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Riassunto

Le proteine rappresentano uno dei costituenti fondamentali degli esseri viventi,
all’interno dei quali svolgono i pi svariati ruoli. La caratterizzazione della loro
funzione non è solo importante per la comprensione del funzionamento della
molecola in se, ma anche del sistema biologico del quale fa parte.
Per poter conoscere in dettaglio i meccanismi di funzionamento di una proteina,
indipendentemente dal ruolo da essa svolto (enzima, recettore, strutturale, ecc.),
è necessario conoscere la relazione esistente tra la sua struttura tridimensionale e
la attività. Condizione necessaria per lo studio della relazione struttura-attività
è la disponibilità della struttura tridimensionale. Ad oggi solo per l’1% delle
sequenze proteiche depositate in banca dati è nota la struttura tridimensionale.
I metodi sperimentali per la risoluzione della struttura delle proteine sono tem-
poralmente e economicamente onerosi, il che ne limita il loro utilizzo a poche
proteine di particolare rilevanza. Il recente sviluppo dei metodi computazionali
per la predizione della struttura delle proteine, li ha resi, per molti casi, una val-
ida alternativa e/o supporto ai metodi sperimentali. Uno dei limiti principali dei
metodi computazionali, al quale si sta recentemente ponendo particolare atten-
zione, è l’incapacità di determinare con precisione l’accuratezza della struttura
tridimensionale ottenuta. Per questo motivo abbiamo sviluppato un metodo di
validazione di strutture proteiche (predette mediante metodi computazionali)
in grado di misurarne quantitativamente l’accuratezza.
Il metodo, descritto nel capitolo 2 è basato su una combinazione di reti neu-
rali artificiali. Le reti neurali artificiali sono dei modelli matematici svilup-
pati in analogia al funzionamento dei neuroni. Essendo in grado di descrivere
complesse relazioni, sono state scelte per mappare la relazione tra struttura
tridimensionale e accuratezza della stessa. Un vantaggio importante delle reti
neurali artificiali è la capacità di apprendere da esempi. Addestrata quindi su
un insieme di strutture ad accuratezza nota la rete neurale è in grado, data
una struttura tridimensionale, di predirne l’accuratezza. Questo strumento è
stato fondamentale in alcuni studi di correlazione struttura-attività, riportati
in questo lavoro, in cui è stato necessario predire la struttura tridimensionale
della proteina d’interesse.

In particolare, nel capitolo 3, è riportato lo studio dell’interazione di una
nuova classe di dolcificanti naturali, gli stevioli, con il recettore umano del dolce.
Gli stevioli sono estratti dalle foglie della Stevia rebaudiana, la quale contiene
dieci varianti glicosilate dello stevioside, il costituente principale.
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Questi dolcificanti sono recentemente diventati di grande rilevanza per via
del loro alto potere dolcificante e basso potere calorico. Inoltre, essendo stati
riscontrati effetti ipoglicemici, diuretici e cardiotonici, associati all’utilizzo di
queste molecole, esse risultano interessanti non solo per l’industria alimentare
ma anche per il settore farmaceutico.
Il recettore del dolce (t1r2-t1r3) è un recettore transmembrana eterodimerico
accoppiato ad una proteina G. È composto da una regione citoplasmatica, un
dominio transmembrana ed una regione extracellulare. L’interazione con i dol-
cificanti avviene in siti localizzati sia nella regione extracellulare che nel dominio
transmembrana. Non essendo disponibile la struttura sperimentale del recettore,
è stata predetta e validata utilizzando il metodo precedentemente descritto.
Attraverso uno studio di docking in-silico è stata studiata l’interazione tra gli
stevioli e tutti i possibili siti di legame del recettore t1r2-t1r3. Questa analisi
ha permesso di identificare dei siti di legame preferenziali per gli stevioli, in
particolare, il sito localizzato nella regione transmembrana sembra essere il pi
adatto legare questa classe di compost.

Le proteine non sono entità rigide, piuttosto, sono strutture caratterizzate
da una particolare flessibilità. Le proprietà dinamiche associate alla struttura
sono infatti fondamentali per l’attività svolta dalla proteina stessa. Sempre
nell’ottica dello studio della relazione struttura-funzione è stata studiata la re-
lazione tra proprietà dinamiche e la attività di alcuni enzimi psicrofili (capitolo
4). Gli enzimi psicrofili sono enzimi adattati a lavorare a bassa temperatura,
presentano infatti un elevata efficienza catalitica alle basse temperature com-
parati con le controparti mesofile.
Appoggiandoci ai risultati e ai modelli proposti dalla letteratura è stato effet-
tuato un accurato studio comparativo (enzima psicrofilo vs mesofilo) delle pro-
prietà termodinamiche di due diversi rappresentanti appartenenti alla famiglia
delle elastase e delle uracil-DNA-glycolsylase. Nello studio, effettuato medi-
ante dinamica molecolare, è stato possibile trovare, in accordo con precedenti
evidenze, che l’adattamento alle basse temperature è correlato con la differ-
ente flessibilità strutturale dell’enzima psicrofilo rispetto al mesofilo, la quale,
influenza le modalità con cui l’enzima interagisce con il substrato.

La struttura tridimensionale può essere particolarmente utile quando si stanno
studiando malattie che dipendono da mutazioni in una particolare proteina. È
utile per analizzare l’impatto della mutazione sulla struttura e quindi sulla at-
tività della proteina stessa.
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Come esempio sono stati riportati tre casi (capitolo 5) in cui uno studio strut-
turale è stato utilizzato per supportare dati genetici e biochimici per l’analisi
dell’impatto di mutazioni puntiformi sull’attività della proteina e il loro ruolo
nella malattia associata. In particolare, sono state studiate tre rare malattie
infantili associate a gravi disordini metabolici, che coinvolgono mutazioni pun-
tiformi in proteine mitocondriali.

A causa del continuo aumento della potenza di calcolo e delle enormi quan-
tità di informazioni biologiche depositate nelle banche dati, i metodi com-
putazionali per lo studio della struttura delle proteine hanno raggiunto uno
sviluppo tale da poter essere considerati un supporto fondamentale, ed, in alcuni
casi, indispensabile, ai metodi sperimentali. È necessario tuttavia sottolineare
l’importanza dell’utilizzo combinato di entrambe gli approcci. I metodi speri-
mentali richiedono l’elaborazione e l’analisi dei dati prodotti, mentre i metodi
computazionali necessitano dei dati sperimentali per poter essere accurati.
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Abstract

Proteins are fundamental constituent of the living systems in which they hold
many different functions. The characterization of the protein functions can also
help to explain not just the working of individual molecules, but of whole sys-
tems. Regardless of the kind of protein (enzyme, receptor, etc.), the detailed
knowledge of the protein roles resides in a deep cognition of the relationship be-
tween the three-dimensional (3D) structure and its function. The study of the
structure-activity relationship require, as a necessary condition, the availability
of the 3D structure. At now, the 3D structure is known only for the 1% of the
protein sequences stored into the databases. The experimental determination of
the 3D structure is restricted to some relevant proteins, as they are temporar-
ily and economically expensive. The recent development of the computational
methods for the prediction of the protein structure, makes, in many cases, these
methods a valuable choice and/or a support for the experimental ones. Recently
a great effort is done to one of the major limits of the computational methods,
the inability to get the accuracy of a predicted protein.
For this reason, we developed a tool for the validation of the predicted 3D pro-
tein structure, that is able to quantify their accuracy. The method, described
in chapter 2, is based on the combination of multiple artificial neural networks.
The artificial neural networks are mathematical models developed in analogy to
the real neurons. Being able to describe complex relationship, they have been
chosen to map the relation between the 3D structure and its accuracy. One of
great advantages of the artificial neural networks, is the ability to learn from
examples. Hence, trained on a set of structure with known accuracy, the neural
network is able, given a 3D structure, to predict its accuracy. This tool has
been of primary importance in some structural-activity relationship studies, de-
scribed in this work, in which the prediction of the 3D structure of the protein
under study, has been necessary.

In particular, in chapter 3, an interaction study between a new class of
natural sweeteners (steviol glycosides) and the human sweet taste receptor, has
been described. The steviol glycosides are contained in the leaves of the Stevia
rebaudiana. From this plant ten different steviol glycosides can be extracted,
among them, the stevioside is the main component.
The relevance of these sweeteners is recently increased due to their non-caloric
property and their high sweetening power.
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Moreover, hyploglycemic, diuretic and cardiotonic effects associated to these
molecules makes them an important target not only for the food industry but
also for the pharmaceutical one. The sweet taste receptor (t1r2-t1r3) is an
heterodimeric transmembrane G-protein coupled receptor. It is composed by a
cytoplasmatic, a transmembrane and an extracellular domain. The sweeteners
can interact with sites localized in the extracellular or in the transmembrane
region. Given that the three-dimensional structure of the receptor is not known,
it has been predicted and evaluated using the method previously described. The
interaction between the steviol glycosides and all the possible binding sites of
the receptor, has been analyzed by means of an in-silico docking study, which
allowed to identify the preferential binding site for the steviol glycosides. In
particular, the transmembrane binding site seems to be the suitable for this
class of compounds.

Protein structures are characterized by a peculiar flexibility which is funda-
mental for its activity. Following the line of the structure-activity analysis, the
relationship between the dynamical properties and the function of some psy-
chrophilic enzyme has been studied (chapter 4). The psycrophilic enzymes are
adapted to work at low temperature, compared to the mesophilic enzymes, they
show an high catatlytic efficiency at low temperature.
Supported by literature models and results, an accurate comparative study
(psychrophile vs mesophile) of the thermodynamic properties of two different
enzymes belonging to the elastases and the uracil-DNA-glycosylases families
has been done. This study, carried out with molecular dynamics simulations,
revealed, according to previous evidences, that the low temperature adapta-
tion is related to the different flexibility of the psychrophilic compared to the
mesophilic enzyme. This difference influences how the enzymes interact with
their substrates.

The analysis of the protein structure can be useful when we are dealing with
diseases which are dependent on mutations in a given protein. It help to identify
how the mutation impairs the protein function and which is its impact on the
disease.
As examples, here, we report three cases in which a structural study has been
used to support biochemical and genetical data for the analysis of the impact
of point mutations on the protein structure and function and its effect on the
associated disease. In particular, we have studied three different serious rare
diseases which involve grave metabolic disorder associated to point mutations
in mithocondrial proteins.
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The continuous increasing of the computing power and the huge quantity
of biological information stored into the databases, leads to the computational
methods to reach a development good enough to be considered a crucial sup-
port for the experimental methods. It is worth to underline the importance of
the combined use both the approaches. The experimental methods require the
processing and the analysis of the data, whereas the computational methods
need the experimental data to be accurate.
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Chapter 1

Introduction

The greatest challenge to any thinker is stating the
problem in a way that will allow a solution.

Bertrand Russell (1872 - 1970)

1.1 The structure and function paradigm

L
iving organisms are complex systems made up of many different elements
that interact each others in a highly-organized fashion. Hence, to under-

stand how living systems work, a detailed knowledge of each element they are
made up and each kind of interaction, is required [1]. Among the different
components that constitute living systems, proteins represent one of the most
important element. Proteins are complex macromolecules which hold many
different functions, and the detailed knowledge of their roles reside in a deep
cognition of the relationship between the three-dimensional (3D) structure of
the protein and its function.
Indeed, the characterization of the protein functions requires the knowledge of
its 3D structure, which can also help to explain not just the working of individ-
ual molecules, but of whole systems.
The first crude model of a protein 3D structure, the whale myoglobin [2], was
obtained in 1957. Afterward, in the 1960 the first protein structure was solved
at atomic detail. Since then, the number of structures solved each year has risen
exponentially, giving us more than 51,900 structures as of July 2008 [3]. Despite
the high number of known macromolecular structures, they represent only the
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Introduction

<1% of the deposited protein sequences [4].
There are now more than 600 completely sequenced genomes of cellular organ-
isms, contributing to more than five million unique protein sequences in the
publicly accessible database [5]. The experimental determination of the protein
function would be hardly possible due to the huge amount of data.
Currently, approximately 20%, 10%, 7% and 1% of annotated proteins in the
Homo sapiens, Drosophila melanogaster, Mus musculus, and Caenorhabditis el-
egans genomes, respectively, have been experimentally characterized [5].
However, as the volume of data has increased, computational methods for the
protein structure and function prediction have increased too. Computational
methods have become more and more accurate during the years and now repre-
sent a fundamental support for the experimental techniques. Experimental and
computational techniques take a mutual advantage one from the other, i.e. ex-
perimental methods need the computational treatment of huge amount of data,
and theoretical models interpreting the results and direct the development of
new experiments. On the other hand, computational methods require experi-
mental informations to be accurate and to correctly reproduce the experimental
results. Hence, it turns out to be noticeable the importance of the computa-
tional techniques in the contribution that could be given to the experimental
methods.

2



1.2 Protein structure prediction

1.2 Protein structure prediction

Prediction is very difficult, especially about the future.
Niels Henrik David Bohr (1885 - 1962)

In the last years several different methods have been developed for the pre-
diction of the 3D structure of proteins [6, 7, 8]. All these methods can be
classified into two broad categories: the template-based modelling (TBM) and
the free modelling (FM) [6]. Here, we concisely describe the rationale of each
category, for more detailed explanations see reviews [6, 7, 8, 9, 10], and book
[11].

1.2.1 Template-based modelling

One of key contributions derived from the knowledge of protein 3D structure is
the understanding of protein evolution. As two protein sequences diverge over
evolutionary time, their structures will tend to remain mostly the same; the
overall fold of the protein will be conserved even where there are significant in-
sertions and deletions in the sequence [3]. As a consequence, a three-dimensional
model of a protein of interest (target) can be built from related protein(s) of
known structure [template(s)] that share statistically significant sequence simi-
larity [12].
The traditional comparative modelling procedure consists of many serial steps
usually repeated iteratively until a satisfactory model is obtained: i. finding
one or more suitable template protein(s) related to the target; ii. aligning tar-
get and template sequences; iii. identifying structurally conserved regions; iv.
building structural frameworks by copying the aligned conserved regions or by
satisfying the spatial restraints from templates; v. constructing the unaligned
regions, usually loop regions; adding side-chain atoms.
The identification of a suitable template(s) can be performed by a sequence
search tool such as BLAST [13] or PSI-BLAST [14], which allow to iden- BLAST

Basic Local Alignment

Search Tool. Local align-

ment method that allows

to search a target protein

(or nucleic acid) against a

sequence database

PSI-BLAST

Position Specific Iterated

- BLAST. Method that

allows to search a tar-

get protein (or nucleic

acid) against a sequence

database using sequence

profile

tify similar proteins using only sequence information. This approach, named
comparative modelling, is unable to identify evolutionary distant homologue
proteins (remote homologues), because they share low sequence similarity with
the target protein. The introduction of more sophisticated methods [15] that
derive their power from profile-profile comparison and the effective use of struc-
tural information has significantly increased the remote homologue detection
capability [12]. This kind of approach is referred to as fold-recognition (or

3



Introduction

threading), because they attempt to detect similarities between the target pro-
tein and the template(s) that are not accompanied by any significant sequence
similarity (figure 1.1).

1.2.2 Free modelling

The existence of similar structures in the Protein Data Bank (PDB) [4] is a
necessary condition for the successful template based modelling. An important
question is how complete the current PDB structure library is . When structural
analogs do not exist or could non be identified in the PDB library, the structure
prediction has to be generated without template. This kind of predictions has
been termed as ab initio or de novo, or in general free modelling [6]. One of
the most successfully technique of free modelling is the fragment assembly used
by Baker and coworkers in the development of the ROSETTA [16] software. In
the latest version of ROSETTA [17, 10] structures were built in two stages: in
the first step structures were assembled in a reduced knowledge-based model,
then in the second stage, Monte Carlo simulations with an all-atom physics-
based potential are performed to refine the details of the low-resolution models.
Another successful free modelling approach, called TASSER [18], constructs 3D
models based on a purely knowledge-based approach.
Significant efforts have been made on the purely physics-based approach for
protein folding and structure prediction [6]. This kind of approach try to develop
proper parametrized physics-based functions that are able to correctly describe
the potential energy surface of a protein, hence the 3D structure is predicted by a
complete simulation of the folding process. Although a purely physics-based ab-
initio simulation has the advantage of revealing the pathway of protein folding,
the best current free modelling results come from those methods which combine
both knowledge-based and physics-based approaches [6].

1.2.3 Usefulness of comparative models

Comparative models may be used to identify residues involved in catalysis,
binding or structural stability, to examine protein-protein or protein-ligand in-
teractions, to correlate genotypic and phenotypic mutation data, and to guide
experimental design. When either the similarity between target and template
is low (less than 30%) or the models were built using free modelling techniques,
they should only be used as structural frameworks to study overall feature of
the protein and certainly not for deriving accurate measures of distances, en-
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1.2 Protein structure prediction

Figure 1.1: Homology modelling diagram.
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Introduction

ergies or for drug design tasks [19]. Moreover, it should be always taken into
account that the accuracy of the model is not uniform throughout the structure
and that functionally important regions are likely to be better conserved, at
least for orthologous proteins, than the rest of the structure [19]. In general,
the use of the predicted model strictly depends on its accuracy, that in turn is
related to the method used for its prediction. Figure 1.2 shows, the main uses
of three-dimensional structure of proteins depending on the method they have
been obtained, are shown.

Figure 1.2: Accuracy and application of protein structure models. Shown are
the different ranges of applicability of comparative protein structure modelling,
threading, and de novo structure prediction; the corresponding accuracy of pro-
tein structure models.

6



1.2 Protein structure prediction

The state-of-the-art of the current modelling methods, has been biannual
monitored in the CASP (Critical Assessment of Techniques for Protein Struc-
ture Prediction) experiment since the 1994 [20]. Experimental structural biol-
ogists who are about to solve a protein structure are asked to render available
the sequence of the protein before the crystal structure is stored in the PDB.
Than predictors produce models for this protein using computational methods
and store it into the CASP database. At the end of the CASP session the
predictions are assessed comparing them to crystal structure, and some con-
clusions about the state of the art of the different methods, are drawn. The
experiment runs blindly, that is, the assessors do not know who the predictors
are until the very end of the experiment. At the same time to the CASP an-
other experiment named CAFASP [21] has started to assess the performance
of the automatic server for protein structure prediction. This allow to evalu-
ate how much human expert knowledge is important to obtain better models.
As mentioned before, the accuracy of a protein structure model determines its
usefulness in investigating a biological problem. Hence it is of primary impor-
tance an effective method able to assess the quality of a model. The relevance
of this task is proven by the introduction in the last CASP (CASP7 [22]), of a
category to objectively test and compare methods for model quality assessment.

7
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1.3 Protein quality assessment

A little inaccuracy sometimes saves tons of explanation.
Hector Hugh Munro (Saki) (1870 - 1916)

When we talk about protein quality assessment methods, first of all we need
to properly define the term ”quality“ of a protein model, in order to develop
methods able to compute or predict it. We can refer to quality as a measure
that quantifies the accuracy of a 3D model, i.e. the similarity of the model with
the experimentally determined native structure (the X-ray structure is usually
taken as native structure). The more the model is similar to the experimental
structure the more it will be accurate. At first sight, it might seem that the
evaluation of the correctness of a model is a straightforward task once the ex-
perimental structure is available, but matters are not so easy. To get a measure
of similarity the first task is to optimally superimpose the model on the experi-
mental structure. Protein structures, however, have an intrinsic flexibility which
implies the existence of more than one optimal superposition. The simplest way
is to perform a least square fitting on all the atoms of the two proteins and
compute the rmsd. It is defined as the square root of the squared differences
between the coordinates of corresponding atoms, and therefore, it will weight
more regions that are not well superimposed with respect to the rest. Some
regions may be more flexible than others, and the rmsd may penalize them to
give an underestimation of the quality of the models. We need to ascertain that
our quality measure takes this into account and does not penalize a model if
it does not correctly reproduce regions of the experimental structure that have
significant experimental uncertainty [23, 19]. Many quality measures have been
developed to accomplish this task: GDT-score [24], LG-score [23], TM-score [25]
MaxSub [26], a comprensive description of the model quality assessment mea-
sure but the TM-score is given in ref [23].
The definition of the measure of quality is only half of our goal; we need toDecoys

Wrong protein structure

obtained with a computa-

tional method. The decoys

that are more similar to the

native structure are defined

native-like structure.

develop a method able to predict the model quality without the existence of
the native structure. Many methods of protein models validation have been
developed during the last years [27, 28, 29, 30, 31, 32, 33, 34]. Most have
focused on finding the native structure or native-like structures in a large set of
decoys , while a few have focused directly on the quality assessment problem.
These methods predict the overall global quality of a protein structure model by
analyzing various structural features, such as non-bonded interactions, solvent

8



1.3 Protein quality assessment

exposure, secondary structure, hydrophobic interactions, and stereochemical
features.
The first technique has been to use methods such as PROCHECK [27] and
WHATCHECK [35] in order to evaluate stereochemistry quality of protein
model. These methods were developed in order to check the extent to which a
model deviates from real X-ray structures based on a number of observed mea-
sures. However, such evaluations are often insufficient to differentiate between
stereochemically correct models.
A variety of energy-based programs have been developed more specifically for
the discrimination of native-like models from decoy structures. These programs
were based either on empirically derived physical energy functions or statistical
potentials derived from the analysis of known structures [28, 34, 36]. For some
time, statistical potential methods such as PROSAII [37] and VERIFY3D [38]
had been popular use for rating model quality. More recently, methods such
as PROQ [32] , FRST [39], MODCHECK [40], and AIDE [41] have proved to
be more effective at enhancing model selection. These methods combine many
structural parameters related to the model accuracy by means of parametric
models (usually linear models) or learning-based models such as neural net-
works or support vector machines. Here, we have developed a novel software
(AIDE : Artificial Intelligence Decoys Evaluator) for protein quality assessment
that is able to predict different quality indicators given a predicted 3D protein
model [41]. The software is based on multiple neural networks as they are able
to quantitatively describe complex relationships, such as that between the 3D
protein structure and its accuracy. A detailed description of the AIDE software
is given in chapter 2; to a better understand of how it works a brief description
of the neural networks is given here.

1.3.1 Artificial neural networks: a brief introduction

The artificial neural networks are mathematical models that were developed
in analogy to a network of biological neurons. In the brain, the highly inter-
connected network of neurons communicates by sending electric pulses through
the neural wiring consisting of axons, synapses and dendrites. In 1943, Mc-
Culloch and Pitts modeled a neuron as a switch that receives input from other
neurons and, depending on the total weighted input, it is either activated or
remains inactive. Each input coming from another cell is multiplied by a weight
which corresponds to the strength of the signal between the two neurons. These
weights can be both positive (excitatory) and negative (inhibitory) [42].
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It was shown that simple networks of such neuron models, named perceptrons,
have properties similar to the brain: they can perform pattern recognition and
they could learn from examples [43, 44].
In the 1969 Minsky and Papert [45], showed that simple perceptrons could
solve only the very limited class of linearly separable problems. Nonetheless,
the development of the error back-propagation method [46] allows to train more
complex networks, being able to solve problems not linearly separable which are
a more interesting and more diffused class of problems.
A neuron model is described in figure 1.3. The output of a neuron is the weighted
sum of the input vector eventually filtered by a function f . More formally, given
an input vector ~x = {xi}, i = 1, ..., n the output of the neuron j is given by

oj = f

(
n∑
i

wi,jxi + bj

)
(1.1)

Where wi,j are weights form the input element i to the neuron j, bj is a threshold

value associated to each neuron, and f is the function of the neuron.

Figure 1.3: Single neuron model. x elements of the input vector, b neuron bias,
z weighted sum, f neuron function, o neuron output.

Many neurons can be combined to create more complex networks. Depend-
ing on the type of neurons and how the neurons are connected to each others,
different kind of neural networks can be created. Here, we only focus on the
most common type of neural network that is the feed-forward neural network,
in which each neuron of a layer is connected to all the neurons of the next layer
and the information flows from the input to the output without loops. For an
overall overview of the neural networks types see ref. [47, 48]. An example of
feed-forward neural network is showed in figure 1.4.

