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1. General Introduction 

 

Coastal lagoons are inshore water bodies where marine waters, dominated by tides, and 

freshwaters penetrate (Bramanti, 1988). So, they are transitional ecosystems among marine 

and continental environments. The exchange of water masses of different origins is crucial 

to the natural functioning of coastal lagoons, where ecological processes are controlled by 

this mixing (Piccini et al., 2006).  

Lagoons are characterized by shallow depths and have high sediment-surface-area to water 

volume ratios. Therefore, processes occurring within the sediment and at the water-

sediment interface can strongly influence both water quality and the biota (Castel et al., 

1996; Viaroli et al., 2004). In these kind of environments the sediments play an important 

role as regulator for all ecosystem, in relation to their capability of supply and renewal for 

organic matter and nutrients (Golterman, 1995; JØrgensen, 1996; De Wit et al., 2001). 

Due to their shallow depth, usually light arrives at the sediment-water interface intensively, 

hydrodynamics is influenced by bottom topography and wind acts on the whole water 

column determining the resuspension of materials, nutrients and small organisms from the 

surface of the sediment. Furthermore, coastal lagoons are characterised by a lot of physical 

and ecological boundaries and gradients: between water and sediment, pelagic and benthic 

assemblages, lagoon and marine, freshwater, terrestrial systems and with the atmosphere 

(Pérez-Ruzafa et al., 2005). 

The synergy of all these physical and biological characters makes coastal lagoons highly 

dynamic ecosystems, considered among the most productive in the exosphere, populated 

by a large variety of organisms that permits their classification as environments with 

maximum value of biodiversity (Tomàs Vives, 1996). Moreover they are often important 

as bird reproduction areas and as nursery for fish and shellfish. 

For a lot of these reasons, such areas are extensively exploited for fishing and aquaculture 

(Carafa et al., 2006). They were early sites for human settlement and continue to the 

present day as important centres for economic, social and cultural development (Barraqué 

et al., 1998). 

Aquaculture practices are increasing in all the world due to progressive impoverishment of 

natural fish populations and increasing demand for fish-associated proteins (FAO, 2000). 

On the other hand, farming activities have a strong negative effect on natural fish 
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populations because of the large taking of fish from natural stocks to be converted in 

farmed fish feed (Naylor et al., 2000) and the deterioration of coastal areas as a 

consequence of the high loads of organic matter and nutrients introduced by fish farms 

(Hall et al., 1992; Christensen et al., 2000; Bartoli et al., 2005). 

Just in relation to their exploitation and because they are highly vulnerable to terrestrial 

inputs, coastal lagoons are considered naturally stressed environments, subject to frequent 

fluctuations and alterations (UNESCO, 1981; Kjerfve, 1994). 

Eutrophication, the enrichment of  nutrients, in particular of nitrogen and phosphorus, in 

the water, is one of the most important processes of degradation of lagoon environmental 

conditions and it is often due to the civil and industrial wastes and agricultural and 

zootechnical activities. It is known that the pressures of human activities on coastal 

systems have been dramatically increased in the last few decades and this process will 

continue and evolve, especially in developed countries (Viaroli et al., 2007). On the 

Mediterranean coast, almost all of the lagoons were intensively used for centuries as 

fishery grounds and their subsequent use as outlets for domestic and industrial wastewater, 

led to their eutrophication (Vicente and Miracle, 1992; Pastres et al., 2004). 

As a biological consequence of nutrients enrichment, primary producers often proliferate 

(Menéndez and Comin, 2000), increasing the demand for oxygen needed for biological 

degradation processes. This may, under the concomitance of different conditions, such as 

the increase of temperature and the lack of wind, cause a condition of anoxia and lead to 

dystrophic crises with a strong loss of biodiversity for the large killing of fish and other 

aquatic organisms (Bachelet et al., 2000; Carlier et al., 2007). Therefore, dystrophic crises 

are the last phase, the summit of persistent conditions of intense eutrophication. When a 

strong enrichment of nutrients is observed, the general patterns described include the 

substitution of macrophytes by macroalgae at the benthic level in a first phase and then a 

shift to a phytoplankton based system with anoxic events (Niehnius, 1992). According to 

the model described by Grey (1992) the phase of nutrients enrichment determines the 

growth of macroalgae and phytoplankton and, as indirect effects, the growth of benthic 

animals and fish. The initial effect of eutrophication is a change in the species composition 

over these categories of organisms. The secondary effect consists in a shading depth 

reduction for macroalgae, in possible toxic/nuisance blooms of phytoplankton and in 

changes of behaviour of benthic sediment-living species and fish. Then, it reaches an 

extreme effect, consisting in the mass growth of macroalgae, in toxic effects of 

phytoplankton blooms and in mortality of benthos and fish for the decrease of oxygen 
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concentrations or for the increase of organic material in the sediments. Finally, Grey 

described an ultimate effect consisting in anaerobic conditions of water and H2S 

production, which being toxic, causes mass mortalities of most organisms.  

So, eutrophication causes strong unbalances in the ecosystem, and can culminate in 

dystrophic crises just for the high demand of oxygen and for the decomposition of organic 

matter, produced excessively in respect to the metabolic capacity of water body (Sechi and 

Ulzega, 1990; Marchetti et al., 1994). Furthermore, the anoxia event, that starts in the 

bottom and then moves towards the superficial layers, can be determined by the high water 

temperature that reduce the oxygen solubility strongly. The anoxia condition, if prolonged 

in time or if repeated systematically, causes the escape of aquatic animals and in the worst 

case, it causes their death (Rensel and Whyte, 2003; Hallegraeff, 2003).    

However, the reaction of ecosystems to nutrient load increase varies widely world wide 

because biological control mechanisms of the eutrophication process are not always the 

same. For example, predation can be a very efficient control mechanism removing excess 

biomass generated by excess nutrients (Pérez-Ruzafa et al., 2002). 

Reduction of the light in the water column due to the increasing of phytoplankton growth 

resulting by extreme eutrophication, can also be a disadvantage towards less tolerant 

phytoplankton species and induce dramatic alterations in their composition (Chomérat et 

al., 2007). The environment degradation due to hypertrophic conditions favours the 

dominant development of cyanobacteria in respect to less tolerant algal species (Sorokin et 

al., 1996a; Scheffer et al., 1997), even if, nowadays, the link between very high trophic 

conditions and cyanobacteria blooms has been documented only in few Mediterranean 

lagoons (Abrantes et al., 2006; Chomérat et al., 2007). 

Among the mechanisms used by some phytoplanktonic classes for survival in adverse 

environmental conditions, there is a production of dormant cysts. For example, a lot of 

dinoflagellates have a heteromorfic life-cycle, alternating a vegetative, motile, planktonic 

stage with a dormant, non-motile, benthonic stage (hypnozygote), that have a fundamental 

role for the survival and persistence of species (Hallegraeff, 1998; Anderson, 1998; Imai 

and Itakura, 1999). In fact, the development of dormant cysts involves different advantages 

for the species that produce them: permit the genetic recombination, being a result of 

sexual reproduction;  pre-adapt the populations in the environments; are a source of 

inoculation for new blooms; are vectors of expansion in the geographical distribution of 

species; constitute a resistant form against adverse environmental conditions (Anderson et 

al., 1984; Harrys, 1994; Matsuoka and Fukuyo, 2000).    



Silvia Pulina, Environmental study in Cabras Lagoon: the trophic state and the microalgal component with 

particular attention to Harmful Algal Species, PhD School in Natural Sciences, University of Sassari. 
7

In low density conditions, the planktonic dynamics is very rapid, so that it cannot be 

detected with normal samplings patterns (Dale, 1983). Moreover, confronting the 

vegetative phase with the benthic one, the differences between species of the same genus 

are more obvious at the cysts level. So, the study of the dynamics of the cysts in the lagoon 

sediment is extremely important to complete the information obtained from the planktonic 

compartment, representing a potentiality of appearance of species in the water column, and 

to improve the knowledge on biodiversity of the site (Nehring, 1997). 

This aspect is even more interesting and needs more careful investigations if we think that 

the major part of Harmful Algal Species (HAS) produce these kind of cysts. 

Eutrophication, anthropic commercial exchange and the enlargement of sites that favour 

the different phases of life cycle of some species, in particular of the latent phase, are 

recognized as the most important factors contributing to the global expansion of the 

proliferation of Harmful Algal Blooms (HABs) (Anderson et al. 2002; Hallegraeff, 2003; 

Glibert, 2006). They are the results of interactions of physiological adaptations and 

biological behaviours with different environmental factors. 

In particular, the affirmation of  HAS can affect the lagoon biodiversity in different ways. 

Some algal species are possible producers of biotoxins dangerous for aquatic biota but also 

for human health, through direct alimentation (drinking water) or through the ingestion of 

aquatic organisms (shellfish, fish) that have accumulated high concentration of toxins in 

their tissues. The danger is not always in relation to the high densities of species, in fact 

some toxins are so strong that their effect can be explicated also in conditions of low cell 

density (Anderson et al., 2002). Algal blooms can cause intense discoloration of waters, 

with consequences on benthic algae and on all trophic net. Then, HAS can affect other 

aquatic organisms with a direct action, for example they produce mucilagine or have 

thorns or other processes that can cause occlusion or wounds of gills. Another negative 

effect is due to the production of high biomasses with consequent anoxia for the 

degradation of organic matter. 

Phytoplankton dynamics can be influenced by bottom-up and/or top-down control factors 

(Krebs, 1994). Bottom-up factors control species growth (e.g. light intensity, temperature, 

salinity, availability of nutrients), while top-down factors control its biomass (e.g. 

predation, competition) (Wehr and Descy, 1998). This, as the basis of the trophic chain, 

constitutes the biological community in which scientific attention is focused when a 

management plan is needed or an assessment of the ecosystem health is required (Sin et 

al., 1999; Gameiro et al., 2007). In relation to their responses to changes in nutrient 
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concentrations, water renewal time, physical, chemical and biological parameters, 

phytoplankton is one of the biological quality elements to be used for assessment of the 

ecological status of coastal waters according to the European Water Framework Directive 

(WFD; 2000/60/EC). This is the legal tool for maintaining and improving the ecological 

quality of fresh and coastal waters (Henriksen, 2009). 

Several indicators, indexes and models have been developed to assess eutrophication and 

water quality in freshwater, coastal and marine systems. Nevertheless, the assessment of 

eutrophication and water quality classification in coastal lagoons is not an easy task, due to 

the great variability of spatial and temporal conditions (Coelho et al., 2007). The intrinsic 

high variability of these systems also determined the lack of generalizations for 

phytoplankton distributional and successional patterns in coastal lagoons (Sarno et al., 

1993). Then, this intrinsic complexity of planktonic system in coastal lagoons, makes the 

analysis of long temporal series particularly necessary. These consent to have reliable 

reconstructions of  the seasonal cycle of phytoplankton and permit to distinguish regular 

and recurrent patterns from occasional and exceptional events. Furthermore, long temporal 

series are extremely important to define if eventual changes of trophic and biologic 

characteristics are determined by local scale human influence and/or by global scale 

climatic fluctuations (Shiganova, 1998; Ribera-D’Alcalà et al., 2004). 

Phytoplankton blooms are notoriously difficult to predict, and scientists in various parts of 

the world have been working on prediction for decades with little success to date (Martin 

et al., 2009). 

 

 

 

2. Objectives and contents 

 

The implementation of the knowledge regarding the trophic state, the composition and 

dynamics of phytoplankton in Cabras Lagoon was the principal aim of this PhD thesis, to 

improve the comprehension of recurrent stressing events that have often injured the 

stability of the ecosystem. In fact, Cabras Lagoon, that has always been a source of great 

wealth for Sardinia in relation to its fishing production, during last decades suffered a 

strong loss in this sense because of its very high trophic state. This has become a chronic 

condition by now and it has often culminated in strong dystrophic crises.  



Silvia Pulina, Environmental study in Cabras Lagoon: the trophic state and the microalgal component with 

particular attention to Harmful Algal Species, PhD School in Natural Sciences, University of Sassari. 
9

This lagoon represents an important exception  from an ecological point of view. In fact, 

despite a lot of other similar Mediterranean environments (Giordani et al., 2005) and also 

other Sardinian lagoons, where the role of principal primary producer is carried out by 

macrophyte, in Cabras Lagoon this role is carried out by phytoplankton (Sechi et al., 

2006). Therefore, the study of this biological component, that is at the basis of trophic web,  

is extremely important for the comprehension of the dynamics of this ecosystem. 

The following chapters investigate these thematic and show the results obtained during this 

PhD and those obtained during previous studies, elaborated in this occasion to compare the 

different series available for Cabras Lagoon. 

In the complexity of this work, among phytoplankton, a key rule was carried out by the 

Cyanophyceae Class, that resulted the most important since 1999, when, in summer, a 

bloom of the cyanobacterium Anabaena cf. mucosa Komarkova-Legnerova and Eloranta 

was observed simultaneously with the strongest dystrophic crises that struck the lagoon. 

The high trophic state of the lagoon, confirmed nowadays, and the dominance of 

cyanobacteria seem to be the main ecological aspects characterizing this ecosystem. 

Moreover the study of the lagoon sediment, in terms of presences and dynamics of 

dinoflagellates cysts, confirmed potentially scarce and sporadic presence of dinoflagellates, 

already observed in the water column, and more specifically the scarce and sporadic 

presence of HAS, which for the most part belong to this class. 

In particular: 

• Chapter 1 shows which environmental and climatic parameters determined the 

temporal variations of the orders of cyanobacteria in the lagoon from 2007 to 

2009. This study was submitted to the journal “Scientia Marina”. 

•  Chapter 2 shows the results relative to the seasonal samplings of lagoon sediment, 

carried out during the two same annual cycles, to investigate the composition and 

the temporal and spatial dynamics of dinoflagellate cysts.  

• Chapter 3 exhibits the results regarding the trophic state of the lagoon and the 

composition, diversity and dynamics of phytoplankton from 2000 to 2002, just 

after the dystrophic event of 1999. This study was submitted to the journal 

“Marine Pollution Bulletin”.  

• Chapter 4 exhibits the results regarding the long-term composition, diversity and 

dynamics of phytoplankton in relation to environmental parameters from 2000 to 

2008. 
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In the appendix of this work, the first study “La Laguna di Cabras: stato trofico, 

fitoplancton e presenza di Harmful Algal Species” was presented to the meeting of PhD 

students in Ecology 2009 (Parma-Italy), organized by S.It.E. (Società Italiana di Ecologia) 

in collaboration with A.I.O.L. (Associazione Italiana di Oceanologia e Limnologia). It was 

submitted for the publication in a special issue of  “S.It.E. atti”. 

The second “Diatoms and water courses quality in North-Central Sardinia” was presented 

to the 28ème Colloque de l’Association des Diatomistes de Langue Française (ADLaF) 

(Banyuls-sur-Mer, France). It was submitted to the journal “Vie et Milieu – life and 

environment”. 
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3. Chapter I 

The dominance of cyanobacteria in Mediterranean hypertrophic lagoons: 

     a case study of Cabras Lagoon (Sardinia, Italy). 
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The dominance of cyanobacteria in Mediterranean hypertrophic lagoons: 

a case study of Cabras Lagoon (Sardinia, Italy) 

SILVIA PULINA1,*, BACHISIO MARIO PADEDDA1, NICOLA SECHI1 and ANTONELLA LUGLIÈ1. 
1Department of Botanical, Ecological, and Geological Sciences, University of Sassari, Via Piandanna 4, 07100 Sassari, 

Italy 

* Corresponding author. Fax number: +39 070 233600; e-mail address: pulinasi@uniss.it 

 

SUMMARY 

An intense proliferation of cyanobacteria in Cabras Lagoon was monitored over a period of two years (July 

2007–June 2009). Environmental and climatic parameters in the lagoon that determine temporal variations in 

orders of cyanobacteria were investigated. For 18 months, Chroococcales was the only cyanobacterial order 

present in the lagoon, with Cyanobium-type cells being the most important with respect to presence and 

density. The importance of this taxon decreased only during the autumn–winter of the second annual cycle, 

when a prolonged period of intense rainfall led to a sudden drop in the lagoon’s salinity, with the subsequent 

appearance of Oscillatoriales, specifically, Planktothrix sp. and Pseudanabaena catenata. The results 

provided evidence of the strict relationships between Oscillatoriales and phosphorus levels, the DIN/SRP 

ratio, and pH. Nutrient depletion in the late spring together with both a decrease in the DIN/SRP ratio and 

water of low salinity favoured Nostocales, predominantly Aphanizomenon gracile, Aphanizomenon 

aphanizomenoides, and Anabaenopsis circularis. 

 

Keywords: cyanobacteria, phytoplankton, coastal lagoons, eutrophication, Sardinia, Mediterranean Sea  

 

 

INTRODUCTION 

Coastal lagoons are highly dynamic environments that show wide spatial and temporal 

variability in their physical and chemical characteristics in response to the influence of 

freshwater and marine water inputs. This exchange of water masses of different origins is 

crucial to the natural functioning of coastal lagoons and controls most of their basic 

ecological processes (Piccini et al., 2006). Indeed, studies have shown that, as a 

consequence of the high sediment surface area to water volume ratios in Mediterranean 

coastal lagoons, processes occurring within the sediments and at the water-sediment 

interface strongly influence ecosystem metabolism, nutrient budgets, and biota (Castel et 

al., 1996). 

This process has been exacerbated by the pressures of human activities on coastal systems, 

which have dramatically increased in the last few decades and is predicted to continue 

increasing especially in developed countries (Viaroli et al., 2007). Southern European 
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lagoons, most notably those of the Mediterranean coast, are particularly vulnerable to 

anthropogenic pressures due to mass tourism, urbanization, industry, and intensive 

agriculture (Hemminga, 1998). Furthermore, during the summer, the concomitance of the 

increase in temperature, the lack of wind, and the degradation of organic matter can result 

in a reduction of oxygen availability, eventually leading to dystrophic crises (Bachelet et 

al., 2000). 

Most of the primary production in Mediterranean lagoons is carried out by macrophytes 

(Giordani et al., 2005). When the trophic level increases, phytoplankton growth becomes 

more important, with a consequent reduction of light and thereby a decrease in macrophyte 

abundance (Austoni et al., 2007). The frequent confluence of these circumstances 

underlines the need to study phytoplankton abundance and community structure in such 

environments, particularly vulnerable to anthropogenic inputs and naturally stressed by 

frequent disturbances or environmental fluctuations (Kjerfve, 1994). In general, the 

widespread availability of inorganic and organic nutrients as well as light supports a high 

level of primary production by species adapted to highly varying geomorphological, 

physical, and chemical conditions (Marinov et al., 2008). Nutrient loading may have 

different impacts on the ecosystem at different times (Glibert et al., 2007). The 

development of a specific algal species depends not only on the availability of nutrients, 

but also on its preference for specific nutrient forms, the nutritional status of the species at 

the time of nutrient delivery, and its physiological response to the prevailing environmental 

factors (Glibert and Burkholder, 2006). It is well-documented that environment 

degradation due to hypertrophic conditions threatens less-tolerant phytoplankton species 

while favoring the development of cyanobacteria (Scheffer et al., 1997). Recently, a link 

between highly trophic conditions and cyanobacterial blooms has been documented in a 

number of Mediterranean lagoons (Chomérat et al., 2007).  

The intense proliferation of cyanobacterial cells of very small size (<2 µm) and their 

dominance over other phytoplankton size classes has been studied in a few coastal 

environments (Del Negro et al., 2007). Their results have served to highlight the increasing 

importance of these small cells, which for decades were recognized as the main primary 

producer only in oceans and oligotrophic aquatic ecosystems (Anxelu and Morán, 2007). 

However, the increasingly important role played by small free-living cyanobacteria in 

Mediterranean coastal blooms and the ecological damage they induce in areas with high 

trophic levels have yet to be thoroughly investigated (Sorokin et al., 1996a). 
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Here we provide a case study of Cabras Lagoon, a Mediterranean hypertrophic lagoon 

dominated by cyanobacteria. The lagoon is the most extended shallow-water body in 

Sardinia (Italy) and one of the most important in the Mediterranean, and its major primary 

producer is phytoplankton (Sechi et al., 2006). During the last 20 years, eutrophication has 

become a chronic condition of Cabras Lagoon, often culminating, especially during 

summer, in major dystrophic crises that result in an abrupt decrease in production. Already 

in the early 1980s, Sechi et al. (1981) classified the lagoon as hypertrophic, and although 

subsequent data are lacking, since then the hypertrophy appears to have worsened. Indeed, 

in June 1999, the immensity of a dystrophic event was such that it led to the total killing 

off of the lagoon’s fish component, which had a particularly dramatic impact on the local 

economies since fishery is the main source of income for local residents.  

During this severe dystrophic event, a bloom of the cyanobacterium Anabaena cf. mucosa 

Komarkova-Legnerova and Eloranta was documented. Cyanobacerial cells in an advanced 

state of degradation and the presence of large amounts of mucilage were noted. Today, 

cyanobacteria continue to predominate in Cabras Lagoon, with extremely high cell 

densities. Published studies on the hypertrophic conditions in the lagoon are scarce, while a 

detailed study of phytoplankton community composition and dynamics has not yet been 

published. 

The purpose of this study was therefore to investigate the spatial and temporal dynamics of 

cyanobacteria in Cabras Lagoon with respect to environmental conditions and climate 

during two year-long cycles (from July 2007 to June 2009). The larger aim of this work 

was to identify the parameters that determined the seasonal succession of the different 

cyanobacterial orders and species in the lagoon during the period considered. 

 

MATERIALS AND METHODS 

Description of study site 

Cabras Lagoon is located on the west coast of Sardinia (Italy), in the Gulf of Oristano 

(39°56’37’’N, 08°28’43’’E; Fig. 1), and occupies about 23.80 km2, with a mean water 

depth and maximum of 1.6 and 3 m, respectively. The watershed of the site extends over 

approximately 430 km2. The input of freshwater into the lagoon is scant and irregular 

because of the semi-arid Mediterranean climate. Most of the freshwater comes from the 

small Mare ‘e Foghe River, located in the north.  

The predominance of agriculture in the region and the release of poorly depurated urban 

waste account for the high nutrient loads deposited in Cabras Lagoon. The resident 
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population of about 38,000 inhabitants is grouped in 19 urban centers, the largest being 

Cabras, which is located on the southeast coastal side of the lagoon. 

During the twentieth century, the lagoon and its watershed underwent several 

modifications as a consequence of human activities that affected the hydrology and 

hydraulics of the region. In addition, in the late 1970s, water exchange with the sea was 

altered by the dredging of a large canal, the Scolmatore (=spillway), which connected the 

lagoon with the adjacent Gulf of Oristano (Fig. 1). The canal was constructed to avoid 

flooding of adjacent land during the heavy rainfalls that regularly occur in winter. In 

addition, a cement dam was built into the Scolmatore to prevent further increases in the 

lagoon’s salinity and artificial barriers were constructed to control the fish catch, thereby 

impeding direct communication between the lagoon and the sea. Instead, the only link to 

the sea is via four very narrow creeks that from the southern part of the lagoon flow into 

the large canal, over the barrier (Fig. 1). 

The lagoon has a high economic rating due to extensive fishery activities, involving about 

300 people, their families, and those involved in related enterprises. 

Sampling strategy and analyses 

The reported data were obtained during two yearly cycles (July 2007–June 2009), during 

which fortnightly samplings were carried out during the first and monthly samplings 

during the second. The samples were collected at three stations: station 1, near the major 

input of freshwater; station 2, representing intermediate conditions; and station 3, near the 

lagoon’s connection with the sea (Fig. 1). 

The cumulative monthly rainfall were provided by the meteorological station at Zeddiani 

(Rete Agrometereologica Nazionale property), few km from the northern part of the 

lagoon. 

The in situ water transparency was measured with a Secchi disk, while temperature, 

salinity, dissolved oxygen (DO), and pH were determined with a CTD probe (YSI 

6600V2). Water samples were collected with a bucket from the superficial water layer (50 

cm depth) and preserved under cold, dark conditions for laboratory analyses of suspended 

matter (total solids in suspension) and dissolved nutrients (ammonia, nitrite, nitrate, 

reactive silica, orthophosphates, total phosphorus), as described in Strickland and Parsons 

(1972). The chlorophyll a content was quantified following the method of Golterman et al. 

(1978). The values of parameters measured in situ were confirmed in laboratory analyses. 

