GFP expression cassette only.

All three vectors had a common expression cassette including a hEF1 -driven

bicistronic cassette for the GFP and neo genes (see Fig. 10 down). Transduced cells

could be easily identified by fluorescence microscopy or flow cytometry, or could be

selected by adding neomycin to the culture medium, depending on the experimental

needs. Lentiviral vector preparations were produced as described in the Materials and

Methods section. Typically, biological titers were in the range of 108 TU/ml for lenti-

shRNA, and 1010 TU/ml for GFP-only vectors (Fig. 13)



Results- 49

Fig. 13 Comparison between a CMV-GFP and LV-siRNA lentiviral titers.

Human shRNA characterization: the efficiency of human CD148 silencing was

tested in A431 cells, an epidermoid carcinoma-derived cell line. Cells were transduced

as described in Materials and Methods; after 2 weeks of selection in G418, CD148

levels were measured by flow cytometry with a monoclonal antibody specific for

human CD148. The plots in fig 14 show a nearly complete disappearance of CD148 in

cells transduced with LV-sh-hCD148 compared with control cells transduced with LV-

sh-scrambled.
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Fig. 14: CD148 silencing measured by flow cytometry on A431 cells following transduction with
the LV-sh-scrambled (A) or with the LV-sh-hCD148 (B).

A New LV-shRNA Design Increased the Transduction Efficiency

Considering that the size and complexity of the vector genome affects the titer of

the vector preparations and the efficiency of gene expression (F. Galimi et al., 2005; M.

Kumar et al., 2001), we optimized the design of the LV-shRNA vectors to improve the

silencing efficiency of the construct.

In order to simplify the vector design and reduce its genome size, the IRES and

the neo gene were removed, and the bicistronic EF1a-GFP-IRES-NEO cassette was

replaced by a CMV-GFP cassette. In addition, the shRNA cassette was removed from

its original position and inserted within the 3  U3 region of the LTR. Reverse

transcription of the transfer vector by reverse transcriptase duplicates the 3  end of the

lentiviral genome so that the 3  U3 is copied at the 5 . The resulting provirus therefore

carries two copies of the shRNA cassette in its genome, doubling the silencing power of
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the Lenti-shRNA (see Fig. 10). The titer of the improved vectors (nLV-shRNA) was

much higher compared to the previous vector design as measured on 293T cells,

yielding 1010 TU/ml. Furthermore, the green fluorescence intensity was also much

brighter. Vectors were validated as described above on Caco-2, A431 and THP-1. The

new vector design allowed for very high efficiencies of transduction and full CD148

knock-down without G418 selection.

Fig. 15: Flow cytometry analysis of CD148 expression in A431 cells infected with LV-sh-
scrambled (A) or with nLV-sh-hCD148 (B) carrying a shRNA#1525 against human CD148.

Fig. 16: Flow cytometry plots of Caco-2 cells transduced with the LV-CMV-GFP (A) or with
nLV-sh-hCD148 (B)
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Fig. 17: Flow cytometry plots of THP-1 cells transduced with the LV-CMV-GFP (A) or with
nLV-sh-hCD148 (B).

CD148 Knock-down Alters the Growth of Several Cellular Types

Overexpression of CD148 in tumor cell lines is known to reduce cell proliferation

(S. Kellie, et al., 2004; F. Trapasso, et al., 2004). We therefore tested whether down-

regulation of CD148 increases cell proliferation in epithelial cells.

A431 cells, previously transduced with nLV-sh-hCD148, nLV-sh-scrambled, or

untransduced were plated at the same density and grown for 10 days. Proliferation then

was measured by ATP quantification (see Materials and Methods) and values were

reported in a growth curve as shown in Figure 18.