In a multi-layers feed-forward neural network we always have an input vector,

10



1.3 Protein quality assessment

Figure 1.4: Simple example of feed-forward neural network. x elements of the
input vector, b neuron bias, w network weights, z weighted sum, f neuron func-
tion, o neuron output.
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one or more hidden layers, and one output layer composed of one or moreHidden

The hidden layer is com-

posed of neuron whose out-

put is not visible by the

user.

neurons. For example the output computed by the network showed in figure 1.4
is the following:

oj = f (2)

(
s∑
i

w
(2)
j,k f

(1)

(
n∑
i

w
(1)
i,j xi + bj

)
+ bk

)
(1.2)

Where w
(1)
i,j are the weights of the hidden layer, w

(2)
j,k are the weights of the output

layer, bj and bk are the threshold values associated to the hidden neurons and to the

output neuron, respectively. f (1) is the function of the neurons of the hidden layers

(assumed to be the same for each neuron) and f (2) is the function of the neuron of

the output layer.

How they work: the two dimensional classification problem

To understand how a neural network works we can consider a simple example:
we want to classify some objects into two classes. Each object is described as a
two dimensional vector. Data can be represented as points in a two dimensional
plane as shown in figure 1.5(a).

We use only one neuron with a two dimensional input vector and a single

(a) Find a function that best divides the

the data into the two classes (red or blue)

(b) The black line represents the fitted

linear function (the linear neuron) that

best divides the data into the two classes

(red or blue)

Figure 1.5: Two dimensional classification example.

output value. Using the equation 1.1, and considering a linear function, we
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1.3 Protein quality assessment

can compute the output of this neuron as the sum of the product between the
weights and the input values, output =

(∑2
i=1 wixi + threshold

)
. We need

some training data which are described by a two dimensional vector and a value
which represents the class the data belongs to. Training starts by setting all the
weights in the neuron to small random numbers. Now, for each input example
the network gives an output, which starts randomly. We measure the squared
difference between this output and the desired output (the known class). The
sum of all these numbers over all training examples is called the total error of the
network. If this number was zero, the network would be perfect, and the smaller
the error, the better the network. By choosing the weights that minimize the
total error, one can obtain the neural network that best solves the problem at
hand. In this example we identify the best line that divides the points into two
classes, as showed in figure 1.5(b).
The power of neural networks appear when we are dealing with complex non-
linear classification or regression problems, indeed, multi-layers feed-forward
neural networks are universal function approximator, as proven by the Cy-
benko theorem [49]. The failure to map a function arises from poor choices
for parameters or an insufficient number of hidden neurons. In a feed-forward
neural network with hidden units the algorithm used for adjusting the weights
and thresholds is called, as previously mentioned, back-propagation [46]. Many
other algorithms other than the back-propagation have been developed to train
neural networks, here we get a little bit inside of the back-propagation algorithm
because it is the first developed and one of the most used.

Back-propagation In back-propagation we have to find the weights w that
minimize the total error function

E =
1
2

∑
k∈output

(ok − tk)2 (1.3)

This task is done iteratively updating the weights using the steepest descent
method a. The weights are updated starting from the output layer going back
to the hidden layers. There are some learning parameters that need tuning
when using back-propagation, and there are other problems to consider. (See
appendix 7.1.1 for a detailed explanation for the algorithm.) For instance,
gradient descent does not guaranteed to find the global minimum of the error

aSteepest descent:

Given a function E(w), the parameters wmin that minimize E can be found iteratively by

searching on the steepest descent direction of the function: wnew = wold − η
∂E(w)
∂w

, where η

define the stepsize. The process stops when a termination criteria is reached
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function, so the result of the training depends on the initial values of the weights.
Moreover another problem is the over-fitting. Over-fitting occurs when the
network has too many parameters to be learned from the number of examples
available, that is, when a few points are fitted with a function with too many
free parameters [47]. To estimate the generalization performance of the neural
network, one needs to test it on independent data, which have not been used
to train the network. This is usually done by cross-validation, where the data
set is split into, for example, ten sets of equal size. The network is then trained
on nine sets and tested on the tenth, and this is repeated ten times, so all the
sets are used for testing. This gives an estimate of the generalization ability
of the network; that is, its ability to classify inputs that it were not trained
on [47, 48, 42].
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1.4 Analysis of 3D structure

1.4 Analysis of 3D structure

We may, I believe, anticipate that the chemist of the
future who is interested in the structure of proteins,

nucleic acids, polysaccharides, and other complex
substances with high molecular weight will come to rely

upon a new structural chemistry, involving precise
geometrical relationships among the atoms in the
molecules and the rigorous application of the new

structural principles, and that great progress will be made,
through this technique, in the attack, by chemical methods,

on the problems of biology and medicine.
Linus Carl Pauling (1901 - 1994)

As previously discussed, protein structures have a central role in many dif-
ferent fields. In the pharmaceutical industry, for example, the knowledge of a
protein structure is fundamental for the development of new drugs. Indeed, to
obtain specific drugs one must deeply know how they interact with their target
(often a protein), and this task can be exclusively done knowing the 3D struc-
ture of the target.
A related field in which the knowledge of the 3D structure of a protein has as-
sumed a central role is the food industry. The development of new food additives
(flavours, sweeteners, stabilizer, emulsifier, etc.) and the study of the existing
ones may requires to know the way they interact with a specific receptor.
Moreover the knowledge of the three-dimensional structure of a protein can be
useful for studying structural, dynamical and thermodynamical properties of the
protein itself or for analyzing the effect of mutations on the protein function.
Some of the possible analysis that require the knowledge of the 3D structure of
a protein are listed in table 1.1.

Some of the analysis listed in table 1.1 have been used into this work, hence
we decide to briefly describe them in the following sections.

1.4.1 Drug design and docking

The development of new drugs is undoubtedly one of the most challenging tasks
of today’s science. The very high complexity of the problem requires the collab-
oration of pharmaceutical industry, biotech companies, regulatory authorities,
and academic researchers. In the last few years, the field of drug development
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has become more productive than ever before. This rapid development is basi-
cally due to the parallel increase of the experimental high-throughput techniques
and the computational methods. Genomic and proteomic studies allow to obtain
information related to the target; in particular, they are important for the iden-
tification of new putative targets, or to analyze the transmission pathways on
which a given target is involved with. Moreover, the emergence of combinatorial
chemistry enables the production of very large libraries of compounds, which
could be tested using the continuously developed high-throughput tests [50, 51].
A variety of computational approaches can be very helpful at different stages of
the drug-design process: in the first step, it is important to reduce the number of
possible ligands, while at the end, during lead-optimization stages, the emphasis
is on decreasing experimental costs and reducing times [52]. Many enhancement
have been made in the computational approaches including protein flexibility,
refinement of the final complexes, and estimation for the binding free energies.
Molecular dynamics (MD) simulations have played a dominant role to improve
docking procedures;

Docking

Docking is designed to find the correct conformation of a ligand and its receptor.
This task is not trivial at all because several factors influence the binding pro-
cess. In particular the mobility of both the ligand and the receptor, the effect
of the protein environment on the charge distribution over the ligand, and their

Analysis SP1 DK2 MS3 NMA4

Drugs design X X X X

Protein-protein interactions X X X X

Development of food additives X X X X

Dynamical properties X X X

Thermodynamical properties X X

Mutation analysis X X X

Mutation design X X X

Protein design X X X

Table 1.1: Examples of studies based on the three-dimensional structure of a
protein. The main computational techniques used in each study are also shown.
1. SP: structure prediction, 2. DK: docking, 3. MS: molecular simulations
(e.g. molecular dynamics, montecarlo, and brownian dynamics simulations), 4.
Normal mode analysis.
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1.4 Analysis of 3D structure

interactions with the surrounding water molecules, highly complicate the quan-
titative description of the process. The idea behind this technique is to generate
a comprehensive set of conformations of the receptor complex, and then to rank
them according to their stability. The most popular docking programs include
Delos[REF], DOCK [53], AutoDock [54],FlexX [55], and GLIDE [56], among
others. From a theoretical point of view docking aims at correct prediction
of the structure of the complex [E + I] = [EI] under equilibrium conditions:
[EI]aq 
 [E]aq + [I]aq The free energy of binding (G) is related to binding
affinity by equations 1.4 and 1.5: Posing

The process of determining

whether a given conforma-

tion and orientation of a

ligand fits the active site.

This is usually a fuzzy pro-

cedure that returns many

alternative results

Ranking

Docked complexes are eval-

uated using a scoring func-

tion and ordered starting

from the best scored com-

pound

G = −RTln(KA) (1.4)

KA = K−1
i =

[E + I]
[E][I]

(1.5)

Figure 1.6: The figure illustrates the binding of a glutamate to the metabotropic
glutamate receptor subtype 1 (mGluR1). The figure refers to the crystal struc-
ture of the glutamate receptor complexed with the glutamate. PDB ID: 1ewk,
chain A.

Prediction of the correct structure posing of the [E+I] complex does not re-
quire information about KA. However, prediction of biological activity ranking
requires this information [57].
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The commonly used “keylock” paradigm was put forward by Emil Fischer
to explain the manner in which the enzyme hexokinase exerted its specificity.
The “key-lock” theory said that the enzyme was a rigid negative of the sub-
strate and that the substrate had to fit into to react. During the last years
the increasing collection of structural data that describe protein structures and
protein complexes shown that proteins are not rigid objects, but rather, they
could be better represented as a collection of structures which are in equilibrium
between each others. The “key-lock” theory has then be overtaken by a more
“flexible” paradigm which represents a more accurate description of most bio-
logical complexes. The ligand protein interactions resemble more a “hand and
glove” association, where both parts are flexible and adjust to complement each
other (induced fit). Both can modify their shape and their complementarity to
increase favourable contacts and reduce unflattering interactions, maximizing
the total binding free energy [52, 57].

Considering the computational docking problem, we need a computational
technique that is able to identify the ligand conformation and position (and
eventually the target conformation) that maximize the free energy of binding,
(on figure 1.7 the flowchart of a general docking procedure is shown).

Many methods have been developed to perform this task. It is possible to
group the computational docking methods into three categories depending on
the degrees of freedom that they take into account.

Rigid docking If both the ligand and the target are considered as rigid en-
tity. Usually it is performed keeping fixed the target position and moving the
ligand inside the binding pocket. The most frequently used search strategies
are random search methods such as Monte Carlob, Tabu search [58]c, or genetic
algorithmsd.

bMonte Carlo algorithm: i. Generate an initial configuration of a ligand in an active

site consisting of a random conformation, translation and rotation. ii. Score the initial

configuration. iii. Generate a new configuration and score it. iv. Use a criterion to determine

whether the new configuration is retained. v. Repeat previous steps until the desired number

of configurations is obtained.
cTabu search algorithm: i. Make n small random changes to the current conformation.

ii. Rank each change according to the value of the chosen fitness function. iii. Determine

which changes are ‘tabu’ (that is, previously rejected conformations). iv. If the best modifica-

tion has a lower value than any other accepted so far, accept it, if it is in the ‘tabu’; otherwise,

accept the best ‘non-tabu’ change. v. Add the accepted change to the ‘tabu’ list and record

its score. vi. Go to the first
dGenetic algorithms are a class of computational problem-solving approaches that adapt

the principles of biological competition and population dynamics. Model parameters are
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Ligands library

Fit the ligand into the binding 
pocket(s) using a rigid, semiflexible 

or flexible method

Rank the docked 
ligands using a 
scoring function

Refine the top 
ranked compounds

Final docked compounds

Receptor

Find the binding 
pocket(s)

For each ligand    
in the library   

Figure 1.7: Molecular docking flowchart.
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Semi-flexible docking In the semi-flexible docking the ligand is allowed to
modify its conformation but the target keeps a rigid structure. The search-
ing algorithm could be stochastic, systematic search methods, or deterministic
simulation search methods (molecular dynamics). The systematic search tries
to explore all the possible positions inside the binding pocket and all the con-
formations of the ligand. A true systematic search is unfeasible because the
combinatorial explosion of the possible conformations [57].

Flexible docking If both the ligand and the target are allowed to modify
their conformations. The introduction of the target flexibility in computational
docking methods is a difficult task because it leads to an impressive increase
of the computational costs. Many different approaches have been developed to
introduce the flexibility without overloading the computational costs [57, 52, 59].

Combination with molecular dynamics A common method is to com-
bine the fast and inexpensive protocols with accurate and costly molecular dy-
namics simulations. At first fast methods were used to rank ligands according
to an energy function and excluding the ligands that are almost surely unable
to bind, thus molecular dynamics (MD) simulations (which allow to incorporate
protein flexibility) is performed on the top ranked compounds to obtain more
accurate estimation of the free energy of binding [59, 52].

Ensemble methods Another more cost effective way to introduce the
flexibility is to start from different conformations of the target protein, and
then performing fast docking procedures which consider the target structure as
a rigid object.

The way to produce the different starting target conformations varies ac-
cording to the method used. One common way is to perfor a normal mode
analysis (see chapter 3 for details) on the protein structure and taking some rel-
evant conformations. Another way is to perform molecular dynamics simulation
and to extract from the trajectory some significant frames [59, 52].

encoded in a ‘chromosome’ and stochastically varied. Chromosomes yield possible solutions to

a given problem and are evaluated by a fitness function. The chromosomes that correspond to

the best intermediate solutions are subjected to crossover and mutation operations analogous

to gene recombination and mutation to produce the next generation. For docking applications,

the genetic algorithm solution is an ensemble of possible ligand conformations
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Scoring function The evaluation and ranking of predicted ligand conforma-
tions is a crucial aspect of structure-based virtual screening. The development
of reliable scoring functions is a fundamental task because it must be able to
discriminate between incorrect pose to the correct one. Scoring functions can
be divided into three classes: Force field based, empirical scoring functions, and
knowledge-based [57].

Force fields based Force field based scoring functions uses physics-based
energy functions to compute the binding energies between target and ligands.
Force field are mathematical models properly parametrized to describe the po-
tential energy of a molecule. The functional form of the force fields follows from
quantum mechanical calculations [60]. For a short description of the force field
see 1.4.2.

Empirical scoring functions These scoring functions are composed by a
sum of several parametrized scoring functions fitted to reproduce experimental
data, such as binding energies and/or conformations. The design of empirical
scoring functions is based on the idea that binding energies can be approximated
by a sum of individual uncorrelated terms. The coefficients of the various terms
are obtained from regression analysis using experimentally determined binding
energies and structural information [57].

Knowledge-based scoring functions This type of approach exploits
the ever increasing knowledge base of experimentally determined target-ligand
structures relying explicitly or implicitly on Boltzmann’s principle: frequently
observed states correspond to low energy states of the system [60].

Refinement of the docked complexes

The most accurate and convenient approach to address the docking problem
seems to be a two-step protocol. Fast and less accurate algorithms are first
used to scan large databases of molecules and to reduce their size to a reason-
able number of hits. Thus a more accurate and time-consuming method which
can refines the conformation of the complexes is applied [61, 62]. Molecular
dynamics simulations is a valid alternative for structural refinement of the final
docked complexes. As previously mentioned MD is able to incorporate flexibility
of both ligand and receptor, and enhancing complementarity between them, and
thus accounting for induced fit. Moreover, the evolution of the complexes over
the simulation indicates its stability: incorrectly docked structures are unstable
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and lead to the disruption of the complex, while realistic complexes will show
stable behaviour. In addition, MD allows the incorporation of explicit solvent
molecules and their interactions in the simulations of the docked systems is very
important for understanding the role of water and its effect on the stability of
the ligand-protein complexes [52].
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1.4.2 Molecular dynamics simulations and protein func-

tions

The importance of the molecular dynamics simulations can be realized looking
at the number of times that has been cited in the previous sections. It represents
an extremely useful technique that could be used for several kind of studies.
Molecular dynamics simulations is a computational method used in the theo-
retical study of biological molecules, because it permits to calculate the time
dependent behaviour of a molecular system. MD simulations have provided de-
tailed information on the fluctuations and conformational changes of proteins
and nucleic acids (the time of biological process in proteins is reported in Table
1.2). These methods are now routinely used to investigate the structure, dy-
namics and thermodynamics of biological molecules and their complexes, and to
relate the results with the function of the protein. It is also possible to study the
effect of explicit solvent molecules on protein structure and stability to obtain
time-averaged properties of the biomolecular system, such as density, conduc-
tivity, and dipolar moment, as well as interactions energies and entropies. MD
is useful not only for rationalizing experimentally derived information at the
molecular level, but it is very helpful in the determination of the structure by
X-ray or NMR. In this work the molecular dynamics simulations were used as
method for analyzing biological fluctuations of psychrophilic proteins around
the native state (see chapter 4), as a tool for refining predicted protein models
obtained by homology modelling(see chapter 3) and as a docking method for
identifying and analyzing the binding of small molecules to protein target (see
chapter 3).

Molecular dynamics simulations: a brief introduction

The Molecular dynamics method was first introduced by Alder and Wainwright
in the late 1950’s [63, 64] to study the interactions of hard spheres: many im-
portant insights concerning the behaviour of simple liquids emerged from their
studies. The next major advance was achieved in 1964, when Rahman carried
out the first simulation using a realistic potential for liquid argon. The first
Molecular dynamics simulation of a realistic system was done by Rahman and
Stillinger in their simulation of liquid water in 1974 [65] and the first protein sim-
ulations appeared in 1977 with the simulation of the bovine pancreatic trypsin
inhibitor (BPTI) [66].

Molecular dynamics simulations are in many respects very similar to real
experiment; when we perform a real experiment, we proceed as it follows. We
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Local Motions Atomic fluctuations

(0.01 to 5 Å, 10-15 to 10−1 s) Sidechain Motions

Loop Motions

Rigid Body Motions Helix Motions

(1 to 10 Å, 10−9 to 1s) Domain Motions (hinge bending)

Subunit motions

Large-Scale Motions Helix coil transitions

(> 5 Å, 10−7 to 104 s) Dissociation/Association

Folding and Unfolding

Table 1.2: Time of motions in proteins. The amplitude of motions is expressed
as a RMSD value.

prepare a sample, we connect it with the measuring instrument, and we measure
the property of interest during a certain time interval. In MD we follow exactly
the same approach. First, we prepare the sample: we select a model system
consisting of N particles and we solve Newton’s equations of motion for this
system until the properties of the system no longer change with time (system
equilibration). After equilibration, we perform the actual measurement.

Statistical Mechanics Molecular dynamics simulations generate information
at microscopic level, including atomic positions and velocities. However, this
kind of information cannot be compared with the experimental data, because
no real experiment provides us with such detailed information. A typical exper-
iment measures an average property, such as pressure, energy, heat capacities,
etc., averaged over a large number of conformations and, usually, over the time
of the measurement. The conversion of this microscopic information to macro-
scopic observables requires to treat the systems from a statistical point of view.
In classical molecular mechanics each microscopic state is uniquely defined byClassical

The word classical means

that the electrones are not

explicitely considered and

the nuclear motion obeys

the laws of Newton’s clas-

sical mechanics

its coordinates and momenta, and a Molecular dynamics simulation generates
a sequence of points in phase space as a function of time; these points be-

Phase space

6N-dimensional space de-

fined by coordinates rN

and momenta pN

long to the same ensemble, and they correspond to the different conformations
of the system. An ensemble is a collection of all possible configurations which
have different microscopic states but an identical macroscopic or thermodynamic
state [67].

There exist different ensembles with different characteristics:

• Microcanonical ensemble (NV E): the thermodynamic state characterized
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by a fixed number of atoms, N , a fixed volume, V , and a fixed energy, E.
This corresponds to an isolated system.

• Canonical Ensemble (NV T ): this is a collection of all systems whose
thermodynamic state is characterized by a fixed number of atoms, N , a
fixed volume, V , and a fixed temperature, T .

• Isobaric-Isothermal Ensemble (NPT ): this ensemble is characterized by a
fixed number of atoms, N , a fixed pressure, P , and a fixed temperature,
T .

• Grand canonical Ensemble (mV T ): the thermodynamic state for this en-
semble is characterized by a fixed chemical potential, m, a fixed volume,
V , and a fixed temperature, T .

In statistical mechanics, averages corresponding to experimental observables
defined in terms of ensemble averages, which is the average taken over a large
number of replicas of the system considered simultaneously. Given a particular
ensemble, an average of a quantity f(rN ,pN ) over all possible states is called
ensemble average and it is denoted as 〈f(rN ,pN )〉. Considering, for example,
theNV E ensemble in classical mechanics the ensemble average can be computed
averaging over all conditions compatible with the imposed values of N , V , and
E.

〈f(rN ,pN )〉 =

∫
E
f(rN ,pN )drNdpN

Ω(N,V,E)
(1.6)

where Ω(N,V,E) =
∫
E
drNdpN . In Molecular dynamics simulations we can

study the average behaviour computing the natural time evolution of the system
and averaging the quantity of interest f(rN ,pN ) over a sufficiently long time.
This average is called time average and is denoted as f(rN ,pN ) to distinguish
it from an ensemble average, and can be computed as

f(rN ,pN ) = lim
t→∞

1
t

∫ t

0

f(rN ,pN ; t) dt (1.7)

Combining the equations 1.6 and 1.7 we can obtain the following fundamental
equation of statistical mechanics (1.8) that is usually referred to as ”ergodic
hypothesis“ [68] and it states that the time average equals the ensemble average:

f(rN ,pN ) = 〈f(rN ,pN )〉ensemble (1.8)

The basic idea is that if the system is free to evolve in time indefinitely, that
system will eventually pass through all possible states. Because the simulations
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are of fixed duration, one must be certain to sample a sufficient amount of
phase space. A Molecular dynamics simulation must be sufficiently long so that
enough representative conformations have been sampled.
The Molecular dynamics simulation method is based on Newton’s second law or
the equation of motion, F = ma, where F is the force exerted on the particle,
m is its mass and a is its acceleration. From a knowledge of the force on each
atom, it is possible to determine the acceleration of each atom in the system.
Integration of the equations of motion then yields a trajectory that describes
the positions, velocities and accelerations of the particles as they vary with
time. From this trajectory, the average values of properties can be determined.
The method is deterministic; once the positions and velocities of each atom are
known, the state of the system can be predicted at any time in the future or the
past. Consider a system consisting of N particles moving under the influence of
the internal forces acting between them. The spatial positions of the particles
as functions of time will be denoted by rN (t) = (r1(t), ..., rN (t)), and their
velocities, vN (t) = (v1(t), ...,vN (t)). If the forces, FN = (F1, ...,FN ), on the
N particles are specified, then the classical motion of the system is determined
by Newton’s second law

mir̈i = Fi (1.9)

where Fi is the force exerted on particle i, mi is the mass and r̈i is the acceler-
ation (second derivative of the position) of particle i respectively.

The total energy of an isolated system is defined by its HamiltonianH(pN , rN )
which is a function of the coordinates rN and momenta pN of the constituting
particles: H(pN , rN ) = K(pN ) + U(rN ) where K(pN ) is the kinetic energy and
U(rN ) is the potential energy of the systems. The force acting on each particle
can also be expressed from the potential energy as:

Fi = − ∂U
∂ri

(1.10)

The equation 1.9 constitutes a set of 3N coupled second-order differential
equations. A unique solution to equation 1.9 is obtained by choosing a set of ini-
tial conditions, rN (0),vN (0). Newton’s equations completely determine the full
set of positions and velocities as functions of time and thus specify the classical
state of the system at time t. Except in special cases (two-bodies systems and
special cases of three-bodies systems), an analytical solution to the equations
of motion, equation 1.9, is not possible. An MD calculation, therefore, employs
an iterative numerical procedure, called a numerical integrator, to obtain an
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1.4 Analysis of 3D structure

approximate solution.
The atomic initial position rN (0) are usually taken from the experimentally
obtained structure such as the X-ray crystal structure of the protein or the so-
lution structure determined by NMR spectroscopy. The initial velocities, vi(0),
are often chosen randomly from a Maxwell-Boltzmann distribution e

And the initial accelerations are determined combining the equations 1.10
and 1.9.

ai = − 1
mi

∂U
∂ri

(1.12)

Integration Algorithms Numerous numerical algorithms have been devel-
oped for integrating the equations of motion: position Verlet algorithm [69],
Leap-frog algorithm [68], velocity Verlet algorithm [70], Beeman’s algorithm [68].

A common way to derive the integration algorithms is by approximating the
position and the velocity by a Taylor series expansion:

ri(t+ δt) = ri(t) + vi(t)δt+
1
2
ai(t)δt2 +

δt3

3!
...
r i +O(δt4) (1.13)

Where ri(t) is the position, vi(t) is the velocity (the first derivative with
respect to time), ai(t) is the acceleration (the second derivative with respect to
time), etc.

vi(t+ δt) = vi(t) + ai(t)δt+
1
2
v̈i(t)δt2 +

δt3

3!
...
v i +O(δt4) (1.14)

Where vi(t) is the velocity, ai(t) is the acceleration (the first derivative of
the velocity with respect to time), etc.