Phytoplankton abundance was determined in samples fixed in situ with Lugol’s, according 

to Uthermöhl’s technique (1931). Five-ml subsamples were counted at 200, 400, and  
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Figure 1: Map of Cabras Lagoon, showing its location and the sampling sites. 
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1000X magnification in an adequate number of fields. When necessary, the samples were 

diluted. Phytoplankton biomass was determined following Findenegg’s method (1974). 

Algal species were identified in non-fixed samples analyzed just after their collection by 

traditional optical microscopy (using an inverted microscope, Zeiss Axiovert 25) and 

fluorescence microscopy (using an inverted microscope, Zeiss Axiovert 100, equipped 

with blue excitation filter blocks, 420-480 nm) for the identification of algal species. For 

unlikely recognizable species, identification was determined by scanning electron 

microscopy (ESEM, Zeiss EVO 10). 

Cyanobacteria were identified as described by Komárek and Kováčik (1989), Komárek 

and Anagnostidis (1998, 2005), Hindák (2000), and Komárek (2005).  

Statistical analyses  

Two-way ANOVA was carried out to test whether the environmental parameters among 

the three stations were statistically different, with p<0.05 considered significant. 

Differences in the environmental parameters during the two yearly cycles were assessed by 

testing data obtained in each season using Student’s t test, with p<0.05 considered 

significant. 

Canonical correspondence analysis (CCA) (Ter Braak, 1986) was carried out to quantify 

the influence of environmental variables on cyanobacterial composition with respect to 

order and species abundances. All canonical axes were used to evaluate the significant 

variables under analyses by means of a Monte Carlo test (1000 permutations). Data used to 

construct the environmental and order/species matrixes were square-root transformed. 

Statistical analyses were done using the software PRIMER (for ANOVA) and MVSP (for 

CCA). 

 

RESULTS 

Environmental parameters and nutrient dynamics 

Figures 2 and 3 show the statistical distributions of the mean values of the analyzed 

parameters for the two study years. The values of nearly all of the parameters varied over a 

wider range in the second year (Table 1). 

Temperatures in the lagoon were, as expected, highest in summer (maximum mean value 

28.45°C, in July 2007) and lowest in winter (minimum mean value 9.49°C, in February 

2008) (Fig. 4), with the same annual average for the two study cycles (18.2°C) (Table1; 

Fig. 2). Differences among the sampling stations were not significant (ANOVA, p>0.05). 
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Figure 2: Statistical distribution of mean values of the environmental parameters and 

reactive silica in Cabras Lagoon during the two annual cycles. 
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Figure 3: Statistical distribution of the mean values of nutrients in Cabras Lagoon for the  

two year-long cycles of this study.
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Table 1: Mean and standard deviation (± SD), maximum and minimum values of the environmental parameters, and nutrients and chlorophyll a 

content in Cabras Lagoon during the two study cycles (n. d. = value was lower than the detection limit of the method). 
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Rainfall was greater during the autumn and winter seasons of both years, but was much 

higher during the second year (Fig. 2). In fact, in the autumn–winter period of 2008–2009, 

rainfall was intense and prolonged (maximum 140.2 mm, in January 2009) (Fig. 4). 

Salinity increased steadily from the beginning of the study (mean value of 10.2‰) until 

November 2008 (mean value of 24.9‰), when contemporarily with the intense rainfall and 

the consequent large freshwater input into the lagoon, it decreased abruptly (mean value of 

5.0‰, in December) (Fig. 4). A clear and consistent spatial salinity gradient was observed, 

with the values decreasing from station 1 to station 3, consistent with the proximity to 

seawater exchange and the input of freshwater, respectively. 

Rainfall and salinity were the only two variables that differed significantly between the 

two cycles and did so at the seasonal level: in autumn for rainfall (Student’s t test, p<0.05) 

and in winter, spring, and summer for salinity (Student’s t test, p<0.05). 

Regarding nutrient availability for phytoplankton growth, SRP and DIN (N-NH3 + N-NO2 

+ N-NO3) concentrations were consistently high (Fig. 4), with annual mean values greater 

in the second year than in the first (Table 1, Fig. 3). The maximum peaks occurred during 

the autumn–winter period of 2008–2009, when the mean DIN and SRP in the lagoon was 

>700 mg N m-3 and 90 mg P m-3, respectively. ANOVA revealed significant seasonal 

differences between the three stations: in winter, for both DIN and SRP (p<0.05) and in 

summer only for SRP (p<0.05). During these seasons, the highest values of the two 

parameters were recorded at station 3. 

The mean values of the DIN/SRP ratio were very low (<6) during most of the sampling 

months (Fig. 4). The highest mean value recoded (maximum mean value 47) concurred 

with the highest peaks of DIN in the winter of the second year-long cycle. 

Phytoplankton dynamics 

During the investigation period, the most important phytoplankton class in the lagoon was 

Cyanophyceae, which, regularly detected, reached very high densities during the two years 

of the study (over 109 cell l-1). This class dominated all other classes, usually accounting 

for >80% and only rarely <50% of total phytoplankton density throughout most of the 

study (Fig. 5). By contrast, due to the reduced size of these cyanobacterial cells, the 

biomass contribution of this class was relatively small, amounting only in a very few cases 

to >50% of the total phytoplankton biomass (Fig. 5).  

The dynamics of chlorophyll a during the first year-long cycle were relatively constant, 

with mean values <20 mg m-3, whereas during the second cycle there was a large increase  
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Figure 4: Seasonal variations in the main environmental parameters, nutrients, and 

DIN/SRP ratio during the investigation period. 
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Figure 5: Seasonal dynamics of abundance (a) and biomass (b) of cyanobacteria and other 

phytoplankton classes in Cabras Lagoon during the investigation period respect to the 

dynamic of chlorophyll a. Data are the mean values obtained from the three sampling 

stations. 
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corresponding to the simultaneous appearance of  species of large cell size (Table 1; Fig. 

5). 

Nine species of cyanobacteria were identified, belonging to the following orders (Table 2): 

Chroococcales (4), Oscillatoriales (2) and Nostocales (3). For the first 18 months, 

cyanobacteria were almost exclusively represented by Chroococcales (Figs. 6, 7), 

including a species probably belonging to the genus Cyanobium Rippka and Cohen-Bazire 

(Fig. 8). This species was always present and at all three stations was the most abundant 

phytoplanktonic taxon (Fig. 9). During the same period, other Chroococcales, i.e. 

Merismopedia tenuissima Lemmerman and Rhabdoderma sp., were observed, but their 

presence was very sporadic and their abundance not significant (Fig. 9). Aphanocapsa sp. 

was detected only during the last month of sampling (Fig. 9). 

The phytoplankton composition in the lagoon remained the same until the end of 2008, 

when a strong increase in the amount of rainfall and the consequent drop in salinity 

coincided with a change in distribution. Specifically, while the presence of Cyanobium-like 

organisms became less important, species of the order Oscillatoriales appeared, beginning 

with Plankthotrix sp. (December 2008) and followed by Pseudanabaena catenata 

Lauterborn (February 2009) (Fig. 9). The contribution of these species increased during the 

last period, reaching an abundance and biomass equivalent to >90% of all cyanobacteria at 

all three stations (Figs. 6, 7). 

During the spring of 2009, species belonging to the order Nostocales also appeared, 

initially only Aphanizomenon gracile (Lemm.) Lemm. (Fig. 8), in April and May, followed 

by Aphanizomenon aphanizomenoides (Forti) Horecká et Komárek and Anabaenopsis 

circularis (G.S. Weast) Woloszyńska et Miller (Fig. 8) in June (Fig. 9). The abundance and 

biomass of this order was highest (almost 20% of all cyanobacteria) at station 3 (Figs. 6, 

7). 

Among the other classes of phytoplankton, small Chlorophyceae, Chlorella sp., and 

Monoraphydium minutum (Näg.) Kom.-Legn. were the most abundant at all three stations 

during the first year-long cycle (maximum abundance reached in autumn and spring). 

Beginning in January 2009, simultaneous with a decrease of Chroococcales, the eukaryotic 

phytoplankton composition became more varied. In winter, small cells of Dinophyceae 

Heterocapsa rotundata (Lohmann) Hansen 1995 (formerly Katodinium rotundatum 

(Lohmann) Loeblich III 1965) and of Prasinophyceae Pyramimonas sp. were detected in 

important amounts. During the spring, the Bacillariophyceae Cyclotella sp. and  
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Table 2: Mean, maximum, and minimum of density, biomass, and cell size (length × 

width) of the cyanobacteria observed in Cabras Lagoon during the two annual cycles of 

this study (n = number of cells considered; n. o. = not observed).  
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Figure 6: Seasonal dynamics of Chroococcales (Chr), Oscillatoriales (Osc), and Nostocales 

(Nos) abundance at the three sampling stations. 
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Figure 7: Seasonal dynamics of Chroococcales (Chr), Oscillatoriales (Osc), and Nostocales 

(Nos) biomass at the three sampling stations. 
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Figure 8: a – c Cyanobium-type cells, a optical microscopy, b fluorescence microscopy, c 

ESEM; d – f Aphanizomenon gracile, d and e optical microscopy, f ESEM; g – i  

Anabaenopsis circularis, g and h optical microscopy, i ESEM.  
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Figure 9: Seasonal variations of cyanobacterial species abundance at the three sampling 

stations of Cabras Lagoon (1, 2, 3) during the investigation period. For abbreviations, see 

Table 2. 
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Chaetoceros sp. were particularly abundant while in summer there was a bloom of the 

Prymnesiophyceae Prymnesium sp. 

Correlation with environmental parameters 

In a CCA of orders of cyanobacteria, the first two axes of the CCA accounted for 100% of 

the total variance (93.89% for the first axis and 6.11% for the second) in cyanobacterial 

orders and environmental data. The orders-environment correlation between 14 

environmental variables and the three orders was 0.96 for the first axis and 0.88 for the 

second. Monte Carlo tests showed that all canonical axes were significant (p<0.001). 

CCA was also carried out for cyanobacterial species, with the first two axes accounting for 

88.36% (80.74% for the first axis and 7.62% for the second) of the total variance of species 

and environmental data. The species-environment correlation between the 14 

environmental variables and the nine species was 0.97 for the first axis and 0.58 for the 

second. Monte Carlo testing again showed that all canonical axes were significant 

(p<0.001). 

Canonical correspondence analysis confirmed the strong relationship between the order 

Chroococcales (almost exclusively represented by Cyanobium-type cells) and salinity (Fig. 

10). M. tenuissima was observed constantly during the summer months; its presence was 

related to high temperatures, whereas the outlying position of Aphanocapsa sp. was 

consistent with its appearance only during a very short period (Fig. 11). The contributions 

of A. aphanizomenoides, A. gracile, and A. circularis could mainly be explained by the 

accompanying physical parameters, i.e. pH and DO (A. aphanizomenoides, A. gracile) and 

temperature and alkalinity (A. circularis) (Fig. 11). This tendency was clearly reflected 

also at the order level whereas the presence of Oscillatoriales was mainly controlled by 

nutrients (TP, DIN/SRP) and pH (Fig. 10). The presence of both Oscillatoriales and 

Nostocales was negatively correlated with salinity. 

 

DISCUSSION 

During the 2-year investigation period, the high trophic level of Cabras Lagoon was 

confirmed and the main representatives of its phytoplankton populations identified, 

specifically, cyanobacteria predominated at all three stations and in almost all of the 

samplings. 

The intense proliferation of cyanobacteria in coastal eutrophic ecosystems at all latitudes is 

well documented in several studies (Kanoschina et al., 2003; Sorokin et al., 1996a; 

Gasiūnaite et al., 2005). In the Mediterranean basin, different orders of cyanobacteria have  
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Figure 10: Canonical corresponding analysis (CCA) of the relationship orders–

environment. For abbreviations, see Table 1 for environmental factors and Figure 6 or 7 

for orders. 

 

Figure 11: Canonical corresponding analysis (CCA) of the relationship species–

environment. For abbreviations, see Table 1 for environmental factors and Table 2 for 

species. 
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been observed, depending on the environmental conditions and the season. Findings 

similar to ours have been reported by other authors in studies of lagoons with analogous 

conditions. In the hypertrophic Bolmon Lagoon in the south of France, a permanent 

dominance of cyanobacteria was observed, with a seasonal pattern characterized mainly by 

Planktothrix agardhii (Gomont) Anagnostidis et Komárek in winter, colonial 

Chroococcales in spring, Pseudanabaenaceae in summer, and P. agardhii in autumn and 

then in winter again (Chomérat et al., 2007). A similar situation, with a persistent 

dominance of Oscillatoriales, was described for the hypertrophic Albufera Lagoon in Spain 

(Romo and Miracle, 1993). 

The occurrence of small single cyanobacteria has been reported in other Mediterranean 

lagoons (Del Negro et al., 2007). In the hypertrophic lagoon system of Comacchio (NW 

Adriatic Sea, Italy), an extremely intense bloom of Chroococcales that persisted for many 

years resulted in the collapse of that ecosystem (Sorokin et al., 1996). 

While picocyanobacteria have long been recognized as important and typical biological 

components of oceans and, in general, of oligotrophic ecosystems (Anxelu and Morán, 

2007), during the last few years, they have been increasingly reported in brackish and 

highly trophic environments. The reasons for this expansion are largely unknown but may 

involve physical variables or alterations in nutrients and/or grazers. In Cabras Lagoon, 

Chroococcales, and especially Cyanobium-type cells, was the only cyanobacterial order 

present for a period of 18 months. 

In most published scientific works, free-living cyanobacteria of small size are described 

under the generic name “Synechoccocus sp.” (Komárek and Anagnostidis, 1998). The 

genus Cyanobium has been reported in coastal lagoons in a few cases, although many of 

the organisms described in those studies as Synecoccocus-type instead corresponded to the 

genus Cyanobium (Komárek and Anagnostidis, 1998). For example, in 1989, Andreoli et 

al. provided a detailed report of picocyanobacterial cells in Santa Gilla Lagoon (Sardinia, 

Italy); but, according to current information, the cells may well have been Cyanobium 

(Komárek and Anagnostidis, 1998). Among the described species of the genus Cyanobium, 

those most similar to the cells observed in Cabras Lagoon based on morphological and 

ecological characteristics are Cyanobium bacillare (Butcher) Komárek et al. and 

Cyanobium plancticum (Drews) Komárek et al. However, the lack of cytomorphological 

and/or molecular biological data have made species identification very difficult, as the 

infrageneric taxonomy of this genus is still incomplete (Komárek and Komárková – 

Legnerová, 2002). 
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The results obtained for the Cabras Lagoon during the two year-long cycles provided 

evidence of a strong relationship between the occurrence of Cyanobium-like cells and the 

salinity of the water. The presence of such cells in the lagoon decreased enormously only 

after the strong rainfall in the autumn and winter of 2008–2009, when the large input of 

freshwater into the lagoon caused a decrease in its salinity. A strict correlation between 

Cyanobium-like cells and salinity was also observed in the Ebro estuary (Spain), where an 

increase in these species was directly proportional to the increase in salinity (Pérez and 

Carrillo, 2005). 

In Cabras Lagoon, the suddenly decrease in both salinity and Cyanobium-type abundance 

was accompanied by the appearance of typical freshwater species, i.e. Planktothrix sp. and 

P. catenata. That the occurrence of filamentous cyanobacteria is favored under conditions 

of high nutrient availability, in particular phosphorus, and by low-light conditions has been 

well documented (Scheffer et al., 1997) and is in agreement with the our results. 

Specifically, we observed that a strong rainfall resulted in a large-scale input of nutrients 

and materials from rivers, as demonstrated by a maximum SRP, an increase in the turbidity 

of the water, and maximum values of total solids in suspension. Filamentous cyanobacteria 

are also very tolerant of high pH (Hasler et al., 2003), condition observed in Cabras 

Lagoon during the period of their permanence (up to pH 9.84). 

The Oscillatoriales first appeared in the lagoon in winter but reached their maximum 

abundance and biomass in spring, as was also the case in the above-described Bolmon 

Lagoon (France) and Albufera Lagoon (Spain). In the former, during the study cycle, 

Oscillatoriales were dominant throughout, achieving a maximum in spring and a minimum 

in summer. During the entire year, the salinity of this lagoon was similar to that of Cabras 

Lagoon during the period when non-heterocystous filamentous cyanobacteria were present. 

The intense proliferation of phytoplankton, in particular of Planktothrix sp. and P. 

catenata, in spring induced the depletion of nutrients later in the season, which favored 

heterocytous nitrogen-fixing species, initially A. gracile and then A. aphanizomenoides and 

A. circularis. CCA analysis showed a negative correlation between the order Nostocales 

and the different forms of inorganic nitrogen. It also confirmed the strict relationship 

between the presence of this order of cyanobacteria and specific conditions of the lagoon. 

In fact, the proliferation of Nostocales species was contemporaneous with maxima of pH 

and DO. Moreover, the presence of A. circularis, a species with high demands for light and 

warmth (Komárek, 2005), correlated with high temperatures, which accounts for its 

presence in the lagoon only in June. 
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In the succession dynamics of the three orders (Chroococcales, Oscillatoriales, and 

Nostocales), temporal variations in DIN/SRP ratio were clearly important. Thus, the 

dominance of Cyanobium-type cells during the first 18 months of the study was likely due 

to the low DIN/SRP ratio. This conclusion is supported by the well-documented capacity 

of the Synecoccocus genus to fix nitrogen (Stal et al., 2008) and the strict genetic link of 

this genus with Cyanobium (Komárek and Anagnostidis, 1998), even though the latter has 

yet to be studied in detail. After an intense rainfall, there was a strong increase in the 

DIN/SRP ratio, contemporaneous with the dominance of Oscillatoriales. After the 

DIN/SRP ratio had reached its maximum peaks, there was a shift towards a reduction of 

values, coincident with the low salinity of the water. These conditions were less than 

optimal for Cyanobium-like cells but could have favored the growth of other nitrogen-

fixing species, specifically, those belonging to the order Nostocales. 

Another aspect concerning the intense occurrence of cyanobacteria in lagoons is related to 

negative effects, both direct and indirect, on fish and seafood. The high biomass produced 

by massive cyanobacterial proliferation results in oxygen depletion, anoxia, and ultimately 

the death of aquatic biota. In addition, the large quantity of mucilage produced by some 

cyanobacterial species obstructs the gills of aquatic animals and causes their death 

(Cronberg and Annadotter, 2006). As mentioned above, this scenario has been observed in 

recent years in Cabras Lagoon and poses a threat to it and other lagoon ecosystems where, 

as a rule, fishery and the harvest of shellfish are the main economic activities. The situation 

is exacerbated by the presence of toxin-producing cyanobacterial species even if it is very 

difficult to unequivocally ascribe the death of natural populations of aquatic animals, 

especially fish, to cyanotoxin poisoning (Chorus and Bartram, 1999). Nonetheless, it is 

highly likely that large populations of cyanobacteria, such as A. gracile (Pereira et al., 

2004), that could produce toxins responsible for paralytic shellfish poisoning (PSP) in 

humans (Steidinger, 1993) could likewise endanger lagoon environments. 

In conclusion, this study confirmed the dominance of cyanobacteria, in particular the 

intense and prolonged occurrence of single small cells belonging to the order 

Chrooccocales, in a hypertrophic brackish lagoon of the Mediterranean basin. Among the 

factors that could explain this predominance, other studies of similar environments 

described the absence in the lagoon of grazers that preferentially feed on such cells 

(Sorokin et al., 1996). Moreover, our results suggest a very strict relationship between the 

presence of these cyanobacteria and the dynamics of salinity, as confirmed during the 

second study cycle by the decrease of Chrooccocales cells concomitant with the sudden 
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drop of salinity. The impact of this event was a disturbance in the phytoplankton 

composition of Cabras Lagoon, resulting in changes that persisted over a period of 18 

months and which may very well be permanent.  

In winter, the intense proliferation of filamentous cyanobacteria supported the hypothesis 

proposed in studies of the Bolmon and Albufera Lagoons. At those sites, the mild winters 

and hot summers typical of the Mediterranean climate modify the typical patterns observed 

at higher latitudes, where filamentous cyanobacteria generally dominate the phytoplankton 

in late summer but decline during the cold period. A comparison of our findings with those 

obtained in other eutrophic brackish lagoons with the same climatic conditions will 

provide a better understanding of cyanobacterial populations, with respect to their 

composition and their dynamics, in these environments.  
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Composition and distribution of dinoflagellate cyst assemblages in surface sediments of 
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ABSTRACT  

Dinoflagellate cyst assemblages were studied at different times in Cabras Lagoon (Sardinia, Western 

Mediterranean). The number of cyst morphotypes recovered was low (14) but in according to the salinity 

values and the scarce presence of dinoflagellates in the water column on long term database. 

Pentapharsodinium sp. and an undetermined cyst (type A) were the widespread morphotypes. Common 

cosmopolitan species were signalled in the lagoon (e.g. Scrippsiella trochoidea, Polykrykos schwartzii, 

Gonyaulax spinifera), allowing new information on phytoplankton biodiversity. These species, together with 

P. cf daleii, S. precaria and the genus Fragilidinium, had never been recognized in the water samples.  

Cyst assemblages varied significantly in the different samplings (Global R: 0.481; p: 0.1%) but not among 

stations (Global R: -0.148; p: 91%). The spatial surveys showed the highest values in the central- southern 

area of the lagoon and the morphotype distribution was quite heterogeneous.  

 

Keywords: dinoflagellates, resting cysts, dinoflagellate cysts, Cabras Lagoon, Mediterranean basin 
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1. Introduction 

In shallow coastal and protected areas many planktonic organisms can produce resting 

stages in their life cycle (Boero et al., 1996). Dinoflagellates is one of the groups that count 

for the major number of species producing resting cysts, and many of these species can be 

harmful at different levels (Anderson and Wall, 1978; Dale, 1983). The alternation of 

planktonic vegetative state and benthic resting cyst existence leads to a discontinuous 

presence of these species in the water column (Boero et al., 1996) and, consequently, at a 

possible overlooking and sub valuation of biodiversity (Dale, 1983). The employment of 

studies on benthic resting cysts can integrate records of the planktonic populations and can 

be very useful in describing the diversity of an area, and completing the information on the 

plankton composition (Boero et al., 1996; Rubino et al., 2000, 2002; Orlova et al., 2004; 

Bravo et al., 2006; Satta et al., 2009). Indeed, the identification of vegetative stages of 

dinoflagellates can be very difficult and a number of analyses are necessary for a good 

taxonomic placement. On the contrary, in some cases the morphological differences among 

cysts allow a relative more simple identification of the species (e.g Scippsiellas species, 

Lewis, 1991), also supported by molecular data (D’Onofrio et al, 1999; Montresor et al., 

2003). Moreover, many new species are recently described starting by an isolated resting 

cyst (Montresor and Zingone, 1988; Janofske, 2000; Attaran-Fariman and Bolch, 2007; Gu 

et al., 2008).  

In the last years, many studies on dinoflagellate cyst assemblages have been published, but 

these studies regard especially coastal marine areas, harbours or embayments (Bolch and 

Hallegraeff, 1990; Nehring, 1997; Montresor et al., 1998; Persson et al., 2000; Rubino et 

al., 2000, 2002; Morquecho and Lechuga-Devéze, 2003; Orlova et al., 2004; Giannakourou 

et al., 2005; Satta et al., 2009). In our knowledge data on assemblages of Dinoflagellate 

cysts in lagoons regard very few sites (Southern New England, Pospelova et al., 2004; 

Malaysia, Furio et al., 2006) but not the Mediterranean basin. 

Coastal lagoons are, generally, natural systems consisting of shallow, saline or brackish 

waters isolated or semi-isolated from the open sea by coastal barriers (Healy, 1997). The 

connection with the adjacent sea is assured by the presence of channels or inlets, frequently 

humanly modified (Como et al., 2007). Lagoons are subject to extreme environmental 

fluctuations because they depend on the amount and frequency of exchange with the sea 

and, contemporarily, on the inputs from the watersheds (Chomérat et al., 2007; Pérez-

Ruzafa et al., 2005). Coastal lagoons are, in many cases, eutrophic or hypereutrophic 

systems because of their position at the end of the drainage basins. These convoy waters 
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enriched in nutrients, especially nitrogen and phosphorous, due to natural or anthropogenic 

sources (Cloern, 2001).  

Lagoons are highly productive areas often exploited for fishery and aquaculture. These 

activities, like ecological aspects of these environments, can be damaged by the 

proliferation of harmful algal species, which can be also the trigger for dystrophic events.  