Surprisingly, our results showed that during the initial six days of the culture,

CD148 knock-down (KD) cells grew faster than controls; once CD148KD cells reached

confluence, they started to detach and die. A likely explanation for the accelerated

growth pattern is an increased activity of kinases mediating growth signals. Their

dephosphorylation by CD148 in normal conditions is relieved after CD148 silencing,

Sample ID: THP-1 GFP (ED071) #143.41
Gated Events: 3702
Total Events: 4000

A

99.05%0.49%

0% 0.46%

Sample ID: THP-1 #1525 (ED072) #143.41
Gated Events: 3716
Total Events: 4000

B

1.05% 2.42%

0.54% 99.91%
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with a resulting increase in proliferation. However, we have no good explanation for the

second finding. As discussed above, CD148 expression is increased in confluent

cultures, and is known to interact and dephosphorylate proteins involved in cell-cell

contact (L.J. Holsinger, et al., 2002). It is therefore conceivable that CD148 is required

for proper formation and stabilization of epithelial monolayers, and that its absence its

absence might interfere with cell-cell interactions. The same growth pattern described

for A431 cells lacking CD148 was observed in RAW264.7 cells (a mouse monocyte

cell line) under similar experimental conditions (Ninniri, unpublished results and

Doctorate Thesis, XIX ciclo).

Caco-2 cells, a human colon adenocarcinoma cell line, were not as sensitive to

CD148 knockdown, allowing us to study epithelial cell populations in culture. We

compared three populations of Caco-2 cells, transduced with anti-CD148 lenti-shRNA,

or with a GFP-only control vector, or untransduced (see Fig. 19). The cells were plated

at the same density and grown for 14 days. As shown in figure 19, CD148 KD cells

grew very slowly, apparently never reaching confluence. This different response in the

growth of the Caco-2 CD148 KD cells was confirmed by fluorescence microscopy of

the same cells near the end of the growth curve (day 12). Fig. 20 shows a high number

of CD148KD cell population lacking the ability to form monolayers and unable to form

cell-cell contacts compared to CMV-GFP treated cells. Interestingly, cell shape changes

resulted in a more irregular appearance of CD148 KD cells.
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Fig. 18: Growth curve of A431 cells expressing or not expressing CD148.
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Fig. 19: Growth curve of CaCo-2 cells expressing or not expressing CD148.
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Fig. 20: Confocal microscopy of CD148 KD- and GFP- transduced Caco-2 cells (left and right,
respectively), plated onto 96-well dish at 2000 cells/ well, at 12-day of their growth in culture.
Magnification: 200X and 400X.
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Measurements of TER in CD148 KD Caco-2 Cells

Based on these observations, we decided to test the hypothesis that the absence of

CD148 alters a specific tyrosine phosphorylation equilibrium in intracellular targets

involved in the formation of cellular contacts. We therefore examined the effect of

CD148 knock-down on the integrity of tight junctions (TJs). To determine the ion

permeability of TJs and to assess their integrity, we performed measurements of

transepithelial electrical resistance (TER) of Caco-2 monolayers transduced with the

lentiviral vector carrying the anti-CD148 shRNA compared to non-transduced controls.

To investigate the potential role of CD148 in cell-cell junction formation, we

chose to study the effects of its down-regulation in Caco-2 cells, which represents a

broadly used in vitro cellular model for polarized epithelia. The effect of endogenous

CD148 in the regulation of the assembly of TJ was evaluated in these cells by

measurements of transepithelial resistance. For this purpose, equal numbers of Caco-2

cells, plated on polycarbonate 12 mm Snapwell filter (Costar) and allowed to form a

confluent monolayer, were transduced with 1 l of LV-sh-hCD148#1525 or with 1 l of

LV-GFP, as described in Materials and Methods. Resistance was measured just before

virus addition and at various times thereafter up to 28 days.

In monolayers exposed to LV-sh-hCD148#1525, a significant drop in resistance

was first observed at day 9 and continued to decline over, while no significant

difference has been revealed between control and GFP infected monolayers. Domes are

formed by Caco-2 monolayers grown on nonporous surfaces. These structures are

thought to represent areas of net fluid absorption. Domes are present in untreated and

GFP control monolayers (not shown), but are diminished after LV-sh-hCD148

infection. Although our current experimental design does not allow to formally rule out

non-specific effects of transduction or off-target gene silencing, this result is suggestive
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of a CD148 involvement in the establishment of the epithelial barrier. Experiments with

alternative triggers and inducible vector systems are ongoing.
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Fig. 21: Time course for the decline in TER observed after infection of Caco-2 cells with nLV-sh-
hCD148, compared with CMV-GFP vector infected cells and uninfected. The values represent the
average of three independent experiments (each performed in quadruplicate; Mean ± SD).