One of the first algorithm used for the molecular dynamic simulations is the
position Verlet algorithm 1.15 [69],

r(t+ δt) = 2r(t)− r(t− δt) + a(t)δt2 (1.15)

which uses positions and accelerations at time t and the positions from time t−δt
to calculate new positions at time t+ δt. The Verlet algorithm uses no explicit
velocities. The advantages of the Verlet algorithm are that it is straightforward,
and the storage requirement is modest. The disadvantage is that the algorithm

e The probability that an atom i has a velocity vi,x in the x direction at a temperature T

is given by:

p(vi,x) =

„
mi

2πkBT

« 1
2
exp

"
−

1

2

miv
2
i,x

kBT

#
(1.11)

27



Introduction

is of moderate precision. A more detailed description of the Verlet algorithms
is in the appendix 7.2.1.
The integration algorithms must satisfy two fundamental properties that are
imposed by the Newton’s equations of motion.
One is the time-reversibility, that implies that we can reverse the trajectory into
the phase space. And the other, the most important, is the conservation of the
total energy of the system. For most of the molecular dynamics application the
Verlet-like algorithms are perfectly adequate [68].

Force Fields In order to provide a picture of the microscopic behaviour of
a system from the laws of classical mechanics, MD requires, as an input, a
description of the interparticle interactions. The quality of the results of an MD
simulation depends on the accuracy of this description. One common approach
is to model the interactions with empirical force fields.
An empirical force field is built up from a set of equations (called the potentialEmpirical

The term empirical refers

to the fact that the param-

eters of the individual func-

tions are fitted to experi-

mental data and/or ab ini-

tio quantum chemical cal-

culations.

functions) properly parametrized to represent the potential energy of the system.
The force field describes the potential energy (U) of the system as a function of
the atomic position of all atoms in the system. The value of energy is calculated
as a sum of internal, or bonded, terms which describe the bonds, angles and
bond rotations in a molecule, and a sum of non-bonded terms. which account
for interactions between non-bonded atoms or atoms separated by 3 or more
covalent bonds. The most common terms included in almost all force fields for
biological molecules are the following.

• bonds: Eb = 1
2kb(rb − r

0
b )

this term represents the interaction between atom pairs where atoms are
separated by one covalent bond. This is an approximation of the energy
of a bond as a function of the displacement from the ideal bond length
r0
b . The force constant, kb, determines the strength of the bond. Both r0

b

and kb values are specific for each pair of bound atoms, and they are often
evaluated from experimental data.

• angles: Eθ = 1
2kθ(rθ − r

0
θ)

this term is associated with alteration of bond angles, θ, from an ideal
value r0

θ , which is represented by an harmonic potential as in the previous.
Values of kθ and r0

θ depend on chemical type of atoms constituting the
angle.

• dihedrals: Eγ = 1
2kγ [1− cos(nγ − γ0)]

the torsion angle potential function models the presence of steric barriers
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1.4 Analysis of 3D structure

between atoms separated by 3 covalent bonds. The motion associated
with this term is a rotation, described by a dihedral angle and coefficient
of symmetry (n) around the middle bond.

• van de Waals: EV dWij = −Aij
r6ij

+ Bij
r12ij

The van der Waals interaction between two atoms results from a balance
between repulsive and attractive forces: the former arises at short dis-
tances where the electron-electron interaction is strong whereas the latter
is longer range than the repulsion but as the distance become short, the
replusive interaction becomes dominant. This gives rise to a minimum in
the energy. Positioning of the atoms at the optimal distances stabilizes
the system. The van der Waals interaction is most often modelled using
the Lennard-Jones 6-12 potential which expresses the interaction energy
using the atom-type dependent constants A and C.

• Coulomb: Ecoulombij = C qi qj
ε rij

The electrostatic interaction between a pair of atoms is represented by
Coulomb potential; ε is the effective dielectric function for the medium
and rij is the distance between two atoms having charges qi and qj .

The empirical force fields have several approximation and limitations, which
may result in inaccuracies in the calculated potential energy.

Solvent Solvent, usually water, has a fundamental influence on the structure,
dynamics and thermodynamics of biological molecules, both locally and globally.
One of the most important effects of the solvent is the screening of electrostatic
interactions. It is important to include solvent effects in a MD simulation. This
can be done at several levels:

The simplest implementation uses a distance-dependent dielectric, which has
been used for a long time as a convenient and cheap, but also fairly crude, ap-
proximation of solvent effects. There are more sophisticated recent efforts to
modulate the dielectric screening as a function of the solvent-excluded volume,
as in the EEF (effective energy function) 1 model [71], with improvements that
adjust the screening function according to the distance of a charge site from
the surface. Another simple and fully empirical implicit solvent model is based
on the atomic solvent accessible surface area, and aims to reflect observed hy-
drophobicity or hydrophilicity depending on the residue and/or the atom types
of solvent exposed atoms [72]. More sophisticated implicit solvent models make
use of the Poisson theory [73] for calculating the electrostatic component of the
free energy of solvation for a set of charges embedded in a low-dielectric cavity
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surrounded by a solvent environment represented as a dielectric continuum [72].
The computational cost for solving the Poisson equation limits its use for many
applications such as the Molecular dynamics. A widely used compromize be-
tween accuracy and computational cost makes use of the Generalized Born for-
malism [74], which is an approximation of the linearized Poisson equation. In
some cases the implicit solvent models are not enough accurate to represent our
systems, in these cases we can introduce explicitly the molecules of the solvent
around our molecule. This leads to an increase of the computational costs but
results in a more accurate treatment of the system.
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Chapter 2

A neural network approach

for protein models

validation

The world is the totality of facts, not of things.
Ludwig Wittgenstein (1889 - 1951)

2.1 Introduction

T
he very large and continuously increasing amount of data obtained by genome
sequencing makes the development of reliable computational methods ca-

pable to infer protein structures from sequences a crucial step for functional
annotation of proteins. In fact, functional annotation is often strictly dependent
on the availability of structural data, which in turn are still difficult to obtain
experimentally. As a consequence, efforts and progresses in high throughput
X-ray and NMR methods need to be accompanied by computational techniques
suitable for three-dimensional structure predictions, such as homology mod-
elling, fold recognition or ab-initio methods[52, 34, 49, 18, 32, 57, 56], which are
intrinsically characterized by different levels of accuracy.

In parallel to the development and improvement of prediction methods, reli-
able and accurate evaluation tools are necessary to check the quality of compu-
tational protein models [31, 19]. Moreover, in the context of protein structure
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refinement, which has been recently identified as one of the bottlenecks limiting
the quality and usefulness of protein structure prediction [52], it has been noted
that improvements in the selection of the most native-like model from an ensem-
ble of closely related alternative conformations can be crucial. The increasing
importance of the field of quality assessment methods is demonstrated by the
introduction of a dedicated section in the latest CASP edition (CASP7) [51].

To evaluate protein structures, several different scoring functions have been
developed, which can be classified into different categories depending on the
principles and on the structural features considered in the evaluation. Physical
scoring (energy) functions aim to describe the physics of the interaction be-
tween atoms in a protein and are generally parameterized on molecular systems
smaller than proteins [22]. Knowledge-based scoring functions are designed by
evaluating the differences between some selected features of a random protein
model and the characteristics of a real protein structure [46, 48, 28, 50, 29].
Learning-based functions can be developed by training algorithms to discrimi-
nate between correct and incorrect models [55]. Independently by the category,
scoring functions are generally tested by examining their capability to detect the
native structure among a set of decoys [41], which can be generated in several
different ways [35, 45, 44].

It is important to note that the performance of learning-based functions are
generally strongly dependent on the specific aim for which they were developed,
and consequently on the training set used. As an example, ProQ, a neural
network based method developed to predict the quality of protein models [55],
was specifically designed to discriminate between correct and wrong models, i.e.
to recognize folds that are not compatible with a protein sequence. In fact,
ProQ was recently combined successfully with the Pcons [25] fold recognition
predictor and ranked as one the best methods in a recent survey of quality
assessment methods [51]. Other reliable and extensively used computational
methods used to validate the quality of protein structures are PROSA [47],
ERRAT [7], Verify3D [53, 26], PROCHECK [20], what-if [11], PROVE [36] and
victor/FRST [50].

In the present contribution, we present a computational method (Artificial
Intelligence Decoys Evaluator: AIDE) that is able to reliably and consistently
discriminate between correct and incorrect protein models. In particular, the
quality of the protein structure is evaluated with neural networks using as input
15 structural parameters, which include solvent accessible surface, hydropho-
bic contacts and secondary structure content. In the first section of the paper,
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the neural network structure and the training procedure are presented and dis-
cussed. In the second section, the performance of the neural network is evalu-
ated, compared to available methods, and critically discussed.
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2.2 Methods

2.2.1 Protein datasets

The 4state-reduced set is an all-atom version of the models generated by Park
& Levitt [35] using a four-state off-lattice model. The fisa and fisa-casp3 sets
contain decoys of four small alpha-helix proteins. In these sets main chains were
generated using a procedure of fragment insertion based on simulated anneal-
ing: native-like structures were assembled from a combination of fragments of
known unrelated protein structures characterized by similar local sequences, us-
ing Bayesian scoring functions [45]. The side chains of fisa and fisa-casp3 were
modeled with the software package SCWRL [30]. The hg-structal is a set of
hemoglobin models generated by homology modelling. The lmds subset [35],[10]
was produced by Keasar and Levitt by geometry optimizations carried out using
a complex potential that contains a pairwise component, as well as cooperative
hydrogen bonds terms. The Rosetta all-atom decoys were generate with the
ROSETTA method developed by David Baker [44]. The molecular dynamics
set of decoys was generated by molecular dynamics (MD) simulations carried
out in vacuum with the software GROMACS 3.2 [24, 6]. Each protein structure
was submitted to 100 ps of simulation using the OPLS force field [15]. MD sim-
ulations were performed in the NVT ensemble at 600 K, using an external bath
with a coupling constant of 0.1 ps [5]. The LINCS algorithm [12] was adopted
to constrain bond lengths of heavy atoms, allowing us to use a 2 fs time step.
Van der Waals and Coulomb interactions were truncated at 8 Å, while long-
range electrostatics interactions were evaluated using the particle mesh Ewald
summation scheme [54]. The Van der Waals radii were increased to 4 Å for all
atoms, in order to speed up the unfolding process [21]. Snapshots from the tra-
jectory have been extracted every 0.4 ps, collecting 250 misfolded structures for
each protein, with a backbone RMSD (root mean square deviation between the
initial structure and each snapshot) ranging from 0 to about 10 Å. In addition
to these decoy datasets, the CASP5 [2], CASP7 [3] and LiveBench2 [27] sets
were also included. The complete dataset contains 62819 protein models build
on 193 proteins.

2.2.2 Training-set and test-set

The dataset was splitted into two disjoint sets : a training-set and a test-set.
The training-set includes only proteins belonging to the LiveBench2 and CASP7
decoys sets (13693 model structures built on 96 different proteins). The test-
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set includes the lmds, CASP5, hg structal, MD, Rosetta and 4state-reduced
datasets (49126 models build on 97 proteins).

2.2.3 Parameters-Descriptors used in the neural network

The relative solvent accessible surface (rSAS) was computed as it follows :

rSAShydrophobic =
SAShydrophobic

SAStotal

rSAShydrophilic =
SAShydrophilic
SAStotal

where the residues A, L, V, I, P, F, M, W were considered as hydrophobic and the
SAStotal is the total solvent accessible surface computed using NACCESS [13].

The secondary structure was evaluated with the DSSP program [16], in which
the typical 8-state DSSP definition was simplified according to the following
rules : H and G to helix, E and B to strand and all other states considered as
coil, in agreement with PSIPRED definition [14].

The fraction of secondary structure (SS) is defined as :

SS =
nss
N
∗ 100,

where nss is the number of residues located in well-defined secondary structure
elements, and N is the number of protein residues.

The secondary structure for each decoy was also compared with the corre-
sponding secondary structure predicted by PSIPRED. Accordingly, the relative
consensus secondary structure (SSc) was defined as the ratio:

SSc =
nc
N
∗ 100,

where nc is the number of residues located in corresponding secondary struc-
ture elements according to DSSP definition and PSIPRED secondary structure
prediction.

Generally, native structures are characterized by hydrophobic residues clus-
tered in buried regions. Therefore, the number of contacts between hydrophobic
residues was chosen as a possible relevant parameter to discriminate among cor-
rect and incorrect models. According to our definition, a contact is present if
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the distance between two residues is greater than 2.5 Å and lower or equal to
5 Å [40]. Given n hydrophobic residues, the number of hydrophobic contacts
(Q) is normalized relative to the number of all possible contacts:

rQ =
2Q

n(n− 1)!
,

Moreover, to keep into account the stereochemical quality of the model, some
PROCHECK parameters were considered (table 2.1).

Parameter
Percentage of residue in Ramachandran plot core regions
Percentage of residue in Ramachandran plot allowed regions
Percentage of residue in Ramachandran plot generously allowed regions
Percentage of residue in Ramachandran plot disallowed regions
Number of bad contacts
G-factor for dihedral angles
G-factor for covalent bonds
Overall G-factor

Table 2.1: PROCHECK parameters used in AIDE. The G-factor, which is a
log-odds score based on the observed distributions of stereochemical parameters,
provides a measure of how ”normal”, or alternatively how ”unusual”, a given
stereochemical property is.

2.2.4 Model accuracy measures

Quality of protein models was evaluated by means of five different descriptors,
using the crystal structure as reference: RMSD on the backbone atoms, TM-
score [58], GDT-TS [38], LG-score [38] and MaxSub [43].

RMSD was computed on the backbone atoms after superposing the model
structure on the crystal structure, using the program CE [42].

TM-score was developed to evaluate the topology similarity of two protein
structures [58]. TM-score values fall into the interval [0, 1]. Scores equal or
below 0.17 indicate that the prediction has a reliability compared to a random
selection from the PDB library.

GDT-TS gives an estimation of the largest number of residues that can be
found in which all distances between the model and the reference structure are
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shorter than the cutoff D. The number of residues is measured as a percentage
of the length of the target structure. The values of GDT-TS fall into the interval
[0− 1], with a GDT-TS of 1 corresponding to perfect superposition.

The LG-score represents the significance (P-value) of a score (S str [23])
associated to the best subpart of a structural alignment between the model
and the correct structure. The value is measured by using a structural P-value
ranging from 0 to 1, with a value of 0 corresponding to optimal superposition.

MaxSub is calculated from the largest number of residues that superimpose
well over the reference structure, and produces a normalized score that ranges
between 0 and 1. A MaxSub value of 1 is associated to perfect superposition.

2.2.5 Neural network

Four layers feed-forward neural networks were used, with fifteen neurons in the
input layer, two neurons in two hidden layers and one neuron in the output
layer. A linear activation function was chosen for all neurons.

For each accuracy measure chosen to evaluate proteins quality (RMSD, TM-
score, GDT-TS, LG-score and MaxSub) a different neural network was trained.

The inverse of the Pearson correlation coefficient (CC) between the true and
the predicted data was used as performance function.

{CC}−1 =

{(
t− µt

)T (
y − µy

)
(M − 1)σtσy

}−1

(2.1)

where t is the vector of predicted values for each decoy, y is the vector of true values,

µt, σt, µy, σy are the averages and the standard deviations of predicted and true

values, respectively, and M is the number of decoys.

Optimization of neural networks was carried out using the attractive-repulsive
particle swarm optimization algorithm (AR-PSO) [37], which is a modification
of the original PSO method [17] [8]. PSO is a stochastic population-based op-
timization approach which explores the hyper-dimensional parameters space of
a population of candidate solutions named particles. Particles fly over the solu-
tion space looking for the global optimum. Each particle retains an individual
memory of the best position visited and a global memory of the best position
visited by all the particles.
A particle calculates its next position combining information from its last move-
ment, the individual memory, the global memory and a random component.
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The PSO updating rule is described as follow :{
vi,t+1 = µvi,t + c1(wbest

i,t −wi,t) + c2(wglobal
t −wi,t)

wi,t+1 = wi,t + vi,t+1

(2.2)

in which wi,t+1 represents the position vector of the particle i at time t (i.e.
the neural network weights), wbest

i,t is the best position identified by the particle
i so far (i.e. the neural network weights associated with the best performance
value) and wglobal

t is the best position identified among all the particles. The
vector v represents the particles velocity, which is computed as the difference
between two positions and assuming unitary time.

The term (wbest
i,t − wi,t) represents the individual memory component and

(wglobal
t −wi,t) is the global one. These two terms are rescaled by the random

coefficients c1 and c2, respectively. The µ coefficient is used to rescale the
velocity.

Starting particle positions and velocities were initialized at random. To
reduce the problem of premature convergence to relative minima, the Attractive-
Repulsive modification has been introduced [37]. This modification defines a
measure of global diversity (D) among the particles as:

D =
1
S

S∑
i=1

√√√√ N∑
j=1

(wij − w̄j)2 (2.3)

where S is the number of particles in the swarm, N is space dimension (the number

of networks weights) and w̄j is the average of the parameter j among the particles.

If D falls below a minimal threshold (tmin) the update rule is inverted as follow{
vi,t+1 = µvi,t + (−1)c1(wbest

i,t −wi,t) + (−1)c2(wglobal
t −wi,t)

wi,t+1 = wi,t + vi,t+1

(2.4)

causing the particles to spread in the phase space. If D reaches a maximal
threshold (tmax) the update rule is restored as in the standard PSO method.
We choose tmin = 0.1 and tmax = 5.0.
The parameters c1, c2 and µ were set as in the original PSO method as c1 =
c2 ∈ [0.0, 2.0] and µ = 0.7298. The maximum number of iterations was set
to 10000. A population size of 5 particles was chosen. It should be noted
that standard training algorithms such as gradient descent back-propagation,
Levenberg-Marquardt and BFGS, led to poorer results when compared to the
particle swarm optimization (data not shown).
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2.2.6 Statistical analysis

The following statistical parameters were used: Pearson correlation coefficient,
already described in the neural network section, fraction enrichment (F.E.) and
Z nat.

Fraction enrichment (F.E.) is defined as the fraction of the top 10% con-
formations featuring best structural resemblance to the native structure among
the top 10% best scoring conformations.

Znat is the Z-score of the X-ray structure compared to the ensemble of decoys
structures. It is computed using the equation 2.5 :

Znat =
scorenative − µdecoys

σdecoys
(2.5)

Higher Znat values correspond to higher capacity to discriminate between the
native structure and the corresponding decoys.

The Receiver Operating Characteristic (ROC) graph is a plot of all sensitiv-
ity/specificity pairs resulting from continuously varying the decision threshold
over the range of results observed. The sensitivity or true positive fraction is
reported on the y-axis, while the x-axis represents the 1-specificity or true neg-
ative fraction. A test with perfect discrimination (no overlap between the two
distribution of results) has a plot curve that passes through the upper left cor-
ner, where both specificity and sensitivity are 1.00. The hypothetical plot of a
test with no discrimination between the two groups is a 45◦ line going from the
lower left to the upper right corner. Qualitatively, the closer the plot is to the
upper left corner, the higher the overall accuracy of the test.

45



A neural network approach for protein models validation

2.3 Results and Discussion

The evaluation of the quality of protein structures is generally carried out cal-
culating a score which is a function of a set of parameter values computed for
the protein model under study. In our computational procedure, the description
of the relation between the parameters space and the scoring values is obtained
using neural networks, because of their ability to describe complex non-linear
relationships among data.

2.3.1 Selection of protein parameters related to structure

quality

Among the possible parameters that can be computed for a protein structure,
we have selected some properties that are expected to be related to structure
quality: solvent accessible surface of hydrophobic and hydrophilic residues, sec-
ondary structure content, the fraction of secondary structure content of the
model fitting with that predicted by PSIPRED [14], number of hydrophobic
contacts, and selected PROCHECK parameters [20](see Methods for details).
It should be noted that other possibly relevant parameters, such as the num-
ber of hydrogen bonds, have not been used due to intrinsic difficulties in the
normalisation of their values.

2.3.2 Selection of the parameters used to evaluate struc-

ture similarity

A key issue for evaluating the quality of a predicted protein structure is the mea-
sure of its “distance” relative to the “real” structure, experimentally obtained
by X-ray diffraction or NMR. Since AIDE has been developed to evaluate pro-
tein models that are often characterized by the correct fold but may differ for
local details, the backbone root mean square deviation (RMSD) of the protein
model relative to the X-ray structure can be considered a suitable measure of
structure similarity [9]. In fact, it is well known that the proper evaluation of
the quality of protein structures can be a non-trivial task, often depending on
the methods used to generate protein models. Therefore, several other measures
of protein structure similarity have been formulated, the most commonly used
being: GDT-TS [38], LG-score [38],TM-score [58] and MaxSub [43], which have
also been adopted in the present work.
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2.3.3 Selection and optimization of the neural networks

A preliminary evaluation of the relative importance of each parameter in the
description of structure quality was obtained using a linear model built with the
M5-prime attribute selection algorithm [4], as implemented in Weka 3.4.2 [39].
A different linear model was computed for each accuracy measure. The training-
set and and the test-set used for obtaining and evaluating the linear model are
the same used for the neural network. The obtained linear models are listed
below (parameters abbreviations are described in table 2.2):
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• RMSD: 1.9305SS − 0.2326DHG − 0.351COVG + 0.9225OV ERG − 0.1815CORE −
0.1591ALL− 0.1899GENALL− 0.1215DISALL− 4.1309HBSAS − 12.1232HYSAS −
0.0362SSc− 0.0382rQ− 0.0022L+ 30.4336

Excluded parameters : nBC

Pearson correlation coefficient : 0.30

• GDT TS: −0.3586SS − 0.0006nBC − 0.0434DGG − 0.036COVG + 0.0463OV ERG −
0.0018ALL+0.0041DISALL−1.5662HBSAS+0.0025SSc−0.0088rQ−0.0001L+1.2403

Excluded parameters : CORE, GENALL, HYSAS

Pearson correlation coefficient : 0.32

• TM-score: −0.3937SS−0.0006BC−0.0369DGG−0.0168COVG−0.002ALL+0.0026DISALL−
1.6329HBSAS + 0.0027SSc− 0.0163rQ+ 0.0003L+ 1.2718

Excluded parameters : CORE, GENALL, HYSAS , OV ERG

Pearson correlation coefficient : 0.31

• MaxSub: −0.3937SS−0.0006BC−0.0369DGG−0.0168COVG−0.002ALL+0.0026DISALL−
1.6329HBSAS + 0.0027SSc− 0.0163rQ+ 0.0003L+ 1.2718

Excluded parameters : CORE, GENALL, HYSAS , OV ERG

Pearson correlation coefficient : 0.31

• LG-score: 1.0516SS + 0.0473DGG + 0.1107COVG +−0.2139OV ERG + 0.0014ALL+

−0.0161DISALL + −0.8566HBSAS + −1.0837HYSAS + −0.0015rQ + 0.0328SSc +

−0.0008L+ 1.2131

Excluded parameters : nBC, CORE, GENALL, GENALL, L

Pearson correlation coefficient : 0.28

SS Fraction of secondary structure

CORE Percentage of residue in Ramachandran plot CORE

ALL Percentage of residue in Ramachandran plot allowed regions

GENALL Percentage of residue in Ramachandran plot generously allowed regions

DISALL Percentage of residue in Ramachandran plot disallowed regions

nBC Number of bad contacts

DHG G-factor for dihedral angles

COVB G-factor for covalent bonds

OV ERG Overall G-factor

HBSAS hydrophobic relative solvent accessible surface

HYSAS hydrophilic relative solvent accessible surface

SSc Secondary structure consensus

rQ Relative number of hydrophobic contacts

L Number of residues

Table 2.2: Linear models parameters abbreviation.
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Analysis of the linear models revealed that the secondary structure content
and the solvent accessible surface have the highest importance in all models.
Moreover, results show that it is not possible to exclude any parameter since
non negligible weights are associated to all selected parameters, when the accu-
racy measures chosen are considered as a whole. The neural networks forming
the core of AIDE are four layers feed-forward neural networks with fifteen neu-
rons (corresponding to the selected parameters) in the input layer, two hidden
layers formed by two neurons each, and one neuron in the output layer. A linear
activation function was chosen for all neurons. Indeed, different combinations
of hidden layers (one or two) and different numbers of hidden neurons per layer
(from two to ten nodes per layer) were tested. In addition, we tested also dif-
ferent activation functions of the neurons (sigmoid, log-sigmoid and linear func-
tions). It turned out that, among the different combinations, the neural network
featuring two hidden layers formed by two neurons gave the best results. In fact,
an increase in the number of neurons led to poorer performances, probably due
to the increased difficulties in the optimization procedure arising from the aug-
mented network complexity. To carry out the optimization of neural networks,
we have implemented the attractive-repulsive particle swarm optimization algo-
rithm (AR-PSO) [37], as explained in Methods. Training of the neural networks
using more conventional approaches (Back-propagation a,Levenberg-Marquardt
b), led to slightly lower performances (table 2.3). This may be due to the greater
exploration ability that characterize the PSO methods.