In this paper we report data on composition and distribution of dinoflagellate cyst 

assemblages at different times in the Cabras Lagoon; it is the first study on this topic for 

this site and for the Mediterranean basin. The main purpose is to increase the information 

on phytoplankton diversity of the study site, at least in respect to dinoflagellates that 

produce resting cysts. At the same time we investigate the presence of toxic or noxious 

species possibly overlooked in the monitoring programs. The availability of pluriannual 

data for environmental variables, phytoplankton data and main nutrients is a further 

support to the understanding of our results. 

2. Methods 

2.1 Study area  

The Cabras Lagoon (Fig. 1) is a shallow transitional system located near the city of 

Oristano and with an area of 22.28 km2 it is the largest brackish basin in Sardinia (western 

Mediterranean Sea). An average depth of 1.6 m and a maximum depth of around 2.1 m 

characterize the lagoon. Fishery activities have a high economical importance involving 

about 250 fishermen, and with a yearly production of about 850 tons (Murenu et al., 2004).  

 

Fig. 1 Study area and sampling stations in the Cabras Lagoon. • indicates the three routine stations; ■ 

indicates all the other stations sampled in May 2009. 
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2.2 Cyst sample collection and processing 

Four sampling surveys were conducted on October 2007, February and August 2008 and 

May 2009. Three fixed stations were sampled in all the surveys, and these stations were 

representative of the main sedimentary characteristics of the lagoon (De Falco et al., 2004). 

A spatial sampling, covering a total of 11 stations, was also conducted in May 2009 

(Fig.1). 

Sediment samples were taken with manual cylindrical plastic cores (40 cm long with a 

diameter of 5 cm). Samples were stored in the dark at 4ºC and left undisturbed for 1-4 days 

to allow the sedimentation of all the material suspended in the water above the sediment. 

At the start of processing this water was carefully removed, and the sediment cores were 

sliced at 1 cm intervals down to 5 cm. The data of the 2-5 cm were used only for drawing 

up the floristic list. In May 2009 only the first cm was sectioned.  

Subsamples (2–3 cm3) of the sliced sections were suspended in filtered seawater (FSW) 

and sonicated for 2 min using a Bandelin Sonoplus to separate cysts from sediment 

particles. The obtained suspension was sieved through 10- and 100-µm mesh sieves. The 

fraction remaining on the 10-µm mesh sieve was washed with FSW and collected in a 50-

ml tube. Subsamples (5 ml) of the slurry were centrifuged to recover cysts. The sodium 

polytungstate density gradient was used to separate the cyst fraction from the pellet, as 

proposed by Bolch (1997) and modified by Amorim et al. (2001) and Bravo et al. (2006). 

The resulting sample was rinsed in a 10-µm sieve and collected with 5–15 ml of FSW. 

Cysts were counted in sedimentation chambers with an inverted microscope (Axiovert 

100) at 200× magnification. Empty cysts were not considered. Total densities were 

expressed in cysts gr-1 of dry weight (dw) and morphotype densities in relative percentage 

of the total (%). All morphotypes were photographed and then isolated with a glass Pasteur 

micropipette and transferred into IWAKI tissue-culture multi-well plates. These were filled 

with f/2 or f/16 medium prepared with FSW and subsequently maintained at 18–20 ± 1°C 

in a 12:12 h light:dark cycle. Fluorescence tubes provided illumination at a photon 

irradiance of 100 µmol photons m-2 s-1. Plates were controlled every 2–4 days for 

germination and species identification. The works by Wall and Dale (1968), Dale (1983), 

and Matsuoka and Fukuyo (2000, 2003) were used to confirm cyst identification and to 

describe the dinoflagellate cysts with the appropriate terminology. Thecal plates of 

germinated cells of armored Dinoflagellates were analyzed by staining with Calcofluor 

White and examined under epifluorescence (Fritz and Triemer, 1985). 
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For the statistical treatment of the results a one-way analysis of similarity (ANOSIM) was 

used to test the significance of temporal and spatial variation in the morphotype 

assemblages in the three fixed stations among the samplings (Clarke and Warwick, 1994). 

Tests were calculated on the basis of the Bray-Curtis rank similarity matrix calculated 

using log(x+1) transformed data. This transformation was used to normalize the 

asymmetric distribution of data and to reduce the importance of extreme data. Ordination 

by non-metric Multi Dimensional Scaling (nMDS) was carried out on the basis of Bray-

Curtis similarity coefficent. Also on the bases of Bray-Curtis similarities, the similarity 

percentage analysis (SIMPER) was applied in order to obtain the percentage contribution 

of each morphotype to the dissimilarity among samplings. 

2.3 Environmental data 

Fortnightly samplings were carried out from January 2000 to December 2001 and from 

July 2007 to June 2009, on three stations that coincided with the sediment routinely 

stations (Fig. 1). Physical and chemical parameters were measured in situ with a multi-

parameter probe (Idronaut/YSI 6600V2). Nutrients were evaluated using the Strikland & 

Parsons (1972) methods. Data that we have considered for this study were relative to 

temperature, salinity, dissolved inorganic nitrogen (DIN; sum of N-NH4, N-NO2 and N-

NO3) and orthophosphate (RP). 

Phytoplankton samples were fixed with Lugol’s solution and analysed with the Utermöhl’s 

technique (1958), using an inverted microscope (Zeiss, Axiovert 25) after sedimentation of 

variable volumes of water (5-10 cc), depending on phytoplankton density. Cell counts were 

made at different magnifications (100x, 200x and 400x) adequately to the species size. The 

species were determined following Faust (2002), Germain (1981), Humm & Wicks (1980), 

Husted (1985), Rampi e Bernard (1978, 1980, 1981), Ricard (1987), Sournia (1986), 

Tomas (1997). 

3. Results  

3.1 Morphotype composition  

A total of 14 morphotypes were recorded in the sediments of the Cabras Lagoon from all 

the surveys. Among morphotype, 5 were identified at species level, 3 at genus level and 2 

at group level (Table 1). Two morphotypes (Gonyaulax spinifera (Claparède et Lachmann) 

Diesing, and Pentapharsodinium cf daleii Indelicato et Loeblich) were observed only in 

the 2-5 cm section. Already described cysts of harmful algal species were not detected in 

the lagoon sediments. Cyst types that could not be identified were reported as type A-D. 
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These with other morphotypes (3) not yet reported in literature have been described as 

following.  

3.1.1 Gymnodiniales type 1 (Fig. 2 c) 

This morphotype is oval (22-28 µm long and 20-25 µm wide; n=3) and surrounded by a 

mucilaginous layer that gives the cyst a ‘half moon’ shape. The cellular content is granular 

and greyish in colour. The yellowish accumulation body is not well defined. Germination 

of this morphotype produced a short-lived small gymnodinioid cell. A more detailed 

identification was therefore not possible. 

3.1.2 Pentapharsodinium sp. (Fig. 2 e) 

The cyst is rounded (20-26 µm in diameter; n=10) and the wall is clear, thick and 

sometimes covered by detrital particles. The cyst has a pale granular content and a ruby red 

accumulation body is present, generally closer to the cyst wall. The germination of the cyst 

produced a Pentapharsodinium-like cells. The first morphological observations of the plate 

tabulation revealed a similarity with P. daleii (Lewis, 1991). The main differences between 

the Cabras morphotype and this species regarded both the notable dorso-ventrally 

compression of the vegetative cells and the lack of the organic processes covering the cyst 

wall in the former. This morphotype was largely distributed in the lagoon and reached in 

some samples the highest density values. 

3.1.3 Scrippsiella sp. (Fig. 2 m) 

The cyst is ovoid (27-35 µm long and 25-33 µm wide; n=4), dark brown in colour. The 

cellular content is granular with a red accumulation body often not clearly visible. 

Calcareous crystals cover the wall. Germination experiments were unsuccessful. 

3.1.4 Cyst type A (Fig. 2 n) 

This cyst is spherical (10-12 µm in diameter; n=15), with clear contents and a red 

accumulation body. The cyst wall is thin and surrounded by very fine processes (3-4 µm 

long). This morphotype was, with Pentapharsodinium sp., widely distributed in the 

sediment of the lagoon. Unfortunately all the germination experiments were not successful.  

3.1.5 Cyst type B (Fig. 2 o) 

The cyst is subspherical to ovoid (12 µm in diameter; n=1) with a clear granular content 

and a red accumulation body. The cyst wall is clear, smooth and thin.  

3.1.6 Cyst type C (Fig. 2 p) 

This morphotype is oval (22-27 µm long and 22 µm wide; n=2) with a granular content 

and a ruby-red accumulation body. The double wall is thick and covered with detrital 

particle. 
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Table 1 Dinoflagellate cyst total counts, relative abundance and species richness from the sediment of Cabras 

Lagoon. + = presence of the morphotype in the 2-5 cm section 
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Fig. 2 Dinoflagellate cysts isolated from sediments of the Cabras lagoon: (a) Fragilidinium sp. (b) Gonyaulax 

spinifera. (c) Gymnodiniales type 1. (d) Pentapharsodinium cf daleii. (e) Pentapharsodinium sp. (f) 

Polykrykos schwartzii. (g-h) Round Brown cysts. (i) Scrippsiella precaria. (l) Scrippsiella trochoidea. (m) 

Scrippsiella sp. (n) cyst Type A. (o) cyst Type B. (p) cyst Type C. (q) cyst Type D. All scale bars 10 µm. 
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3.1.7 Cyst type D (Fig. 2 q) 

The cyst is rounded (18 µm in diameter; n=3) very similar to the type A but bigger and 

presents an orange accumulation body. The germination experiments for this morphotype 

were unsuccessful. 

3.1.8 Round Brown (Fig. 2 g-h) 

This group includes a number of cysts that are brown in colour, rounded and lacking the 

accumulation body. The size varies substantially and the wall is or not covered by organic 

processes. Heterotrophic dinoflagellates belonging to the Protoperidinium or Diplopsalis 

often produce these kinds of cysts, but without information on germinated cells or 

archeopile structure determination is impossible. 

3.2 Cyst assemblage abundances and compositions 

Dynamics of total cyst density were different in the three stations (Fig. 3; Table 1). The 

maxima of station 1 and 2 were reached in October (respectively 326 cysts gr-1 dw and 633 

cysts gr-1 dw), with an intense decrement of the values and without a regular trend in the 

following samplings at station 1 and with a smoothed and regular decrement of the 

densities at station 2. The maximum of station 3 was assessed in August (241 cysts gr-1 

dw) after an increment from the first sampling and followed by a decrement in May. The 

highest cyst density was recorded in October at station 2 (633 cysts gr-1 dw) and the lowest 

in the same sampling at station 3 (41 cysts gr-1 dw). In all the samplings, station 2 showed 

the highest densities.  

 
Fig. 3 Total cyst densities in the different stations and among samplings. 

 

Although the described differences among the dynamics, the ANOSIM test did not indicate 

significant differences among stations as regards morphotype assemblage composition 
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(Global R: -0.148; p: 91%). On the contrary, the differences among samplings were 

significant (Global R: 0.481; p: 0.1%) and the nMDS ordination reflected this result (Fig. 

4).  

 
Fig. 4 nMDS ordination plots of samplings based on morphotype assemblage data. 

 

The number of recognized morphotype for sampling was respectively 4 in October, 10 in 

February, 9 in August and 8 in May (considering only the three routine stations). The 

morphotype percentage compositions (Fig. 5) underlined the temporal variation and 

indicated Pentapharsodinium sp. as the most important in all the samplings. The SIMPER 

analysis (Table 2) confirmed the assemblage similarity at the different stations and 

revealed that only few morphotype contribute to the similarity between samplings (cyst 

type A, Pentapharsodinium sp., Round Brown and cyst type D).  

 
Fig. 5 Morphotype percentage contribution among samplings. 
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Table 2 SIMPER (similarity percentages procedure) analysis results: average similarity and most important 

contributory species to each sampling. 

Average 

similarity 

(%) 

Contributory species:  

Oct 

65.59% 

 

Feb 

50.26% 

 

 

Aug 

68.19% 

 

 

May 

48.67% 

 

 

cyst type A 

 

 

cyst type A 

Pentapharsodinium sp. 

 

 

Pentapharsodinium sp. 

Round Brown 

 

 

Pentapharsodinium sp. 

cyst type D 

 

75.21% 

 

 

52.13% 

14.01% 

 

 

58.30% 

38.30% 

 

 

41.73% 

31.34% 

 

3.3 Spatial survey 

The distribution of cyst abundances obtained in the spatial survey in May 2009 (Fig. 6a; 

Table 1) indicated highest values in the central and southern part of the lagoon. The 

maximum was registered at station 2 (287 cysts gr-1 dw). Stations 7 and 1 showed very low 

values (60 and 46 cysts gr-1 dw respectively) compared to their adjacent sampling areas 

(respectively station 11 and stations 2 and 6). New morphotypes were not observed even 

although the high number of stations sampled in this survey. Spatial cyst composition (Fig. 

6b) revealed a substantial heterogeneity among the stations. Pentapharsodinium sp., cyst 

type A and cyst type D showed the wider distribution. Pentapharsodinium sp. reached the 

maximum percentage of 57% at station 9, followed by cyst type A with a percentage of 

44% at station 10. The Round Brown group was quite widespread among the lagoon, and it 

was particularly abundant at stations 3 and 6 (41% and 33% respectively). The group of 

morphotypes named ‘others’, included those that were not largely distributed but reached 
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high percentages at specific stations (e.g. S. precaria at station 7 and 11 with 34 and 50% 

respectively). 

 
Fig. 6 Results of the spatial survey: total cyst densities (a), and morphotype percentage contribution (b). 

 

3.4 Phytoplankton, nutrient and environmental data  

The results of pluriannual investigations were reported as means of the whole lagoon.  

Phytoplankton class composition (expressed as relative percentage of the total density on 

the mean annual cycle, Fig. 7) showed the strong importance of Cyanophyceae and the 

relative low percentage of dinoflagellates. Considering the phytoplankton class 

composition inside the single annual cycles, the relative importance of dinoflagellate 

changed in 2000, 2001 and 2008 (Fig. 8): they reached the highest percentage in 2000 (late 

winter, early spring and summer months), which decreased in 2001, until it disappeared in 

2008. 

Temperature showed the typical seasonal cycle of the Mediterranean region with maxima 

in July and August (up to 27.2°C in August) and minima in December and January (10.3°C 

and 10.1°C respectively). Salinity showed lower values (<15‰) during the first semester 

of the mean annual cycle and higher in the second (up to 30.3‰ in August). In the 

interannual series salinity showed very different behaviour in 2000 and 2001 with the 

highest values (up to 41‰ in September 2000) and the lowest (5.4‰ in February 2001) of 

the entire series. High nutrient availability was observed in the lagoon (Fig. 7), with 

maxima of DIN especially in winter and autumn seasons (up to 22.2 µM N in January) and 

of RP in winter and summer (up to 2.1 µM P in February). DIN/RP ratio values were < 16 

in all the mean annual cycle except in January (Fig. 7). 
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Fig. 7 Phytoplankton, environmental and nutrient data: monthly mean +S:E (N/P ratio: N = nitrates plus 

nitrites plus ammonia; P = orthophosphates). 
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Fig. 8 Interannual variation of phytoplankton data and salinity. 

 

4. Discussion 

In the Mediterranean basin a number of studies were carried out on cyst assemblage 

composition in coastal marine areas (Montresor et al., 1998; Rubino et al., 2000, 2002; 

Giannakourou et al., 2005) and enclosed human impacted sites (Satta et al., 2009). More 

specific investigations were conducted on selected species (Montresor et al., 1993, 1994; 

Meier and Willems, 2003; Montresor et al., 2003) or harmful ones (Garcés et al., 2004; 

Bravo et al., 2006; Angles et al., 2009). None of these works investigated on peculiar areas 

such as coastal lagoons. These kinds of ecosystems are very sensible and characterized by 

high variability of environmental variables, particularly due to their connecting position 

between the continental and the marine systems (Boutière, 1974). Besides, in the last 

decades lagoons have suffered strong direct or indirect human impacts. Intense fishery 

activities as well as the over enrichment of nutrients linked to agriculture, urban and 

industry water waste or the modification of natural connection with the adjacent sea, are 

some of the factors that influence the ecological functions of these areas. Artificial 

structures and barriers impair the interaction with the adjacent marine waters, affecting the 

trophic status and function of these ecosystems worldwide (Vicente and Miracle, 1992; de 

Cunha and Wasserman, 2003; Pastres et al., 2004; Como et al., 2007). Moreover, some 

recent studies on the relationship between sedimentary records of dinoflagellate cysts and 

historical evolution of anthropogenic activities over the past 450 years, revealed that after a 

notable increase in species richness with the early urbanization and population growth, the 

number of cyst morphotypes reduced drastically in response to higher human pressures 

(Pospelova et al., 2002). The Cabras Lagoon is characterized by a high trophic level due to 

the intense human activities in its watershed (Sechi et al., 2006). It has also suffered in 
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recent years, for some anthropogenic hydraulic changes. The most important was the 

opening of the Scolmatore canal (1970) with the consequent construction of a W-shaped 

dam, to prevent the periodical floods of neighbouring villages. De Falco et al. (2004) and 

Magni et al. (2008) hypothesized a reduction of the hydrodynamic energy of the lagoon as 

a consequence of this human intervention. They observed high percentages of fine 

sediments (particularly sortable silt fraction) and the increment in organic matter and total 

organic carbon. Our studies revealed notable variations across the years especially in 

phytoplankton class composition and salinity values. Dinoflagellates and Diatoms 

decreased drastically in favour of Cyanophyceae, as expected in strongly degraded 

ecosystems (Scheffer et al., 1997; Chomérat et al., 2007). Pluriannual salinity varied 

substantially through the year cycle with lower values (<15‰) between January and June 

and an intense increase in summer months, with the maximum in September. Interannual 

fluctuations revealed high ranges of variations in maxima and minima values that could 

have strongly affected the dinoflagellates because of only few species tolerate salinity 

below 20‰ (Dale, 1996). The scarce presence of dinoflagellates in the water column of the 

Cabras Lagoon agreed with the low cyst density values and number of cyst morphotypes. 

These results are consistent with those of southern New England and Malaysia lagoons 

(Pospelova et al., 2004; Furio et al., 2006) and some oligohaline environments (Dale, 1996; 

Ellegaard, 2000; Mudie et al., 2001).  

In spite of the low number of morphotypes recorded, our results led to an increase on 

phytoplankton biodiversity information, at least as regarding dinoflagellate cyst producers, 

confirming the important use of benthic studies as a tool to increase this kind of 

information (Orlova et al., 2004; Bravo et al., 2006; Zingone et al., 2006; Satta et al., 

2009). Scrippsiella trochoidea (Stein) Balech ex Loeblich, Polykrikos schwartzii Bütschli, 

G. spinifera, P. cf daleii, S. precaria Montresor et Zingone and the genus Fragilidinium 

were never signalled in pluriannual water samples. Difficulties on taxonomic placement 

without an exhaustive analysis of thecal plates are common for Peridiniales species 

(Nehring 1997; Orlova et al., 2004). In some cases it is not sufficient, because different 

species have the same plate tabulation but differ for cyst morphology and for the results of 

genetic analyses (Montresor et al., 2003; Gottschling et al., 2005; Gu et al., 2008). The 

Pentapharsodinium sp. morphotype, widespread distributed in the Cabras Lagoon, is 

similar to the cyst of P. daleii but lacks the organic processes. The small-germinated cells 

seem to have 5 cingular plates (as Pentapharsodinium genus) and the same plate tabulation 
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of P. daleii, but they are much more dorso-ventrally compressed. For this, further studies 

are necessary for the correct taxonomic recognition of this species. 

It is assumed that resting stages are influenced in their sedimentation by all the 

hydrodynamic factors that influenced fine sedimentary particles (Dale, 1976). The 

sediment grain size in the lagoon is well described, and the highest percentages are 

represented by the silt and clay fractions (De Falco et al., 2004; Magni et al., 2008). In the 

Cabras Lagoon cyst abundances showed a clear spatial pattern of distribution with maxima 

registered in the central and southern areas. This result agreed with the sedimentary 

character of the lagoon and with the internal hydrodynamic model proposed by Ferrarin 

and Umgiesser (2005).  

This work represent the first study case on dinoflagellate cysts in a lagoon of the 

Mediterranean Sea and one of the few conducted in other geographical areas (Pospelova et 

al., 2004; Furio et al., 2006). The obtained results confirmed the importance of integrated 

studies between planktonic and benthic communities to the evaluation of the biodiversity 

of the ecosystem. Moreover it allowed confirming the role of the sediment as synthesis tool 

of ecological pluriannual dynamic of phytoplankton, particularly of dinoflagellates.  
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ABSTRACT 

Temporal variations in environmental parameters and phytoplankton were studied in the Cabras Lagoon 

(Sardinia, Italy) in order to evaluate the trophic state of the system after a major dystrophic event. Samples 

were collected at five stations from October 2000 to September 2002. The analysis found wide variations in 

salinity and high nutrient availability, especially for phosphorus compounds, in summer; in winter and 

spring, increased concentrations of dissolved inorganic nitrogen were observed, due to the watershed 

discharge.  

Chlorophyll a concentrations and phytoplankton densities were very high and positively correlated with 

seasonal nutrient peaks. In particular, phytoplankton diversity was reduced, with the community being 

mainly dominated by Cyanophyceae of reduced cell size with Cyanobium-type cells. During the study period, 

some harmful algal species were observed: Prorocentrum minimum, Dinophisys acuminata, Heterocapsa 

rotundata and Alexandrium and Chattonella  species.  

Several trophic state indices and water quality indicators were applied; an overall analysis confirms the 

severely eutrophic character of the lagoon.  

 

Keywords: trophic state, phytoplankton, eutrophication, coastal lagoon, Sardinia, Mediterranean Sea. 
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1. Introduction 

Coastal lagoons and estuaries play an important role in filtering and transforming inorganic 

and organic materials (Conley, 2000); these areas are characterized by high primary 

productivity. 

 They are located in the part of the coastline where the effects of human activities, such as 

pollution, eutrophication and physical disturbances, have the most direct negative impact 

(Gazeau et al. 2004; Simpson and Rippeth, 1998).  

Because algal growth rates are often naturally limited by the availability of nutrients, 

particularly nitrogen and phosphorus, the fertilization of estuarine-coastal waters stimulates 

the growth, biomass accumulation, and primary production of phytoplankton (Cloern, 

2001). In recent decades, increased anthropogenic inputs of these elements have led to 

severe eutrophication problems, inducing higher phytoplankton primary production in 

many coastal areas (Cloern, 2001; Glè et al. 2007).  

In such systems, nutrient dynamics are also greatly influenced by climatic variability (Glè 

et al., 2007). Climate stability is also believed to play a role in determining phytoplankton 

succession patterns in temperate coastal waters (Reynolds et al., 2002; Smayda and 

Reynolds, 2003). 

Studies of phytoplankton abundance and structure are crucial to understanding ecosystem 

dynamics (Angsupanich and Rakkheaw, 1997), especially in cases where primary 

production is dominated by this biotic component. 

The process of eutrophication also increases the frequency and intensity of phytoplankton 

growth, which can trigger dystrophic crises. These can, in turn, lead to significant changes 

in the structure and function of the affected ecosystems (Phlips et al., 2002). 

Eutrophication also promotes the development and persistence of many harmful algal 

blooms (HABs). It was recently assessed as one of the reasons behind the worldwide 

increase in HABs (Heisler et al., 2008). 

Phytoplankton is now also seen as a powerful tool for describing trophic conditions. In 

fact, because of its peculiar ecology, phytoplankton is considered to be one of the most 

useful biotic elements for assessing the environmental quality of water bodies (Thunmark, 

1945; Nygaard, 1949; Hörnström, 1981; Tremel, 1996; Brettum and Andersen, 2005). This 

point of view has assumed a central role in the last few years in the context of applied 

aquatic ecology, due in large part to the influence of European Union Directive 

2000/60/CE (WFD, Water Framework Directive), which requires the use of numerical 
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indices based on biological parameters when assessing the ecological quality of aquatic 

ecosystems. 

Models for assessing the trophic state of lagoons (especially phytoplankton-based models) 

are not in widespread use as they are in other environments. Moreover, the differing 

trophic conditions, highly variable parameters and uncertain typological identification of 

lagoons make it very difficult to develop specific tools for evaluating water quality in these 

environments. Consequently, methods developed for freshwater environments are often 

applied to lagoons. These models are generally not well-suited to lagoons; results should 

therefore be considered arbitrary and interpreted with extreme caution. 