Localization of CD148 by Confocal Microscopy

Because an alteration of the transepithelial resistance may be accompanied by

alterations in the subcellular distribution of tight junction proteins, we used

immunohistochemistry to detect changes in the localization of two tight junction

specific proteins, occludin, and ZO-1 in Caco-2 cells. To positively identify the

subcellular localization of the proteins being examined, we analysed the samples by

confocal microscopy.



Results- 58

Caco-2 cells were transduced with LV-CMV-GFP or nLV-sh-hCD148 lentiviral

vectors carrying a shRNA against CD148. After 10 days in culture, they were stained

with an antibody against h-CD148 (143-41). CD148 was efficiently down-regulated, as

shown in fig. 16.

Next, we determined the subcellular localization of CD148 by

immunofluorescence in the same cell line. Epithelial monolayers of Caco-2 cells were

grown on glass coverslips (Nalge Nunc International, Rochester, NY) until they were

polarized, as described in Materials and Methods. The cells were stained with mouse

monoclonal anti CD148 (143-41), and a confocal laser scan microscope (LSM 510) was

used to analyze the intracellular localization of CD148.

In a serial confocal xy-sections of Caco-2 labeled with the anti-CD148 antibody,

CD148 was detected at cell-cell contacts (fig. 22, B1 and B2). In order to identify the

intracellular targets/partners of CD148, the cells were stained with rabbit polyclonal anti

ZO-1 (Zymed, San Francisco, USA), rabbit polyclonal anti occludin (Zymed) and

mouse monoclonal anti-CD148 (143-41). Co-labeling with an anti-ZO-1 and with an

anti-occluding antibody revealed that CD148 co-localizes with ZO-1 and with occludin

(fig. 22, C1 and C2). This was supported further by xz-section (fig. 23), showing that

ZO-1 and CD148 co-localizes at the apical end of the lateral membrane. Thus,

endogenous CD148 is expressed in the plasmatic membrane and is associated with

intercellular junctions.

Moreover, untransduced cells were compared to CD148 knock-down cells

(transduced the day after seeding into the glass coverslips with nLV-sh-hCD148, as

described in Materials and Methods). Although no significant quantitative difference in

labeling intensity was discernible, we observed a striking qualitative change in labeling

pattern: the ZO-1 staining at cell-cell contacts was redistributed in a zigzag pattern,

which differed considerably from the straight labeling pattern observed at cellular
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junctions in control monolayers (fig. 24, 25). Our preliminary results revealed that the

down regulation of CD148 in Caco-2 cells interfered with cell-cell junction formation,

as detected by abnormal ZO-1 localization, and also that the knock-down of CD148 in

Caco-2 cells resulted in loss of linearity of ZO-1 expression.

Fig.22: Localization of ZO-1 (A1), CD148 (B1 and B2) and occludin (A2) to the apical tight
junction domain in confluent polarized Caco-2 cells. The distributions of CD148, ZO-1 and occludin
(red) were visualized by double immunofluorescence; shown is a confocal xy section. Merged images
show overlapping of CD148 and ZO-1 in yellow (C1), CD148 and occludin in yellow (C2).
Magnification 200X.
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Fig. 23: Confocal image of Caco-2 cells. ZO-1 (red) and CD148 (green) are localized to the apical
tight junction domain. Merged image shows both proteins appearing together in the same confocal planes
(xz section, on the top). Magnification 200X, scaling: 0,29 m X 0,29 m X 0,30 m.

Fig. 24: Effect of the down regulation of CD148 on the junctional localization of ZO-1 in Caco-2
cells. Confluent polarized cells, untransduced (1st row) or transduced (2nd and last row) with a lentiviral
vector carrying a shRNA against CD148, were fixed, permeabilized and immunostained for ZO-1.
Although ZO-1 labeling was seen to be localized at cell-cell contacts in the KD cells, the distribution
assumed a zigzag pattern in all samples examined, in contrast to the untransduced cells. Magnification
200X, scaling: 0,22 µm X 0,22µm.
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Fig. 25: Abnormal distribution of tight junction protein ZO-1 (red) expression in Caco-2 cells
expressing undetectable levels of CD148. Magnification 200X.
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Discussion