LM BP PSO
GDT TS 0.36 0.38 0.45
LG-score 0.35 0.48 0.51
MaxSub 0.49 0.39 0.51
RMSD 0.38 0.33 0.42
TM-score 0.43 0.49 0.49

Table 2.3: For each assessment measure (GDT TS, LG-score, MaxSub, RMSD
and TM-score) the same neural network was trained using different algorithms :
Back-propagation (BP), Levenberg-Marquardt (LM), and Particle Swarm Opti-
mzation(PSO). The performance of the neural networks was computed as Pear-
son correlation coefficient on the overall test-set.

aBack-propagation parameters used for training : Training epochs : 100, Minimum perfor-

mance gradient : 10−10, Learning rate : 0.01
bLevenberg-Marquardt parameters used for training : Training epochs : 100, Minimum

performance gradient : 10−10, µ : 10−3, µ increment : 10, µ decrement : 0.1
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AIDE was trained and tested on datasets of all-atoms protein decoys for
which the three-dimensional structures are available. Since it is known that
methods used for building decoys may introduce some systematic bias, it is
important to benchmark a scoring function on different decoy sets in order to
assess its generality. The overall dataset used in the present study is composed
by an ensemble of widely used all-atom datasets containing models of different
proteins (4state-reduced, fisa, fisa-casp3, rosetta all-atoms, CASP5, CASP7,
Livebench2, lmds, and hg-structal [35, 45, 44, 2, 3, 27]), plus a molecular dy-
namics set that was generated in our laboratory from X-ray structures (see
Methods). After computation of the structural parameters to be inserted in
the neural networks, the overall dataset was subdivided into a training and a
test set, which were composed by 13693 and 49126 structures, respectively. The
training-set includes only the proteins belonging to the LiveBench2 and CASP7
decoy sets (13693 model structures built on 96 different proteins). The test-set
includes the lmds, CASP5, hg structal, MD, Rosetta and 4state-reduced sub-
sets (49126 models build on 97 proteins). The LiveBench2 and CASP7 decoy
sets were chosen as training sets because they contain models build with dif-
ferent methods and of different protein size, ranging from 20 to 500 residues.
No protein contained in the training set is present also in the test set. Then, a
population of 50 neural networks was trained starting from different initializa-
tions of the structural parameters. The network featuring the best performance
(the highest correlation coefficient on the training set) was selected as the work-
ing network in AIDE. A different neural network was trained for each measure
of structure similarity chosen to evaluate proteins quality (RMSD, TM-score,
GDT-TS, LG-score and MaxSub). Therefore, five different versions of AIDE
were obtained from the training procedure, referred to in the following as AIDE
RMSD, AIDE TM-score, AIDE GDT-TS, AIDE LG-score and AIDE MaxSub.

2.3.4 Assessment of AIDE performance

The performances of the different version of AIDE have been compared to re-
sults obtained from widely used methods developed to evaluate protein models
quality.

The performances of the different methods were evaluated using a test-set
which includes lmds, CASP5, hg structal, MD, Rosetta and 4state-reduced sub-
sets. The LiveBench2 and CASP7 sets were already used for training AIDE and
therefore were not used in the comparative evaluation.

The Pearson correlation coefficient, Znat and fraction enrichment (F.E.),
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which give indications about a method ability to assign good scores to good
models, have been computed and results are collected in tables 2.4,2.5,2.6.

Analysis of Pearson correlation coefficients (table 2.4) shows that, according
to this statistical indicator, the different AIDE versions behave quite similarly.
Most importantly, average AIDE performances are similar or slightly better
than those obtained by two state-of-the-art methods such as ProQ [55] and
Victor [50]. It is also noteworthy that the performance of AIDE changes signif-
icantly moving through the different subsets forming the test-set. In particular,
very high correlation coefficients are obtained with the MD and hg structal
datasets (correlation coefficient in the range 0.61-0.89 and 0.48-0.73, respec-
tively), whereas low values of Pearson coefficients are associated to the CASP5
dataset (0.15-0.38). Relatively different values of Pearson correlation coeffi-
cients are obtained also with ProQ and Victor. In particular, and differently
from AIDE, low correlation coefficients are obtained by ProQ for the Rosetta
subset, and by Victor for the fisa subset (table 2.4).

lmds 4state reduced CASP5 fisa MD hg structal ROSETTA average

AIDE RMSD 0.39 0.42 0.15 0.63 0.61 0.69 0.27 0.45
AIDE TM-score 0.39 0.32 0.38 0.48 0.89 0.70 0.43 0.51
AIDE GDT-TS 0.45 0.34 0.28 0.58 0.77 0.73 0.44 0.51
AIDE LG-score 0.52 0.31 0.22 0.29 0.77 0.48 0.38 0.42
AIDE MaxSub 0.39 0.34 0.36 0.55 0.73 0.70 0.40 0.49

ProQ LG-score 0.20 0.62 0.48 0.18 0.81 0.80 0.06 0.45
ProQ MaxSub 0.15 0.48 0.39 0.14 0.77 0.76 0.05 0.39

Victor GDT-TS -0.29 -0.53 -0.29 -0.05 -0.78 -0.75 -0.23 -0.41

Table 2.4: For each dataset belonging to the test-set the Pearson correlation
coefficient between the predicted and the computed values is reported. The
performance of AIDE is compared to that of ProQ and Victor/FRST validation
softwares.

The factors responsible for such non-homogeneous performances of the meth-
ods, when applied to different datasets, could not be unrevealed and might re-
quire further dissection of the test-set. In light of these results and observations
it can be concluded that, even if the overall performances of AIDE, ProQ and
Victor are similar, these methods can behave very differently on protein mod-
els obtained using different approaches, suggesting that the combined use of
AIDE, ProQ and Victor could be useful to properly evaluate the quality of a
protein structure. Analysis of F. E. values (table 2.5) shows again quite similar
overall performances of AIDE, ProQ and Victor. However, the average F. E.
values obtained using ProQ are consistently higher (by 5-10%) relative to the
corresponding values obtained with Victor and AIDE. A more detailed analy-
sis of F. E. values obtained from the different subsets composing the test set
highlights some interesting trends. F. E. values obtained from the lmds and
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fisa subsets are consistently lower than the average. Moreover, AIDE and ProQ
versions trained using different parameters to evaluate structure similarity can
give quite different results.

lmds 4state reduced CASP5 fisa MD hg structal ROSETTA average

AIDE RMSD 15.20 42.58 37.10 25.00 48.19 43.67 20.80 33.22
AIDE TM-score 1.84 31.18 34.84 19.50 72.29 44.82 26.49 32.99
AIDE GDT-TS 2.07 32.68 29.86 11.50 72.28 50.57 25.29 32.03
AIDE LG-score 25.80 34.40 31.67 17.52 67.47 42.53 29.96 35.62
AIDE MaxSub 3.22 33.54 35.29 10.00 73.49 44.82 24.12 32.06

ProQ LG-score 18.30 54.78 39.59 12.50 72.45 74.71 13.30 40.80
ProQ MaxSub 1.95 52.84 45.24 12.00 65.86 67.84 43.69 41.34

Victor GDT-TS 14.40 42.57 28.50 4.0 63.85 54.02 11.61 31.27

Table 2.5: The 10%-fraction enrichment is shown for each dataset belonging
to the test-set. The performance of AIDE is compared to that of ProQ and
Victor/FRST validation softwares.

The latter observation is particularly evident for the lmds subset. It is also
interesting to note that the best performances on the different subsets forming
the test set are often obtained by different methods. As an example, the best F.
E. values for the fisa subset are obtained using AIDE, whereas the best values
for the hg structal subset are obtained with ProQ, further suggesting that the
combined use of the different methods can be a good strategy to obtain a more
confident evaluation of the quality of a protein structure. Znat allows to evaluate
how (and if) the different methods distinguish the native (X-ray) structure from
the ensemble of its models (table 2.6). In this case it was possible to extend the
comparison to other methods widely used to evaluate protein structures quality
(Errat, Prosa II and Verify 3D). Only the lmds and 4state reduced subsets have
been used in this comparison because these are the only datasets in common
among all the compared methods for which data are available. Analysis of Znat
values reveals that ProQ and Victor have better performances in this statistical
test, whereas AIDE results are generally comparable to those obtained with
Errat, Prosa II and Verify 3D. Notably, very low Znat scores are obtained using
AIDE RMDS and AIDE LG-score on the 4state reduced subset.

It should be noted that Znat and F.E. do not give information about the ability
of a method to assign low scores to bad models, i. e. these statistical indicators
do not allow to check if a method is confusing different classes. To explore this
issue we have qualitatively compared AIDE and ProQ performances, superpos-
ing the ROC plots (see Methods) computed on the test-set for each different
performance function (figure 1). According to this analysis, ProQ MaxSub
exhibits the greatest overall accuracy, whereas AIDE GDT-TS has the lowest
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lmds 4state reduced

AIDE RMSD 2.4 0.5

AIDE TM-score 3.4 2.9

AIDE GDT-TS 3.5 3.1

AIDE LG-score 2.0 1.6

AIDE MaxSub 3.1 3.1

ProQ LG-score 3.9 4.4

ProQ MaxSub 1.8 3.5

Victor GDT-TS 3.5 4.4

Errat 3.1 2.5

Prosa II 2.5 2.7

Verify 3D 1.4 2.6

Table 2.6: Comparison of Znat values obtained using AIDE and other protein
structure validation softwares. ProQ values have been obtained from Ref. [55].

accuracy. Considering the different AIDE versions, a clear distinction can be
observed when comparing the overall accuracy of AIDE RMSD and AIDE Max-
Sub relative to AIDE LGscore, AIDE GDT-TS and AIDE TMscore (figure 1).
Notably, a similar difference was not evident when considering the correlation
coefficients or the fraction enrichment test. It is also important to note that
AIDE LGscore behaves very similarly to ProQ LGscore until about 60% of sen-
sitivity, whereas at higher sensitivity levels AIDE outperforms ProQ LGscore.
These observations further corroborate the hypothesis that the combined use of
ProQ and AIDE should give improved results in the evaluation of the quality
of three-dimensional protein models.
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2.3.5 The web interface of AIDE

The availability of five different AIDE versions gives a nice picture of the overall
performance of the method. However, the overloading of output information
can become a drawback for the user interested only in the most relevant results.
In fact, the analysis of AIDE performance has shown that the five different
versions of AIDE are generally characterised by similar behaviour (see table
2.4,2.5,2.6). To better evaluate the degree of correlation among different AIDE
versions we have carried out a principal component analysis on the Pearson
correlation matrix of the descriptors chosen to evaluate models quality. This
analysis reveals a strong correlation between TM-score, GDT-TS and MaxSub.
The different clustering of TM-score, GDT-TS and MaxSub relative to RMSD
and LG-score is mainly due to the inverse relationship between the two families
(figure 2.1 table 2.7).

Figure 2.1: Loading plot of the accuracy parameters correlation matrix obtained
by principal component analysis. Given the accuracy parameters matrix, where
each row represents a different model and the columns are the descriptors used
as quality measure (GDT TS, LG-score, MaxSub, RMSD and TM-score), the
correlation matrix (see table 2.7) was computed and analyzed by principal com-
ponent analysis. Only the first two principal components are plotted.

Therefore, two (GDT-TS and the MaxSub) of these highly correlated pa-
rameters have been excluded from the output of the AIDE program available
on the Internet [1] (figure 2.2). Moreover, to help the user in the evaluation of
AIDE results, we have defined a threshold for each predicted parameter, in or-
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Figure 2.2: AIDE web interface: “http://linux.btbs.unimib.it/cgi-bin/aide.cgi”.

55



A neural network approach for protein models validation

der to discriminate between incorrect and correct models. In particular, correct
models should have TM-score ≥ 0.31, RMSD ≤ 4.96Å and LG-score ≤ 0.35.
These thresholds were chosen using a dataset of manually assessed models com-
posed by some CASP5 targets belonging to the new fold and fold recognition
categories. According to the visual evaluation of Aloy and coworkers [33], the
models were divided into three class: class 2 (“excellent”) when the overall fold
is correct, class 1 (“good”) when the model is considered partway to the correct
fold, and class 0 for all the other models. For each model, the TM-score, LG-
score and RMSD were computed (figure 2.3(a),2.3(b),2.3(a)) and the average
value for the models belonging to the “excellent” class was used as threshold.

To further evaluate the classification ability using the chosen thresholds, the
sensitivity and the specificity based on the ROC plots were also computed, fig-
ure 2.5.

2.4 Conclusions

In this paper we have presented AIDE, a neural network system which is able
to evaluate the quality of protein structures obtained by prediction methods.
AIDE differs from other evaluation methods mainly for : i. a different choice of
the parameters used to describe the protein structure, ii. a different choice of the
parameters related to structure quality, iii. a novel strategy used to optimize
the neural networks. AIDE overall performances are comparable to recently
published state of the art methods, such as ProQ [55] and Victor [50]. However,
detailed comparative analysis of results obtained using AIDE, ProQ and Victor
reveals that the three methods have different and often complementary ability
to properly assess the quality of protein structures. This observation suggests

GDT TS LG-score MaxSub RMSD TM-score
GDT TS 1.00 -0.77 -0.98 -0.76 0.95
LG-score -0.77 1.00 0.71 0.68 -0.79
MaxSub -0.98 0.71 1.00 0.78 -0.93
RMSD -0.76 0.68 0.78 1.00 -0.73
TM-score 0.95 -0.79 -0.93 -0.73 1.00

Table 2.7: Pearson correlation matrix of predicted accuracy parameters for the
test-set.
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(a)

(b)

Figure 2.3: Manual assessment of different models of 13 targets of CASP5 be-
longing to the category of “new fold” and “fold recognition”. Each model has
been classified into one of the following three classes : “excellent”, “good” and
“bad”, and showed in the figure as blue, green and red circles, respectively [33].
Each target is represented into a subpanel different panel, where the horizon-
tal axes indicates the model number and the vertical axes is the TM-score (a),
LG-score (b).
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Figure 2.4: Manual assessment of different models of 13 targets of CASP5 be-
longing to the category of “new fold” and “fold recognition”. Each model has
been classified into one of the following three classes : “excellent”, “good” and
“bad”, and showed in the figure as blue, green and red circles, respectively [33].
Each target is represented into a subpanel different panel, where the horizontal
axes indicates the model number and the vertical axes is the RMSD.

Figure 2.5: Sensitivity and specificity of AIDE TM-score, AIDE RMSD and
AIDE LG-score, as obtained from the ROC curves at the chosen threshold.
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that the combined use of AIDE, ProQ and Victor could increase the reliability
in the evaluation of protein structures quality. AIDE is presently available on
the Internet [1].
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Chapter 3

The sweet taste receptor

and sweeteners

Please prepare for docking procedure.
Kerry Conran. (Film, 2004)

3.1 Introduction

T
he sense of taste gives us important information about the nature and quality
of food, and of all the basic taste qualities, sweetness is the most universally

liked. The human appetite for refined sugar and for sweet foods and drinks has
been so strong that it has influenced the course of human history, and the recent
and sharp rise in the consumption of sugar may be unprecedented. In the human
taste bud, some cells express sweet receptors and respond to sweetness. Inside
the taste receptor cell, two proteins combine to create a sweet receptor [24].
These proteins are the taste receptor family 1, proteins 2 and 3, named t1r2
and t1r3 [24].

3.1.1 The sweet taste receptor

The sweet taste receptor (SR) is a G protein coupled receptor (GPCR) similar to
the dimeric mGluR1 (metabotropic glutamate receptors) receptor. Both belong
to class C of GPCRs, which includes several metabotropic glutamate receptors,
sweet and umami (monosodium glutamate) taste receptors, the Ca2+ sensing
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receptor, the γ-aminobutyric acid type B receptor, and pheromone receptors.
Class C receptors have an extracellular domain composed of a Venus fly trap
domain (VFTD) containing the active site, a seven helices transmembrane do-
main (7TMD), and a cysteine-rich domain. The mGluR1 is homodimeric while
the SR is an heterodimeric receptor composed by the taste receptors t1r2 and
t1r3 [24]. While the ligands of mGluR1 are either glutamate or closely related
molecules, the ligands able to activate the sweet taste receptor vary widely in
chemical constitution, ranging from sugars to amino acids, peptides, proteins,
and several other classes of organic compounds. The very fact that sweeteners
cover a particularly wide range of chemical constitution hints that at least some
of them may interact with parts of the SR different from the two likely cavities
corresponding to the Glu hosting cavities of mGluR1, either in the N-terminal
domain or in the transmembrane helices. For example the C-terminal trans-
membrane domain of t1r3 is required for recognizing cyclamate and the sweet
taste inhibitor lactisole [10]. In figure 3.1 it is possible to see the mapped inter-
actions between the t1rs receptors and some of its ligands.

Figure 3.1: Model for the sweet and umami taste receptor structure function
relationships. Filled arrows indicate direct activation, open arrows indicate
enhancement, and bar heads indicate inhibition. Solid lines indicate proposed
mechanisms based on experimental evidence; broken lines indicate mechanisms
based on our speculations.
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The extracellular domain of the sweet taste receptor should exists, as for the
mGluR1, as a mixture of the free form I and the free form II[4, 9]. The two
forms are characterized by a different orientation of the two monomers which are
composed. As all the 3D models of the SR were made using the mGluR1 crystal
structure we first briefly describe it. The mGluR1 was crystallized in three
dimeric conformations: the free form I (PDB ID: 1ewt), the free form II (PDB
ID: 1ewv) and the complexed form (PDB ID: 1ewk) with the glutamate bound
on both monomers. The complexed form is nearly identical to the free form II
but for the ligands. Each monomer is composed by two subdomains, named LB1
and LB2 (figure 3.2). The monomers exist in two different conformers (open
and close) depending on the spatial orientation of the subdomains LB1 and
LB2. The free form I contains two open conformers, whereas the free form II,
as well as the complexed form, contains an open and a closed conformer (figure
3.2). The complexed form is also named active, because it is able to activate
the transmission signal [13, 4].

The extracellular domain of the SR is able to bind various kind of small
molecular weight sweeteners, as well as sweet macromolecules[24]. The com-
plexed (active) form is stabilized either upon binding of the small molecular
weight molecules or by the sweet macromolecules, and both activate long last-
ing signal transmission.
Depending on the localization the sweet taste receptor can have different func-
tional roles. Indeed, beside to be expressed in the mouth where the receptor
is involved into the sweet taste perception, it is also localized on the enteroen-
docrine cells of the gut. Here, the stimulation of the t1r2 t1r3 receptors activates
intracellular signaling elements, including α-gustducin, and causes the release of
GLP-1 and GIP hormones. These hormones stimulate the expression of SGLT1
in enterocytes, which, in turn, increase the absorption of glucose from the in-
testinal lumen [3, 14].

3.1.2 Sweeteners

A sugar substitute is a food additive that emulates the effect of sugar or corn
syrup in taste, but usually has low caloric power. Some sugar substitutes are
natural and some are synthetic or artificial sweeteners.
The most diffused artificial sweeteners are : acesulfame potassium, nutrinova,
aspartame, neotame, saccharin, and sucralose. Since their discovery, the safety
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Figure 3.2: Crystal structure of the ligand-binding core of metabotropic gluta-
mate receptor subtype 1. Metabotropic Glu receptors (mGluRs) are essential
for the development and function of the mammalian central nervous system and
exist as homodimers. The receptor is characterized by a large extracellular do-
main divided into a ligand-binding region (LB1-LB2) and a cysteine-rich region
(CR) that links the ligand binding region to the transmembrane region (TM).
The crystal structure of the LBRs of the mGluR1 homodimer, composed of the
two subdomains LB1 and LB2, is shown in the non-bound form (left) and bound
to its natural agonist, glutamate (Glu) (right). The LBRs of the homodimer
can have either an open or a closed conformation. The ligand-free dimer shows
either an open-open resting or a closed-open active conformation. Binding of
the agonist stabilizes the closed-open conformation, which is characterized by a
change in the relative orientation of the protomers. Thus, the LB2 subdomains
of the LBR protomers come closer to each other at approximately 25Å, and this
change may trigger the active state of the receptor.
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of artificial sweeteners has been controversial. After the increased attention on
the diffusion of the obesity in the United States, more people are choosing to
use these products. These choices may be useful for those who cannot tolerate
sugar in their diets (e.g., diabetics). However, scientists disagree about the rela-
tionship between sweeteners and many disease such as lymphomas, leukemias,
cancers of the bladder and brain, chronic fatigue syndrome, Parkinson’s disease,
Alzheimer’s disease, multiple sclerosis, autism, and systemic lupus [19]. Natural
sweeteners can be small molecules such as fructose, glycerol, sorbitol, stevioside
or small proteins such as brazzein, thaumatin, monellin, pentadin [4, 22].

Stevioside

Stevioside is a natural sweetener extracted from leaves of Stevia rebaudiana
(Bertoni), that is a perennial shrub of the Asteraceae (Compositae) family na-
tive to certain regions of South America (Paraguay and Brazil). Stevioside,
the main sweet component in the leaves of Stevia rebaudiana (Bertoni) tastes
about 300 times sweeter than sucrose (0.4% solution). Stevioside is one of the
sweet components that can be extracted from the leaves of Stevia rebaudiana;
the other compounds present, but in lower concentration, are: steviolbioside,
rebaudioside A, B, C, D, E, F and dulcoside A. Their content varies depending
on the cultivar and growing conditions [5]. All the stevioside related compounds
contained into the leaves are shown in table 3.1.

Figure 3.3: Backbone structure of the steviol glycosides compounds.

The Stevia plant, its extracts, and stevioside have been traded almost all
over the world and have been used to sweeten hundreds of diabetic products,
particularly soft drinks. In particular Japanese people are considered to be the
greatest consumers of this sweetener. The important property to be non-caloric
sweeteners makes of these molecules a particular interesting products for food
industry.
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Compound name R1 R2
Steviol H H
Steviolbioside H β-Glc-β-Glc(2→1)
Stevioside β-Glc β-Glc-β-Glc(2→1)
Rebaudioside A β-Glc β-Glc-β-Glc(2→1)

|
β-Glc(3→1)

Rebaudioside B H β-Glc-β-Glc(2→1)
|

β-Glc(3→1)
Rebaudioside C β-Glc β-Glc-α-Rha(2→1)

|
β-Glc(3→1)

Rebaudioside D β-Glc-β-Glc(2→1) β-Glc-β-Glc(2→1)
|

β-Glc(3→1)
Rebaudioside E β-Glc-β-Glc(2→1) β-Glc-β-Glc(2→1)
Rebaudioside F β-Glc-β-Glc(2→1) β-Glc-β-Xyl(2→1)

|
β-Glc(3→1)

dulcoside A β-Glc β-Glc-α-Rha(2→1)

Table 3.1: List of the steviol glycosides contained in the Stevia leaves. The
substituents attached to the steviol glycoside backbone shown in figure3.3 are
listed.
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This plant has been reported to be hyploglycemiant, hypo-tensor, diuretic and
cardiotonic [7, 20]. In Brazil, it has been successfully used as the most suitable
sweetener for diabetic people [5, 20]. Moreover the stevioside has been found to
be an immunostimulator as evidenced by the increase in B- and T-cell mediated
humoral and DTH response, respectively. It also has been shown to enhance
macrophage function and substantially modulate the T and B cell prolifera-
tion [20].
In some countries, especially USA and Europe, the alimentary employment of
these natural sweeteners is forbidden due to the pressure and the lobbying led
by the powerful industry of artificial sweeteners [20].

The binding site of stevioside and related compounds is not known and only
few studies dealing with the stevioside binding site investigation are reported [16,
15, 13]. From these studies, the location of the stevioside binding site can not
be clearly evinced, we can only infer that it has different potential binding
sites on the sweet taste receptor t1r2-t1r3. In particular the transmembrane
or extracellular domains of t1r2 and of t1r3 are all possible candidates. Here
we have made an in-silico study with the aim to identify the most probable
binding site for the stevioside and related compounds. Moreover an atomic-
level characterization of the bound complexes have been done.
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3.2 Methods

3.2.1 Modelling of the sweet taste receptor

The modelling of the sweet taste receptor was performed considering the trans-
membrane and the extracellular domains separately. Indeed, because of the
completely different nature of the two domains, the modelling follows a differ-
ent procedure.