In Mediterranean lagoons, macrophytes often surpass phytoplankton as the most important 

producers (Giordani et al., 2005). In these cases, the role of phytoplankton only becomes 

relevant in  periods when macrophytes are absent. Less frequently, phytoplankton is the 

sole primary producer throughout the year.  

Macrophytes are generally the dominant producers in lagoons in Sardinia (Italy, 

Mediterranean Sea). The Cabras Lagoon is one of the few exceptions (Fiocca et al., 1996; 

Lugliè et al., 2001a, 2001b; Sechi et al., 2001; Trebini et al., 2005). This extensive, shallow 

water body is among the largest lagoons in the Mediterranean and has limited macrophyte 

development (Sechi et al., 2006). It is affected by extremely high anthropogenic nutrient 

loads; consequently, eutrophication has been a chronic condition in recent decades.  

Eutrophication is also believed to be responsible for decreased lagoon production, due to 

verified dystrophic crises, which can be caused by hypoxia and/or harmful algal blooms. 

The observed dystrophic crises have mostly occurred in summer months and have caused 

severe fish mortality (with losses of up to 1.5 million euro in 1999) in the Cabras Lagoon.  

Because phytoplankton abundance, seasonality, distribution and species composition in the 

Cabras Lagoon had not yet been described, our objectives were: 

(1) to valuate the temporal dynamics of phytoplankton with respect to environmental 

conditions, taking into account data collected over two years (from October 2000 to 

September 2001 and from October 2001 to September 2002); 

(2) to assess the presence of harmful algal species and their importance within the 

phytoplankton community; and 

(3) to compare the trophic levels obtained for the lagoon by applying various indices that 

consider different variables, including phytoplanktonic chlorophyll a. 

The overall goal was to assess whether phytoplankton composition and dynamics could be 

a possible cause of dystrophic events similar to the one that occurred in 1999. 
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2. Materials and methods 

2.1 Study area 

The Cabras Lagoon is a shallow water body located on the west coast of Sardinia, in the 

Gulf of Oristano (western Mediterranean Sea; 39° 56’ 37’’ N, 08° 28’ 43’’ E; Fig. 1).  

With an area of about 23.8 km2 and a mean depth of 1.6 m (maximum depth of around 3 

m), the Cabras Lagoon is the largest lagoon in Sardinia and one of the largest in the 

Mediterranean Sea (Sechi et al., 2006). Due to its environmental significance, it is 

protected by international agreements, including the Ramsar Convention (EU Directive 

Special Protection Area, Site of Community Importance, Natural Protected Area). It is also 

part of the Sinis-Montiferru Natural Reserve (Sardinia). 

The Cabras Lagoon watershed extends over an area of approximately 430 km2. Water 

flowing within the system is derived from natural rivers and from canals that drain the 

surrounding lowlands. Most of the lagoon's freshwater input originates from the Rio Mare 

e Foghe, which drains an area of 313 km2. River discharge is, however, rather limited as a 

result of the low rainfall regime characteristic of the region (ca. 10–100 mm, from July to 

December) and the increasing demand for water, especially for agricultural purposes 

(Magni et al., 2005). In its current form, Rio Mare e Foghe is a canal created in the ‘60s 

after land was reclaimed from a natural wetland. This was one of numerous land 

reclamation projects carried out in Sardinia, starting in the ‘20s, to recover territories 

deemed unproductive and unhealthy. A minor tributary flows into the eastern part of the 

lagoon, near the town of Cabras. 

In general, the basin consists of a flat zone, with a surface area of about 215 km2 and an 

elevation not exceeding 60 m above sea level (a.s.l.) and a submountainous/mountainous 

zone, with elevations up to 1050 m a.s.l. The flat zone, located in the southern part of the 

watershed, is the site of intensive agricultural activity, which releases high nutrient loads. 

The fertile soils of the submountainous/mountainous zone (over 200 m a.s.l.) in the 

northern part of the watershed are occupied by vineyards, olive groves, pastures, and 

forests. This region is frequently plagued by large-scale fires, which threaten soil 

conservation. The total resident population inside the watershed is about 38,000 

inhabitants, grouped in 19 urban centers. The largest of these is the town of Cabras (about 

8,800 inhabitants), situated on the southeastern coast of the lagoon. The urban wastes of 

Cabras are collected separately and do not flow into the lagoon. However, no urban center 

within the catchment area has a sewage treatment system equipped for phosphorus and  
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Fig. 1. Location of the Cabras Lagoon and of the sampling stations is shown in the left 

panel; the bold line in the right panel delimits the Cabras Lagoon watershed and adjacent 

urban areas. 
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nitrogen removal. Accordingly, based on estimates of agricultural and non-agricultural 

nutrient loads from the watershed, an input of 29 t phosphorus year-1 (Sechi et al., 2006) 

and 240 t nitrogen  

year-1 has been calculated (Casula et al., 1999). 

The lagoon is mainly connected to the adjacent Gulf of Oristano through four narrow 

creeks that flow into the large, southernmost canal, the Scolmatore (=spillway), which was 

dredged in the late ‘70s. The canal was constructed to drain excess water during the heavy 

winter rainfalls, which regularly submerged a district of the nearby town of Cabras, called, 

appropriately, “Little Venice.” The Scolmatore was subsequently modified to include a 30-

cm-high dam, built to prevent further increases in the salinity of the lagoon by stopping the 

inflow of seawater. In addition, artificial barriers have been constructed to control the fish 

catch.  

The lagoon’s sediments are dominated by silt in the southern area, while clay content 

increases towards the central-northern section. The surface sediments contain large 

amounts of organic matter (10%) and total organic carbon (33 mg g-1) (De Falco et al., 

2004). The benthic environment of the lagoon is very poor in macrofaunal communities, 

with a few predominating taxa that typically occur in degraded and heavily disturbed sites 

(Magni et al., 2004). 

Salinity in the lagoon follows a net temporal and spatial gradient, increasing from about 8–

10‰ during the winter up to 30‰ in summer, with the difference (∆) between the northern 

(near the main tributary) and southern (near the mouth of the lagoon) sectors normally 

being about 4‰ (Sechi et al., 2006). The long-term mean values for the lagoon are about 

77 mg N m-3 for dissolved inorganic nitrogen and 42 mg P m-3 for dissolved inorganic 

phosphorus. Dissolved oxygen fluctuates greatly over time, ranging from under- to over-

saturation and having a mean value of 107% (Sechi et al., 2006). 

The lagoon has a high economic rating due to its numerous fisheries (e.g., Liza ramado, 

Mugil cephalus), which employ about 300 people and their families, and to fishing-related 

activities.  

In 1998, fish productivity reached 40,000 kg km-2, corresponding to a profit of about 3.5 

million euros (Magni et al. 2005). However, dystrophic events often cause massive fish 

mortality (the last such event occurred in the summer of 1999). 

 

2.2 Sampling strategy  
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Field work was carried out between October 2000 and September 2002. Samples were 

collected at approximately two-week intervals from five stations along a gradient of 

distance from the sea mouth to the main freshwater tributary (Fig. 1).  

Temperature (Tem), salinity (Sal), dissolved oxygen (DO), pH and fluorimetric 

chlorophyll a (fChl a) were measured in situ with a multi-parameter probe (Idronaut, YSI 

6600 V2).  

A bucket was used to collect water samples from the superficial water layer (50 cm depth) 

and preserved in cold, dark conditions for laboratory analyses of alkalinity (Alk), ammonia 

(NH3), nitrite (NO2), nitrate (NO3), reactive silica (RSi), orthophosphate (RP) and total 

phosphorus (TP), following Strickland and Parsons (1972), and for Chl a (Golterman et al., 

1978). Dissolved inorganic nitrogen (D.I.N.) was obtained as the sum of NH3, NO2 and 

NO3. Data for rainfall and solar radiation were provided by the Sistema Informativo 

Agricolo Nazionale (SIAN) and refer to the meteorological station of Santa Lucia, in the 

vicinity of the lagoon. 

Phytoplankton samples were fixed with Lugol’s solution and analysed according to the 

Utermöhl technique, using an inverted microscope (Zeiss, Axiovert 25) after the 

sedimentation of variable volumes of water (5-10 cc), depending on phytoplankton density. 

Cell counts were made at 100X on the entire bottom of the sedimentation chamber for the 

larger and more easily identifiable species, and replicated at 200X and 400X on an 

adequate number of fields for the smaller cells. Species were determined following Balech 

(1995), Faust and Gulledge (2002), Germain (1981), Humm and Wicks (1980), Husted 

(1985), Komárek and Anagnostidis (1998), Komárek (2005), Rampi and Bernard (1978, 

1980, 1981), Ricard (1987), Sournia (1986) and Tomas (1997). 

For difficult-to-recognize species, the identification was checked using a scanning electron 

microscope (Zeiss 962 DSM), after the appropriate treatments. 

 

2.3 Data treatment 

The Shannon-Wienner diversity index (Weaver and Shannon, 1949) and Evenness index 

(Pielou, 1966) were calculated for each sampling date and each station to evidence 

temporal and spatial variations in the richness and relative abundance of phytoplankton.  

Statistical non-metric multidimensional scaling (nMDS) analyses of abiotic and biotic 

variables were carried out to assess spatial and temporal differences on monthly and 

seasonal scales. 
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Similarity matrixes were obtained using monthly and seasonal means at the five sampling 

stations.  

The dataset of abiotic parameters was composed of 13 environmental variables (rainfall, 

solar radiation, temperature, pH, alkalinity, DO, salinity, NH3, NO2, NO3, TP, RP, RSi) 

and similarity matrixes were based on the normalized Euclidean distance.  

The dataset of biotic parameters was composed of 11 variables (Chl a, 9 phytoplankton 

classes and ultraplankton, a dimensional group with cell size <5µm) and similarity 

matrixes were based on  the Bray-Curtis similarity index.  

The significance of spatial and temporal differences was assessed using a two-way 

Analysis of Similarities (ANOSIM) test (probability percentages lower than 3% were 

considered significant). 

A canonical correspondence analysis (CCA) was performed (Ter Braak, 1986) to quantify 

the influence of environmental variables (temperature, pH, alkalinity, DO, salinity, NH3, 

NO2, NO3, D.I.N., N/P (D.I.N./RP), TP, RP, RSi) on phytoplankton (Chl a, 9 

phytoplankton classes and ultraplankton), while considering class abundances. 

All canonical axes were used to assess the significant variables through analyses by means 

of a Monte Carlo test (1000 permutations).  

The data used to construct the environmental matrix were square-root transformed. The 

phytoplankton matrix was obtained via a log(x+1) transformation of the total densities of 

algal classes (including ultraplankton). 

Statistical analyses were performed using PRIMER (for the ANOSIM test and nMDS) and 

MVSP (for diversity indices and CCA) software. 

Relationships among the considered environmental variables and fitoplancton classes 

abundance were tested with the Pearsons correlation. 

To obtain a better description of the trophic status, the TRIX (Vollenweider et al., 1998) 

and TSI  indices (Carlson, 1977) were calculated. 

The latter index, developed for freshwater environments, is based on Chl a, Secchi disk 

depth and TP, and takes into account the values for each sample. It ranges from 0 to 100. 

Values  between 0 and 20 are considered typical of ultra-oligotrophy, between 20 and 40 of 

oligotrophy, between 40 and 50 of mesotrophy, between 50 and 70 of eutrophy and over 

70 of hyper-eutrophy. During this investigation, since Secchi disk depth data were not 

collected in Cabras Lagoon, TSI was calculated as TSI (CHL) and TSI (TP), using the 

following formulae, respectively: 
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(1) TSI (CHL) = 9.81 ln (Chl a) + 30.6   (2) TSI (TP) = 14.42 ln (TP) + 4.15  

 

The TRIX index is proposed for coastal waters and ranges from 0 to 10, from oligotrophy 

to eutrophy. It considers four variables: Chl a, TP, D.I.N. and DO, as absolute deviation 

from saturation. 

The index was calculated using the following formula: 

 

(3) TRIX = [log (Chl a x |DO| x N x P) + 1.5] / 1.2 

 

3.  Results 

3.1 Chemical/physical parameters and nutrients 

Table 1 reports the average values of variables analysed throughout the lagoon during the 

entire study period. Figure 2 displays relative temporal and spatial variations in the studied 

parameters. 

Rainfall patterns (Table 1, Fig. 2a) differed in the two years of the study, with a distinct 

wet fall and dry summer in the first, and a more homogeneous dynamic all year round in 

the second. Major differences were detected between the two annual cycles as regards 

rainfall abundance, with mean monthly cumulated rainfall of 55.3 mm in the first and 33.4 

mm in the second. The rainiest month was November in both years, with a cumulative 

rainfall of 164 mm in 2000 and 85.8 mm in 2001.  

The dynamics of monthly means of daily solar radiation (Table 1, Fig. 2b) showed only 

very slight differences between the two annual cycles. A regular increasing trend, from 

lower winter values (under 5000 KJ m-2 in December) to higher summer values (over 

21000 KJ m-2 in July), was detected in both years. The mean values were 12,725.9 KJ m-2 

for the first cycle and  

12,980.3 KJ m-2 for the second. 

Temperature and salinity displayed seasonal dynamics, characterised by an increasing 

trend from winter to summer and a decrease from summer to winter. The temperature (Fig. 

2c) reached a maximum of 31°C in August 2001 at ST2 and a minimum of 6°C in 

December 2001 at ST1. In general, no significant differences were observed among 

stations at each sampling date. The mean salinity of the lagoon (Fig. 2d) exhibited an 

evident spatial gradient from ST5 to ST1 (∆ of about 4‰ in terms of annual averages) 

depending on their relative position with respect to freshwater inputs and seawater 

exchanges. The greatest seasonal variations occurred in the first annual cycle, with a rapid 
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Table 1. Mean values and standard deviation of environmental variables and Chl a in the Cabras Lagoon. 

 

   ST1 ST2 ST3 ST4 ST5 Mean 

Temp. °C 18.5 ± 6.6 18.4 ± 6.6 18.4 ± 6.5 18.7 ± 6.3 18.4 ± 6.5 18.5 ± 6.3 

Sal. ‰ 21.2 ± 8.5 20.4 ± 8.8 20.1 ± 8.6 18 ± 7.8 16.6 ± 8 19.3 ± 9.1 

pH   8.7 ± 0.4 8.8 ± 0.4 8.8 ± 0.4 8.7 ± 0.4 8.7 ± 0.4 8.7 ± 0.4 

DO % 119.5 ± 31.7 116.4 ± 31.4 115.8 ± 29.9 118.3 ± 28.5 116.9 ± 32.4 117.4 ± 30.1 

Alk meq l-1 2.7 ± 0.4 2.5 ± 0.6 2.6 ± 0.4 2.7 ± 0.4 2.7 ± 0.3 2.6 ± 0.4 

RP mg P m-3 27 ± 28.6 32.6 ± 41.3 34.9 ± 52.8 38.7 ± 41.9 40.5 ± 49.9 34.7 ± 43 

TP mg P m-3 276.3 ± 121.9 278 ± 124.3 285.6 ± 128.4 319.2 ± 133 329.3 ± 156.2 297.7 ± 131.9 

D.I.N. mg N m-3 99.2 ± 119.4 103.5 ± 126.9 88.8 ± 113.3 140.5 ± 179 134.4 ± 191.5 113.3 ± 146.9 

NH3 mg N m-3 54.4 ± 38 53.6 ± 34.9 53 ± 31.3 56.5 ± 35 57.8 ± 39.4 55.1 ± 34.9 

NO3 mg N m-3 35.5 ± 86.9 43.4 ± 110.1 29.5 ± 95.7 74.7 ± 154 67.5 ± 174.8 50.1 ± 126.6 

NO2 mg N m-3 9.3 ± 13 6.5 ± 8.9 6.3 ± 9.1 9.2 ± 11.6 9.1 ± 11.9 8.1 ± 10.9 

RSi mg Si l-1 6.2 ± 2.9 6.4 ± 2.9 6.8 ± 2.9 7.1 ± 3.2 7.4 ± 3.3 6.8 ± 3.1 

Chl a mg m-3 39.3 ± 32.4 37.2 ± 33.2 40.5 ± 30.3 45.7 ± 30.8 48.9 ± 29.7 42 ± 30.9 
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Fig. 2. Trend of abiotic parameters in the Cabras Lagoon: (a) rainfall, (b) monthly mean of 

daily solar radiation, (c) temperature, (d) pH, (e) salinity, (f) dissolved oxygen, (g) reactive 

phosphorus, (h) total phosphorus, (i) D.I.N., (l) reactive silica. 
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decrease from the absolute maximum (41.3‰) to the minimum (2.7‰) in the first 

semester, followed by an increase to about 25‰ in the second. The second annual cycle

was characterised by a more restricted range of values (from 30.4‰ to 18.6‰). 

Consequently, the two annual mean values were clearly different, 17.2‰ and 24.6‰ 

respectively. 

The pH (Table 1, Fig. 2e) and DO (Table 1, Fig. 2f) varied widely during the study period, 

but with no well-defined trends. Lower mean values were observed for both variables in 

the second year. Very high mean values were recorded at the beginning of the 

investigation, with maxima in February 2001 (monthly mean of 9.3; maximum of 9.55 at 

ST2) and in November 2000 (monthly mean of 158.1%; maximum of 227% at ST5), 

respectively. The lowest mean monthly values occurred at the beginning of the second 

annual cycle (October 2001); these were of 8.3 for pH (minimum of 7.81 at ST5) and 

86.5% for DO. As regards individual stations, the minimum value of DO was observed at 

ST5 in August 2002 (54%). Differences from surface to bottom were not significant, with 

percentages near the bottom always >50%. 

When it comes to nutrients, wide spatial and temporal variations were observed. RP (Table 

1, Fig. 2g) values were fluctuant and remained under 60 mg P m-3 during nearly all of the 

study period. Concentrations were particularly low (less than 20-30 mg P m-3) from 

October to July 2002. Peaks were observed in November 2000 (maximum of 254 mg P m-3 

at ST3), August 2001 (maximum of 180 mg P m-3 at ST5) and July-September 2002 

(maximum of 144 mg P m-3 at ST5). 

TP (Table 1, Fig. 2h) showed a similar trend as regards maxima (533 mg P m-3 at ST5 in 

November 2000; over 600 mg P m-3 at ST4 in August 2001; 701 mg P m-3 at ST5 in July-

September 2002).  

RP represented about 10% of average TP values in the lagoon throughout the study period. 

It was higher during summer months (up to 25% in August 2001 and 20% in August-

September 2002) and lower in winter (from 2% to 4% between October and March 2002).  

In general, D.I.N. (Table 1, Fig. 2i) was lower than 100 mg N m-3. Peaks were frequent 

throughout the study period, occurring more frequently in winter (monthly mean of 473.7 

mg N m-3 in January 2001, with a  maximum of 954 mg N m-3 at ST5) and late summer. 

The minimum value was of 13 mg N m-3, registered at ST5 in April 2001 (monthly mean 

of 54.2 mg N m-3). The mean value for the first year was 110.9 mg N m-3 and 97.3 mg N 

m-3 for the second. During the annual cycles, ammonia resulted as the main available 
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component, representing about 50% of D.I.N.. A prevalence of nitrate was only observed  

in  January 2001.  

RSi dynamics (Table 1, Fig. 2l) displayed two different phases: a general progressive 

decrease from October 2000 (monthly mean of 11.3 mg Si l-1; maximum of 13.07 mg Si l-1 

at ST4) to March 2002 (monthly mean approximately equal to 0 mg Si l-1; minimum of 0.3 

mg Si l-1 at ST4) and a net increase from May to September 2002 (monthly mean of 10.7 

mg Si l-1; maximum of 11.91 mg Si l-1 at ST5). The mean value for the first year was 7.9 

mg Si l-1 and 5.1 mg Si l-1 for the second.  

An nMDS of the entire set of environmental parameters (Fig. 3a) showed significant 

differences among seasons (ANOSIM R=0.301 and p=0.1%). Differences among sampling 

stations (Fig. 3b) were not significant (ANOSIM R=-0.15 and p =98%). 

 

3.2 Phytoplankton assemblages and chlorophyll a  

Chl a always expressed mean lagoon concentrations higher than 10 mg m-3 (Table 1, Fig. 

4a), varying from a monthly mean of 13.6 mg m-3 in May 2001 (minimum of 7.7 mg m-3 at 

ST2) to 96.2 mg m-3 in January 2001 (maximum of 163.7 mg m-3 at ST2). In both annual 

cycles, the seasonal dynamic showed very high mean values in the fall-winter seasons, 

which fell in spring and rose again in summer. The lagoon mean was 43.2 mg m-3 for the 

first year and 44 mg m-3 for the second. 

Phytoplankton density was generally greater than 108 cells l-1 (Fig. 4b), with an annual 

mean of 6 x 108 cells l-1 for the first cycle and 5.9 x 109 cells l-1 for the second. Lagoon 

mean values increased, with wide fluctuations, from the beginning of the study until the 

end, varying from 5.5 x 107 cells l-1 in April 2001 (minimum of 1.1 x 107 cells l-1 at ST2) 

to 1.5 x 1010 cells l-1 in August 2002 (maximum of 2.2 x 1010 cells l-1 at ST5). In both 

annual cycles, the highest abundances were observed in winter and summer, while lower 

values were observed in spring. 

Total phytoplankton abundance was highest at ST5 (located near the main tributary), with 

a mean value of 3 x 109 cells l-1 for the entire study period, and lowest at ST1 (located near 

the exchange with the sea), with a mean value of 2.2 x 109 cells l-1. 

48 phytoplankton taxa belonging to 9 classes were identified during the study period 

(Table 2), with Bacillariophyceae (15), Dinophyceae (14), Chlorophyceae (7) and 

Cyanophyceae (5) being more prevalent than the other classes. Unidentified cells of size 

<5µm were considered in the dimensional group of Ultraplankton. Most of the observed  
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Fig. 3. nMDS of abiotic parameters in the Cabras Lagoon: (a) differences among seasons, 

(b) differences among sampling stations. 
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Fig. 4. Trend of chlorophyll a (a) and total phytoplankton density (b) in the Cabras 

Lagoon. 
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Table 2. List of phytoplankton species in the Cabras Lagoon, their relative presence at each 

sampling station and HAS. 1, 4 = Faust and Gulledge, 2002; 2 = Andersen et al., 1996; 3 = 

Verity, 2009; 5 = Hallegraeff, 2003. 

 

Prokaryotes  Species ST1 ST2 ST3 ST4 ST5 HAS 
CYANOPHYCEAE Other Cyanophyceae x x x x x - 

 Anabaena sp.  x x x x - 
 Anabaenopsis sp. x x    - 
 Cyanobium-type cells x x x x x - 
 Limnothrix sp. x x x x x - 
 Rhabdoderma  sp. x x x x x - 

Eukaryotes        
BACILLARIOPHYCEAE Other Bacillariophyceae x x x x x - 

 Amphora sp.     x - 
 Aulacoseira distans   x   - 
 Aulacoseira granulata     x - 
 Chaetoceros spp.   x x x - 
 Climacosphenia spp.     x - 
 Cocconeis sp.   x   - 
 Cyclotella atomus x x x x x - 
 Cylindrotheca closterium x x x x x - 
 Fragilaria sp. x x x x x - 
 Licmophora sp.    x  - 
 Minidiscus sp. x x x x x - 
 Navicula spp. x x x x x - 
 Nitzschia sp. x x x x x - 
 Skeletonema costatum x x x x x - 
 Skeletonema potamos   x x x - 
 Thalassiosira sp. x x x x x - 

CHLOROPHYCEAE Other Chlorophyceae   x   - 
 Carteria sp. x  x x x - 
 Chlamydomonas sp. x x x x x - 
 Chlorella sp. x x x x x - 
 Monoraphydium sp. x x x x x - 
 Oocystis sp. x     - 
 Pediastrum sp.  x    - 
 Scenedesmus spp. x x x x x - 

CHRYSOPHYCEAE Kephyrion sp.    x x - 
 Kephyrion spirale x x x x x - 
 Ochromonas sp. x x x x x - 

CRYPTOPHYCEAE Other Cryptophyceae x x x x x - 
DINOPHYCEAE Other Dinophyceae x x x x x - 

 Alexandrium sp. x     1 
 Dinophysis acuminata x  x x x 2 
 Gymnodinium sp. x x x x x - 
 Gyrodinium sp. x x x x x - 
 Heterocapsa rotundata x x    3 
 Oxyphysis oxytoxoides x x x x x - 
 Oxyrrhis marina x x x x x - 
 Oxytoxum sp. x   x  - 
 Peridinium sp. x x x x x - 
 Pronoctiluca sp.  x    - 
 Prorocentrum micans x x x x x - 
 Prorocentrum minimum x x x x x 4 
 Protoperidinium spp. x x   x - 
 Scrippsiella sp.  x x x  - 

EUGLENOPHYCEAE Other Euglenophyceae x x x x x - 
 Euglena sp. x x x x x - 
 Eutreptiella sp. x x    - 

HAPTOPHYCEAE Other Haptophyceae    x  - 
 Calyptrosphaera sp. x   x  - 

PRASINOPHYCEAE Pyramimonas sp.    x x - 
 Tetraselmis sp. x x x x x - 

RAPHIDOPHYCEAE Chattonella sp. x     5 
Ultraplankton Ultraplankton x x x x x - 
Incertae sedis Ebria tripartita     x - 
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species were found at similar abundances in all the stations, and only a few species had  

localized distributions. 