Protein phosphorylations on tyrosine residues are essential events involved in

cellular processes, such as proliferation, differentiation and migration. Triggering of

cellular surface receptors by specific ligands leads to the transient activation of protein

tyrosine kinases (PTKs) which subsequently phosphorylate and thereby modify the

function of intracellular molecules. These early steps of the signaling cascade are also

influenced by protein tyrosine phosphatases (PTPs), an increasing number of which

have been described in recent years. CD148 is a RPTP that exhibits a wide tissue

distribution, being expressed in hematopoietic and endothelial cells, as well as in

fibroblasts, epithelial and several other cells. The widespread expression of CD148

suggests its involvement in diverse signaling pathways, but so far little is known about

its physiological functions. A number of published reports suggest a role for CD148 in

contact inhibition and cell proliferation (M. Grazia Lampugnani, et al., 2003; A.

Ostman, et al., 1994). Like many RPTPs, CD148 has a bulky extracellular domain

whose role in the physiological activity of the protein is unknown. It has been proposed

that CD148 extracellular domain may mediate homophilic or heterophilic interactions

with protein expressed on adjacent cells, playing a role in cell contact inhibition.

Additionally, soluble ligands may also modulate the activity of CD148, as shown in

experiments with Matrigel, a mixture of several extracellular matrix compounds, which

can potentiate the catalytic activity of CD148 (M. Sorby, et al., 2001).

In order to study the biology of CD148, we used the technology of RNAi and

lentiviral vector gene delivery to achieve somatic knock-down of the molecule on a
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broad range of proliferating cell types. This method allowed us to achieve long-term

silencing of the target mRNA and profoundly reduced CD148 expression. Distinct

vector designs were used to achieve CD148 knock-down on cell lines and primary

tissues, the latter remarkably more difficult to transduce and handle in culture. With the

appropriate vector design, we were able to obtain a complete knock-down of the CD148

molecule in all the cell types tested.

The most apparent effect of CD148 knock-down on a number of cell lines was

their increased growth rate compared to cells expressing normal level of the

phosphatase. This phenomenon occurred epithelial and monocytic cell lines  of human

and mouse origin (Ninniri, unpublished results and Doctorate Thesis, XIX ciclo).  The

regulatory role of CD148 in cell proliferation has been investigated, in the last few

years, by many researchers. Iuliano reported that the over expression of CD148 in

thyroid carcinoma cells could suppress their proliferation (R. Iuliano, et al., 2003). A

similar study was recently conducted by Balavenkatraman in colon carcinoma cells

(K.K. Balavenkatraman et al., 2006). What appears in these studies is that CD148 could

control cell cycle, even though the molecular details are currently unknown. Cell

expressing CD148, in fact, show higher level of p27kip1 protein, a cyclin-dependent

kinase inhibitor involved in the regulation of G1/S transition. It has been assumed (F.

Trapasso, et al., 2000) that CD148, by preventing the degradation of p27kip1, promotes

the inhibition of MAP kinases activity, so that cell proliferation is suppressed.

Therefore, the behavior of CD148KD cells could be explained assuming that CD148 is

a cell regulator that maintains cells in a controlled proliferation state. When CD148 is

over-expressed, cells show a reduction in cell proliferation (S. Kellie, et al., 2004),

while when there is a deficiency in CD148 cells proliferate uncontrollably.

Interestingly, CD148 knock-down resulted in accelerated death rate once the

culture reached confluence. Although we do not have a definitive explanation for this



Discussion- 64

finding, it suggests that CD148 expression is required at cell confluence, therefore

implying its role in contact inhibition. CD148 role in contact inhibition is known since

Ostman (A. Ostman, et al., 1994) in 1994 described that the expression of this

phosphatase increased with increasing cell density. Various studies have tried to

elucidate the molecular mechanisms of this phenomenon, but with limited results.(M.M.

Mareel et al., 1991)

Recently, an (F. Galimi, et al., 2005) interesting work focused on contact

inhibition in endothelial cell and pointed out the role of CD148 in cell proliferation (M.

Grazia Lampugnani, et al., 2003). The Authors show that the interaction between

cadherins involved in intercellular contacts is responsible for the inhibition of

proliferation. Cadherins work in the arrangement of protein clusters that co-localize

VEGFR with CD148. Because the formation of these clusters occurs only in confluent

cells, CD148 is able to dephosphorylate VEGFR and therefore to inhibit its proliferative

activity only once cells reach confluence.