3.2.2 Homology modelling of extracellular domain

Following the procedure used by Temussi et al. ( [4, 22, 9]) we have modelled
all possible receptor models based on the human sequence, either the free form
I and the complexed form (identical to the free form II). Moreover, given that
there is no a preferred monomer for t1r2 or t1r3 we have built t1r2 and t1r3 on
each monomer, obtaining the models listed in table 3.2.

Template Model Notes
1ewt, chain A t1r2 on 1ewtA Free form I (Resting), open monomer
1ewt, chain B t1r2 on 1ewtB Free form I (Resting), open monomer
1ewt, chain A t1r3 on 1ewtA Free form I (Resting), open monomer
1ewt, chain B t1r3 on 1ewtB Free form I (Resting), open monomer
1ewk, chain A t1r2 on 1ewkA Complexed form (Active), closed monomer
1ewk, chain B t1r2 on 1ewkB Complexed form (Active), open monomer
1ewk, chain A t1r3 on 1ewkA Complexed form (Active), closed monomer
1ewk, chain B t1r3 on 1ewkB Complexed form (Active), open monomer

Table 3.2: List of models for the sweet taste receptor obtained using the available
crystal structures of the glutamate receptor mGluR1.

The sequence alignment was generated using ClustalW [8], producing align-
ments with a sequence identity lower than 30% on average. Hence the models
were built using Modeller version 9v4 [2]. and were refined using the molecular
dynamics refinement procedure included into Modeller. The model validation
was performed using AIDE [17] and PROSA [21].
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3.2.3 Homology modelling of transmembrane domain

Modelling of the transmembrane domain requires a more sophisticated proce-
dure. Following the work of Peihua Jiang and coworkers [16] the models were
obtained using the bovine rhodopsin as template (PDB ID: 1f88). The se-
quence alignment between the bovine rhodopsin and the t1r2 was done using
clustalW [8] obtaining an alignment with a sequence identity of 24%. With
this alignment an initial model was constructed using Modeller [2], thus the
model was submitted to a refinement procedure: the model was minimized in
vacuum by 2000 steps of conjugate gradient using NAMD [18]. Then it was in-
serted into a phospholipid bilayer composed by 1-Palmitoyl-2-oleoyl-sn-Glycero-
3-phosphoethanolamine (POPE) [12], which was solvated by water molecules.
This system was minimized by 2000 steps of conjugate gradient and then sub-
jected to 200ps of molecular dynamics simulation at constant pressure (1 atm)
and temperature (310K) using periodic boundary conditions. A smoothing func-
tion starting at 10Å and ending at 12Å was used for the non-bonded interactions.
At the end of the molecular dynamics simulation the system was subjected to
another 2000 steps of conjugate gradient minimization. All model refinements
were carried out using NAMD with the CHARMM 27 force field.

Omologues sequences of the transmembrane domain of t1r2 were identified
using BLAST. Then a multiple alignement was done using t-coffee [6].

3.2.4 Building the sweeteners

All the sweeteners were built using MOE version 2007a [11]. The molecules were
minimized in the MMFF94s force field using the conjugate gradient algorithm
until it reaches an rms of the gradient equal to 0.01.
Before submitting the ligands to the docking procedure, each one were treated
with another energy minimization using Delos. Delos integrates a simulated an-
nealing optimization algorithm that it more suited to identify the global energy
minimum of complex molecules compared to the conjugate gradient.

3.2.5 In-silico docking

All docking procedure was performed using Delos software [1]. For the extracel-
lular domain the binding pocket was identified considering the position of the
glutamate bound to the complexed form of the mGluR1. All the models were
superposed to the corresponding chain of the crystal structure of mGluR1 and
the binding area was defined as a box of 30Å side centered on the center of mass
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of the bound glutamate.
Hence, each ligand was put into the binding box and submitted to a semiflexible
docking search using the simulated annealing algorithm starting from a temper-
ature of 3000K linearly decreasing till 3K using a temperature step of 0.5K. Each
simulated annealing run was repeated 100 times. The position corresponding
to the lowest binding energy was saved.
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3.3 Results and Discussion

3.3.1 Modelling of the sweet taste receptor

The modelling of the sweet taste receptor was performed considering separately
the transmembrane and the extracellular domains. Indeed, because of the com-
pletely different nature of the two domains, the modelling follows a different
procedure which is described in Methods, section 3.2.1.
The final models obtained for the extracellular domain are depicted in figure
3.4 and 3.5.
All the extracellular models were validated using two different methods of mod-
els quality assessment; the first is AIDE [17], which is a learning-based approach
estimating different measures of models correctness (see chapter 2 for a detailed
explanation of the method). The AIDE quality assessment results were shown
in table 3.3. The second method used is PROSA-web [21, 23], which is based on
a knowledge-based potential and it gives a statistical value of models quality.
Using either AIDE or PROSA we have obtained good results for all the models,
especially for the t1r3 ones (table 3.3,3.4).
The transmembrane domain was modelled and refined as described in section
3.2.3. The refined final system dipped into a solvated lipid bilayer is shown
in figure 3.6(a), for clarity in figure 3.6(b) only the refined model without the
membrane and water is shown.

3.3.2 In silico docking of stevioside and others sweetern-

ers

The binding free energies [kJ/mol] of all the compounds are summarized in ta-
ble 3.5, the missing values indicate that the binding free energy are positive
(indicated as >0 in the table), or that the docking procedure is not terminated
because of too many clashes encountered, i.e. the molecule is too bulky for the
pocket.
The transmembrane domain of the receptor is able to bind mostly of the tested
compounds. Moreover looking at the free energy values we see that large com-
pounds, such as the rebaudioside B, E, F, dulcoside A, and steviolbioside, fit
better than smaller sweeteners (steviol,aspartame,sucrose, and saccharin).
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(a) t1r2 on 1ewk A - t1r3 on 1ewk B

(b) t1r3 on 1ewk A - t1r2 on 1ewk B

Figure 3.4: Models of the dimeric N-terminal domain of the sweet taste receptor
t1r2-t1r3 built on the open-closed form of the metabotropic glutamate receptor
mGluR1 (PDB ID 1ewk). Both the possible models are shown: a. t1r2 on 1ewk
A - t1r3 on 1ewk B and b. t1r3 on 1ewk A - t1r2 on 1ewk B.
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(a) t1r2 on 1ewt A - t1r3 on 1ewt B

(b) t1r3 on 1ewt A - t1r2 on 1ewt B

Figure 3.5: Models of the dimeric N-terminal domain of the sweet taste receptor
t1r2-t1r3 built on the open-open form of the metabotropic glutamate receptor
mGluR1 (PDB ID 1ewk). Both the possible models are shown: a. t1r2 on 1ewt
A - t1r3 on 1ewt B and b. t1r3 on 1ewt A - t1r2 on 1ewt B.
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Model AIDE validation
RMSD(Å) TM-score LG-score Overall Quality

t1r2 on 1ewkA 5.72 0.68 0.22 GOOD
t1r2 on 1ewkB 6.23 0.65 0.23 GOOD
t1r2 on 1ewtA 6.45 0.64 0.21 GOOD
t1r2 on 1ewtB 6.07 0.67 0.21 GOOD
t1r3 on 1ewkA 3.57 0.67 0.18 EXCELLENT
t1r3 on 1ewkB 3.76 0.67 0.18 EXCELLENT
t1r3 on 1ewtA 3.70 0.70 0.17 EXCELLENT
t1r3 on 1ewtB 2.98 0.69 0.17 EXCELLENT

Table 3.3: AIDE extracellular domain models validation. Aide gives three mea-
sures of accuracy and an averall indicator computed combining the three mea-
sures. The best models structure should have RMSD=0.0, TM-score=1.0 and
LG-score=0.0. The RMSD has only the lower bound which is 0.0 but the upper
bound is not fixed. Both the TM-score and the LG-score range from 0.0 to 1.0.

Model Z-score PROSA
t1r2 on 1ewkA -6.37
t1r2 on 1ewkB -6.70
t1r2 on 1ewtA -6.59
t1r2 on 1ewtB -6.27
t1r3 on 1ewkA -4.79
t1r3 on 1ewkB -5.36
t1r3 on 1ewtA -6.79
t1r3 on 1ewtB -6.98

Table 3.4: PROSA extracellular domain models validation. The web interface
of prosa was used to evaluate each model. The z-score indicates overall model
quality. Comparing the z-score of the model with the z-score of experimentally
determined protein chains of similar size in current PDB (precomputed) it is
possible to assess the accuracy of a given model. In this case the z-score of
experimental determined structures of similar size (300 aminoacids) ranges from
-11 to -4; outside this range the protein model is more probable to be incorrect.
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(a) Transmembrane model of t1r2 dipped into a solvated

POPE bilayer

(b) Refined transmembrane model of t1r2

Figure 3.6: a. Refined model of the transmembrane portion of t1r2 dipped into
a solvated lipidic bilayer. b. Refined model of the trasnsmembrane portion of
t1r2, the entrance of the ligand is indicated with an arrow.
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Compound TM N-terminal on 1EWT N-terminal on 1EWK Exp

t1r2A/t1r3B t1r3A/t1r2B t1r2A/t1r3B t1r3A/t1r2B

steviol -8.72 x/x -11.90/x x/-11.77 x/x x

stevioside >0 x/-14.26 x/x x/x x/x x

dulcosideA -11.63 x/x x/x x/-12.4142 x/x x

rebaudiosideA >0 x/x x/x x/x x/x x

rebaudiosideB -12.96 x/-15.78 x/x x/x x/x x

rebaudiosideC >0 x/x x/x x/x x/x x

rebaudiosideD >0 x/x x/x x/x x/x x

rebaudiosideE -13.10 x/x x/x x/x x/x x

rebaudiosideF -13.98 x/x x/x x/x x/x x

steviolbioside -14.02 x/x x/x x/-11.68 x/x x

aspartame -10.85 x/-15.31 -15.22/x -20.06/-13.91 x/x -9.70

sucrose -8.20 x/-11.64 -11.21/x x/-9.43 x/x -6.71

saccharin -5.69 -5.81/-11.65 -12.21/-11.65 -15.88/-9.60 -8.44/-6.74 -9.66

neotame x/x x/x x/x x/x x/x -12.12

Table 3.5: Binding free energies [kJ/mol] of stevioside and others common sweet-
eners to different portions of the Human models of the sweet taste receptor
t1r2-t1r3. The x indicate that too many clashes were encountered during the
docking procedure, i.e. the ligand doesn’t fits into the binding pocket. Binding
free energies values greater than 0 are indicated as > 0. The last column show
the experimentally determined values of binding free energies obtained from ref.
9.
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3.3.3 The extracellular domain binding pocket

Looking at the binding free energies (table 3.5), we could see that the t1r3 is
able to bind most of the compounds. In particular, when t1r3 is build onto
the chain B of either 1ewk or 1ewt it is able to bind bulky compounds such as
stevioside, rebaudioside B, steviolbioside or dulcoside A, whose volume is rea-
sonably larger compared to the small sweeteners such as aspartame, saccharin
and sucrose (see table 3.6 to compare some stuctural properties of the studied
compounds). The largest compounds (rebaudioside A, B, C, D, E, and F) are
all unable to bind any model but the rebaudioside B that binds the t1r3 chain
B (built on the inactive open-open conformation).
The residues and the interactions involved into the ligand binding are shown in
figure 3.8; only the compounds with the lowest free energy values were analyzed.
The aspartame and saccharin are bound very strongly to the closed form of t1r2
(t1r2 built on the closed monomer close-open form of mGluR1), which is com-
pletely unable to bind all the other ligands. The closed form of the monomer
can bind only small ligands as the binding pocket is smaller compared to the
open form, this is clearly visible in figure 3.7 where the binding cavity of the
open and the closed monomer are shown. This is confirmed looking at binding
free energies values of table 3.5 where it is possible to see that the closed forms
(t1r2 on 1ewk A and t1r3 on 1ewk A) are mostly unable to bind any but the
smallest compounds.
Some aminoacids are involved in the interaction with many different ligands.
In particular the E230 and Y147, are shared by all the complexes but the sac-
charin, whereas the L233 is common to all the ligands except for the aspartame
and the saccharin. In the open monomer these aminoacid are located at the
entrance of the binding cavity, and may be participate in the substrate recog-
nition. In the closed form the LB1 subdomain closes over the LB2, the residues
that are located at the entrance of the binding pocket get buried inside the
protein. However, in the case of aspartame, Y147 (146 in t1r2) and E230 (233
in t1r2) still holds a role in the ligand interaction (see figure 3.8d).
The active form of the receptor is the open-closed form, it is not clear if the
receptor shifts from the inactive open-open form to the active open-closed form
upon binding to the ligand, or the ligand only stabilizes the active open-closed
conformation. Moreover it’s not yet clear if the ligand should bind to both
monomers in order to activate the signal transmission.
The only compounds that bind to the closed form are aspartame and saccharin,
which size is not far from the glutamate, whereas all the other are able to bind
the open monomer only.
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This entails different possible scenarios for the activation of the signal transmis-
sion. In case of small compounds, such as aspartame or saccharin, we have two
possible instances: the first is that small compounds stabilize the open-closed
form binding either one or both monomers. The second possibility is that they
bound to the inactive open-open conformation inducing a conformational change
to the active form.
Taking into account large compounds we have again two possible scenarios: the
first case is that the compounds bind to the chain B of the inactive open-open
form leading to a conformational switch of the active open-close form. They can
only bind the chain B of the dimer as this chain holds an open conformation
in the active open-closed form. The second case implies that the large ligands
directly bind to the chain B (open form) of the active open-closed form stabi-
lizing it.
It is worth to note that we are always dealing with a semiflexible docking pro-
cedure, that avoids the receptor structure to adapt its conformation during the
docking process. This problem becomes particularly relevant for large com-
pounds because they require a wide pocket to fit them in. As mentioned in the
introduction, we need some ways to treat the flexibility of the receptor. As we
have 8 different receptors, and many different ligands, the molecular dynamics
simulations is not feasible due to the excessive computational costs. Hence we
planned to apply a normal mode analysis that allows the identification of the
most important protein motions in a computational cost-effective way.
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Compound diameter dipole rgyr ASA+ ASA H vol

Aspartame 11 3.30 3.36 223.34 309.34 280.00

Dulcoside A 17 1.05 5.23 145.17 508.93 579.62

Neotame 13 0.50 3.82 181.96 426.00 382.12

RebaudiosideA 23 1.66 7.23 338.76 597.68 849.62

RebaudiosideB 18 0.94 5.64 223.49 537.02 714.12

RebaudiosideC 18 1.88 5.48 208.19 556.89 706.75

RebaudiosideD 26 1.76 8.25 441.80 613.56 981.50

RebaudiosideE 25 2.28 7.76 387.94 590.31 848.25

RebaudiosideF 18 1.30 5.66 219.83 537.96 691.12

Steviol 9 0.39 3.34 94.493 380.44 327.62

Steviolbioside 17 1.32 5.01 217.47 442.98 587.12

Stevioside 22 1.31 6.44 276.06 527.91 714.62

Sucrose 10 1.22 3.27 163.18 174.02 279.50

Saccharine 5 0.82 2.22 135.36 160.52 142.50

Table 3.6: Structural properties of the docked compounds. The diameter is a
2D topological descriptor related to the size of the molecule, rgyr is the radius
of gyration [Å], ASA+ is the solvent accessible area positively charged, ASA H
is the hydrophobic solvent accessible area [Å2], and vol is the volume of the
molecule [Å3].
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Figure 3.7: Van der Waals surface representation of the closed (t1r2 on 1ewk
A) and open (t1r3 on 1ewt B) monomers. For a better visual comparison of
the internal cavity of the two proteins, a section of each protein was made at
the intersecting plane indicated with a fine dashed line. Moreover a qualitative
profile of each cavity is drawn.
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(a) Steviol (b) Dulcoside A (c) Steviolbioside

(d) Aspartame (e) Saccharin (f) Sucrose

(g) Rebaudioside B

Figure 3.8: Schematic representation of the interactions between the docked
ligands ad the residues near the binding pocket of the extracellular portion of
the sweet taste receptor. Only the compounds with the lowest free energy value
are depicted. The legend of the interaction types is shown on the left.
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3.3.4 The transmembrane domain binding pocket

Analyzing the interactions formed by the bound ligands with the residues of the
binding pocket of the transmembrane portion (figure 3.9), we can see that the
backbone oxygen of the isoleucine 124 (I124) is often involved as hydrogen bond
donor. In particular it binds an oxydril of the rebaudioside B, rebaudioside
F, aspartame, and sucrose. The I124 is located at the end of the fourth helix
and the backbone carbonyl group is oriented toward the binding pocket. The
backbone carbonyl of the isoleucine 127 (I127) also seems to play an important
role as it is involved in hydrogen bonding of some ligands (rebaudioside B and
rebaudioside E).
I124 and I127 are not strongly conserved residues, as depicted in the multiple
alignment in figure 3.11. These residues may be involved in substrate recogni-
tion (that usually varies among different proteins) and are not conserved into
paralogues protein. Indeed, plotting the conservation index (shown on the align-
ment) onto the 3D structure of the modelled TM domain of the receptor (figure
3.10), it is possible to see that the highest conserved residues are located into
the cytoplasmic region (bottom of the protein) and not near the ligand binding
site (top side of the protein). This implies that the binding site is composed by
residues that are specific for a given species, i.e. the substrates that bind the
human receptor may not be able to bind the receptor of other species.
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(a) Steviol (b) Dulcoside A (c) Rebaudioside B

(d) Rebaudioside E (e) Rebaudioside F (f) Steviolbioside

(g) Aspartame (h) Saccharin (i) Sucrose

Figure 3.9: Schematic representation of the interactions between the docked
ligands ad the residues near the binding pocket of the transmembrane domain.
The legend of the interaction types is shown on the left.
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Figure 3.10: The conservation index is mapped on the Cα carbons of the t1r2
receptor. Lower values of conservation index are coloured in blue, intermediate
values in yellow and higher values in red. The upper part of the protein is the
extracellular portion while the lower part is the cytoplasmatic portion.
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Figure 3.11: Multiple alignment of the transmembrane portion of t1r2. Ho-
mologues sequences were identified using BLAST. Then a multiple alignment
was made by means of T-coffe. Residues are coloured according to the clustalX
colouring scheme. Only the residues conserved more that 70% are coloured.
The I124 and the I127 are indicated with * and # respectively.
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3.4 Conclusions

In this work we have studied the interaction between the a new class of natural
sweeteners, the steviol glycosides, and the human sweet taste receptor t1r2-t1r3
by means of a detailed computational study. As the crystal structure of the
sweet taste receptor has not been experimentally determined we have predicted
it before proceeding to the interaction study. A three-dimensional model of the
transmembrane portion and different 3D models of the extracellular domains
has been obtained. The interaction between 10 different steviol glycosides and
four small artificial sweeteners and all the predicted models has been studied.
Form this analysis we found that the binding site located on the extracellu-
lar portion is more suited for small compounds such as the aspartame or the
saccharin, while larger compounds tend to prefer the transmembrane binding
site. It is worth to notice that the protein was kept fixed during the docking
procedure, this approximation may be responsible for the partial disagreement
of the computational predicted free energies and the experimental ones (table
3.5). We are currently introducing the flexiblity of the protein by means of the
use of the normal mode analysis. Moreover as the steviol glycosides have not
any experimental free energies to be compared to, we are planning to include a
new set of experimental values for the them.
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Chapter 4

Relationship between

dynamical properties and

function : the psychrophilic

enzymes

Every body continues in its state of rest, or of uniform
motion in a right line, unless it is compelled to change

that state by forces impressed uponit.
Isaac Newton (1643 - 1727)

4.1 Introduction

E
xtremophiles are mainly microorganisms experimenting unusual environ-
mental conditions compared to organisms living roughly under atmospheric

pressure, at temperatures close to the average temperature on earth which is
about 15◦C, using O2 as a source of electron acceptor and metabolising sub-
strates at pH values close to neutrality [7]. The earth’s surface is, however,
dominated by low temperature environments, made up of extremely cold parts
such as the Arctic and the Antarctic, moderately cold parts such as mountain
regions and a huge, cold and stable ecosystem, namely the marine waters which
cover 70% of the earth’s surface and display, below 1000 m, temperatures not
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exceeding 5◦C independently of the latitude [7, 15]. All these environments
are permanently cold habitats exerting on ectothermic populations a highly
selective pressure [7]. They have been colonised, despite their extreme charac-
ter, by largely diversified organisms which have developed adaptation strate-
gies enabling them not only to survive but also to grow successfully, like true
psychrophiles [7]. Microorganisms are the most abundant psychrophiles inPsychrophiles

Organism living perma-

nently at temperatures

close to the freezing point

of water, that is devoid

of temperature regulation

and that is unable to

develop at mesophilic

temperatures [14].

terms of species diversity and are likely to be the most abundant in terms of
biomass [14].

4.1.1 Cold-adaptation and Biotechnology

Psychrophilic enzymes are not only of extraordinary interest at the fundamental
level to investigate the thermodynamic stability of proteins, but also to under-
stand the relationship between stability, flexibility and catalytic activity. The
knowledge of these relationships could help in site-direct mutagenesis experi-
ments to obtain the enzyme with the desired characteristics.

4.1.2 Strategies in Cold Adaptation

The immediate consequences of the low temperatures are a low heat-content
(enthalpy) and a reduction in the amplitudes and frequencies of atomic mo-
tions as well as of molecular motions. Psychrophilic organisms have to face and
overcome a variety of challenges to survive, such as to avoid freezing of the intra-
cellular fluid, maintenance of membrane fluidity and permeability, and probably
the most important factor, to cope with the reduction in chemical reaction rates
induced by low temperatures [28].

Cold Adapted Enzymes

Enzymes of psychrophilic organisms have to cope with the reduction of the re-
action rate due to the low temperature. A strategy could be to increase the
enzyme concentration: this is energetically expensive and, therefore, it was re-
ported only in few cases. The solution found during the evolution was to develop
a repertoire of specific enzymes able to carry out the biological function in these
extreme environment. Psychrophilic enzymes have three basic features [29]:

• to compensate for the slow reaction rates at low temperatures, psychrophiles
synthesize enzymes with an up to tenfold higher specific activity in this
temperature range. In fact this is the main physiological adaptation mech-
anism to cold at the enzyme level;
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• the temperature for apparent maximal activity for cold-active enzymes is
shifted towards low temperatures, reflecting the weak stability of these
proteins which are prone to unfolding and inactivation at moderate tem-
peratures;

• the adaptation to cold is frequently not perfect. The specific activity of the
psychrophilic enzyme at low temperatures, although very high, remains
generally lower than that of the mesophilic enzymes at 37◦C.

The adjustment of the conformational flexibility of proteins at the environ-
mental temperatures is achieved by reducing the number or strength of weak
interactions stabilising the folded and biologically active conformation. Fur-
thermore, some psychrophilic proteins reduce the hydrophobicity of the core
clusters or expose a larger hydrophobic surface to the solvent: both induce
an entropy-driven destabilization by weakening the hydrophobic effect on fold-
ing [28, 14, 13, 32, 30]. These properties result in a poor structured conformation
characterized by a low conformational stability and a marked heat-lability of the
activity in enzyme catalysts.

Biocatalysis at Low Temperatures

The rate of reactions is described by the Arrhenius equation:

kcat = Ake−Ea/RT (4.1)

where kcat is the enzyme reaction rate at a given temperature, which is expressed as

the number of substrate molecules that are transformed by one molecule of enzyme

per unit of time (it is also known as the turnover number), A is the preexponential

factor, k is the dynamic transmission coefficient (generally assumed to be 1) and R is

the universal gas constant (8.314Jmol−1K−1).

According to this equation, the reaction rate increases with an increase in
absolute temperature (T ) and a decrease in activation energy (Ea) [32]. The
majority of cold-adapted enzymes have a higher kcat and Km than their ther-
mostable counterparts, with the exception of enzymes that work at a substrate
concentration close to Km. At very low temperatures (0◦-4◦C), insufficient
kinetic energy is available in the system to overcome reaction barriers: psy-
chrophilic organisms have evolved several strategies to adapt at these condi-
tions. The majority of cold-adapted enzymes are characterised by a shift in
apparent Topt (optimum temperature of activity) to a low temperature with a
concomitant decrease in stability. They also tend to exhibit a high reaction
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rate by decreasing the activation free energy (∆G#), which is the barrier be-
tween the ground state (substrate) and the transition state (ES#). The ∆G#

is composed of two components:

∆G# = ∆H# − T∆S# (4.2)

where ∆H# is the change in activation enthalpy, ∆S# is the change in activation

entropy and T is the absolute temperature.