Cyanophyceae were the most significant class in presence and density. They dominated 

from late spring to early fall at all the stations, representing more than 90% of total mean 

abundance in both years (Fig. 5). Ultraplankton was dominant in various periods at all the 

stations (over 90% of total mean abundance in October-December 2000, January 2001, 

April 2001, October 2001-January 2002 and April 2002), showing a preference for fall-

winter months. Bacillariophyceae showed a less regular seasonal pattern, prevailing in the 

spring months of 2001 (about 60% of total mean abundance), in summer 2001 (about 20%) 

and in the fall-winter period between 2001 and 2002 (about 30%). In individual samplings 

at all stations, all the other classes expressed percentages lower than 20% (Fig. 5). 

In nearly all the samples, an intense presence of Cyanophyceae and Bacillariophyceae 

species of very small cell size (the smallest size lower than 2 µm) was observed, which 

made the analysis very difficult. Among Cyanophyceae, Cyanobium-type cells contributed 

to the highest abundances of 2001, with a density higher than 109 cells l-1. However, the 

highest densities observed in July 2002 were attributable to Rhabdoderma sp., another 

representative of the Cyanophyceae (up to 21.5 x 109 cells l-1 at ST5, in August 2002). 

Bacillariophyceae were principally represented by a small species in the genus Fragilaria 

and Cyclotella atomus Hust. Their highest abundances occurred from July 2001 to January 

2002, up to 2.5 x 109 cells l-1 at ST4 for the former and up to 2.7 x 107 cells l-1 at ST3 for 

the latter. 

An nMDS (Fig. 6a) of the monthly average distributions of phytoplankton classes revealed 

significant differences between seasons (ANOSIM R= 0.335 and p= 0.1%). No significant 

differences (Fig.6b) were observed between stations (ANOSIM R= -0.02 and p= 98.5%). 

 

3.3 Harmful Algal Species.  

A total of 5 potential harmful species were observed during the study period: 4 

Dinophyceae and 1 Raphidophyceae (Table 2). Prorocentrum minimum (Pavillard) was 

frequently detected at all the stations, and reached densities higher than 2 x 107 cells l-1 in 

spring 2001. Alexandrium sp. was detected on only one occasion, in summer 2001 at ST1, 

at a density of 2 x 105 cells l-1. Dinophysis acuminata Claparéde and Lachmann was 

observed in the spring periods of both annual cycles, at a maximum density of 1 x 103 cells 

l-1 (at ST4, May 2002). Heterocapsa rotundata (Lohmann) Hansen was observed in the 

spring-summer period of 2001, reaching a maximum of 2 x 105 cells l-1 at ST1. Chattonella  
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Fig. 5. Trend of phytoplankton class percentage composition in the Cabras Lagoon. (BAC-

Bacillariophyceae; CHL-Chlorophyceae; CYA-Cyanophyceae; Ult-Ultraplankton; Oth = 

Others). 
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Fig. 6. Shannon (a) and Evenness (b) indices for phytoplankton assemblages in the Cabras 

Lagoon. 
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sp. was detected on only one occasion, in summer 2001 at ST1, at a density of 5 x 105 cells 

l-1. 

 

3.4 Phytoplankton diversity. 

The Shannon diversity index and the Evenness index (Fig. 7a and 7b) showed large 

temporal and spatial fluctuations and a trend nearly opposite to the one observed for 

phytoplankton density. The lowest mean values were observed in November 2000 (0.068 

for Shannon index and 0.033 for Evenness) and August 2002 (0.082 for Shannon index and 

0.035 for Evenness), when phytoplankton densities were caused by intense proliferations 

of, respectively, Ultraplankton and Rhabdoderma sp., which represented 98-99% of the 

total number of phytoplankton cells. The maxima of both indices were in March-May 

2001, October-November 2001 and March 2002. In the first period, phytoplankton density 

was at low level (mean about 108 cells l-1) compared to general abundance in the lagoon, 

whereas in the other two periods, mean densities were higher (more than 109 cells l-1). For 

most sampling dates, the highest Shannon diversity index values were recorded at ST4; 

peak Evenness index values were reached at ST4 and ST1. 

 

3.5 Correlation between environmental variables, Chl a and phytoplankton assemblages.  

RP and TP were positively correlated with NH3, RSi and solar radiation (Table 3). TP was 

also strongly correlated with salinity. Of course, solar radiation and rainfall were inversely 

correlated, and both those variables control salinity. Chl a resulted positively correlated 

with nutrient concentrations (NH3, NO2, NO3, TP and RSi), rainfall and pH. However, 

phytoplankton density was not significantly correlated with any of the other parameters 

considered. To investigate this result in greater depth, the effect of environmental 

conditions on phytoplankton assemblages (objects arranged in classes) was analysed by 

means of a CCA.  

The first two axes of the CCA accounted for 52.54% of the total variance of phytoplankton 

classes and environmental data. The first axis accounted for 30.32% and the second for 

22.22% of the total variance, respectively. The correlation between the 13 environmental 

variables and 11 phytoplankton ones was 0.58 for the first axis and 0.62 for the second. A 

Monte Carlo test showed that all canonical axes were significant (p<0.0001). 

The results of the CCA (Fig. 8) showed that Cyanophyceae were mainly controlled by 

salinity, TP and alkalinity, whereas Bacillariophyceae and Ultraplankton were controlled 

by nitrogen nutrients such as D.I.N., NO2, NO3, NH3 and by N/P ratio. Dinophyceae  
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Fig. 7. nMDS of biotic parameters in the Cabras Lagoon: (a) differences among seasons, 

(b) differences among sampling stations. 
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Tab. 3. Pearson’s correlation matrix. Bolt values are different from 0 at a significance level of p<0.05, (*) indicates p<0.01. 

 

Variables Alk NH3 NO3 NO2 DO RP TP pH Sal Rsi Temp Rainfalls Solar Rad Chl a Phyt Dens 

Alk 1                             

NH3 0.059 1                           

NO3 -0.519 0.304 1                         

NO2 -0.249 0.441 *0.842 1                       

DO -0.242 -0.090 -0.107 -0.154 1                     

RP 0.191 0.455 0.069 0.287 0.242 1                   

TP 0.172 *0.797 0.123 0.343 0.097 *0.721 1                 

pH -0.315 0.137 0.172 0.352 *0.558 0.367 0.414 1               

Sal 0.353 0.501 -0.267 -0.194 -0.318 0.391 *0.576 -0.196 1             

RSi -0.050 0.403 0.305 0.431 0.362 *0.612 *0.600 0.530 0.133 1           

Temp 0.405 -0.034 -0.252 0.008 -0.040 0.529 0.307 0.067 0.255 0.190 1         

Rainfalls -0.363 -0.126 0.384 0.464 0.199 -0.168 -0.128 *0.672 *-0.735 0.209 -0.287 1       

Solar Rad 0.391 0.436 -0.136 -0.058 -0.188 0.541 *0.651 -0.169 *0.820 0.390 0.284 -0.575 1     

Chl a -0.218 *0.535 *0.546 0.504 0.169 0.313 *0.536 *0.551 -0.017 *0.536 -0.288 0.516 0.028 1   

Phyt Dens 0.101 0.172 -0.233 -0.337 -0.327 -0.381 -0.119 -0.386 0.332 -0.384 -0.381 -0.213 0.173 -0.016 1 
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Fig. 8. CCA - Canonical correspondence analysis of phytoplankton classes (BAC-

Bacillariophyceae; CHL-Chlorophyceae; CHR-Chrysophyceae; CRY-Cryptophyceae; 

CYA-Cyanophyceae; DIN-Dinophyceae; EUG-Euglenophycea; HAP-Haptophyceae; 

RAP-Raphydophyceae; Ult-Ultraplankton) and environmental variables (Alk-Alkalinity; 

D.I.N.-Dissolved Inorganic Nitrogen; NO3-Nitrate; NO2-Nitrite; NH3-Ammonia; DO-

Dissolved Oxygen; Sal-Salinity; RP-Reactive Phosphorus; RSi-Reactive Silica; Tem-

Temperature; TP-Total Phosphorus; N/P). 
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abundance was positively correlated with RSi, DO and pH, and Cryptophyceae with RP 

and temperature. The outlying position of Raphidophyceae, Chrysophyceae, 

Euglenophyceae, Prasinophyceae, Haptophyceae and Chlorophyceae was consistent with 

the fact that they only appeared  for very short periods.   

 

3.6 Trophic state indices. 

The trophic state index TSI calculated using Chl a, TSI (CHL), was sensibly lower than the 

TSI (TP), calculated using total phosphorus. The mean value for TSI (CHL) was 65.05, a 

clear indication of the eutrophic condition of the lagoon (Fig. 9a). On about 70% of the 

sampling dates, Cabras Lagoon could be classified as eutrophic, while  on the remaining 

30% it was hyper-eutrophic. TSI (TP) indicated a more eutrophic condition (Fig. 9b), with 

a mean value over the study period of 85.39. The lagoon's condition was classified as 

hyper-eutrophic on 100% of the sampling dates.  

The trophic index TRIX (Fig. 9c) showed values indicative of a high trophic level. The 

mean value was 6.6, indicating eutrophic conditions or poor water quality. On 79% of 

sampling dates, the quality of the lagoon water was poor, while in the remaining 21% of 

cases it was moderate.  

 

4. Discussion and conclusions 

The natural and anthropogenic pressures which have influenced the Cabras Lagoon, as a 

result of past actions, have significantly altered its hydrological and environmental state 

and have likely affected its biological communities in several ways (Sechi et al., 2006). We 

have identified some important events that have affected the lagoon: (i) the transformation 

of the natural wetland of Mare ‘e Foghe into a canal in the ‘60s, with the consequent loss 

of its natural phyto-depuration capacity; (ii) the reconfiguration of the sea mouth during 

the late ‘70s; and (iii) the severe dystrophic crisis that occurred in 1999. These events 

produced effects on various aspects of the ecosystem, from salinity distribution to nutrient 

availability and phytoplankton development.  

The data considered in this paper were collected about a year after the strong dystrophic 

crisis that occurred in June 1999 and led to a total die-off of fish in the lagoon. Around 850 

tons of fish were harvested annually (450 kg ha-1 year-1) until 1998, while after the severe 

dystrophic crisis the total catch fell below 80 tons (Murenu et al., 2004). Currently, total 

catches are known to be around 150 kg ha-1 year-1. During the severe dystrophic event, a 

bloom of the cyanobacterium Anabaena cf. mucosa Komarkova-Legnerova and Eloranta 
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was documented (unpublished data). Cyanobacterial cells in an advanced state of 

degradation and the presence of large amounts of mucilage were noted. For this reason,  

 

 

 

Fig. 9. Trophic state index TSI calculated using chlorophyll a (a), total phosphorus (b), and 

the TRIX formula (c) in the Cabras Lagoon. 

 



Silvia Pulina, Environmental study in Cabras Lagoon: the trophic state and the microalgal component with 

particular attention to Harmful Algal Species, PhD School in Natural Sciences, University of Sassari. 

 

90

 

one of our main priorities was to conduct an in-depth study of phytoplankton and its 

dynamics with respect to environmental variables. We need to arrive at an understanding 

of the lagoon's ecology so we can propose adequate recovery and management plans for 

both the lagoon and the watershed, to the local and regional administrations. For the same 

reason, the other main objectives of our study were to assess the presence of potentially 

harmful algal species and to evaluate the trophic state of the lagoon. 

We used several trophic state indices to assess the environmental condition of the lagoon 

and compare it with the phytoplankton assemblages. 

With regard to TSI (TP) and TSI (CHL), the Cabras Lagoon was classified as being 

eutrophic. This condition was as we expected, based on nutrient and Chl a concentrations, 

and as was observed by Sechi (1981). TSI (CHL) values were lower than TSI (TP) values, 

which was indicative of hyper-eutrophy.  

A similar result was obtained from the TRIX index, whose values indicated eutrophic 

conditions (mean value of 6.6). 

TSI and TRIX were applied by Roselli et al. (2009) to estimate the trophic state of Lesina 

Lagoon (Italy) and by Cohelo et al. (2007) to the Foz de Almargem coastal lagoon 

(Portugal). In these cases, the TSI determined using Chl a also presented lower values than 

the TSI determined using TP, and classified the first lagoon as an oligotrophic-mesotrophic 

system and the second as a mesotrophic-eutrophic system. Several other trophic indices 

were applied to both study sites, in addition to TSI and TRIX, and the lagoons were 

classified in different categories depending on which of the various indices were applied. 

The results of both studies highlighted the limitations of indices in assessing the trophic 

condition of lagoons. 

The TSI and TRIX indices were developed for freshwater and marine coastal ecosystems, 

respectively, and should be applied with extreme caution in other contexts. They are used 

in lagoons mainly because no well-developed index has been designed to assess trophy in 

lagoons dominated by phytoplankton (Newton et al., 2003). In fact, many of the indices 

developed for lagoons require an evaluation of macrophyte composition and abundance 

(Austoni et al. 2004; Giordani et al., 2009); however, this biotic component is not present 

in the Cabras Lagoon. The European Environmental Agency considers the TRIX approach 

to be a useful tool in determining eutrophication trends in European marine coastal waters 

(EEA, 2001). This highlights the necessity of defining the index, and the kind of data that 

should be used for its calculation, on a regional scale. A major limitation in applying the 
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two indices considered to lagoons is the high nutrient concentration that generally 

characterizes these transitional environments. This intrinsic feature tends to shift their 

trophic classification towards higher levels.   

High nutrient concentrations and variations in salinity were the most evident abiotic 

characteristics of the Cabras Lagoon. The lagoon appeared generally uniform and 

variations, when they occurred, affected the entire system (as clearly evidenced by nMDS 

results) and were often dependent on adjacent systems (the watershed for nutrients and the 

sea for salinity). 

Phosphorus peaks often occurred in late summer, while nitrogen peaks also occurred in 

winter. The former could be a result of internal inputs from the re-suspension of previously 

sedimented material caused by intense summer winds, since inputs from the watershed 

where very low or absent during the dry summer season. Moreover, the discrepancy 

between TP concentrations measured and expected TP concentrations, as calculated by 

Sechi et al. (2006) based on watershed loads, could be explained by such internal inputs. In 

general, all nutrients could also come from an internal input from the sediment. It is known 

that lagoons recycle large amounts of material, largely due to their very shallow depth 

(Mee, 1978). Clearly, an assessment of the nutrient flux for all compartments is crucial 

point in understanding  the ecology of brackish environments. Using models to budget 

such assessments is an extremely simple and advantageous method, and allows for integral 

large-scale estimates (Simpson and Rippeth, 1998).  

Winter nitrogen peaks appeared to be principally correlated with fall-winter rains and, 

consequently, with watershed discharge. 

Salinity was another important characteristic of the lagoon. There were clear differences 

between stations linked to their localization in the lagoon, in respect to freshwater inputs 

and sea-water exchange (about 4‰ from ST1 to ST5), and a regular upward trend was 

noted from the beginning of the study period. A deeper valuation should be done as regards 

the hydrological balance of the lagoon, considering also losses due to evaporation and 

different freshwater inputs in the different annual cycles. DO values were generally over-

saturated, but steep reductions were occasionally observed at all stations. Bottom DO is 

one of the variables proposed by the European Environment Agency (EEA) (2001) to 

identify eutrophication in coastal marine areas. This variable is also considered in the 

Italian law, DLgs 152/99, which calls for the use of DO near the bottom to classify lagoon 

waters based on the number of anoxic days per year (DO values in the range of 0 – 1.0 mg 

l-1) that involve more than 30% of the lagoon’s surface. During the study period, the water 
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column of the lagoon was fully mixed and no anoxic phenomena were detected at the 

bottom. This procedure was therefore not very useful in this context. 

Chl a and phytoplankton dynamics are two of the other variables proposed by the EEA 

(2001) as good indicators of water quality. These can be better interpreted if analysed 

together with the complex of hydrological, physical and chemical factors that interact in a 

coastal lagoon. 

The mean lagoon value of Chl a always exceeded the limit of 8 mg m-3 used to define 

freshwater eutrophic systems (Vollenweider and Kerekes, 1982). At the same time, 

phytoplankton densities were elevated, with the highest levels frequently being observed in 

the summer and winter months, coinciding with TP and D.I.N. peaks, respectively.  

Phytoplankton species composition in the Cabras Lagoon was characterized by significant 

spatial uniformity (as indicated by nMDS) and by high numbers of very small species (in 

the ranges of 5-2µm and <2µm).  

Although picoplankton have always been described as a typical component of oceans and 

oligotrophic environments (Bec et al., 2005), their presence and dominance over the other 

size classes in brackish and hypertrophic ecosystems in the Mediterranean area in recent 

years has been well documented (Vanucci et al., 1994; Caroppo, 2000; Pérez and Carrillo, 

2005; Del Negro et al., 2007). Further careful investigations will therefore be necessary to 

understand which environmental, climatic and/or biological factors could control the 

dynamics of picoplankton, and to identify  the potentially dramatic consequences of their 

proliferation. In the hypertrophic lagoon system of Comacchio (NW Adriatic Sea, Italy), 

an extremely intense bloom of picocyanobacteria that persisted for many years resulted in 

the collapse of that ecosystem (Sorokin et al., 1996a). 

The environmental degradation caused hypertrophic condition favours the dominance of 

cyanobacteria over less tolerant algal species (Sorokin et al., 1996a; Scheffer et al., 1997), 

although the link between very hypertrophic conditions and cyanobacteria blooms has thus 

far been documented only in a few Mediterranean lagoons (Abrantes et al., 2006; 

Chomérat et al., 2007). 

Cyanobacteria were also dominant at all stations in the Cabras Lagoon for much of this 

study. CCA showed a strong correlation between the presence of cyanobacteria and 

increased salinity and TP. It is probable that, when phosphorus increases, it leads to a 

lower N/P ratio in the lagoon, favouring the proliferation of Cyanobium type-cells, since 

this taxon is believed to be capable of fixing nitrogen. This conclusion is supported by the 

well-documented capacity of the Synechoccocus genus to fix nitrogen (Stal et al., 2008) 
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and the close genetic link between this genus and Cyanobium (Komárek and Anagnostidis, 

1998), although the latter has not been studied in detail. In most published scientific works, 

small free-living cyanobacteria are described under the generic name “Synechoccocus sp.” 

(Komárek, 1996). The genus Cyanobium has been reported in coastal lagoons in a few 

cases, although many of the organisms described in previous studies as Synechoccocus-

type, with the current knowledge, could instead correspond to the genus Cyanobium 

(Komárek and Anagnostidis, 1998). This hypothesis was also proposed for Santa Gilla 

Lagoon, one of the few other Sardinian lagoons dominated by phytoplankton (Andreoli et 

al., 1989; Komárek and Anagnostidis, 1998).   

The results also showed that increases in the various forms of nitrogen, and the consequent 

increase in the N/P ratio, was advantageous for Bacillariophyceae and Ultraplankton, the 

other two phytoplankton groups that, next to Cyanophyceae, were most significant as 

regards their presence and density in the Cabras Lagoon. 

Another important consideration for lagoon ecosystems where the fishery and shellfish 

harvest constitute the main economic activities is the direct and indirect negative effects of 

HAS on fish, shellfish and humans. Of the HAS observed in Cabras Lagoon during the 

course of this study, P. minimum, D. acuminata and  Alexandrium spp. may produce VSP 

toxins, DSP toxins and okadaic acid, and PSP toxins, respectively (Andersen et al., 1996; 

Faust and Gulledge, 2002). Chattonella is a well-known harmful phytoplankton genus that 

causes mass die-offs among farmed fish, due to its production of high biomasses 

(Hallegraeff, 2003) and toxic compounds (Onoue Y. and Nozawa K., 1989). Lastly, H. 

rotundata has been identified as a species that can cause “red tides” (Cohen, 1985; Verity, 

2009). Among the HAS observed, none expressed dangerous characteristics during the 

study period, but their presence in the lagoon should be investigated in depth. 

In conclusion, the results of this study showed that the Cabras Lagoon is in critical 

condition due to  constant high phytoplankton densities, the intense presence of 

cyanobacteria of a very small size, the presence of various harmful algal species, and high 

trophic levels, considered as single environmental parameters or as trophic state indices. 

Overall, salinity, nutrient concentrations and nutrient ratios appeared to be critical factors 

in controlling phytoplankton. They should therefore be considered when drawing up 

management and recovery plans for the lagoon. 
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6. Chapter IV 

Long-term phytoplankton abundance, structure and diversity in the  

     eutrophic Cabras Lagoon (Italy, W Mediterranean Sea). 
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ABSTRACT 

The Cabras Lagoon is an eutrophic Mediterranean type lagoon characterized by high nutrient loads and very 

poor sea exchanges. In this paper we describe the spatial and temporal dynamic of phytoplankton and 

environmental parameters from 2000 to 2008. Particularly, the mean annual cycles of phytoplankton 

abundance, assemblage structure and diversity are discussed.  
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1. Introduction  

Over the last centuries, different direct and indirect human activities have modified the 

loads and fluxes of nutrients and sediments into surface waters, ground waters, and finally, 

through the hydrographic system towards the marine coastal ecosystems. The drainage 

basins with a wide range of human activities and the coastal waters into which they drain, 

are large-scale ecosystems. They have to be protected from deterioration and the 

understanding of the dynamics and causes of the large-scale and long-term changes of 

nutrient loads have been regarded as particularly important (Wassmann and Olli, 2004). 

Scientific results clearly indicate that monitoring programs that try to determine long term 

trends of basin scale nutrient fluxes require high resolution data sets (Stålnacke, 2005). 

Large increases in nutrient loading associated with increases in population growth, changes 

in agricultural practices including the increased use of inorganic fertilisers, changes in 

collection and treatment of sewage, and increases in nitrate deposition from the atmosphere 

have occurred (Wassmann and Olli, 2004). The comprehension of ecological responses to 

these kinds of solicitations is not a simple task because of both the complexity of the 

systems and other long-term processes contemporarily acting on the considered ecosystems 

(Boero et al., 2008), such as climate change and the resulting warm effects of aquatic 

ecosystems. 

The response of coastal ecosystems to nutrient loading is a crucial point in estuarine and 

marine coastal zone research (Nixon et al., 1996), especially the role of nitrogen, 

phosphorus and reactive silica in limiting the growth of phytoplankton. In the last decade, 

major reductions in P loading through better sewage treatment and as a consequence of 

new law indications, with a more or less maintained N loading have occurred (Wassmann 

and Olli, 2004). These changes in nutrient loadings and ratios have affected the 

productivity of coastal and marine waters and have changed the potential limiting nutrients 

in governing system production (Conley, 2000).  

The major and evident consequence of river basin pollution of nutrients has been an 

increase of the eutrophication phenomenon, inducing also proliferations of toxic 

phytoplankton species in many lagoons (Glibert and Burkholder, 2006).  

Coastal lagoons are highly sensible ecosystems with an ecology strongly depending on 

coastal and continental inputs. They are under considerable natural stress because of the 

great variability of a large part of basic factors such as temperature, salinity, strength of 

tidal and internal currents (Postma, 1994).  

Smayda & Reynolds (2003) defined a ‘habitat template’ for marine environments and, 
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even if the layout was mainly conceptual, the representation identifies habitats able to 

support substantial phytoplankton biomass in the near-shore habitats and coastal lagoons. 