ZO-1 directly binds to the cytoplasmic tail of occludin (M. Furuse et al., 1994)

and forms a heteromeric complex with two others MAGUKfamily proteins, called ZO-2

(B. Gumbiner, et al., 1991; L.A. Jesaitis and D.A. Goodenough, 1994) and ZO-3 (J.

Haskins et al., 1998). ZO-1 and occludin also establish a link with the actin

cytoskeleton by directly interacting with actin filaments (A.S. Fanning, et al., 1998; E.S.

Wittchen et al., 1999). Previous studies have shown that a number of perturbations

induce alterations in paracellular permeability associated with protein redistribution of

the junctional complex (M.A. Jepson et al., 1995; C.X. Li and M.J. Poznansky, 1990).

One of these perturbations involves phosphorylation on residues of intercellular

junction proteins. Among the various mechanisms (D. Hecht and Y. Zick, 1992)

reported to induce this effect we can mention: (a) overexpression of oncogenic protein

tyrosine kinase (PTK) (R. Brackenbury et al., 1984; M. Hamaguchi et al., 1993; T.
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Volberg et al., 1991); (b) inhibition of several phosphotyrosine phosphatases (PTP) by

vanadate in conjunction with H2O2 (C.B. Collares-Buzato et al., 1994; D. Hecht and Y.

Zick, 1992; J.M. Staddon et al., 1995; T. Volberg, et al., 1992) and (c) activation of

protein kinase C (PKC) by phorbol esters (J.M. Mullin and M.T. McGinn, 1988; J.M.

Mullin and T.G. O'Brien, 1986; G.K. Ojakian, 1981; W.F. Stenson et al., 1993). In

addition, the agents mentioned have been reported not only to affect the TJs but also

AJs (C.B. Collares-Buzato et al., 1998; J.M. Staddon, et al., 1995; T. Volberg, et al.,

1992). Thus it has been generally assumed that both types of junctions are commonly

regulated and that permeability of TJs depends on the integrity of AJs.

Moreover, it was previously reported that ZO-1 protein is directly involved in the

establishment of two distinct junctional domains, belt-like adhesion junctions (AJs) and

tight junctions (TJs), during epithelial polarization (J. Ikenouchi, et al., 2007). It was

also demonstrated that CD148 is associated with a number of proteins involved in cell-

cell contacts including p120ctn and other members of the catenin gene family. The

interaction of these proteins with CD148 has been revealed dependent on their tyrosine

phosphorylation.

As shown by confocal microscopy (Fig. 24), we noted significant changes in ZO-

1 distribution in CD148 KD Caco-2 cells, at day 8 after seeding into glass coverslips, a

time when TER was beginning to decline. In control cultures, ZO-1 immunostaining

was present as a strong, continuous and distinct pericellular band, as shown in figure 24.

A notable change in ZO-1 immunostaining was observed with nLV-shRNAhCD148

infection: intercellular gaps in ZO-1 staining were frequently observed (Fig. 24 and 25)

in all the experiments, perhaps as a consequence of altered cell shape.

In this study, we showed that the downregulation of CD148 in Caco-2 monolayers

decreases transepithelial macromolecular paracellular permeability. We also showed

that the infection with the shRNA anti human CD148 alters the distribution of ZO-1 that



Discussion- 66

serves to link occludin and the actin cytoskeleton. These structural alterations in the

tight junctions occur contemporaneously with changes in TER.

Our experimental design does not allow to exclude non-specific effects of

transduction or off-target gene silencing. Off-target effects of siRNA  are

concentration dependent, responsible for up to threefold suppression of dozens of genes,

and mediated by either the sense or antisense strand of the siRNA.

If not adequately addressed, these effects can lead to false positives in broad

RNAi-based phenotypic screens, thus clouding data interpretation. The transduction of

the cell lines with several triggers anti human CD148 will also help us exclude the

unlikely possibility of citotoxicity of the lentiviral preparations used. For that purpose,

we are also constructing tetracycline-inducible vectors.

Our data offer a novel perspective to the role of CD148 in the establishment and

maintenance of epithelial sheets. If confirmed in other experimental systems in vitro as

well as in vivo, our approach will identify CD148 as a central player in cell-cell

interactions, possibly opening the way to the identification of its extracellular ligand(s),

which until now have proven elusive.
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