According to transition-state theory, kcat is related to temperature and ther-
modynamic activation parameters by the following equation:

kcat = (kBT/h)e−∆G#/RT (4.3)

where kB is the Boltzman constant (1.38 ∗ 10−23JK−1) and h is the Plank constant

(6.63 ∗ 10−34Js).

In almost all cold-adapted enzymes studied the trend is to have a low ∆H#

and the result is that the reaction rate tends to be less dependent on temperature
and a high reaction rate (kcat) is maintained at low temperature. Joining the
latter equations is useful to consider the effect of ∆S# and ∆H# on kcat

kcat = (kBT/h)e−{(∆H
#/RT )+(∆S#/R)} (4.4)

To increase kcat at low temperatures, either ∆S# has to increase or ∆H#

has to decrease. In cold-adapted enzymes studied until now a decrease in ∆H#

is generally observed when compared to mesophilic counterparts. The difference
in activation entropy between an enzyme from a psychrophile and a mesophile
(∆(∆S#)p−m) is always negative whatever the sign of the activation entropy [8].
Enthalpy-entropy compensation implies that a decrease in ∆H# accompanied
by a decrease in ∆S# produces an overall small change in ∆G# [32]. Thus, in
an enzymatic reaction catalyzed by cold-adapted enzymes, the decrease of the
∆H# can be considered as the main adaptative parameter. The corresponding
decrease in activation energy is achieved structurally by a decrease in the number
of enthalpy-driven interactions that have to be broken to reach the transition
state. This indicate a lower stability of the psychrophilic enzymes and hence
also a greater flexibility at or near the catalitic site [8].

4.1.3 Flexibility in Cold-Adapted Enzymes

Cold-adapted enzymes show low stability and high activity at low temperature
that implies a flexible enzyme structure. Interestingly, amino acids involved in
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catalysis are conserved between cold and thermostable homologs and therefore
gain in flexibility should involve other regions [32]. Enzyme catalysis generally
involves the movement of all or of a particular region of the enzyme, enabling the
accommodation of the substrate. The ease of such molecular movement may be
one of the determinants of catalytic efficiency. Therefore, optimizing a function
of an enzyme at a given temperature requires a proper balance between two
of the opposing factors: structural rigidity (allowing the retention of a specific
three-dimensional conformation at the physiological temperature) and flexibility
(allowing the protein to perform its catalytic function). At room temperature,
a thermophilic enzyme would therefore be stable but poorly active: this is due
to an increase in the molecular edifice rigidity induced by the low thermal en-
ergy in the surroundings, thus preventing essential movement of residues. Since
a thermophilic protein is in general related with the rigidity of the structure,
a psychrophilic one, at the opposite end of the temperature scale, should be
characterised by an increase of the plasticity or flexibility of appropriate parts
of the molecular structure in order to compensate with the lower thermal en-
ergy provided by the low temperature habitat [8]. Psychrophilic enzymes can
increase their flexibility from a general reduction in strength of intramolecular
forces (global flexibility) or from weakened interactions in one or a few impor-
tant regions of the structure(localized flexibility). Instead, a gain in flexibility in
some specific regions has been demonstrated in the cases of serine-proteases [9],
uracil DNA glycosidase [21], A4-lactate dehydrogenase [2]: in these enzymes the
flexibility is increased in small areas that affect the mobility of adjacent active-
site structures. Flexibility is difficult to evaluate with experimental methods.
For example, B-factors evaluated from a largest set of X-ray structure is used
as a static index of flexibility. Dynamic flexibility is measured by dynamic flu-
orescence quenching and proteolytic nicking [32]. The flexibility of a protein,
especially that related to activity and/or stability, remains a difficult parameter
to determine experimentally, as the increase in flexibility can be limited only
to a small but crucial part of the protein [8]. Molecular dynamics (see section
1.4.2) is, at now, a suitable technique that can be used to calculate all atoms
protein motions during time: it permits to simulate the behaviour of the studied
system at atomic level, so it can be used to evaluate protein flexibility [9, 24].

4.1.4 Activity-Stability-Flexibility relationship

The high activity and low stability of cold-adapted enzymes underlie a gen-
eral principle of activity-stability trade-off. Since there is a conservation in the
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amino acids involved in cold and thermostable homologs, the cause of flexibility
must reside in other parts of the enzyme.
The available data regarding cold-adapted enzymes indicates that a high spe-
cific activity is almost always associated with a low thermostability. In general,
thermophilic enzymes characterised by a high thermostability are poor catalysts
at room temperature. The thermostability derived from the pronounced rigidity
of the molecular edifice is thought to impair interaction between substrate and
enzyme, leading to a weak specific activity. By contrast, flexibility or plasticity
of the molecular structure would enable greater complementarity at a low en-
ergy cost, thus explaining the high specific activity of cold-adapted enzymes.

To shed light on the molecular features responsible for cold adaptation in
psychrophilic enzyme, similarly to previous works in which has been carried
out a comparison between mesophilic and thermophilic enzymes [18], we have
performed comparative molecular dynamics studies [9] between mesophilic and
psycrophilic variants belonging to two different enzymatic families: the serine-
proteases and the uracil-DNA glycosilases. In particular, using multiple molecu-
lar dynamics simulations, an accurate sampling of the near-native conformations
was obtained. To efficiently and accurately sample the potential energy surface,
multiple MD simulations were carried out in explicit solvent at 283 and 310 K,
close to the optimal growth temperatures for the organisms, collecting 0.1 µs

trajectories. For every enzyme, the resulting ensemble was analyzed estimating
and comparing the near-native free energy landscapes considering different re-
action coordinates. In particular, the principal components of the trajectories,
the radius of gyration and the root mean square deviation were used as col-
lective coordinates. Moreover the configurational entropy, estimated using the
formula for a quantum mechanical (QM) oscillator [17] and the potential energy
contributions, were also computed.
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4.2 Methods

4.2.1 Molecular dynamics simulations

MD simulations were performed using the 3.3 version of the GROMACS software
(www.gromacs.org), using GROMOS96 force field. The X-ray structures of two
mesophilic and psychrophilic proteins were used as starting points for the MD
simulations. In particular, a mesophilic (from Sus scrofa, PDB ID: 1lvy) and
psychrophilic (from Salmo salar, PDB ID: 1elt) elastases and a mesophilic (from
Homo sapiens, PDB ID: 1akz) and psychrophilic (from Gadus morhua, PDB ID:
1okb) uracil-DNA-glycosilases were selected.
The name of each enzyme were abbreviated as following :

• mPE: mesophilic Porcine Elastase

• pSE: psychrophilic Salmon Elastase

• mHUDG: mesophilic Human Uracil-DNA-Glycosilases

• pCUDG: psychrophilic Cod Uracil-DNA-Glycosilases

Protein structures, including the crystallographic water molecules and calcium
ions for elastases, were soaked in a dodecahedral box of SPC water molecules
and simulated using periodic boundary conditions. For UDG all the histidine
with one exception (His148) were considered as neutral in the simulations, as
explained in ref. [25]. Productive MD simulations were performed in the NPT
ensemble at 283 and 310 K, using an external bath with a coupling constant of
0.1 ps. Pressure was kept constant (1 bar) by modifying box dimensions and the
time-constant for pressure coupling was set to 1 ps [6]. The LINCS [16] algo-
rithm was used to constrain bond lengths, allowing the use of a 2 fs time step.
Long range electrostatic interactions were calculated using the Particle-mesh
Ewald (PME) [34] summation scheme. Van der Waals and Coulomb interac-
tions were truncated at 1.0 nm. The non-bonded pair list was updated every
10 steps and conformations were stored every 2 ps. To improve the conforma-
tional sampling, ten 12 ns simulations were carried out for each protein system
at 283 and 310 K, respectively, initializing the MD runs with different initial
atomic velocities taken from a Maxwellian distribution. In the following, MD
trajectories collected for the same system but characterized by different initial
velocities are referred to as replica 1 to replica 10.
The root mean square deviation (rmsd), which is a crucial parameter to evaluate
the equilibration of MD trajectories, was computed for mainchain atoms using
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the starting structure of the MD simulations as reference. The analysis of MD
trajectories have been carried out discarding the first 2 ns for each simulation
in order to ensure stable values for mainchain rmsd.
Investigation of elastase structures during the simulation time shows that the
coordination of the calcium ions, which is important for both function and sta-
bility of elastases, is maintained throughout the simulations in agreement with
data previously reported [9]. Moreover, potential and total energy of the system,
as well as the protein gyration radius are constant throughout the simulations
(data not shown). For each protein, the stable region of the ten replicas at the
same temperature were joined in a concatenated trajectory, which is represen-
tative of different directions of sampling around the starting structure.

4.2.2 Essential dynamics analysis

The all-atoms covariance matrix (C) was calculated on the equilibrated por-
tions of the trajectories. In particular C was calculated considering both the
concatenated trajectories and the single replicas for each system at both 283
and 310 K:

C = cov(x) = (rN − rN )(rN − rN )T (4.5)

where . is the average and rN is the vector of the atomic position.

After removal of the translational and rotational degrees of freedom (fitting
each structure onto the initial one), the matrix C was calculated and then
diagonalized to obtain the eigenvectors and eigenvalues, which give information
about correlated motions throughout the protein. To define the dimensionality
of the essential subspace, the fraction of total motion described by the reduced
subspace was considered and computed as the sum of the eigenvalues relative
to the included eigenvectors, describing the amount of variance retained by the
reduced representation of the total space. A measure of the similarity of a
MD trajectory to random diffusion is the cosine content (ci) of the pi principal
component [5]:

ci =
1
T

(∫
cos(it)pi(t)dt

)
(pi(t)dr)

−1 (4.6)

where T is the total simulation time and pi is the i-th principal component.

ci is an absolute measure that can be extracted from covariance analysis and
ranges between 0 (no cosine) and 1 (a perfect cosine). It has been demonstrated
that insufficient sampling can lead to high ci values, representative of random
motions. The evaluation of cosine contribution for first eigendirections is suf-
ficient to give a reliable idea of the protein behaviour [5]. When the cosine
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content of the first few PCs is close to 1, the largest scale motions in the protein
dynamics resemble diffusion, and can not be interpreted in terms of character-
istic features of the energy landscape [26].
The analysis of the sampling convergence can be performed computing the root
mean square inner product (RMSIP, equation 4.7) as a measure of similarity
between subspaces defined by their basis vectors [1]:

RMSIP =
1
D

D∑
i=1

D∑
j=1

(
ηAi η

B
j

)
(4.7)

Where ηAi and ηBj are the eigenvectors of the spaces to be compared.

Usually the RMSIP is computed onto the first 10 eigenvectors [12, 1]. The sta-
tistical significance of the observed RMSIP value was tested by simulating an
empirical distribution of RMSIP data under the null hypothesis of no relation-
ship between both spaces [12, 4]. In particular, the dependence of the RMSIP by
the dimensionality of the spaces can be expressed as RMSIP (K) =

√
D√
K

, where
D and K indicate the number of eigenvectors considered in the computation of
RMSIP and the dimensionality of the two spaces, respectively.
Comparing these results with the RMSIP distribution of our systems it is pos-
sible to assess the significance of our RMSIP [12, 4].

4.2.3 Analysis of the potential energy

The Gromacs potential energy function was decomposed into the following con-
tributions: angle, proper dihedral, improper dihedral, Coulomb 1-4, Coulomb
short-range protein-protein, Coulomb long-range protein-protein, Lennard-Jones
1-4, Lennard-Jones short-range protein-protein, Lennard Jones short-range protein-
solvent, Coulomb short-range protein-solvent and, Coulomb long-range protein-
solvent.
The long-range electrostatic interactions during the molecular simulation were
computed using the PME scheme previously described. Because of the non pair-
additive property of the PME algorithm, to obtain the long-range contributions
of the protein we have re-computed the electrostatic interactions on the trajec-
tories without PME, and increasing the cut-off of the electrostatics interaction
to 1.4 nm.
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4.2.4 Free energy landscapes

Given a reaction coordinatea q, the probability of finding the system in a par-
ticular state is proportional to exp−

G(qα)
kT , where G(qα) is the free energy of that

state.
The free energy landscape can be computed from G(qα) = −kT lnp(qα). Where
k is the Boltzmann constant, T is the temperature of the simulation and P (qα)
is an estimate of the probability density function obtained from a histogram of
the data. To ensure that for the lowest free energy minimum the G = 0 we
have subtracted the maximum probability G(qα) = −kT lnp(qalpha)− Pmax(q).
Considering two different reaction coordinates ,the two-dimensional free energy
landscapes were obtained from the joint probability distributions of the con-
sidered variables [18]. In particular, the reaction coordinates investigated were:
the rmsd calculate on the Cα atoms using the starting structure of the molecular
dynamics simulation as reference; the radius of gyration (Rg) computed on the
Cα atoms and the cartesian principal components derived by ED analysis, as
previously described.

4.2.5 Cluster analysis

Clustering on cartesian coordinates was performed computing the root mean
square distance matrix calculated for Cα atoms between each pairs of structure
using GROMACS. Therefore, the complete linkage algorithm implemented in
Matlab was applied onto this distance matrix obtaining a dendrogram.

4.2.6 Configurational entropy

The configurational entropy was computed using the formula for a quantum
mechanical (QM) oscillator (equation 4.8, as suggested by Andricioaei and
Karplus [17].

Sqm = k

3N−6∑
i=1

[
αi

expαi − 1
− ln

(
1− exp−αi

)]
(4.8)

aAn order parameter is a variable chosen to describe the degree of order in the system, or,

even more generally it is a variable chosen to describe changes in the system. In the free energy

context, order parameters are collective variables that are used to describe transformations

from the initial to the final state. An order parameter may (does not necessarily have to)

correspond to the path along with the transformation takes place in nature. In this case, it

would be called reaction coordinate, or reaction path.
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where α = ~ω
kT

, ~ = h
2π

, ω is the frequency of the oscillator, and h is the Planck’s

constant.

The frequency ω is connected to the variance through equipartition theorem
mω〈x2〉 = kT . The entropy of the harmonic oscillator is an upper bound for
the true entropy of the system [19]. Several approximations are used into the
computation of the entropy : i. every degree of freedom is treated as a quantum
harmonic oscillator; ii. the equipartition theorem is used to connect the classical
variance to the frequency of a quantum harmonic oscillator. This relation holds
for ~ω � kT , which is a good approximation given that the high-frequency
of motion for which fails will contribute little to the entropy; iii. absence of
supra-linear correlation between different coordinates.
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4.3 Results and Discussion

4.3.1 Evaluation of the conformational sampling

Molecular dynamic simulations of mesophilic and psychrophilic elastases and
uracil-DNA-glycosylases were carried out at 283 and 310 K (see Materials and
Methods). After concatenation of the equilibrium portions of the trajectories,
the resulting MD ensembles consisted of 0.1 µs trajectories for each system at
both temperatures. In order to gain insights into the configurations visited by
the system and to evaluate the conformational sampling essential dynamics anal-
ysis (see Materials and Methods) was carried out, with particular attention to
the direction of motion along the first eigenvectors. In fact, the first three eigen-
vectors are sufficient to describe a consistent part of the total motion, and the
subspace defined by them could be used as the three-dimensional (3D) reference
subspace to analyze protein dynamics. The projections of simulation frames in
the 3D-reference subspace shown a wide sampling of the conformational space
with re-sampling of similar conformations in our simulations, indicating that
the essential subspace is well explored when concatenated trajectories are con-
sidered.
To further evaluate the sampling efficiency, we have also computed the cosine
content (ci) of the principal components of protein motion, which is a measure
of the similarity of the trajectories to random diffusion. It turned out that single
simulations are often characterized by relatively large ci in the first eigenvectors,
and therefore partly describe a random diffusion motion, while the correspond-
ing concatenated trajectories have lower or null cosine content and therefore
adequately represent essential and significant motions.
Another measure used for the convergence assessment is the root mean square in-
ner product (RMSIP). For each protein system (mPE, pSE, mCUDG, pHUDG)
the RMSIP was computed comparing all replicas each other, obtaining a distri-
butions of RMSIP values (figure 4.1). The average values of the distributions
are summarized in table 4.1

To compute the expected RMSIP of two unrelated spaces we have obtained
an empirical distribution of RMSIP values considering the first 10 eigenvectors
of random (normal distributed) orthogonal matrices of different size (from 10
to 500). We found that expected RMSIP depends on the dimensionality of the
considered space and on the subset of eigenvectors included in the RMSIP cal-
culation, see figure 4.2).
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(a) ELASTASE

(b) UDG

Figure 4.1: RMSIP distributions estimated using a kernel density estimation
as implemented in Matlab. As kernel smoother, the normal distribution was
chosen.
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System µaRMSIP σaRMSIP µbRMSIP r σbRMSIP r n. atomsb n. eigenvaluesb

mPE, 283 0.39 0.02 0.04 0.01 2349 7047
mPE, 310 0.41 0.02
pSE, 283 0.43 0.02 0.04 0.01 2259 6777
pSE, 283 0.46 0.03
mHUDG, 283 0.42 0.02 0.04 0.01 2334 7002
mHCDG, 310 0.43 0.02
pCUDG, 283 0.43 0.03 0.04 0.01 2297 6891
pCUDG, 310 0.41 0.03

Table 4.1: Average of the RMSIP values (µRMSIP ) and standard deviation
(σRMSIP ). a. Average and the standard deviation computed on the RMSIP
distribution for every simulated system. b. Expected values and standard de-
viation of of empirical RMSIP distribution of unrelated spaces.

Figure 4.2: RMSIP averages and standart deviations plotted versus the dimen-
sionality of the random orthogonal matrices.
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Considering the dimensionality of our system (ranging from a minimum of
2259 atoms to 2349 atoms), using the previously identified relationship we found
that if the set of principal components were completely unrelated, the expected
RMSIP value would be 0.038 (table 4.1). In particular, the average RMSIP
of our systems (table 4.1) is sufficiently distant from this random reference, al-
lowing to conclude that a good conformational sampling was achieved by our
simulations. The average RMSIP obtained for our simulations is sufficiently
distant from this random reference and presents a sufficient overlap between
different replicas of the same system, allowing to conclude that a proper con-
formational sampling was reached by our simulations.
In conclusion, all the indexes analyzed by ED indicate a wide conformational
sampling by our trajectories and allow to confidently analyzed the free energy
landscape of the mesophilic and psychrophilic enzymes under analysis.

4.3.2 Free energy landscapes

The study of free energy landscape could give an accurate picture of the pro-
tein structural properties around the native-state [18, 12]. However, in order to
understand the behaviour of complex systems it is necessary to project it onto
low dimensional subspace of physically meaningful coordinates. The choose of
the reaction coordinates is a system-related task and is usually driven by the
features that have to be depicted. In particular only the degree of freedom di-
rectly related to the properties of interest should be included in the analysis to
prevent masking of important informations [3].
Since many different free energy landscapes can be obtained using different com-
binations of collective variables, we have selected as reaction coordinates the
following properties: the radius of gyration (Rg), the root mean square devia-
tion (rmsd), and the cartesian principal components (See Methods for details).
The cartesian principal components analysis, in particular, is a frequently used
method for obtaining collective coordinates for projecting the configurational
free energy landscape of proteins [20, 22, 27].
We would like to point out that this kind of free energy landscapes, which lack
barrier in-formation, reflect the overall shape of the free energy surface and not
necessarily its details [23, 22]. The absence of barriers, is somehow compensated
by the empty space between the sampled regions: poorly or unsampled regions
often correspond to high energy regions [23]. Moreover, because of the large
dimensionality reduction due to the projection onto few collective coordinates,
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these maps may represent an incomplete description of the free energy profile of
the protein. This lack of information can be partially complemented by means
of a cluster analysis, which allows to represent the geometrical relationship in a
multidimensional way [22].
In light of the above observations, we carried out the analysis of the FEL using
different reaction coordinates and integrated it by a structural clusters analy-
sis, which was performed considering the cartesian coordinates (Materials and
Methods).
Since the two model systems (elastases and uracyl-DNA glycosylases) show a
different behaviour for most part of the analyzed aspects, we prefer to discuss
them separately.

4.3.3 Mesophilic and psychrophilic elastases

When rmsd and Rg were used as collective coordinates, the psychrophilic elas-
tase show a more compact FEL compared to the mesophilic homologous at 283K
(figure 4.3a, 4.3c). At 310 K, the landscape of the mesophilic enzyme splits into
two relative minima whereas the psychrophilic retains a single minimum (figure
4.3b, 4.3d).

If the cartesian principal components (figure 4.4) were adopted as reaction
coordinates, the same trend of rmsd vs Rg coordinates can be highlighted: the
mesophilic enzyme samples a wider conformational space at 283 K (figure 4.4a),
and, more clearly, at 310K (figure 4.4b). Moreover it is possible to observe
that the psychrophilic enzyme samples a greater number of relative minima at
both temperatures (figures 4.4c, 4.4d). The distribution of the configurations
into many minima implies that the surface is shallow but more rugged than the
mesophilic surface.

This is clearly visible from the probability density plots 4.5, in which the
mesophilic enzyme depicts few highly populated relative minima, whereas the
psychrophilic surface is characterized by many few populated relative minima.

These findings are in agreement with the observation that the porcine elas-
tase exhibits an higher global flexibility compared to the psychrophilic elastase,
as indicated by previous works [9, 10]. In particular, the conformations sam-
pled by the psychrophilic enzyme are very similar among each other. Global
reaction coordinates (global RMSD and radius of gyration) are in fact unable to
distinguish among different conformational sub-states (figures 4.3c, 4.3d). The
near-native free energy landscape of the psychrophilic enzyme seems to be a
narrow shallow basin whit a rugged bottom composed by many local minima
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(a) mPE 283K (b) mPE 310K

(c) pSE 283K (d) pSE 310K

Figure 4.3: Contour plot representation of the free energy landscapes for the
psychrophilic elastase (bottom panels), and for the mesophilic elastase (top pan-
els) at 283K (left panels) and at 310K (right panels). The reaction coordinates
are the C-alpha RMSD and the radius of gyration. See Methods section for
details.
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(a) mPE 283K (b) mPE 310K

(c) pSE 283K (d) pSE 310K

Figure 4.4: Contour plot representation of the free energy landscapes for the psy-
chrophilic elastase (bottom panels), and for the mesophilic elastase (top panels)
at 283K (left panels) and at 310K (right panels). The free energy landscape is
projected onto the first two principal components of the all-atoms mass-weighted
covariance matrix of the combined trajectory.
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(a) mPE 283K (b) mPE 310K

(c) pSE 283K (d) pSE 310K

Figure 4.5: Representation of the 2D-probability plots for the psychrophilic elas-
tase (bottom panels), and for the mesophilic elastase (top panels) at 283K (left
panels) and at 310K (right panels). The free energy landscape is projected onto
the first two principal components of the all-atoms mass-weighted covariance
matrix of the combined trajectory.
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separated by low energy barriers. On the other hand, the mesophilic enzyme
has a free energy landscape that shows a funnel-like shape where the confor-
mations are organized in hierarchical fashion. These results are confirmed by
cluster analysis: it is clearly visible the pronounced hierarchical structure of the
clustering dendrogram of the mesophilic enzyme (figure 4.6a, 4.6b) compared to
the flatter structure of the clustering dendrogram referred to the psychrophilic
enzyme (figure 4.6c, 4.6d).

(a) mPE 283 (b) mPE 310

(c) pSE 283 (d) pSE 310

Figure 4.6: Dendrograms of the complete linkage cluster analysis of the C-alpha
RMSD distance matrix for the psychrophilic elastase (bottom panels), and for
the mesophilic elastase (top panels) at 283K (left panels) and at 310K (right
panels) are shown.

Some portions of the structure of the psychrophilic enzyme are associated
to a greater flexibility compared to the equivalent regions onto the mesophilic
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protein [9]. Projecting the free energy landscape onto the rmsd of these regions
(figure 4.7) it is possible to discriminate between different sub-states of the
psychrophilic proteins which are not observable considering the global RMSD.

(a) mPE 283 (b) mPE 310

(c) pSE 283 (d) pSE 310

Figure 4.7: Contour plot representation of the free energy landscapes for the
psychrophilic elastase (bottom panels), and for the mesophilic elastase (top pan-
els) at 283K (left panels) and at 310K (right panels). The reaction coordinates
are the C-alpha RMSD and the local C-alpha RMSD, computed only on the
higher flexibility residues. See Methods section for details.