These ecosystems are characterised by the least enduring or least severe constraints of 

energy and/or nutrient resources and by a potential for high net production and a relatively 

high supportive capacity for planktonic biomass.  

Cloern & Jassby (2009) reported that whereas much of phytoplankton variability in the 

open ocean is generated by the annual cycles of solar radiation and atmospheric heat input, 

phytoplankton variability in estuaries and nearshore coastal waters is generated by many 

additional processes that propagate across their interfaces with land, ocean, atmosphere, 

and underlying sediments. Comparisons across the diversity of these types of ecosystems 

where marine waters are influenced by connectivity to land revealed a large range of 

variability patterns belonging to three very different scales: I) dominated by a recurrent 

seasonal pattern, II) dominated by annual (i.e., year-to-year) variability as trends or regime 

shifts, III) dominated by the residual component, which includes exceptional bloom events 

such as red tides.  

It is known how the phytoplankton community is fundamental to the functioning of aquatic 

ecosystems. Phytoplankton variability is a primary driver of chemical and biological 

dynamics in the coastal zone because it directly affects water quality, biogeochemical 

cycling of reactive elements, and food supply to consumer organisms (Cloern & Jassby, 

2009). Accordingly, the indications provided by monitoring the phytoplankton serve as 

very useful environmental sensors of environmental quality (Marchetto et al., 2009). In 

particular, phytoplankton, as the basis of the trophic chain, constitutes one of the most 

important structural component in which scientific attention is focused when a 

management plan is needed or an assessment of the ecosystem health is required (Monbet, 

1992). 

The intrinsic complexity of phytoplankton system in lagoons, makes the analysis of long 

temporal series particularly useful, consenting to have exploitable reconstructions of 

seasonal cycle of phytoplankton (Cloern, 2009). Such studies are primarily utilized to 

distinguish nonsystematic natural variability from trends or shifts in the ecosystem that 

have often been related to eutrophication or anthropogenic influences and/or on a global 

scale by climatic fluctuations (Ribera d’Alcalà et al., 2004; Mozetič et al., 2009).  

The relevance of long-term studies in ecosystem management programs is now widely 

recognized, in fact, in order to measure anthropogenic influence on a certain ecosystem, a 

good knowledge of the natural variability of the system is a necessary requisite (Gameiro 
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et al., 2007). In time series, data of chlorophyll a used as a proxy for phytoplankton 

biomass variability are frequently considered. It is also because standard methods are 

established for this biotic variable and it is routinely measured in research and monitoring 

programs (Cloern and Jassby, 2009; Mozetič et al., 2009). On the contrary, one of the 

greatest problems when maintaining a long term data set is the enumeration and 

identification of species (Wiltshire et al., 2008) and perhaps also for this, long term studies 

on phytoplankton less frequently use species composition as a measure of its variability, 

especially in the Mediterranean lagoons. 

Cabras Lagoon is an hypertrophic lagoon sited along the western coast of Sardinia (Italy), 

in the western Mediterranean basin. In Cabras Lagoon, phytoplankton is the main primary 

producer (Sechi et al., 2006) and the anthropogenic disturbances and meteoclimatic factors 

appeared to have an important role in controlling phytoplankton assemblages and 

abundances.  

Its high trophic state has often submitted the lagoon to important dystrophic crises that had 

determined a large decrease of its fishing productivity. Since the strong dystrophic crisis 

that interested Cabras Lagoon during the summer of 1999, and that caused the killing of 

the totality of the aquatic biota, a long time series with high frequency measurements and 

sampling of environmental and biological parameters (chemical-physical, nutrients, 

phytoplankton density and composition) has been carried out. Thanks to this, today Cabras 

Lagoon is one of the aquatic ecosystems listed in “n. 14 Marine ecosystems of Sardinia” 

which takes part in the Italian Network of Long Term Ecologic Researches (LTER-Italia; 

http://www.lter-europe.net/networks/italy).  

In this paper, the temporal variation of trophic state and phytoplankton abundance, 

structure and diversity in Cabras Lagoon has been analysed as a first approach to assess the 

general features of phytoplankton succession and its long term tendencies in respect to 

environmental factors, mainly nutrients.  

 

2. Material and methods  

2.1 Study area 

Cabras Lagoon is a shallow water body located on the west coast of Sardinia, in the Gulf of 

Oristano (western Mediterranean Sea; 39° 56’ 37’’ N, 08° 28’ 43’’ E; Fig. 1). With an area 

of about 23.8 km2 and a mean depth of 1.6 m (maximum of about 3 m), the Cabras Lagoon 

is the largest in Sardinia and one of the largest in the Mediterranean Sea (Sechi et al., 

2006). Due to its environmental importance, it is protected by international agreements, 
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including the Ramsar Convention (EU Directive Special Protection Area, Site of 

Community Importance, Natural Protected Area), and is part of the Sinis-Montiferru 

Natural Reserve (Sardinia). 

The watershed of Cabras Lagoon extends over an area of approximately 430 km2. Water 

flowing within the system is derived from natural rivers as well as from artificial canals 

that drain the surrounding lowlands. Most of the freshwater input in the lagoon originates 

from the Rio Mare ‘e Foghe, which drains an area of 313 km2. 

The connection between the lagoon and the adjacent Gulf of Oristano mainly consists of 

four narrow creeks that flow into a large southernmost canal, the Scolmatore (=spillway), 

which was dredged in the late 1970s. The canal was constructed to allow the flushing of 

excess water during the heavy rainfalls in winter which regularly submerged a district the 

near town of Cabras, called, appropriately, “Little Venice.” The Scolmatore was 

subsequently closed by a 30-cm-high dam built to prevent further increases in the salinity 

of the lagoon by stopping the outflow of river-derived freshwater, which over time has 

strongly decreased due to agricultural demands. In addition, artificial barriers have been 

constructed to control the fish catch. Although the tidal amplitude in the Gulf of Oristano is 

<40 cm, the dam and barrier system limit the exchange of water between the lagoon and 

the Gulf. Consequently, the hydrodynamism of Cabras Lagoon is mainly governed by wind 

forcing, particularly with respect to water circulation, whereas the tide determines 

discharges through the lagoon’s inlets and modulates the circulation pattern established by 

the wind (Ferrarin and Umgiesser, 2005). The results of simulations have shown that the 

wind tends to create a circular current in the larger expanse of the lagoon, with speeds 

along the shore that are higher than those in the centre of the basin wind (Ferrarin and 

Umgiesser, 2005). 

The lagoon has a high economic rating due to its numerous fisheries (e.g., Liza ramada, 

Mugil cephalus), which employ about 300 people and their families, and to fishing-related 

activities. In 1998, fish productivity reached 40,000 kg km-2, corresponding to a profit of 

about 3.5 million Euros (Sechi et al., 2006). However, dystrophic events often cause 

massive fish mortality (the last such event occurred in the summer of 1999). In fact, the 

brackish ecosystem of Cabras Lagoon is eutrophic, such that water quality has steadily 

deteriorated, with a consequent decrease in the lagoon’s fish productivity (actually around 

20,000 kg km-2).  

 

2.1 Samplings and data treatment 



Silvia Pulina, Environmental study in Cabras Lagoon: the trophic state and the microalgal component with 

particular attention to Harmful Algal Species, PhD School in Natural Sciences, University of Sassari. 

 

109

Samplings have been carried out in Cabras Lagoon over an eleven-year period, beetwen 

June 1999, just after the dystrophic crisis, to June 2009. Fortnightly surveys were carried 

out on three stations. The three stations were chosen to characterize the spatial variability 

of the environmental factors in the lagoon (Fig. 1). Temperature (Tem), salinity (Sal), 

dissolved oxygen (DO), pH and fluorimetric chlorophyll a (fChl a) were measured in situ 

with a multi-parameter probe (Idronaut/YSI 6600V2).  

Water samples were collected from the superficial water layer (30 cm depth) and preserved 

in cold, dark conditions for laboratory analyses of ammonia (NH3), nitrite (NO2), nitrate 

(NO3), reactive silica (RSi), orthophosphate (RP) and total phosphorus (TP) following 

Strikland & Parsons (1972) and for CHLa (Golterman et al., 1978). Dissolved inorganic 

nitrogen (D.I.N.) was obtained as the sum of NH3, NO2 and NO3. 

Data for rainfall were provided by the Sistema Informativo Agricolo Nazionale (SIAN) 

and refer to the meteorological station of Santa Lucia, in the vicinity of the lagoon. 

Phytoplankton samples were fixed with Lugol’s solution and analysed with the Utermöhl’s 

technique (1958), using an inverted microscope (Zeiss, Axiovert 25) after sedimentation of 

variable volumes of water (5-10 cc), depending on phytoplankton density. Cell counts were 

made at 100X on the entire bottom of the sedimentation chamber for the larger and more 

easily identifiable species, and replicated at 200X and 400X on an adequate number of 

fields for the smaller cells. The species were determined following Balech (1995), Faust 

(2002), Germain (1981), Humm & Wicks (1980), Husted (1985), Rampi e Bernard (1978, 

1980, 1981), Ricard (1987), Sournia (1986), Tomas (1997). 

The Shannon-Wienner diversity index (Weaver & Shannon, 1949) was calculated in each 

sampling and in each station to evidence temporal and spatial variation of phytoplankton 

richness and relative abundances. 

Relationships among the considered environmental variables and fitoplankton classes 

abundance were tested with the Pearsons correlation.  

In this paper data on salinity, D.I.N., RP, Chl a, class composition of phytoplankton, 

density and diversity are discussed.  

To calculate the mean annual cycle of the different variables, only data of five annual 

cycles were available, namely those from January 2000 to December 2002 (three years; 43 

samplings) and from January 2007 to December 2008 (two years; 28 samplings), due to the 

interruptions and different patterns in the collection of data that were adopted during the 

pluriannual period considered. 
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Fig. 1. Map of the Cabras Lagoon and sampling stations. 

 

 

 

 

 

 

 



Silvia Pulina, Environmental study in Cabras Lagoon: the trophic state and the microalgal component with 

particular attention to Harmful Algal Species, PhD School in Natural Sciences, University of Sassari. 

 

111

3. Results and Discussions 

Regarding the dynamic of salinity, it exhibited a tendency to decrement as annual means, 

from 2000 to 2008 (Tab. 1). Furthermore, it was very irregular in its temporal dynamic 

(Fig. 2), particurlarly there were abrupt falls of salinity in the winter months between 2000 

and 2001, and in the autumn 2008 due to strong rainfalls (Fig. 2). 

D.I.N., after the maxima peaks in summer 1999 (monthly mean of 4007 mg N m-3 in July, 

when the dystrophic crisis was in progress), showed a decrement of values that stayed 

below 200 mg N m-3 during the years (Fig. 2). The major peaks were observed in January 

of every annual cycle considered (the peaks in April 2000 and in July and August 2002 

were exceptions). The very high values detected in autumn-winter seasons of 2008-2009 

(monthly mean of 725 mg N m-3 in December) were consequent to the period of persistent 

and strong rainfall already mentioned (Fig. 2). RP showed the major values in summer 

months for the most of the years considered, with autumn and winter peaks only in 2000 

and between 2008-2009 (Fig. 2). As for D.I.N., these last peaks were associated with the 

event of strong rainfalls. 

Consequently, the N/P ratio (D.I.N./RP) showed a pluriannual dynamic with the highest 

peaks in autumn and winter seasons, in general when the maxima of D.I.N. were observed 

(Fig. 2). 

The pluriannual dynamics of total density showed an increase from the beginning of the 

study (mean values were of about 108 cells l-1) until the summer of 2002, when the 

maximum peak was observed (monthly mean value of 154 x 108 cells l-1 in August). 

During these years the highest peaks occurred in the summer and autumn seasons. Then, 

the values were a little lower in the last two study years than in 2002, with a tendency to 

the decrement towards the end of the investigated period. In this case the maxima were 

observed in the late winter-spring period (maximum mean of 75 x 108 cells l-1 in March 

2008) (Fig. 3). 

During all the investigated period, 11 phytoplankton classes were assessed in Cabras 

Lagoon (Tab. 2).  

 The pluriannual dynamic of phytoplankton composition showed important changes during 

the study years (Fig. 3). From the beginning of the study to 2002 a major number of classes 

was relatively important contemporaneously, in respect to that observed in the last years 

considered, characterised by a high prevalence of only one class (Cyanophyceae). A clear 

dominance of Bacillariophyceae Class (BAC) until the end of 2000 was observed. In this 

interval of time also Ultraplankton (Ult) and Dinophyceae Class (DIN) were important, the  
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Table 1. Annual values in the years considered completed. 

 

  Years 

Parameters units 2000 2001 2002 2007 2008 

Tem °C 17.9 ± 1.5 18.6 ± 1.5 19.1 ± 2.4 19.6 ± 2.3 18.1 ± 1.5 

Sal ‰ 29.9 ± 2 15.5 ± 1.9 24 ± 1.4 16.5 ± 1.1 20.1 ± 1.1 

pH  8.6 ± 0.1 8.7 ± 0.1 8.7 ± 0.1 8.3 ± 0 8.3 ± 0 

DO % 108 ± 10.3 117.4 ± 6 101.7 ± 5.1 85 ± 3.7 87.1 ± 2.9 

Alk meq l-1 2.7 ± 0.1 2.7 ± 0.1 2.8 ± 0.1 2.9 ± 0.1 2.5 ± 0.1 

NO2 mg N m-3 6.8 ± 3.8 8.6 ± 3 9 ± 2.4 5.1 ± 1.1 9.6 ± 2.5 

NO3 mg N m-3 39.7 ± 32.4 45.8 ± 31.8 35.8 ± 13.3 19.8 ± 6.9 123.3 ± 60.3 

NH3 mg N m-3 64.5 ± 20.4 46.6 ± 6.9 68.7 ± 15.5 29.3 ± 2.4 39.6 ± 5.3 

D.I.N. mg N m-3 110.9 ± 54.9 101 ± 36.7 113.5 ± 28.6 54.3 ± 8.5 172.5 ± 64 

RP mg P m-3 55.8 ± 20.2 27 ± 7.7 36 ± 13.8 20.2 ± 3.5 21.2 ± 4.9 

TP mg P m-3 353 ± 31.5 252.1 ± 22.5 342 ± 57.7 180.6 ± 11.3 174.2 ± 12.5 

N/P  6 ± 2.4 11 ± 4.8 7.5 ± 2 3.8 ± 1 9.4 ± 2.5 

RSi mg Si l-1 7.4 ± 1.2 6.8 ± 0.5 5.1 ± 1.4 6.9 ± 0.3 4.3 ± 0.6 

SS mg l-1 - - - 66 ± 6.6 103 ± 16.6 

Chl a mg m-3 51.9 ± 10.1 38.8 ± 7.3 41.4 ± 7.1 20.9 ± 2.7 14.2 ± 1.3 
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Fig. 2. Pluriannual tendencies of the considered climatic and abiotic parameters. The data 

are monthly mean values. * = 4007 mg N m-3. 
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Fig. 3. Pluriannual tendencies of the considered phytoplankton parameters and percentage 

class composition of density. The data are monthly mean values.  
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Table 2. Floristic list. 

Prokariotes

CYANOPHYCEAE

Anabaena cf. mucosa Komarkova-Legnerova and Eloranta 
Anabaena sp. Bory
Anabaenopsis circularis (G.S. Weast) Woloszyńska et Miller 
Aphanizomenon aphanizomenoides (Forti) Horecká et Komárek 
Aphanizomenon gracile (Lemm.) Lemm. 
Aphanocapsa sp. Nägeli
Cyanobium type-cells Rippka and Cohen-Bazire 
Limnothrix sp. (Woloszynska) Meffert 1988
Merismopedia tenuissima Lemmerman 
Merismopedia sp. Meyen
Oscillatoria sp. Vauch.
Plankthotrix sp. Anagnostidis et Komárek
Pseudanabaena catenata Lauterborn
Rhabdoderma sp. W. Schmidle and R. Lauterborn
Spirulina sp. Turpin

Eukariotes

BACILLARIOPHYCEAE

Amphiprora sp. Ehrenberg
Amphora sp. Ehrenberg
Aulacoseira distans (Ehrenberg) Simonsen
Aulacoseira granulata (Ehrenberg) Simonsen
Aulacoseira sp. Thwaites
Chaetoceros curvisetus Cleve 
Chaetoceros spp. Ehrenberg
Climacosphenia spp. Ehrenberg
Cocconeis sp. Ehrenberg
Coscinodiscus sp. Ehrenberg
Cyclotella atomus Hust.
Cyclotella sp. (Kützing) Brébisson
Cylindrotheca closterium (Ehrenberg) Reimann & Lewin
Diploneis sp. Ehrenberg ex Cleve
Fragilaria sp. Lyngbye
Licmophora sp. Agardh
Minidiscus sp. Hasle
Navicula spp. Bory
Nitzschia sp. Hassall
Pleurosigma sp. W. Smith
Rhizosolenia setigera Brightwell
Skeletonema costatum (Greville) Cleve
Skeletonema potamos (C.I.Weber) Hasle
Skeletonema sp. Greville
Synedra acus Kützing
Thalassiosira sp. Cleve 
Triceratium sp. Ehrenberg

CHLOROPHYCEAE

Carteria sp. Diesing
Chlamydomonas sp. Ehrenberg
Chlorella sp. Beÿerinck
Monoraphydium minutum (Näg.) Kom.-Legn. 
Monoraphydium sp. Komarkova & Legnerova
Oocystis sp. Nägeli
Pediastrum simplex var. echinulatum Wittr.
Pediastrum sp. Meyen
Scenedesmus spp. Meyen
Tetrastrum  sp. Chodat  
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Table 2 (Continued). 

  

CHRYSOPHYCEAE

Kephyrion spirale (Lackey) Conrad
Kephyrion sp. Cienkowski
Ochromonas sp. Wyssotzski

CONJUGATOPHYCEAE

Closterium aciculare T. West
Closterium sp. Nitzsch ex Ralfs 

CRYPTOPHYCEAE

Cryptomonas  sp. Ehrenberg
Hemiselmis sp. Parke
Plagioselmis sp. Butcher
Rhodomonas sp. Karsten

DINOPHYCEAE

Akashiwo sanguinea (Hirasaka) G. Hansen et Moestrup
Alexandrium sp. Halim
Cochlodinium sp. Schütt
Dinophysis acuminata Claparède & Lachmann
Dinophysis fortii Pavillard 
Gymnodinium sp. Stein
Gyrodinium sp. Kofoid & Swezy
Heterocapsa rotundata (Lohmann) Hansen 
Oxyphysis oxitoxoides Kofoid
Oxyrrhis marina Dujardin
Oxytoxum sp. Stein
Peridinium sp. Ehrenberg
Polykrikos sp. Bütschli
Pronoctiluca sp. Fabre-Domergue
Prorocentrum micans Ehrenberg
Prorocentrum minimum (Pavillard) Schiller
Protoperidinium spp. Bergh
Scrippsiella trochoidea Stein (Loeblick) III
Scrippsiella sp. Balech

EUGLENOPHYCEAE

Euglena mutabilis Shmitz
Euglena sp. Ehrenberg 
Eutreptiella marina Da Cunha
Eutreptiella sp. Da Cunha

PRASINOPHYCEAE

Pyramimonas sp. Schmarda
Tetraselmis sp. Stein

PRYMNESIOPHYCEAE

Calyptrosphaera sp. Lohmann
Prymnesium sp. Maxart ex Conrad
Rabdosphaera sp. Haeckel 

RAPHYDOPHYCEAE

Chattonella sp. Fabre-Domergue

Incertae sedis

Ebria tripartita (Shumann) Lemmermann

Other Flagellates

Ultraplankton
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last particularly from February to September 2000. From 2001 the affirmation of 

Cyanophyceae (CYA) increases, and during the last study years they were the most 

important. Chlorophyceae Class (CHL) was observed in high densities in November 2000 

and during the autumn and spring months of 2007 and 2008.  

Cyanophyceae Class was principally represented by very small size species (the smallest 

size lower than 2µm) belonging to the genera Rhabdoderma and Cyanobium. The former 

dominated principally in summer months (its intensive proliferation in July 2002 

determined the maximum peak of total density observed), whereas the second during the 

autumn seasons. Cyanobium was the most important taxon during the last two annual 

cycles, reaching its highest peaks during the spring of 2008. Bacillariophyceae were 

represented by more Centrales (Cyclotella atomus Hust., Skeletonema potamus 

(C.I.Weber) Hasle, Skeletonema costatum (Greville) Cleve and Chaetoceros curvisetus 

Cleve) than Pennales (Cylindrotheca closterium (Ehrenberg) Reimann & Lewin, 

Fragilaria sp.). Chlorophyceaea Class was principally represented by Chlorella sp., 

Monoraphydium minutum (Näg.) Kom.-Legn. and Monoraphydium sp..  

In general, CHL a didn’t show the same pluriannual dynamic of density (Fig. 3): the 

highest values were detected in summer or in autumn-winter seasons, depending on the 

annual cycles, and the maximum peaks were observed in June 1999 and June 2009 (197 

mg m-3 and 183 mg m-3, respectively). We can explain the different dynamics of density 

and CHL a, at least in part, considering the phytoplanktonic classes and the relative species 

detected during the years, with the exception of the samples corresponding to the 

dystrophic period at the beginning of the study. In fact, the data relative to counting of 

these samples could be affected by error due to the bad quality of the samples, very 

degraded and with abundant detritus. The highest concentrations of CHL a were observed 

in correspondence of the affirmation of classes (Bacillariophyceae, Dinophyceae, 

Chlorophyceae and Prymnesiophyceae) with species of a major size than those dominant 

among Cyanophyceae, represented by very small cells (size <2µm). The high peaks of 

CHL a in 2002 were detected together with the highest peaks of density. In this occasion, 

these values of CHL a were determined by the extremely high values of density of 

Cyanophyceae, despite the low cell size. 

Considering the whole lagoon and the mean annual cycles, the mean annual concentrations 

of D.I.N. and RP ranged between 54.3 ± 8.5-172.5 ± 64 mg N m-3 and 20.2 ± 3.5-55.8 ± 

20.2 mg P m-3, respectively (Tab. 1). Maximum mean values of both nutrients were 

observed in each year in correspondence of ST3, that is sited near to the major freshwater 
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input (Fig. 4). D.I.N. showed a similar seasonal dynamic at the three stations, with lower 

values from late spring to early fall. The months from July to October were also interested 

by lower pluriannual variability of the values. On the contrary, less temporal and spatial 

uniformity was assessed for highest values, that were in April at ST1, November at ST2 

and in January at ST3. Moreover, these were the months characterised by the widest 

variability of the pluriannual data. These results support the hypothesis that in Cabras 

Lagoon D.I.N. could be highly affected by watershed discharge, due to rainfalls during wet 

months from late fall to early spring, that are typical of the climatic regime of Sardinia. 

Seasonal trend of RP showed peaks at all the stations in winter (February) and in early 

summer (June), accompanied by spring increments at the extreme stations (ST1 and ST3) 

and autumn at the central station (ST2) (Fig. 4). In general, also summer concentrations 

(August and September) were high, between 30 mg P m-3 and 60 mg P m-3, and 

characterised by reduced variability of the puriannual values in respect to those observed in 

the months interested by the maxima. Months interested by very limited pluriannual 

variability were also February, May and July, which were characterised by very low RP 

values, too. These data can be interpreted considering the important role that sediments 

assume, especially during summer, as internal nutrient source in lagoons, as a consequence 

of organic matter decomposition and water mixing due to winds, which can re-suspend 

particles already settled in shallow environments. Therefore, only in part D.I.N. and RP 

seasonal dynamics coincided, leading to N/P dynamic with maxima in autumn-winter for 

all sampling sites (Fig. 5). The ratio values were low especially at ST3 and higher at ST1, 

even if the maximum was assessed at ST2. The observed seasonal tendency was similar to 

that reported for other Mediterranean lagoons, such as Orbetello on the Tuscany coast 

(Caroppo et al. 2002) and S’Ena Arrubia, in Sardinia, not far from Cabras Lagoon (Fiocca 

et al., 1996). The values were >16 only in January in all the stations. These results 

highlighted a prevalency of N-limitation in respect of P-limitation in Cabras Lagoon, on 

both spatial and temporal scale. Different causes can have led to this situation, from the 

different kinds and speeds of the biogeochemical cycles of the two nutrients, to the 

biological actions, very important  in different steps of the N cycle and the consequent 

possible enrichment and depletion of N in the system (Viaroli et al., 2004). In any case, it 

was shown that low N/P ratio favours N-fixing cyanobacteria affirmation in aquatic 

environments (Romo and Miracle, 1993; Chomérat et al., 2007). This aspect has 

characterised the phytoplankton of the Cabras Lagoon in the major part of the considered 

period, as reported in the following.  