The higher global flexibility of the porcine elastase can be quantitatively
assessed estimating the configurational entropy.
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System n. eigenvalues T [K] Entropy (S)
[J/Kmol]

S/(num.eigen.)
[J/Kmol]

pSE 6777 283 48714.1 7.19
pSE 6777 310 53542.5 7.91
mPE 7047 283 52098.5 7.40
mPE 7047 310 57220.0 8.13
pCUDG 6891 283 51028.1 7.41
pCUDG 6891 310 55225.4 8.02
pHUDG 7002 283 52202.2 7.46
pHUDG 7002 310 57571.3 8.23

Table 4.2: Configurational entropy estimated using the Karplus [17] relation-
ship. The last column represent the entropy normalized by the number of eigen-
values.

Configurational entropy

From the free energy landscapes and the conformational cluster analysis it is
possible to conclude that the mesophilic enzyme (mPE) exhibits a higher con-
formational flexibility at both 283 and 310 K. The configurational entropy of the
mesophilic enzyme has been estimated to quantify its higher flexibility. Plot-
ting the entropy values for each eigenvalue it is possible to see that the first
eigenvalues, associated to the highest entropy, are similar among the different
systems (figure 4.8).

Also the last eigenvalues, to which correspond low entropy values are similar
into all systems. The main differences are associated to the middle eigenvalues,
in particular the curve of the mesophilic enzyme is always over the psychrophilic
one (figure 4.8a). Detailed results, summarized in table 4.2, show that the
entropy of the mPE enzyme is higher than the SE enzyme at both temperatures.

Because of the number of atoms of mPE and pSE enzyme are different, to
compare their entropy values we have divided the total entropy for the number
of eigenvalues (three folds the number of atoms). The entropy (per atom) dif-
ferences between the mPE and pSE system are : 0.20 J/Kmol at 283 K and 0.22
J/Kmol at 310K. Moreover the entropy difference due to the increase of the tem-
perature is lightly higher for the mesophilic enzyme= 0.73 J/Kmol compared
to the psychrophilic enzyme= 0.71 J/Kmol. These small differences between
the entropy values of the cold- and warm-adaped enzyme are due to the high
similarities in the entropy values associated to the first eigenvalues, that have
the highest weight.
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(a) ELASTASE

(b) UDG

Figure 4.8: Representation of the entropy per eigenvalues for the elastases (top
panel) and for the UDG (bottom panel). Psychrophilics enzyme at 283K and
at 310K is shown in yellow and in red, respectively. The mesophilic enzyme at
283K and at 310K is shown in black and in green, respectively. For clarity the
central region, corresponding to highest entropy differences, is magnified.
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Analysis of the potential energy contributions

To easily understand the influence of the single contributions we grouped it into
two intra-protein terms and two protein-solvent terms. The intra-protein terms
include a packing energy and an electrostatic energy term. The packing energy is
the sum of Lennard-Jones 1-4, Lennard-Jones short range, angle, proper dihedral
and improper dihedral contributes. The intra-protein electrostatic term contain
the Coulomb 1-4 interactions, the short-range and the long-range electrostatic
interactions. The two protein-solvent terms are the Lennard-Jones term and the
protein-solvent electrostatic contribute composed by the sum of the short-range
and long-range protein-solvent Coulomb interactions. The average values of the
packing energy are proportional to the temperature of the simulation and not
to the protein, i.e. at 283K the mPE shows similar distribution to pSE at 283K
and mPE at 310K show the same distribution of pSE at 310K (figure 4.9a). The
intra-protein electrostatic energy show different behaviour into the two systems,
in particular the mesophilic enzyme (mPE) has lower values of the electrostatic
terms. There is no relationship between the intra-protein electrostatic and the
temperature of the simulations.(figure 4.9b)

The protein-solvent Lennard-Jones term shows overlapping distributions, so
is completely uninformative (figure 4.9c). The protein-solvent electrostatic con-
tribute has partially overlapping distributions (figure 4.9d), the highest gap is
between pSE at 238K and mPE at 310K. In particular the psychrophilic enzyme
shows lower values compared to the mesophilic enzyme.
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(a) Packing (b) Electrostatics Protein-Protein

(c) Lennard-jones Protein-Solvent (d) Electrostatics Protein-Solvent

Figure 4.9: Probability distribution of different potential energy contributions
[cal/g] of elastases simulations. a. Packing energy: sum of Lennard-Jones 1-
4, Lennard-Jones short range, angle, proper dihedral, and improper dihedral.
b. Electrostatics Protein-Protein: Coulomb 1-4 interactions, the short-range
and the long-range electrostatic interactions. c. Electrostatics Protein-Solvent:
short-range and long-range protein-solvent Coulomb interactions. d. Lennard-
Jones Protein-Solvent: Lennard-Jones protein-solvent interactions.
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4.3.4 Uracil-DNA glycosylase (UDG)

Differently from the elastases the near-native free energy landscapes of the
uracil-DNA glycosylases result more smoothed and flatter. Projecting the near-
native free energy landscape onto the RMSD and radius of gyration, the land-
scape results into a single roughly smoothed well. Hence these global col-
lective coordinates are unable to distinguish between different configurational
sub-states and are then useless for the characterization of the shape of the
near-native free energy landscape. Considering the projection onto the first
two eigenvectors as collective coordinates, it is possible to distinguish differ-
ent relative minima, the collective coordinates obtained from the PCA allow a
finer separation of the different conformations of the protein (figure 4.10). The
mesophilic enzyme show a shallow rugged surface at either 283 K and 310 K,
with many local minima (figure 4.10 a,b). Moreover moving from 283 K to 310
K the conformations spread over a large range. On the contrary, the free energy
landscapes of the psychrophilic enzyme is more compact and deeper (figure 4.10
9 c,d). In particular at higher temperature (310K) the conformations split into
well defined higly populated clusters. Looking at the probability plots (figure
4.11), it is possible to see that the psychrophilic enzyme displays some highly
populated regions (figure 4.11) which are non visible into the mesophilic enzyme
(figure 4.11 a,b) resulting in a deeper free energy landscape (figure 4.11 c,d).

As in the elastases the free energy landscapes of the psychrophilic enzyme
is more rugged, i.e. the conformations group into separated clusters. On the
contrary, the main difference here, is that the landscape of mesophilic enzyme
loses the accentuated funneled shape becoming shallow and rugged. This is
clearly visible looking at the dendrograms obtained from the clustering of the
conformations (figure 4.12). The shape of the dendrograms is quite similar
for both the enzymes and it is not possible to identify a strong hierarchical
distribution of the conformations.

Configurational entropy

Considering the configurational entropy the UDG enzymes show the same be-
haviour of the elastases, indeed, as shown in figure 10a, the curve of the mesophilic
enzyme (mHUDG) is above the psychrophilic one (pCUDG) at both 283 K and
310K. In this case the difference of the entropy between the two systems at
283K is very low (0.05 J/K mol), whereas at 310 K is similar to the value of
the elastase (0.21 J/K mol). Moreover, as for the elastases, the entropy differ-
ence due to the increase of the temperature is lightly higher for the mesophilic
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(a) mHUDG 283K (b) mHUDG 310K

(c) pCUDG 283K (d) pCUDG 310K

Figure 4.10: Contour plot representation of the free energy landscapes for the
psychrophilic UDG (bottom panels), and for the mesophilic UDG (top panels)
at 283K (left panels) and at 310K (right panels). The free energy landscape is
projected onto the first two principal components of the all-atoms mass-weighted
covariance matrix of the combined trajectory.
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(a) mHUDG 283K (b) mHUDG 310K

(c) pCUDG 283K (d) pCUDG 310K

Figure 4.11: Representation of the 2D-probability plots for the psychrophilic
UDG (bottom panels), and for the mesophilic UDG (top panels) at 283K (left
panels) and at 310K (right panels). The free energy landscape is projected onto
the first two principal components of the all-atoms mass-weighted covariance
matrix of the combined trajectory.
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(a) mHUDG 283K (b) mHUDG 310K

(c) pCUDG 283K (d) pCUDG 310K

Figure 4.12: Dendrograms of the complete linkage cluster analysis of the C-
alpha RMSD distance matrix for the psychrophilic elastase (bottom panels),
and for the mesophilic elastase (top panels) at 283K (left panels) and at 310K
(right panels) are shown. For clarity the tree is truncated to a minimum cut-off
value (CUTOFF).
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enzyme (0.76 J/K mol) compared to the psychrophilic enzyme (0.61 J/K mol).
As depicted in figure 4.8b, the differences in entropic content are associated to
the middle eigenvalues, whereas the first and the last eigenvalues show similar
values as it happens for the elastases.

Analysis of the potential energy contributions

As well as the free energy surface and the entropy, the distributions of the
potential energy terms reflect the high similarity between the psychrophilic and
the mesophilic form of the UDG. Like the elastases the distributions of the
packing energy are proportional to the temperature of the simulation and not
to the different enzyme, i.e. at 283K the mHUDG shows similar distribution to
pCUDG and at 310K mHUDG shows the same distribution of pCUDG (figure
4.13a). The intra-protein electrostatic energy shows different behaviour into the
two systems, especially, contrary to that of elastases, i.e. the mesophilic enzyme
(pCUDG) has lower values of the electrostatic terms (figure 4.13b). The protein-
solvent Lennard-Jones term shows completely overlapping distributions, so it is
completely uninformative as for the elastases (figure 4.13c). The protein-solvent
electrostatic contribute has partially overlapping distributions (figure 4.13d),
the highest gap is between mHUDG at 238K and pCUDG at 310K. Conversely
to the behaviour of the elastases, the mesophilic enzyme shows lower values
compared to the psychrophilic one. The averages and standard deviations of
each energetic contributions are summarized in table 4.3.

124



4.3 Results and Discussion

System T [K] Anga Dihb iDihc ESRdPP LJSR ePP ELRfPP

mPE 283 33.78±1.26 12.50±0.57 11.13±0.54 -328.63±3.99 -89.53±0.85 -5.06±3.62

pPE 310 36.15±0.83 13.25±0.53 11.94±0.46 -331.59±4.84 -89.63±0.90 -5.29±3.73

mSE 283 34.29±0.80 12.84±0.51 10.97±0.45 -335.02±4.58 -90.88±0.88 1.19±3.26

mSE 310 36.61±0.87 13.51±0.53 11.87±0.47 -335.46±3.92 -90.57±0.89 0.33±3.46

mHUDG 283 34.37±0.79 15.35±0.55 10.80±0.42 -342.23±6.00 -72.24±0.72 -10.58±6.23

mHUDG 310 36.77±1.13 15.99±0.62 11.60±0.52 -344.41±6.24 -71.70±0.80 -9.45±6.60

pCUDG 283 34.02±0.78 15.15±0.53 10.73±0.42 -355.07±6.69 -72.36±0.78 -9.10±6.59

pCUDG 310 36.31±1.12 15.90±0.61 11.53±0.51 -355.28±6.76 -72.21±0.82 -9.49±6.76

System T [K] E14 g
PP LJ14h

PP ELR iPS LJSR lPS ESRmPS

mPE 283 220.83±0.98 16.54±0.50 -155.46±5.66 -15.71±1.00 -10.14±3.35

pPE 310 220.81±1.01 16.63±0.50 -146.74±6.23 -14.91±0.99 -8.88±3.40

mSE 283 240.80±1.06 16.02±0.48 -161.16±6.01 -14.85±1.00 -15.26±3.25

mSE 310 240.87±1.14 15.98±0.50 -157.43±5.01 -14.10±1.01 -15.51±3.39

mHUDG 283 233.01±0.76 5.81±0.48 -200.08±6.77 -9.53±1.04 -11.95±3.90

mHUDG 310 232.72±0.83 5.86±0.47 -193.68±6.89 -8.89±1.07 -11.65±3.87

pCUDG 283 235.83±0.78 6.07±0.46 -189.63±6.65 -10.09±1.06 -7.57±3.30

pCUDG 310 235.52±0.82 6.12±0.51 -184.10±7.02 -9.28±1.06 -7.43±3.37

Table 4.3: Average values and standard deviation of the potential energy com-
ponents [cal/g] of every systems. a. g96 angle, b. Proper dihedral, c. Improper
dihedral, d. Intra-proteic Coulomb short-range, e. Intra-proteic Lennard-Jones
short-range, f. Intra-proteic Coulomb long-range, g. Intra-proteic Coulomb 1-
4, h. ntra-proteic Lennard-Jones 1-4, i. Protein-solvent Coulomb long-range,
l. Protein-solvent Lennard-Jones short-range , m. Protein-solvent Coulomb
short-range.
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(a) Packing (b) Electrostatics Protein-Protein

(c) Lennard-jones Protein-Solvent (d) Electrostatics Protein-Solvent

Figure 4.13: Probability distribution of different potential energy contribu-
tions [cal/g] of UDG simulations. a. Packing energy: sum of Lennard-Jones
1-4, Lennard-Jones short range, angle, proper dihedral, and improper dihedral.
b. Electrostatics Protein-Protein: Coulomb 1-4 interactions, the short-range
and the long-range electrostatic interactions. c. Electrostatics Protein-Solvent:
short-range and long-range protein-solvent Coulomb interactions. d. Lennard-
Jones Protein-Solvent: Lennard-Jones protein-solvent interactions.
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Conclusions

In this study a detailed comparative structural and energetic analysis of long
molecular dynamic simulations of warm- and cold- adapted enzyme belonging to
different families, have been carried out. This work has allowed to identify the
structural and energetic features that characterize each enzyme and the common
features shared by the enzyme of the two families. We would like to point out
that, the critical changes for the thermal adaptation may be hidden by those
produced by genetic drift and others effectors of natural selection [31], hence,
it is not possible to assert with certainty, that the intra-family differences seen
here between the mesophilic and psychophilic enzymes, are exclusively due as
to the results of the cold adaptation . Up till this hypothesis holds, we can state
that the two family of enzymes studied here, have developed partial distinct
strategies to achieve the same goal, as already seen in many others cases [31].
Nevertheless, some properties show the same trend in the two families of en-
zymes and, moreover, they are in accord to the behaviour of other psychrophilic
enzymes. Noteworthy, the cold adapted enzyme, of both the ELA and UDG,
show a more rugged free energy landscape with separated energy basin, as can
be clearly seen in the free energy landscapes projected onto the cartesian princi-
pal components (figure 4.4,4.10). This implies the existence of many metastable
states, that cause the enzyme to assume for longer time not optimal conforma-
tions for the substrate binding which may result in higher Km [33, 31] Moreover
the higher flexibility, localized near the active site, can lead to rapid movement
of the loop involved in the ligand binding and in turn augment the catalytic
efficiency (higher values of kcat) [33, 31]. Another common finding of the two
families of enzyme is that the mesophilic counterpart shows a lightly higher
global flexibility at both the temperatures, leading an increased entropic con-
tent. This result confirms what was already seen in previous works on these
class of enzymes [9, 10, 11]. The main distinction in the two families of enzyme
can be appreciated considering the potential energy components. Indeed, the
intra-protein and the protein-solvent electrostatic contributions have an oppo-
site behaviour in the two orthologous enzymes. Differences in the distributions
of the electrostatic energy is supposed to be an important factor in thermal
adaptation [31] This work allowed to shed light to some important structural,
dynamical and energetic features of two different families of cold-adapted en-
zymes comparing them with its respective mesophilic counterpart. In particular
we found that : i) the psychrophilic enzyme shows a rugged FEL with more
meta-stable states, ii) confirming a previously founded result [9, 10, 11], the
cold-adapted shows a lower global flexibility that is related to a lower configu-
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rational entropy, and exhibits a larger flexibility localized on specific regions of
the structure. iii) the two families show differences in the distributions of the
electrostatics interactions which are related to their different behaviour.
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Chapter 5

Structural analysis of

mutations

A curious aspect of the theory of evolution is that
everybody thinks he understands it.

Jacques Monod (1910 - 1979)

5.1 Introduction

T
he analysis of the protein structure can be useful when we are dealing with
diseases which are dependent on mutations in a given protein. It help to

identify how the mutation impairs the protein function and which is its impact
on the disease. As examples, we report here three cases in which a structural
study has been used to support biochemical and genetical data for the analysis
of the impact of point mutations on the protein structure and function and its
effect on the associated disease.
In particular, we have studied three different serious rare diseases which involve
grave metabolic disorder associated to point mutations in mithocondrial pro-
teins. In the following sections a short introduction of each case of study is
given.
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5.2 Ethylmalonic encephalopathy

Ethylmalonic encephalopathy (EE) (OMIM 602473) is an autosomal recessive
disorder originally reported in Italian families and predominantly affecting chil-
dren of Mediterranean or Arab descent. EE is characterised by psychomotor
regression and generalised hypotonia, later evolving into spastic tetraparesis,
dystonia, and eventually global neurological failure [2]. Magnetic Resonance
Imaging (MRI) examination shows the presence of symmetrical and asymmet-
rical “patchy” lesions, distributed in the deep grey structures of the brain, in-
cluding the brainstem, thalamus, and corpus striatum. The encephalopathy is
typically accompanied by widespread lesions of the small blood vessels, causing
showers of petechiae, especially during intercurrent infections, easy bruising,
and orthostatic acrocyanosis. Chronic diarrhoea is another prominent feature
of EE. The course is relentlessly progressive and usually leads to death within
the first decade of life.
From a biochemical point of view, EE is characterised by persistent lactic aci-
daemia, a reduction in the activity of mitochondrial respiratory complex IV in
skeletal muscle, and markedly elevated excretion of ethylmalonic and methyl-
succinic acid in urine [25]. Ethylmalonic acid is believed to derive from the car-
boxylation of butyryl-coenzyme A (CoA), as a consequence of disorders of the
mitochondrial b-oxidation of fatty acids, or from 2-ethylmalonic-semi-aldehyde,
as a consequence of the catabolism of isoleucine [25].

5.2.1 ETHE1

The ETHE1 gene was identified as the responsible of the Ethylmalonic en-
cephalopathy [26]. The name of this gene, previously known as HSCO (for hep-
atoma subtracted clone one), for its role in EE, has been changed to ETHE1.
The product of this gene (Ethe1p) localized inside the mitochondrial matrix, and
in particular a canonical mitochondrial leader peptide present at the N-terminus
of the full-length ETHE1 protein, addresses the protein to the organelle and is
cleaved off after internalization in the inner mitochondrial compartment through
an energy-dependent process, presumably carried out by MPP [26].

The function of the Ethe1p mature protein is presently unknown. The
Ethe1p is a phylogenetically conserved protein, sharing high homology with
human Glyoxalase-II (Glyo-II) (β-lactamase fold). Besides Glyo-II, a BLAST
search, with the human ethe1 predicted protein sequence as a probe, resulted
in the identification of highly similar proteins in all metazoan species, in plants,
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such as Arabidopsis thaliana, and in fungi, such as Saccharomyces cerevisiae 5.1.
In contrast with the remaining portion of these protein sequences, the first 20-30
amino acid residues on the N-terminus appear to be poorly conserved.

The glyoxalase system catalyzes the conversion of toxic 2-oxoaldehydes into
the corresponding 2-hydroxy acids. The main substrate seems to be methyl-
glyoxal, which is formed as a by-product of glycolysis from triose phosphates
through the action of triose-phosphate isomerase but also via other metabolic
routes. As the first step of the glyoxalase system, methylglyoxal reacts sponta-
neously with reduced glutathione to form a hemithioacetal. Glyoxalase I con-
verts hemithioacetal into S-D-lactoylglutathione, which is further metabolized
to D-lactate and glutathione by Glyo-II [26]. Despite the similarity between the
Ethe1p and the Glyo-II, Ethe1p failed to demonstrate a significant Glyo-II ac-
tivity in isolated mitochondria, using D-lactoylglutathione as a substrate [26].
A likely possibility is that the ETHE1 protein could still be a mitochondrial
metal-β-lactamase involved in the metabolism of an unknown substrate.

It has been recently suggested that subtle differences in the metal binding
ligands of proteins characterized by the β-lactamase fold may be responsible
for differences in metal binding properties among the different enzymes [19].
Therefore, enzymes featuring the metal-β-lactamase fold can bind several dif-
ferent metals and catalyze a broad number of different reactions. It has been
proposed on the basis of crystal structure [4], NMR analysis [9] and EPR
spectra [9] that the Glyo-II family has broad metal binding specificity and its
members are suggested to accommodate mixed metal centers: Zn(II)-Zn(II),
Fe(III)-Zn(II) or Fe(III)-Fe(II).
In a recent study a spectroscopic investigation of the crystal structure of Ethe1p
from Arabidopsis thaliana demonstrates that Ethe1p binds one iron in a pre-
dominatly Fe(II) oxidation state [13]. This evidence suggests that the human
Ethe1p is a novel, mononuclear Fe(II)-containing member of the β-lactamase
fold superfamily. Anyway it should be noted that the sequence identity be-
tween the human and the Arabidopsis ethe1 is of 54%, hence the consideration
on the Arabidobsis ehte1p may not completely transferred to the human one.

5.2.2 Genetic analysis of patients affected by EE

From genetic analysis many different mutations have been identified into the
ETHE1 gene of the patient affected by EE. Tables 5.1 and 5.2 report all muta-
tions so far described in the literature.
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Figure 5.1: Multiple alignments of the ETHE1 protein sequences in different
species. Protein sequences were search using BLAST, filtered with an identity
threshold of 40% (only the proteins which share more than 40% of sequence
identity with Ethe1p were kept) and aligned using CulstalW.
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Gene mutation Protein Reference
(c.586GRA) + (c.586GRA) (p.D196N)+(p.D196N) [17]
(c.222 223insA) + (c.491CRA) (p.Y74fsX97)+(p.T164K) [17]
(c.164CRT)+(c.164CRT) (p.L55P)+(p.L55P) [17]
(c.487CRT)+(c.455CRT) (p.R163W)+(p.T152I) [17]
(g.del ex 4-7)+(g.del ex 4-7) Not translated [17]
(c.488GRA)+(c.488GRA) (p.R163Q)+(p.R163Q) [17]
(c.406ARG)+(c.488GRA) (p.T136A)+(p.R163Q) [17]
(c.505+1GRT)+(c.505+1GRT) Splice exon-intron 4 [17]
(c.505+1GRT)+(c.505+1GRT) Splice exon-intron 4 [17]
(g.del ex 4)+(g.del ex 4) Not translated [17]
(c.505+1GRT)+(c.505+1GRT) Splice exon-intron 4 [17]
(g.del ex 4)+(g.del ex 4) Not translated [17]
(c.554TRG)+(g.del ex 4) (p.L185R)/Not translated [17]
(c.505+1GRT)+(c.505+1GRT) Splice exon-intron 4 [17]
(c.487CRG)+(c.487CRG) (p.R163G)+(p.R163G) [8]
(c.delC66)+(c.delC66) (p.P22fsX32)+(p.P22fsX32) [3]
(c.487CRT)+(c.487CRT) (p.R163W)+(p.R163W) [12]
(g.-83delCGCCC)+(c.376-1GRT) Not translated [25]
(g.del ex 4)+(g.del ex 4) Not translated [25]
(g.del ex 4)+(g.del ex 4) Not translated [25]
(c.3GRT)+(c.3GRT) (p.M1I)+(p.M1I) [25]
(c.488GRA)+(c.488GRA) (p,R163Q)+(p.R163Q) [25]
(c.187CRT)+(c.482GRA) (p.Q63X)+(p.C161Y) [25]
(c.230delA)+(c.230delA) (p.N77fsX144)+(p.N77fsX144) [25]
(g.del ex 1-7)+(g.del ex 1-7) Not translated [25]
(c.406ARG)+(c.488GRA) (p.T136A)+(p.R163Q) [25]
(c.34CRT)+(c.34CRT) (p.Q12X)+(p.Q12X) [25]
(c.375+5GRA)+(c.375+5GRA) Splice exon-intron 3 [25]
(c.487CRT)+(c.487CRT) (p.R163W)+(p.R163W) [25]

Table 5.1: List of Ethe1p mutations described in literature. The missense mu-
tations are written in bold font.
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Gene mutation Protein Reference
(c.604 605insG)+(c.604 605insG) (p.V202fsX220)+(p.V202fsX220) [26]
(c.3GRT)+(c.3GRT) (p.M1I)+(p.M1I) [26]
(g.del ex 4)+(g.del ex 4) Not translated a [26]
(c.487CRT)+(c.487CRT) (p.R163W)+(p.R163W) [26]
(c.406ARG)+(c.406ARG) (p.T136A)+(p.T136A) [26]
(c.222 223insA)+(440 450del11) (p.Y74fsX97)+(p.H147fsX176) [26]
(c.222 223insA)+(c.222 223insA) (p.Y74fsX97)+(p.Y74fsX97) [26]
(g.del ex 1-7)+(g.del ex 1-7) Not translated [26]
(g.del ex 4)+(g.del ex 4) Not translated [26]
(c.505+1GRT)+(c.505+1GRT) Splice exon-intron 4 [26]
(c.375+5GRA)+(c.375+5GRA) Splice exon-intron 3 [26]
(c.131 132delAG)+(c.488GRA) (p.E44fsX102)+(p.R163Q) [26]
(c.592 593insC)+(c.592 593insC) (p.H198fsX220)+(p.H198fsX220) [26]
(c.487CRT)+(c.487CRT) (p.R163W)+(p.R163W) [26]
(c.113ARG)+(c.554TRG) (p.Y38C)+(p.L185R) [26]
(c.487CRT)+(c.487CRT) (p.R163W)+(p.R163W) [26]
(c.505+1GRA)+(c.505+1GRA) Splice exon-intron 4 [26]

Table 5.2: List of Ethe1p mutations described in literature. The missense mu-
tations are written in bold font.
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Template RMSD TM-score LG-score Overall
1qh5 8.72 0.61 0.27 GOOD
2gcu 7.25 0.68 0.28 GOOD

Table 5.3: AIDE comparison between two models of Ethe1p.