Silvia Pulina, Environmental study in Cabras Lagoon: the trophic state and the microalgal component with 

particular attention to Harmful Algal Species, PhD School in Natural Sciences, University of Sassari. 

 

119

 

Fig. 4. D.I.N. and RP monthly mean concentrations and S.E., calculated on the pluriannual 

data serie, in the three stations. 
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Fig. 5. N/P monthly mean values and S.E., calculated on the pluriannual data serie, in the 

three stations.  
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With regards to phytoplankton biomass, expressed as CHL a, the dinamic showed a clear 

temporal trend in each station with higher values in winter and autumn (as already seen for 

the analysis of pluriannual tendencies), with peaks, respectively, in January (particurlarly 

at ST1 and ST2), February (ST3), November and December (Fig. 6). These months were 

also interested by wider variability of the pluriannual data on the contrary of spring and 

summer months that showed lower variability. Concentrations were high all year round, 

only rarely less than 20 mg m-3 and up to about 70 mg m-3 in each station at least in one 

month. Annual mean concentrations, considering the whole lagoon, ranged between 14.2 ± 

1.3 mg m-3 and 51.9 ± 10.1 mg m-3 (Tab. 1), with higher pluriannual mean value at ST3 

(37 mg m-3 in respect to 31.9 mg m-3 at ST1 and 30.3 mg m-3 at ST2).  

In the mean annual cycle, the total density of phytoplankton exhibited very high values in 

each station, ranging between two orders of magnitude, from more than 108 to more than 

109 cells l-1 (Fig. 7). The dynamic at the three stations was characterised by at least three 

common aspects:  lowest values were observed in spring (particurlarly in May), maxima 

occurred especially during summer (July and August) and lower pluriannual variability 

was assessed in May and October in respect to the other months at all the stations. 

Regarding to the phytoplankton composition, Cyanophyceae was the most important one 

for its constant presence and because determined the highest density observed in all 

stations (Fig. 8). In particular, it exceeded the 90% of total density from February to March 

and from June to September. The Ultraplankton was relevant in all the stations during the 

autumn months and in January, when it reached the 50% of the total density. 

Bacillariophyceae was also important (about 20% of total density) principally in autumn 

(from September to November) and in winter (from December to January). As already 

explained, the intensive proliferation of these species with a size larger than those of 

Cyanophyceae species and Ultraplankton could have caused the highest values of CHL a 

observed just in these months (Fig. 7).  

Class composition and dominant species observed in Cabras Lagoon were notably different 

from those reported for other Mediterranean lagoons where other taxonomic 

characterisation were observed: Nanoplanktonic fraction composed by Gymnodiniaceae 

spp., cryptophyceans, centric diatoms, small flagellates were the most abundant in 

Orbetello Lagoon, where the communities were dominated by cryptophyceans and other 

flagellates in all the sites, with centric diatoms bloom in summer, particularly in the area 

where the sea-water smoothed variations of the environmental conditions, mainly 

temperature and salinity (Caroppo et al., 2002). In S’Ena Arrubia Lagoon, Cholorophyceae  
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Fig. 6. Chlorophyll a monthly mean concentrations and S.E., calculated on the pluriannual 

data serie,  in the three stations. 
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Fig. 7. Total phytoplankton monthly mean densities and S.E., calculated on the pluriannual 

data serie,  in the three stations. 
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Fig. 8. Percentage class composition of phytoplankton monthly mean densities, calculated 

on the pluriannual data serie,  in the three stations. 



Silvia Pulina, Environmental study in Cabras Lagoon: the trophic state and the microalgal component with 

particular attention to Harmful Algal Species, PhD School in Natural Sciences, University of Sassari. 

 

125

(principally Chlorella sp.) and Bacillariophyceae (principally Cyclotella sp.) were the 

dominant classes, with maximum peaks of  density in summer for the former and in 

summer and autumn for the second (Trebini et al., 2005). In the winter period 

Euglenophyceae and Dinophyceae were observed in high densities. On the other hand, 

different orders of Cyanophyceae have been observed, depending on the environmental 

conditions and the season in a number of Mediterranean lagoons: in the hypertrophic 

Bolmon Lagoon in the south of France, a permanent dominance of Cyanophyceae was 

observed, with a seasonal pattern characterized mainly by Planktothrix agardhii (Gomont) 

Anagnostidis et Komárek in winter, colonial Chroococcales in spring, Pseudanabaenaceae 

in summer, and P. agardhii in autumn and then in winter again (Chomérat et al., 2007); in 

the hypertrophic Albufera Lagoon in Spain (Romo and Miracle, 1993) a persistent 

dominance of Oscillatoriales was described; in the hypertrophic lagoon system of 

Comacchio (NW Adriatic Sea, Italy), an extremely intense bloom of Chroococcales that 

persisted for many years resulted in the collapse of that ecosystem (Sorokin et al., 1996). 

Therefore, the environment degradation due to hypertrophic condition is indicated as 

favouring the development of cyanobacteria in respect to less tolerant algal species 

(Sorokin et al., 1996; Scheffer et al., 1997), even if, nowadays, the link between very high 

trophic conditions and cyanobacteria blooms has been documented only in few 

Mediterranean lagoons (Abrantes et al., 2006; Chomérat et al., 2007).  

Consequently to the striking dominance of Cyanophyceae in late winter and summer, the 

Shannon diversity index clearly showed the maximum values during autumn (October and 

November), early winter (December and January) and spring (April and May) in all the 

stations, when major affirmation of Bacillariophyceae, Chlorophyceae and Ultraplankton 

were observed (Fig. 9).  

According to the matrix of Pearson correlation coefficients (Tab. 3), Cyanophyceae 

abundance was significantly positively correlated with TP, RP and salinity, whereas 

Ultraplankton with NH3 and N/P. Moreover, Ultraplankton was significantly inversely 

correlated with temperature. Bacillariophyceae were positively correlated with NH3, TP 

and salinity, whereas Chlorophyceae negatively with alkalinity, DO and temperature. 

Dinophyceae was significantly positively correlated with pH and TP, whereas it was 

inversely correlated by temperature and salinity.  

Cyanophyceae and Ultraplankton were negatively correlated, whereas the latter showed a 

highly significant positive correlation with Bacillariophyceae. Cyanophyceae class was 

positively correlated with Chlorophyceae. 
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Fig. 9. Monthly mean values of the Shannon index, calculated on the pluriannual data 

serie, in the three stations. 
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Table 3. Pearson correlation coefficients between phytoplanktonic variables (CHL a, mg m-3; BAC, Bacillariophyceae; CHL, Chlorophyceae; 

CHR, Chrysophyceae; CON, Conjugatophyceae; CRY, Cryptophyceae; CYA, Cyanophyceae; DIN, Dinophyceae; EUG, Euglenophyceae; Fla, 

Flagellate; PRY, Prymnesiophyceae; I.S., incertae sedis; PRA, Prasinophyceae; RAP, Raphidophyceae; Ult, Ultraplankton; all phytoplanktonic 

cell densities as cells l-1), nutrient concentrations (RP and TP, mg P m-3; D.I.N., and NH3, NO3, NO2, mg N m-3; N/P; RSi mg Si l-1) and other 

values of abiotic parametres (Alk, alkalinity, meq l-1; pH; DO, %; Sal, salinity, ‰; Tem, temperature, °C). Bold values are significant at a 

alpha=0.05.  
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Finally, CHLa was positively correlated with Euglenophyceae (EUG), Chrysophyceae 

(CHR), Dinophyceae and Cyanophyceae. The former results indicated that also classes 

which did not reach high densities, such as Euglenophyceae, Chrysophyceae and 

Dinophyceae could have played an important role in the lagoon. 

 

4. Conclusions 

All the variables considered showed a condition of very high trophy that it have been 

interested the Cabras Lagoon since 1999. 

Among nutrients, D.I.N. showed annual mean similar from 2000 to 2008 (the only 

exception is 2007), with the maxima values observed during the autumn and winter 

seasons of each annual cycle. Regarding RP, after 2000, their annual means decreased and  

remained similar until 2008. The maxima were observed in autumn and winter seasons but 

also in summer, therefore, in this case is more probable a strict link with the re-suspension 

of the nutrient by sediments. 

As regard to the phytoplankton variables, total density and CHL a values were always 

representative of the  high trophic state of the lagoon. CHL a showed a strong decrement 

of annual mean concentrations from 2000 to 2008. In fact, observing the dynamic of 

phytoplankton composition, a shift from organisms of larger size (principally 

Bacillariophyceae) towards organisms of a very small size (<2µm; principally 

Cyanophyceae) was detected during the considered interval of time. 

The results obtained demonstrated that the major phytoplankton biodiversity observed at 

the beginning of the study until 2002 was coincident with the major variability in the time 

of the values of all considered parameters. From 2007, the higher stability of these 

parameters for more than a year, permitted the persistent affirmation of some species of 

Cyanophyceae, which adapted well to live in those lagoon condition (salinity > 15‰; N/P 

< 16; DIN < 100 mg N m-3; RP > 40 mg P m-3). Only in the autumn 2008, when the strong 

rainfall started, the phytoplankton composition became more various, with an increase of 

the biodiversity, in relation to the sudden fall of salinity and the high increase of nutrients.  

The repetitive character of the dynamic of some variables and the obtained correlations 

suggest the importance of salinity and N/P in driving of the phytoplankton seasonal 

composition in Cabras Lagoon, especially in the Cyanophyceae dominance. Moreover, 

they are also among the variables that, in the long term ecological reserches, should be 

observed at site level to better understand the pulses and presses of climatic changes and 

their interactions on natural and anthropogenical impacted systems. 
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7. General Conclusions 

 

This PhD thesis investigated the trophic state of Cabras Lagoon and the composition and 

the dynamics of phytoplankton in relation to the dynamics of several environmental and 

meteo-climatic variables. The overall objective was to assess whether in Cabras Lagoon 

the phytoplankton composition and its dynamics could be a possible cause of dystrophic 

events that have often injured the stability of the ecosystem. 

Since the strong dystrophic crisis that interested the lagoon during the summer of 1999, 

and that caused the killing of the totality of the aquatic biota, a long time series with high 

frequency measurements and sampling of environmental and biological parameters 

(chemical-physical, nutrients, phytoplankton density and composition) has been carried 

out. This allowed us to observe and analyse the pluriannual tendencies of such parameters 

to better understand the actual environmental condition of Cabras Lagoon. 

All variables considered, were representative of a very stressing situation of the lagoon, 

indicating a trophic level very high during all the years.  

Among the nutrients, nitrogen peaks occurred in autumn-winter seasons in the majority of 

the annual cycles considered, due to rainfalls during wet months from late fall to early 

spring, that are typical of the climatic regime of Sardinia. This result is consistent with the 

hypothesis that nitrogen could be highly affected by watershed discharge in Cabras 

Lagoon. Phosphorus peaks, instead, often occurred in late summer. This could be a result 

of internal inputs from the decomposition and re-suspension of previously settled material 

caused by intense summer winds, since inputs from the watershed where very low or 

absent during the dry summer season. Consequently, the N/P ratio (D.I.N./RP) showed a 

pluriannual dynamic with the highest peaks in autumn and winter seasons, in general when 

the maxima of D.I.N.  

Regarding phytoplankton, the pluriannual dynamics of total density has always showed 

very high values and a shift in the observation of the maximum peaks, from the summer 

and autumn seasons until 2002, towards the late winter and spring seasons from 2007. The 

results obtained, showed also important changes in the phytoplankton composition during 

the years. A major phytoplankton biodiversity was observed in the first part of the study 

until 2002, in respect to that observed in the last two annual cycles. Bacillariophyceae, 

Chlorophyceae, Cyanophyceae, Dinophyceae and Ultraplankton were dominant or co-

dominant with similar importance levels until 2002. The higher variability observed at the 
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beginning of the study was coincident with the major variability in the time of the values of 

the environmental parameters, namely nutrient quantities and ratios and salinity. From 

2007, the higher stability of these parameters for more than a year, permitted the persistent 

affirmation of some species of Cyanophyceae, which adapted well to live in that lagoon 

condition (salinity > 15‰; N/P < 16; DIN < 100 mg N m-3; RP > 40 mg P m-3). 

In particular from July 2007, Cyanophyceae was the most important class for presence  and 

density reached in the lagoon and, for 18 months, it was almost exclusively represented by 

the order of Chroococcales, including a species probably belonging to the genus 

Cyanobium Rippka and Cohen-Bazire. This species was the most abundant 

phytoplanktonic taxon until the end of 2008.  

The results obtained for Cabras Lagoon during these two year-long cycles provided 

evidence of a strong relationship between the occurrence of Cyanobium-like cells and the 

salinity of the water. The presence of such cells in the lagoon decreased enormously only 

after the strong rainfalls in the autumn and winter of 2008–2009, when the large input of 

freshwater into the lagoon caused a decrease in its salinity. In that moment, other orders of 

Cyanophyceae appeared, the Oscillatoriales at first and the Nostocales then. In the 

succession dynamics of the three orders, temporal variations in N/P ratio were also clearly 

important. Thus, the dominance of Cyanobium-type cells during this period was likely due 

to the low N/P ratio, in relation to its probable capacity to fix nitrogen. 

In the pluriannual analysis, the repetitive character of the dynamic of some variables and 

the obtained correlations among them suggest the importance of salinity and N/P in driving 

of the phytoplankton seasonal composition in Cabras Lagoon, especially in the 

Cyanophyceae dominance.  

As regard to the HAS, from 1999 until now, several of them were observed in the lagoon, 

with a scarce and sporadic presence. They principally belong to the Dinophyceae Class and 

none expressed dangerous characteristics during the study period. 

The study of composition and density of Dynophyceae cysts in the sediments of the lagoon 

agreed with the pluriannual scarce presence of Dinoflagellates in the water column of the 

Cabras Lagoon. The results showed a strict positive correlation between this class and the 

salinity of the water. In fact, Dynophyceae were observed in high density only in February 

and March 2000, when salinity reached its maximumum values from 1999 to now. The 

pluriannual fluctuations, with high ranges of variations in maxima and minima values of 

salinity, could have strongly affected the Dinoflagellates because of only few species 

tolerate salinity below 20‰. In spite of the low number of cyst morphotypes recorded, our 
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results led to an increase on phytoplankton biodiversity information, at least as regarding 

Dinoflagellate cyst producers, confirming the important use of benthic studies as a tool to 

increase this kind of information. 

In conclusion, the results of this study showed that Cabras Lagoon is in critical condition 

due to constant high phytoplankton densities, the intense presence of Cyanophyceae of a 

very small size, the presence of various harmful algal species, and high trophic levels. 

Furthermore, this study confirms the general tendency, detected during the last  years in 

several lagoons with a high trophy, also Mediterranean Lagoons, to observe a major 

affirmation of phytoplankton with small cell size on the other cell sizes. This study also 

confirms the strict link between the high trophic condition in lagoon environment and the 

dominance of Cyanophyceae. 
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Abstract 
Durante gli ultimi decenni l’eutrofizzazione è stata una condizione cronica della Laguna di Cabras (Sardegna 
centro-occidentale) ed è stata responsabile del suo decremento produttivo in relazione all’instaurarsi di crisi 
distrofiche che hanno determinato pesanti morie della componente ittica. Vengono qui riportati i risultati 
preliminari di uno studio svolto dal luglio 2007 con la finalità di capire le dinamiche spaziali e temporali del 
fitoplancton, con particolare attenzione alla presenza di Harmful Algal Species (HAS), in relazione alle 
condizioni ambientali. La finalità è quella di comprendere le dinamiche ecosistemiche che possono 
determinare condizioni di innesco di crisi distrofiche. Al fine di implementare le informazioni ottenute dal 
comparto planctonico, sono state svolte indagini anche sulle cisti bentoniche di dinoflagellati nel sedimento, 
poiché a questo gruppo algale appartengono diverse specie problematiche, anche ittiotossiche. I risultati 
confermano la situazione di elevata trofia, con valori medi annuali del fosforo totale maggiori di 180 mg P m-

3. Le densità del fitoplancton sono state molto elevate e l’analisi per classi di taglia ha evidenziato una netta 
dominanza del picoplancton. Le classi più importanti sono state quelle delle Cyanophyceae, 
Bacillariophyceae e Chlorophyceae. La presenza di HAS è stata sporadica e poco abbondante, con la 
presenza delle sole specie Prorocentrum minimum (Pavillard) Schiller e Dinophysis caudata Saville-Kent. Lo 
studio delle cisti bentoniche di dinoflagellati ha portato all’individuazione di specie non osservate nel 
plancton, fornendo dati utili all’incremento delle informazioni sulla biodiversità del sito. 
 
1. Introduzione 
A differenza di altri ambienti simili del Mediterraneo, dove le macrofite sono il principale 
produttore primario, nella Laguna di Cabras tale ruolo è svolto in maniera prevalente dal 
fitoplancton (Sechi et al., 2006). Lo studio dell’abbondanza e della struttura dei 
popolamenti fitoplanctonici risulta essere quindi di estrema importanza per la 
comprensione di una tipologia di sistema che, per definizione, è particolarmente 
vulnerabile agli inputs terrestri e antropici ed è considerata naturalmente stressata da 
frequenti disturbi e fluttuazioni ambientali (Kjerfve, 1994). 
Inoltre l’intrinseca complessità del sistema planctonico in queste tipologie di ambiente, 
rende particolarmente necessaria l'analisi di lunghe serie temporali che consentano di 
fornire ricostruzioni affidabili del ciclo stagionale del fitoplancton, permettendoci di 
distinguere andamenti regolari e ricorrenti da eventi eccezionali e occasionali e di definire 
eventuali cambiamenti delle caratteristiche trofiche e biologiche determinate sia 
dall'influenza umana a scala locale, sia da fluttuazioni climatiche a scala globale. Per 
questo motivo la Laguna di Cabras è anche uno degli ecosistemi acquatici del sito “n. 14 
Ecosistemi marini della Sardegna” che afferiscono alla Rete Italiana di Ricerche 
Ecologiche a Lungo Termine (LTER-Italia). 
Si tratta della maggiore zona umida della Sardegna (2380 ha) ed è considerata tra le più 
importanti di tutto il bacino del Mediterraneo (Fig. 1). Negli ultimi anni, in relazione agli 
elevati apporti antropogenici di nutrienti, l’eutrofizzazione è diventata una condizione 
cronica che spesso è culminata, specialmente nei mesi estivi, in pesanti crisi distrofiche, 
che hanno comportato un forte decremento della sua produzione ittica. 
Inoltre, tra le problematiche più rilevanti legate alle attività di pesca in laguna, sono 
comprese anche le possibili affermazioni di specie microalgali tossiche e nocive (HAS-
Harmful Algal Species) che possono compromettere la componente ittica con diverse 
modalità: produzione di elevata biomassa e conseguenti anossie, azione meccanica diretta, 
produzione di ittiotossine (Hallegraeff, 1998). Molte HAS, inoltre, hanno un ciclo vitale 
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eteromorfico, alternando stadi planctonici mobili flagellati con altri non-motili bentonici 
(cisti temporanee, ipnozigoti), che svolgono un ruolo fondamentale per la sopravivenza e la 
persistenza della specie (Anderson, 1998; Imai et al., 1999). Per questo motivo diviene 
importante il contemporaneo studio dei sedimenti del fondo lagunare. Questi infatti 
possono ospitare la potenzialità di comparsa di specie nella colonna d’acqua ed i dati 
raccolti implementano le informazioni ottenute dal comparto planctonico anche rispetto 
alla biodiversità del sito. 
 

 
 
Fig. 1- Localizzazione della Laguna di Cabras e stazioni di campionamento. 
 
2. Materiali e metodi 
Dal luglio 2007 si stanno effettuando campionamenti ad intervalli quindicinali, su tre 
stazioni collocate in siti ritenuti rappresentativi, in base a dati pregressi, di diverse 
condizioni lagunari (stazione 1, in prossimità del maggior apporto di acque dolci; stazione 
3, in prossimità dello scambio con il mare; stazione 2 in condizioni intermedie). In situ 
mediante il disco di Secchi è misurata la trasparenza dell’acqua e per mezzo di una sonda 
multiparametrica (YSI, Modello 6600-V2) è possibile rilevare la salinità, il pH, l’ossigeno 
disciolto e la temperatura. In laboratorio sono determinati i solidi sospesi, la silice reattiva, 
il fosforo totale e reattivo, l’azoto ammoniacale, nitroso e nitrico (tutti secondo Strickland 
e Parsons, 1972) e la clorofilla a (Golterman et al., 1978). Per il riconoscimento delle 
specie algali si osservano campioni in vivo sia in microscopia ottica tradizionale che in 
epifluorescenza (Fritz & Triemer, 1985). Sono in corso approfondimenti tassonomici con 
l’impiego della microscopia elettronica a scansione. I conteggi per la valutazione delle 
densità cellulari (Utermöhl, 1931) sono effettuati su campioni fissati con soluzione di 
Lugol, sui quali è stata anche eseguita la stima delle biomasse (Findenegg, 1974). Per il 
picoplancton è adottata la metodica indicata da Maugeri et al. (1990). Per lo studio delle 
cisti sedimentarie di dinoflagellati sono state attuate tre campagne (autunnale, ottobre 
2007; invernale, febbraio 2008; estiva, agosto 2008), prelevando i campioni di sedimento 
nelle tre stazioni già descritte, con l’uso di un campionatore autocostruito. Le carote di 
sedimento sono state tagliate in dieci sezioni da 1 cm di spessore. Subcampioni di ogni 
sezione sono stati trattati con il metodo del gradiente di densità, utilizzando il sodio 
politungstato (Bolch, 1997, modificato da Amorim et al., 2001). La frazione finale è stata 
osservata al microscopio ottico invertito per la quantificazione ed il riconoscimento delle 
specie di appartenenza. Le cisti sono state poi isolate e messe in coltura (terreno di coltura 
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f/2, con regime di radianza di 100 µmol fotoni m2.s-1, per 12:12 ore luce/buio a 18 °C) per 
la conferma dell’identificazione.  
 
3. Risultati 
La tabella 1 riassume i valori medi, massimi e minimi nel periodo di studio dei principali 
parametri considerati, per una parte dei quali viene di seguito riportato un breve 
commento. 
 
Tab. 1 - Valori medi, massimi e minimi dei principali parametri considerati nella laguna. 

 
Durante il periodo d’indagine la salinità (Fig. 2a) ha mostrato una notevole variabilità 
spaziale e temporale, con un netto gradiente dalla st.1 (media di 19,2‰) alla st.3 (media di 
15,5‰) ed un incremento dei valori dall’inizio dello studio (media lagunare di 10,2‰) a 
novembre 2008 (media lagunare di 24,9‰), seguito da un intenso e repentino calo (media 
lagunare di 5,1‰), coincidente con un periodo di precipitazioni abbondanti (dicembre, 
gennaio e febbraio). 
Sia il P totale che il DIN (N-NH4 + N-NO2 + N-NO3) hanno mostrato durante il periodo 
considerato valori sempre molto elevati, con i picchi massimi negli ultimi campionamenti 
in relazione ai maggiori apporti d’acqua dolce nella laguna (Fig. 2b e 2c). Inoltre i valori 
più elevati sono stati osservati, in genere, nella st.3, cioè in quella situata in prossimità del 
principale apporto d’acqua dolce. Tra le diverse forme del DIN, quella ammoniacale è stata 
prevalente, ad eccezione che dei mesi autunnali ed invernali quando, per i maggiori apporti 
d’acqua dolce dal bacino imbrifero, la forma nitrica è diventata quella più importante. Il 
valore medio dell’ossigeno disciolto nel periodo di studio è stato prossimo alla saturazione 
(87%) e non sono mai stati osservati valori critici, inferiori al 50%. 
La clorofilla a ha mostrato valori elevati nell’intero periodo di studio (media lagunare di 
19,15 mg m-3), con i picchi massimi negli ultimi campionamenti, coincidenti con quelli 
della biomassa totale (Fig. 3a e 3b). La densità totale, pur mostrando valori sempre molto 
alti nelle tre le stazioni (Fig. 3c), ha evidenziato quelli più bassi nell’ultimo periodo 
invernale e la sua dinamica è stata caratterizzata da massimi primaverili (107 x 108 cell l-1 
nella st.2 a marzo). 
Particolarità del fitoplancton della Laguna di Cabras è stata quella di essere caratterizzato 
da specie di dimensioni talmente ridotte (0,5-1,5µm) da rendere molto difficoltoso il loro 
riconoscimento ed il loro conteggio.  Nell’analisi per classi di taglia, considerando i valori 
di densità, si è osservata una netta dominanza del picoplancton in tutte le stazioni. Solo in 
concomitanza con la forte riduzione della salinità osservata negli ultimi mesi, si è verificata 
la affermazione del nanoplancton. 
Gli elevati valori di densità osservati, sono stati attribuiti principalmente alle 
Cyanophyceae (Chroococcales), che sono state talmente importanti da aver determinato la 
dinamica della densità totale in tutte e tre le stazioni. Alla composizione della biomassa per 

 N Media Minimo Massimo 
Temperatura (°C) 90 18,14 9,4 27,69 
Salinità (‰) 90 17,71 0,87 27,58 
pH 90 8,28 7,61 8,83 
Alcalinità (meq l-1) 90 2,61 1,30 3,20 
Ossigeno (%) 90 87 50 130 
Fosforo reattivo (mg P m-3) 90 23 0 275 
Fosforo totale (mg P m-3) 90 185 53 843 
Azoto nitrico (mg N m-3) 90 84 0 1331 
Azoto nitroso (mg N m-3) 90 10 0 78 
Azoto ammoniacale (mg N m-3) 90 38 4 129 
Silice reattiva (mg Si l-1) 90 5,47 0,11 10,96 
Clorofilla a (mg m-3) 90 19,15 2,81 90,51 
Densità totale (108 cell. l-1) 90 19 0,02 108 
Biomassa totale (mg l-1) 90 6,26 0,77 26,17 
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classi algali hanno contribuito in maniera importante anche le Bacillariophyceae nel 
periodo tardo estivo e le Chlorophyceae nei mesi primaverili ed autunnali (Fig. 4). 
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Fig. 2 - Dinamica della salinità (a), del fosforo totale (b), del DIN (c) e delle diverse forme di azoto 
inorganico. 
                       
Per quanto riguarda la presenza di HAS, sono state osservate Prorocentrum minimum 
(Pavillard) Schiller (VSP; ittiotossine) che, da gennaio 2009 è stato rilevato con costanza e 
con densità sino a 75 x 104 cell. l-1, e Dinophysis caudata Saville-Kent (DSP) che è stato 
osservato sporadicamente e in basse densità. 
L’analisi delle cisti di Dinoflagellati nel sedimento ha evidenziato maggiori densità totali 
nella st.2, con un incremento dei valori dalla campagna autunnale all’estiva. In generale i 
massimi sono stati osservati nei primi cm del profilo verticale di ciascuna carota di 
sedimento. In tutto sono stati osservati 18 morfotipi, tra i quali Scrippsiella precaria 
Montresor & Zingone, Gonyaulax complex, una Gymnodiniales e un piccolo tecato ancora 
in fase di riconoscimento, che non erano mai stati osservati nella colonna d’acqua durante 
il periodo di studio. 
 
4. Conclusioni 
L’insieme dei dati raccolti ha confermato lo stato di elevata trofia della laguna,  
strettamente relazionato al forte inputs di nutrienti provenienti dal bacino idrografico ed 
amplificato dalle particolari caratteristiche morfologiche e idrologiche, come chiaramente 
indicato dalla dinamica spaziale e temporale dei nutrienti e della salinità. Aspetto da non 
sottovalutare e ancora da indagare, è quello che riguarda il carico interno dal sedimento per 
il riciclo che si instaura in questi ambienti fra il fondo e le masse d’acqua (Viaroli et al., 
2004). L’importante affermazione del picoplancton, con una predominanza spesso 
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osservata nel periodo di indagine, evidenzia la necessità di approfondite indagini su quali 
siano i fattori implicati nel controllo delle dinamiche di questo raggruppamento (nutrienti, 
luce, grazing). Infatti, da decenni il picoplancton è considerato il principale produttore 
primario degli oceani e degli ecosistemi acquatici oligotrofici (Stockner, 1988), mentre 
molto poco si sa ancora sulle sue dinamiche in ambienti costieri (Anxelu et al., 2007) e ad 
elevata trofia (Carrick & Schaelske, 1997), anche se la sua importanza in questa tipologia 
di ecosistemi sta aumentando radicalmente (Bec et al., 2005).  
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Fig. 3 - Dinamica della clorofilla a (a), della biomassa fitoplanctonica totale (b), della densità fitoplanctonica 
totale.  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 - Dinamica delle composizione percentuale per classi algali della biomassa fitoplanctonica. 
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ABSTRACT - A study regarding eight water courses of  north-central Sardinia was carried out between 2008 
and 2009 to value their environmental quality and obtain the first useful indications for the  management of 
the territory. Some significant physical-chemical and microbiological parameters were analysed on a total of 
15 stations and epilithic diatoms were examined with the application of EPI-D and IBD indices. In the 21 
collected samples, 152 taxa were identified belonging to 34 genera, but the diatom flora observed, was also 
represented by others species not yet determined with certainty. The observed and identified diatoms are 
common to most of the different examined sites and cosmopolitan. Among the most frequent and sometimes 
the most abundant  taxa, Cocconeis placentula var. pseudolineata and Navicula confervacea were observed. 
In particular, the presence of  Achnanthes rupestoides, that like N. confervacea is considered an invasive 
species, is noted. These species are not considered by the EPI-D method, proposed for Italian water courses. 
Their integration can be important to improve the method applicability in insular contexts of Mediterranean 
typology. EPI-D and IBD showed a good applicability with values a little different, indicating in general a 
mediocre and bad quality in nearly all the considered stations. The EPI-D results obtained seem still more 
acceptable and coherent with the delineated situation by physical-chemical and microbiological parameters 
and the typology of investigated environments.  

 

INTRODUCTION 
Numerous European countries regularly use benthic diatoms in the valuation of running 
waters quality. Some of these, to  reach also the WFD2000/60/CE’s objectives, introduced 
the methods based on diatoms in programs of  annual sampling on hydrographic network 
(Rimet et al. 2005 a). For the use of these valuation systems, the right knowledge of these 
algal component is the fundamental presupposition. This is one of the principal motives for 
which  the EPI-D index (Dell’Uomo 2004), especially developed and tested in the water 
courses of central Apenninic region, is still applied sporadically in other regions in Italy. 
Until now, in Sardinia diatom flora has not been studied a lot and a higher knowledge is 
necessary for its employment in the valuation of waters biological quality. Eight water 
courses in four hydrographic basins of north-central Sardinia, Mannu of Porto Torres,  
Padrongianu, Tirso and Mare Foghe (Fig. 1, Table I), were studied to describe the diatom 
assemblages and verify the applicability of the indices EPI-D and IBD. In the first three 
systems, possible perturbations caused by urban wastes of Sassari and Olbia and industrial 
wastes of Ottana were verified. On the other hand, in the  Mare Foghe system, the  possible 
impacts of intensive agricultural activities on some canals that flow into Cabras Lagoon, 
the largest of the island and one of the most important of Mediterranean area, were valued.  
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Fig. 1 Study areas and relative catchments (A = Mannu of Porto Torres; B = 
Padrongianu; C = Mare Foghe; D = Tirso). 
 
 
 
Table I. Catchments, their surface, geology and water courses. * = Canals; ° = without name. 
 
  Catchments   
  Mannu of  Porto Torres Padrongianu Mare Foghe Tirso 

Code A B C D 

Surface (km2) 671 450 286 3400 

Prevalent geological 
substratum 

Calcareous Granitic  Basaltic Granitic 

Nome of the water courses 
Tributary of 

Mascari° 
Mascari Padrongianu  Pauli Gippa* Tanui* Iscas* Tirso 

N° stations 4 2 3 1 1 1 2 

 
 
 

MATERIALS AND METHODS 
The study was carried out on 15 stations, located in the middle-terminal reaches of four 
natural water courses and four canals (Table I). The collection of water and epilithic 
diatoms samples was effectuated in different periods between April 2008 and April 2009. 
In all the stations the most significant physical-chemical and microbiological parameters 
were measured. Temperature, pH, conductivity and dissolved oxygen were measured in 

situ with a CTD probe (YSI556), whereas alkalinity, Cl-, BOD5, soluble reactive 
phosphorus (SRP) and total phosphorus (TP), N-NH3, N-NO3, N-NO2, total nitrogen (TN), 
reactive silica (RSi) and total suspended solids were determined in laboratory, according to 
Italian Standard methods (IRSA 1994). The microbiological analysis considered the 
research of  Escherichia coli, faecal and total coliforms and was effectuated using the 
method of filtration on membrane (IRSA 1994).  
Diatom samples were collected scraping the substrate, principally rocks and stones, with a 
small hard brush and always in full current (APAT 2005). The 21 samples totally collected 
were immediately fixed in situ with 4% neutralized formaldehyde. Contrary to other 
systems, in Rio Mannu of PortoTorres, subjected to heavy anthropic pressures, diatoms 
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were collected in two samplings, respectively in winter and spring. The aim was to follow 
the temporal evolution of the biological water quality. The winter sampling, started in 
December 2008 was completed in March 2009 because of the notable flow due to elevated 
rainfall in three of the six stations. Diatom samples were treated in the laboratory with 
hydrogen peroxide (H2O2) and acetic acid (CH3COOH) under heat, until the complete 
oxidation of the organic substance (Schrader 1973). The cleaned frustules were mounted 
on permanent slides using Storax resin (index of refraction 1.59). The taxonomic 
determination at a specific and infraspecific level was carried out using an inverted optical 
microscope (Zeiss, Axiovert 10) at 1000 magnification and using monographs by various 
authors: Bourrelly (1981), Germain (1981), Hustedt (1985), Krammer & Lange-Bertalot 
(1986, 1988, 1991), Lange-Bertalot et al. (2003). To uniform the procedure with already 
adopted by other European countries, the valuation of the abundance of the species was 
done with the count of about 400 valves and/or frustules (Ciutti et al. 2004). To calculate 
the indices EPI-D and IBD the manuals by Dell’Uomo (2004) and Prygiel & Coste (2000) 
were used. The results of  EPI-D were converted in scale from 1 to 20 and compared with 
those obtained by the application of the IBD method. 
 
RESULTS  

The diatom flora of water courses  
The analysis of epilithic diatoms has revealed a total presence of 152 taxa belonging to 34 
genera (Table II). The diatom flora observed is nevertheless made up of other species, in 
some cases rare, in others infrequent and abundant, not yet identified with certainty.These 
taxa, even if they are not determining in the valuation of the biological water quality are of 
relevant interest for the biodiversity because they are part of the periphytic communities of 
the water courses investigated. Among the detected genera, four belong to order of 
Centrales and 30 to Pennales and the major number of species belong to genera Navicula 
(41), Nitzschia (21), Fragilaria (12), Achnanthes (11) and Gomphonema (10). The total 
number of taxa for each sample varied from a minimum of 12 in the station 4A to a 
maximum of 48 in the station 2D. The major part of the observed diatoms was common in 
several stations but some taxa resulted exclusive for only one of them. Generally, the 
species found are considered cosmopolitan and typical of environments with mediocre and 
bad quality. Among the taxa most frequent and sometimes abundant in the samples 
analized, Cocconeis placentula var. pseudolineata Geitler and Navicula confervacea 
(Kützing) Grunow in Van Heurk do not result in the list of the method EPI-D. N. 

confervacea (Fig. 2), an invasive species (Coste & Ector 2000), already observed in the 
north of the island (Lai et al. 2007), is also present in the Tirso River and in the canals of 
Mare Foghe system (central Sardinia). This thermophile species appeared in the spring and 
summer samples with a range of temperature of 11.9-22.6 °C. The presence of Achnanthes 

rupestoides Hohn (Fig. 3), another tropical taxa until now never seen in Sardinia, was 
highlighted. This species was present in the two stations upstream of the Rio Mascari 
tributary, one of the most important affluents of Rio Mannu in Porto Torres. The diatom 
assemblages in the canals of Mare Foghe catchment, have shown differences in the floristic 
composition, in respect to those of other investigated systems, with species like Pleurosira 

laevis (Ehrenberg) Compère, Thalassiosira weissflogii (Grunow) Fryx. and Hasle, 
Achnanthes inflata (Kützing) Grunow, Achnanthes brevipes Agardh, Cymatopleura solea 

var.apiculata (W.Smith) Ralfs, Neidium dubium (Ehrenberg) Cleve, never abundant in 
these stations and absent in all the other water courses investigated. 
 
The quality of the water courses  
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The values of the physical-chemical and microbiological parameters are reported in Table 
III. Tables IV and V reports the results of the diatom indices and the range of EPI-D and  
 
Table II. Genera and diatom taxa identified. 
 

 

Genus  Taxa Genus  Taxa 

Achnanthes 11 Frustulia  1 

Amphipleura 1 Gyrosigma  1 

Amphora  6 Gomphonema  10 

Anomoeoneis 1 Hantzschia  1 

Aulacoseira 1 Melosira  1 

Bacillaria  1 Meridion 1 

Caloneis  3 Navicula  41 

Cyclostephanos 2 Neidium 1 

Cyclotella  3 Nitzschia  21 

Cymatopleura  1 Opephora  1 

Cymbella  6 Pinnularia 4 

Cocconeis  5 Pleurosira  1 

Diatoma 1 Rhoicosphenia  1 

Diploneis  3 Stephanodiscus  1 

Epithemia  1 Surirella  3 

Eunotia  3 Synedra  2 

Fragilaria  12 Thalassiosira  1 

       Total genera 34                            Total taxa 152  
 
 
 

                                                   
 
Fig. 2 Colony of Navicula confervacea.                                                 Fig. 3 Achnanthes rupestoides, valve  
LM picture, scale bar = 5 µm.                                                                without raphe. LM picture, scale bar =  
                                                                                                                5 µm.                                                                 
 
 
IBD with the relative classes and levels of quality. Results of diatom indices are reported in 
the Fig. 4. 
 As regards the system of Rio Mannu of Porto Torres, all the investigated stations resulted 
with phenomena of water contamination, with significant values of algal nutrients and 
microbiological parameters. The diatom indices demonstrated that the most contaminated 
stations were the 1 and 2, those more upstream on the affluent of Rio Mascari, and station 
6 on Rio Mascari, that receives urban and industrial wastes. Both the indices also indicated 
a decline in the quality of the waters during the spring period, coinciding with an important 
reduction of flows. Moreover, in the same period, a reduction of the number of taxa was 
observed in stations 1, 3 and 6. This sign of a probable simplification of the diatom 
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assemblages corresponded with a decline of quality. Seasonal variation of biological 
quality in Mannu of Porto Torres system are reported in Fig. 5.  
 
Table III. Results of physical, chemical and microbiological variables analysed. Results of Mannu of Porto 
Torres (1A-6A) system are mean values of different samplings.  
 

Parameters  
Stations of water courses 

1A 2A 3A 4A 5A 6A 1B 2B 3B 1C 2C 3C 4C 1D 2D 

Temperature  °C 15.6 14.0 15.4 15.4 11.2 13.2 18.0 20.3 19.2 21.9 22.4 22.6 22.4 14.1 15.5 

Conductivity  mS cm-1  1016 1121 1098 954 1045 1157 1008 1345 595 756 832 1227 818 480 638 

pH  7.69 8.07 7.99 7.83 8.11 8.14 7.75 7.18 7.45 7.44 7.68 8.31 8.03 7.69 7.74 

Alcalinity  meq l-1 4.27 2.80 4.14 3.01 4.54 4.71 1.37 1.80 1.53 4.22 4.20 4.78 2.06 1.28 3.00 
Dissolved 
Oxigen  

mg O2 l-1 8.3 9.4 8.9 9.0 9.5 8.3 9.04 8.23 7.82 4.6 6.4 11.8 10.0 9.0 8.2 

Oxigen 
saturation  

% 84 91 88 90 87 78 95 100 85 52 73 137 115 88 82 

BOD5 mg l-1 2.1 2.2 2.1 7.9 2.2 3.9 2.0 5.7 1.1 1.2 3.1 5.4 3.4 3.1 3.3 

Cl- mg Cl- l-1 117 144 128 125 125 129 60 142 81 99 96 177 113 - - 

SRP  mg P l-1 0.106 0.228 0.141 0.581 0.234 0.508 0.020 0.928 0.270 0.114 0.146 1.199 0.392 0.117 0.164 

TP  mg P l-1 0.143 0.277 0.247 0.771 0.392 0.680 0.050 1.282 0.331 0.187 0.301 1.462 0.484 0.282 0.348 

N-NH3   mg N l-1 0.060 0.034 0.074 0.878 0.078 0.328 0.046 0.067 0.051 0.042 0.364 0.056 0.020 0.086 0.105 

N-NO2 mg N l-1 0.036 0.040 0.064 0.148 0.044 0.172 0.008 0.021 0.027 0.010 0.160 0.207 0.005 0.055 0.044 

N-NO3 mg N l-1 6.324 6.405 6.501 3.101 2.113 5.721 0.460 3.320 1.356 0.342 0.366 3.810 2.086 0.492 0.629 

TN  mg N l-1 9.641 7.967 8.838 6.037 4.652 5.012 1.197 8.151 2.068 1.287 2.068 5.520 3.046 1.641 1.907 

RSi  mg Si l-1 3.62 3.47 2.30 3.30 6.91 4.55 9.24 7.76 8.91 6.04 8.03 7.66 11.02 7.41 7.83 
Suspended 
solids 

mg l-1 3.5 7.9 6.7 22.7 28.6 11.0 1.8 32.2 4.2 8.5 27.0 13.0 15.5 - - 

                 

Escherichia coli UFC l-1 17667 7333 28800 20033 1453 31500 650 10600 610 92 1700 1000 700 8000 1000 
Faecal 
coliforms  

UFC l-1 17867 10489 23934 44014 9100 48350 580 14800 770 88 6700 8100 1100 12000 1000 

Total coliforms   UFC l-1 55467 26934 54800 73000 28534 118500 1460 40000 1760 600 26000 30700 6800 67000 24000 

 
 
 
Table IV. Results of EPI-D e IBD in the sampling stations. Results of Mannu of Porto Torres system are 
mean values of different samplings.  
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Catchments Water courses Stations Date of sampling EPI-D IBD 

     

1A 02/12/2008 - 07/04/2009 6.9 6.9 
2A 02/12/2008 - 07/04/2009 4.9 7.2 
3A 02/12/2008 - 07/04/2009 8.3 9.8 

Tributary of 
Rio Mascari 

4A 10/03/2009 - 07/04/2009 9.5 11.1 
5A 10/03/2009 - 07/04/2009 10.8 13.6 

Rio Mascari 
6A 10/03/2009 - 07/04/2009 6.6 9.4 

 M
an

nu
 o

f 
Po

rt
o 

T
or

re
s 

     
     

1B 06-06-08 13.54 15.5 
2B 06-06-08 10.74 13.8 

Rio 
Padrongianu 

3B 06-06-08 9.27 8.4 
 P

ad
ro

ng
ia

nu
 

     
     

Rio Pauli 
Gippa 1C 28-08-08 10.0 11.8 

Rio Tanui 2C 28-08-08 9.36 8.6 
Rio Iscas 3C 28-08-08 7.65 5.6 

Rio Mannu 4C 28-08-08 8.27 6.5 M
ar

e 
F

og
he

 

     
     

1D 23-04-09 10.83 12.2 
 Tirso River 

2D 23-04-09 10.64 13.6  T
ir

so
 

          

  
 
 
Table V. Ranges of values EPI-D and IBD, classes and water quality assessment. 
 

EPI-D IBD Quality        Class Color 

20 > EPI-D > 15 IBD ?17.0 Very good I   

15 > EPI-D > 12 17> IBD ?13.0 Good II   

12 > EPI-D > 9 13.0 > IBD ? 9.0 Moderate III   

9 > EPI-D > 6 9.0 > IBD ? 5.0 Bad IV   

6 > EPI-D > 1 IBD < 5.0 Very Bad V   

  
 
 
 

 

 
 

Fig. 4 EPI-D and IBD results in the different stations of the four systems (A = Mannu of Porto Torres; B = 
Padrongianu; C = Mare Foghe; D = Tirso).  
Data of Mannu of Porto Torres system are mean values of winter and spring samplings. 
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Fig. 5 Seasonal variation of EPI-D and IBD in Mannu of Porto Torres system. 
 
 

For Padrongianu River the diatom indices confirmed a decline of the water quality, from 
upstream to downstream, highlighted also by the physical-chemical and microbiological 
parameters. In the highest station both indexes indicated a situation of good quality. For 
station 2, located in correspondence with the waste discharge of the town of Olbia, the 
quality in relation to EPI-D and IBD was respectively mediocre and good. The last station 
lowest down resulted the most polluted with a mediocre-bad quality for EPI-D and bad for 
IBD. The dominant species was N. incospicua a good indicator of meso-eutrophic 
environments (Dell’Uomo 2004).  
In the catchment of Rio Mare Foghe, Rio Iscas and Rio Mannu were the worst in terms of 
quality. Both have demonstrated the highest values levels of BOD5, N-NO2, SRP, and TP. 
The microbiological investigation also showed a contamination of organic nature. For both 
water courses the EPI-D and IBD indices indicated, in agreement, a state of bad quality. 
The dominant species were Nitzschia incospicua Grunow, Cyclotella meneghiniana 
Kützing and Bacillaria paxillifer (Muller) Hendey. The last two taxa, in particular, are 
considered excellent indicators of eutrophic environments (Dell’Uomo 2004). EPI-D and 
IBD also indicated a mediocre-bad and bad quality for Rio Tanui, which showed higher 
values of nutrients and microbiological parameters in respect to Rio Pauli Gippa, its 
affluent. In the latter both indexes indicated a mediocre quality. 
Finally, for the two stations on Tirso River, the quality was mediocre and both indexes 
showed a slight improvement of the biological quality of the water in station 2, 
downstream from the industrial area of Ottana. In this station, higher algal nutrients and 
lower values for the microbiological parameters were observed, too. 
 
DISCUSSION 
The study carried out offers a contribution to knowledge of diatom flora in Sardinia water 
courses and, at a more general level, in the Mediterranean area. The previous list of 157 
taxa already obteneid with others investigations (Lai et al. 2007) is extended with other 50 
taxa. In particular, the presence of A. rupestoides, that like N. confervacea is considered an 
invasive species, is noted. The observation of these tropical species maybe an important 
signal of the possible heating of continental freshwaters. More studies will better define the 
entity of the distribution of these species in waters of the island. Such considerations are 
true for each of the elements of  the Sardinian diatom flora. To reach this result, it is 
necessary the knowledge of the specific composition, the distribution and the ecological 
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needs of the taxa on different spatial and temporal scales. The gathered informations have 
interested until now high anthropic pressure water courses, whereas there are not 
indications about assemblages present in modest or absent impact conditions. For this, it is 
important to consider a wider number of stations along the water courses, to understand 
and value the dynamics on the entire considered basins. A further objective is the 
integration of the list of taxa actually considered by the EPI-D method, with the relevant 
species in the Sardinian context, to contribute to a better application of the index in the 
island and in general in the Mediterranean islands. The majority of the observed species is 
common to those indicated in the water courses in Sicily and Corse (Finocchiaro & Ferlito 
2007), (Rimet et al. 2005 b). The lay-out of a first check-list of the observed species could 
result particularly useful to help future studies. 
This investigation permits to confirm the utility of diatom indices also in Sardinia for the 
valuation of the quality of lotic waters and underlines their utility also for the management 
of the territory. The EPI-D and IBD methods have consented to more complete and 
coherent valuation in the situation of the territory, and the impacts present in respect to 
those given by only the traditional parameters. The results obtained were quite agreeable 
with those of physical-chemical and microbiological parameters and both indexes, even if 
with slightly different values, showed a good applicability in all lotic contexts investigated. 
However EPI-D values obtaneid seem more reliable. The systems of Rio Mannu of Porto 
Torres and of Rio Mare Foghe, resulted those with stronger phenomena of water 
contamination in all the stations examined. The typology of the pollution observed seemed 
to correspond to that of organic nature, for the most part due to agricultural and 
zootechnical activities carried out in the basins and to civil wastes not adequately 
depurated.  
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