The missense mutations (highlighted on tables 5.1 and 5.2 in bold font) can
be analyzed at molecular level studying the three-dimensional structure of the
Ethe1p, and integrating the analysis with the available biochemical data.
Given that the experimental 3D structure of Ethe1p is not known, it is worth
to obtain an accurate 3D model structure of it using computational methods.

5.2.3 3D model of Ethe1p

The three-dimensional model of Ethe1p was build by homology modelling using
the crystal structure of the Ethe1p of A. thaliana (PDB ID 2gcu) as template.
The sequence alignment was produced using ClustalW, the sequence identity
between the two proteins is 54%. The model was build with modeller and
refined by means of molecular dynamics and using the built in fast refinement
procedure of modeller.
It table 5.3 this model was compared using AIDE [15] with a previously build
model based on the human Glyo-II crystal structure [25]. The two models are
similar in all structures but in the C-terminal region where the 2gcu based shows
a better agreement with the predicted secondary structure of Ethe1p (data not
shown).
The model based on 2gcu was then used for the structural analysis (figure 5.2).

The three-dimensional model of Ethe1 is consistent with the β-lactamase
fold of the N-terminal domain and the presence of three α-helices in the C-
terminal domain. The charged residues in Ethe1 are located prevalently on the
protein surface and are well exposed to the solvent, as deduced from a surface
accessibility analysis (data not shown). The only charged residues which are
buried in the protein interior are negative residues involved directly or indirectly
in the metal ion binding or in stabilizing the interactions between the β-harpin
and the second domain. Based on multiple alignment results (figure 5.1) and on
previous work [25] the six putative metal ion ligands are predicted to be H79,
H81 and H135 (first metal ion, M1), and D83, H84 and H195 (second metal ion,
M2) (figure 5.3). These residues are conserved in Ethe1 family and corresponded
to identical residues in the Glyo-II family. As previously mentioned, unlike the
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Glyo-II and other metal β-lactamases, only one metal ion is bound in the metal
binding site of Ethe1p [13].

Figure 5.2: Three-dimensional model of Ethe1p build by homology modelling
using the crystal structure the Ethe1p of A. thaliana (PDB ID 2gcu) as template.
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5.2 Ethylmalonic encephalopathy

Figure 5.3: Ethe1p model catalytic site. The position of the Fe(II) metal ion
(shown as a green sphere), is based on the position on the crystal structure of
the Arabidopsis Ethe1p. The residues coordinating the metal ion and involved
into the active site are also shown.
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5.2.4 Biochemical and structural analysis

As shown in figure 5.1 , the missense mutations L55P, T152I, T164K, D196N,
T136A, Y38C, L185R, C161Y, R163W and R163Q all affect highly conserved
amino acid residues. The mutations in the Ethe1p protein can be classified as
structural or catalytic depending on the presence/absence of the protein verified
by western-blot analysis [25].
The T136A, Y38C, and L185R changes are structural mutations associated with
the absence of Ethe1p protein specific cross reacting material (CRM). By con-
trast, the R163W, R163Q, and C161Y changes are catalytic mutations asso-
ciated with the maintenance of normal or slightly reduced amounts of Ethe1p
protein specific CRM [25]. The position of each missense mutation were ana-
lyzed in the three-dimensional (3D) model to make predictions of their possible
functional consequences. T164 resides immediately adjacent to R163, an amino
acid that is frequently mutated in patients with EE [11]. However, mutations
affecting the R163 residue are associated with normal levels of Ethe1p protein,
whereas the novel T164K mutation is associated with very low protein levels as
shown by western-blot analysis [25]. Based on a 3D model and on the crystal
structure of the Ethe1p protein in A. thaliana [13], this result can be explained
by the localisation of this amino acid residue in a highly hydrophobic domain.
The substitution of T by K can produce a distortion of the region due to steric
hindrance or electric charge because K is bigger and more basic than T (figure
5.4). As a consequence, both the activity of the catalytic site and stability of the
protein may be partially impaired. In contrast, the L55P occurs in a hydrophilic
region of the protein, making it unlikely that the mutation can severely perturb
the surrounding environment. However, proline is characterised by a peculiar
conformational rigidity because of its cyclic structure, which locks the backbone
dihedral angle at approximately -75◦. This may lead to a distortion of the loop
in which it is located, therefore affecting the protein tertiary structure. More-
over, mutant P55 is in close proximity to and may distort the orientation of
H84, a residue involved in the catalytic site (figure 5.4). Our results show that
both T164 and L55 are critical for the stability of the protein.
Mutation D196N is likely to affect the (unknown) catalytic activity of Ethe1p,
because it is associated with normal protein levels [25]. This amino acid residue
is located in the internal part of a loop and its carboxyl forms a hydrogen bond
by interacting with the N-terminus of either F200 or H198 (figure 5.4, panel
B). It is probable that the D196N mutation alters the conformation of the loop,
thus interfering in an indirect way in substrate recognition and catalysis. The
patient carrying this mutation apparently showed a milder phenotype than that
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Figure 5.4: Localization of each mutant residue. A. The L55 residue is located in
a hydrophilic region of the protein in relative proximity to the catalytic histidine
cluste.r B. The D196 residue is likely to establish hydrogen bonds with residues
F200 and H198. C. The hydrophobic amino acids surrounding the T164 residue
are shown in grey. H135 (green) is part of the histidine catalytic cluster. D. The
T152 residue is located within the catalytic pocket together with the histidine
cluster.
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seen in other patients presenting missense mutations associated with normal
levels of the Ethe1p protein. Indeed, the patient with this mutation has a more
benign course of the disease.
The T152 residue lies in a deeply buried position surrounded by hydrophobic
tightly packed amino acids. Being isoleucine is bigger than threonine, the T152I
substitution can result in a conformational rearrangement of the surrounding
pocket. In particular, owing to the proximity of this mutation to the active site,
the rearrangement may lead to a distortion in the orientation of the catalytic
residues and in turn to loss of activity (figure 5.4).

Figure 5.5: Localization of the following mutant residues on the 3D structure
of the human Ethe1p model: T136A, Y38C, L185R, C161Y, R163W. The R163
is located near the active site, hence a mutation directly interferes with the
enzyme catalysis. The other aminoacids are involved in the tertiary structural
stabilization.
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The T136 residue, which is strictly conserved in both Ethe1p and Glyo-II-
like proteins (data not shown), belongs to the second coordination sphere of the
metal ions , in close proximity to the active site (figure 5.5). The absence of
Ethe1p protein specific CRM in T136A mutant fibroblasts indicates that the
T136 residue is crucial in maintaining the structural integrity of the protein.
The same is likely to occur for the Y38C and L185R mutations. In particular,
the Y38 residue is located at the interface between the first and the second
half of the first domain, where it is involved in the formation of a cluster of
hydrophobic residues in the protein core. The L185 residue belongs to the first
domain, in close proximity to two positively charged amino acids, K181 and
R209. As a consequence, the effect of the L185R mutation, which changes an
apolar leucine to a positively charged arginine, could be due to unfavourable
electrostatic interactions between the three positively charged residues, leading
to destabilisation and degradation of the protein.
The R163 residue in Ethe1p is located in a loop region, which is part of the
putative catalytic site, near the binding site of Fe ions (figure 5.5). This obser-
vation suggests that R163Q and R163W mutations impair the catalytic activity,
rather than the structural integrity, of Ethe1p.
The C161 residue, which does not interact with the metal binding site (fig 5.5),
belongs to a GCG motif, which is conserved in both the Ethe1p-like and the
Glyo-II-like protein families [17]. The GCG motif present in Ethe1p can play
a key structural role in the stabilisation of the protein. This consideration can
explain the low amount of C161Y Ethe1p protein specific CRM detected by
western-blot analysis [25].
A computational and experimental approach, combining information from sec-
ondary structure predictions, multiple sequence alignments and comparative
predictions allowed us to obtain a reliable structural model for Ethe1p. From
the analysis of the model it was possible to define the Ethe1p functional sites, as
well as clarify the effect of the mutations on the structure and the functionality
of the protein.
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5.3 Disease-associated mutation in COX6B1

Cytochrome c oxidase (COX, complex IV) is the terminal enzyme in the mi-
tochondrial respiratory chain. It catalyzes the electron transfer from reduced
cytochrome c to molecular oxygen.
This reaction is coupled to the extrusion of protons from the mitochondrial ma-
trix to the intermembrane space, forming a proton-based membrane potential
that allows ATP to be synthesized.
In mammals, the COX monomer is composed of 13 subunits, but the active
form of the enzyme works as a dimer in vivo. Mitochondrial DNA (mtDNA)
encodes the three larger, and most hydrophobic, subunits, including the two
catalytic MT-CO1 and MT-CO2 subunits, as well as the core structural MT-
CO3 subunit. The remaining ten smaller subunits, COX4, 5A, B, 6A, B, C,
7A, B, C, and 8, some of which have also tissue-specific isoforms, are encoded
in the nucleus and imported into mitochondria [7]. Most of the nuclear encoded
subunits of COX have hydrophobic domains spanning the inner mitochondrial
membrane once [22]. However, subunits COX5A, COX5B, and COX6B are
hydrophilic extramembrane proteins, the first two facing the matrix, whereas
COX6B faces the intermembrane space. According to the bovine enzyme struc-
ture, COX subunit 6B, connects the two COX monomers into the physiological
dimeric form [22, 20] and is also believed to interact with cytochrome c [24, 14].
COX deficiency (OMIM 220110) is one of the most common respiratory-chain
defects in humans, being associated with different clinical phenotypes and caused
by different genetic abnormalities. The study of COX defects is complicated as
the biosynthesis and function of the enzyme depends on the contribution of both
mitochondrial and nuclear encoded products.
Mutations in mtDNA-encoded COX genes (OMIM 516030, 516040, and 516050)
are associated with a range of phenotypes including pure myopathy, MELAS
(OMIM 540000), encephalomyopathy, and a motor neuron disease-like presenta-
tion [1]. In other cases, COX deficiency is associated with mutations in nuclear-
encoded proteins that do not belong to, but participate in the biogenesis of,
complex IV [16].
Mutations in nuclear-encoded COX structural subunits were searched for but
never found [18, 10, 23]. Studying two siblings belonging to a consanguineous
Arab family, affected by a combination of early-onset leukodystrophic encephalopa-
thy, myopathy, and growth retardation, a COX deficiency of unknown cause was
identified.
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5.3.1 Genetic analysis

Sequencing the COX genes locus revealed the presence of a mutation in the
COX6B1 gene.
In particular the homozygous substitution 221G→A in exon 2 of the COX6B1
gene was identified, leading to the missense mutation R19H (the numeration of
the amino acid residues corresponds to the mature COX6B1 as the first M is
cleaved in the import process of the precursor into mitochondria) [23].
A multiple sequence alignment was build searching omologues sequences with
BLAST [6] and aligning them with ClustalW [5]. The R19H mutation falls
into the strictly conserved motif RFP, which is conserved into all the aligned
sequences (see figure 5.6).

5.3.2 Biochemical and structural analysis

The structural analysis has been done on the crystal structure of the bovine
COX which subunity COX6B1 shares more than 90% of sequence identity with
the human COX. Considering the crystal structure of bovine COX, the R19
residue is predicted to form a strong saline bond with the adjacent highly con-
served D17 residue and a weaker saline bond with conserved D35 residue (see
alignment on figure 5.6). These bonds help maintain the appropriate confor-
mation of the COX6B1 N-terminal loop, which is predicted to interact with
subunit 2 of COX (figure 5.7).
The substitution of an elongated, flexible R with a bulkier, shorter and rigid H
residue may well prevent the formation of the salt bridge with D35, and weaken
the salt bridge with D17, as well; this altered conformation could in turn com-
promise the stability of the COX6B1 subunit within the COX dimer, which is
the physiologically active form of the enzyme. The stability of the mutated COX
was tested using a western blot analysis with antibodies specific to several COX
subunits [23]. In particular, in experiments based on denaturing, sodium dode-
cyl sulfate-poly-acrylamide gel electrophoresis (SDS-PAGE) on mutant versus
control muscle homogenate samples, a reduced crossreacting material (CRM)
was detected for all tested COX subunits, including COX6B1 [23].
To further investigate the structural composition of mutant COX, the holocom-
plex was analyzed from muscle homogenates extracted in native conditions and
separated by blue-native gel electrophoresis (BNGE). The fully assembled COX
was reduced to approximately 40% in mutant versus control muscle [23]. Taken
together, these results indicate that the R19H change in COX6B1 compromises
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the stability of the muscle COX holocomplex, thus reflecting the severely re-
duced specific activity measured in this tissue.

Figure 5.6: The alignment of the protein sequence in different species is shown.
The numeration of the amino acid residues corresponds to the mature COX6B1
as the first M is cleaved in the import process of the precursor into mitochondria.
The R19 and D35 residues are shown. It is clearly visible the high conservation
of the R19 into all the aligned species.
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Figure 5.7: Crystal structure of bovine cytochrome C oxidase (PDB ID 2eij).
The two chains of the subunit VIb isoform 1 are shown in red whereas the yellow
chains representing the subunit 2 are shown in yellow. The interaction region
between the subunit VIIb and the subunit 2 is magnified, moreover, the position
of the residues R19, D35 and D17 VIIb are labelled for clarity.

So far, only mutations of mtDNA encoded COX subunits or nucleus encoded
COX assembly factors have been associated with human COX deficiency raising
the conjecture that mutations in nucleus encoded COX structural subunits were
not viable extra utero. However, very recently, mutations that disrupt COX
subunit 6A and knockdown of subunit COX5A were reported in Drosophila and
zebrafish, respectively [23]. Both models do not result in embryonic lethality
but rather in neurodegeneration and COX deficiency. In agreement with these

149



Structural analysis of mutations

experimental models, our own data show that disease-causing abnormalities of
nuclear COX subunits are also possible in humans.
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5.4 Mutations of Mitochondrial elongation Fac-

tors EFG1 and EFTu

The mitochondrial respiratory chain (MRC) is a multiheteromeric enzymatic
structure that performs oxidative phosphorylation (OXPHOS), a fundamental
reaction of life that supplies about the 90% of the energy used by mammalian
cells [11]. The MRC consists of five complexes, composed of 85 structural pro-
teins, 13 of which are encoded by mtDNA (designated “mit” genes, according
to the yeast mtDNA terminology), whereas the others are encoded by nuclear
genes. Four MRC complexes contain the 13 mtDNA-encoded polypeptides as
integral parts; seven are subunits of complex I (cI), one is a subunit of com-
plex III (cIII), three are subunits of complex IV (cIV, which is the cytochrome
c oxidase [COX]), and two are subunits of complex V (cV). Complex II (cII),
also named succinate:ubiquinone oxidoreductase is the only MRC complex that
lacks mtDNA-encoded subunits.
The mit genes are translated into proteins within the mithocondria by a protein-
synthesis machinery, composed of both RNAs and proteins, which is largely in-
dependent from that responsible for translation of genes contained in the nuclear
genome, which takes place in the cytosol. The RNA component of mitochon-
drial translation consists of 22 tRNAs and 2 ribosomal RNAs (rRNAs) encoded
by mtDNA genes (designated “syn” genes, according to the yeast terminology),
whereas the protein component is encoded by nuclear genes and consists of
about 50 ribosomal proteins, the aminoacyl-tRNA synthetases, several tRNA
maturation enzymes, the translation initiation, elongation, and termination fac-
tors, and a large number of unidentified factors, including ribosome-assembly
factors [28]. Abnormalities in either gene set mitochondrial or nuclear can com-
promise mitochondrial translation. leading to multiple biochemical defects that
may occur in the mtDNA-dependent MRC complexes, that, in turn, give to
faulty OXPHOS and disease.
Over 100 disease-causing mutations are known in either tRNA- or rRNA-encoding
mtDNA syn genes. In contrast, only a few mutations in mitochondrial transla-
tion protein factors have been reported. In particular, a missense mutation in
pseudouridine synthase 1 (PUS1) was identified in Persian Jewish families af-
fected by myopathy, lactic acidosis, and sideroblastic anemia (MLASA [OMIM
600462]) [11].
PUS1 converts uridine into pseudouridine in several positions of tRNAs synthe-
sized in both nuclear and mitochondrial compartments. Lack of this posttran-
scriptional maturation of tRNAs leads to defective cytosolic and mitochondrial
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translation [11]. A second observation concerned a homozygous stop mutation
in MRPS16 (OMIM 609204), a protein of the mitochondrial small ribosomal
subunit, which was found in one patient with severe lactic acidosis, develop-
mental defects in the brain, and facial dysmorphisms [11]. A missense mutation
in the mitochondrial elongation factor G1 (EFG1) was found in a singleton case
affected by fatal neonatal liver failure and lactic acidosis associated with se-
vere mitochondrial translation defect (combined oxidative phosphorylation defi-
ciency 1 [OMIM 609060]) [11]. Finally, the same homozygous missense mutation
in the mitochondrial translation elongation factor Ts (EFTs) has recently been
reported in two unrelated babies, one affected by mitochondrial encephalomy-
opathy, the other by fatal hypertrophic cardiomyopathy [11]. The number of
nuclear-encoded proteins that partecipate in the traslation of mithocondrial
transcripts is about 200, thus it is plausible that defects in these proteins are
either lethal or are underdiagnosed to a major extent.

5.4.1 Structural analysis of Mutant EFG1M496R and EF-

TuR339Q Proteins

Given that the three-dimensional structure of both the human EFG1 and EFTu
is unknown, to carry out a structural analysis the 3D structure was computa-
tionally predicted.
Each protein model was built using the automatic homology modelling server
SWISS-MODEL [21]. The model of EFTu was built using the coordinates of
the crystal structure of EFTu from Bos taurus (PDB ID 1d2e), which shows
96% sequence identity with the human homolog. Whatcheck [27] (table 5.4)
and AIDE [15] (table 5.5) analysis confirmed the quality of the model.

The EFG model was built using the protein crystal structure from Thermus
thermophilus (PDB ID 2bm0) that shares 40% of residues identical to the human
sequence. Despite the relatively low sequence identity, this protein contains four
highly conserved domains that make it a suitable homology-modelling target.
In fact, the Whatcheck and AIDE report shows that the overall model quality
is only slightly lower in comparison to the EFTu model (see table 5.4 and 5.5).

To make predictions about the structures of human EFG1 and EFTu and
about the effects of the human EFG1M496R and EFTuR339Q missense muta-
tions, we took advantage of information on the crystal structure of these pro-
teins available for a mammalian organism, Bos taurus (NCBI accession number
NP 776632), and a micro-organism, Thermus aquaticus (NCBI accession num-
ber CAA46998). Like other translocases, EFG1 is a single polypeptide with a
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Parameter Z-score
EF-G1 EF-Tu

1st generation packing quality -0.997 0.042
2nd generation packing quality -2.565 0.063
Ramachandran plot appearance -1.504 -0.210
chi-1/chi-2 rotamer normality 2.201 4.475
Backbone conformation -0.656 0.515
Bond lengths 1.088 0.714
Bond angles 1.102 1.056
Omega angle restraints 1.078 0.678
Side chain planarity 2.700∗ 1.935
Improper dihedral distribution 1.313 1.277
Inside/Outside distribution 1.061 0.946

Table 5.4: Most relevant parameters of whatchek validation of the EF-G1 model.
All parameter are expressed as Z-score values. All parameters give a score that
is normal for well refined protein structures.

Template RMSD TM-score LG-score Overall
EF-G1 2.27 0.95 0.006 EXCELLENT
EF-Tu 1.13 0.81 0.124 EXCELLENT

Table 5.5: AIDE validation of EF-G1 and EF-Tu model.
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molecular weight of about 80 kDa. As shown in figure 5.8a, the EFG1M496R
mutation is located at the end of a α-helix and before a β-sheet, in domain III
of the mammalian protein.
Detailed analysis of this region, a pocket filled with both polar and apolar
residues (figure 5.8b), suggests that a direct effect of the M496R amino acid
substitution on the EFG1 GTPase hydrolytic activity is unlikely, because the
region is far from the GTP-binding site (figure 5.8a). Rather, the replacement
of the smaller, hydrophobic/negatively charged wild-type M with a bulkier, pos-
itively charged R residue is likely to produce a drastic structural rearrangement
of the region that could, in turn, determine the destabilization of the entire
protein or impede its correct interaction with the ribosome.
Human EFTu is also a GTPase consisting of a single polypeptide of about 45
kDa. The EFTuR339Q mutation is located on a solvent-exposed β-sheet on
the outer surface of domain II of mammalian EFTu (figure 5.9a). This position
makes it unlikely that the R339Q mutation can determine a drastic structural
rearrangement of the protein, because the interaction with neighboring amino
acid residues is minimal. However, domain II constitutes the tRNA-binding site
of EFTu31 (figure 5.9b); therefore, the most probable effect of the R339Q sub-
stitution is to hamper the formation of the GTP:EFTu:aminoacyl-tRNA ternary
complex. This hypothesis is supported by the demonstration that the amount
and electrophoretic mobility of EFTuR339Q are both normal [11].
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(a)

(b)

Figure 5.8: Modelling of mitochondrial EFG1. a. The EFG1 GDP-binding site
and the wild-type Met 496 residue are indicated. b. Residues within 5Åof the
M 496.
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(a)

(b)

Figure 5.9: a. The three domains and the Arg 339 residue of EFTu are labeled.
b. The model structure of human EFTu/tRNA complex is shown. The complex
was obtained by superposing the bovine EFTu model on the crystal structure of
the EFTu/tRNA complex of T. aquaticus (PDB ID 1ttt). The tRNA structure
is in blue. 156
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Chapter 6

Outlook

L’essentiel est invisible pour les yeux.
Antoine de Saint-Exupéry (1900 - 1944)

T
he continuous increasing of the computing power and the huge quantity of
biological information stored into the databases, leads to the computational

methods to reach a development good enough to be considered a crucial support
for the experimental methods. In this work we have studied several cases by
means of different computational approaches for the analysis of the structure
and function relationships.
In chapter 2 we describe a method, based on neural networks, developed for
evaluate the accuracy of predicted three-dimensional protein structures. The
artificial neural networks are mathematical models developed in analogy to the
real neurons. Being able to describe complex relationship, they have been chosen
to map the relation between the 3D structure and its accuracy. One of the great
advantages of the artificial neural networks, is the ability to learn from examples.
Hence, trained on a set of structure with known accuracy, the neural network
is able, given a 3D structure, to predict its accuracy. This tool has been used
in different studies described in this work, in which the prediction of the 3D
structure of the protein under study, has been necessary.

In particular, in chapter 3, an interaction study between a new class of nat-
ural sweeteners (steviol glycosides) and the human sweet taste receptor (t1r2-
t1r3), has been described. The relevance of these sweeteners is recently increased
due to their non-caloric property and their high sweetening power. Moreover,
hyploglycemic, diuretic and cardiotonic effects associated to these molecules
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make them an important target not only for the food industry but also for the
pharmaceutical one. The sweet taste receptor (t1r2-t1r3) is an heterodimeric
transmembrane G-protein coupled receptor, whose structure has been predicted
and evaluated using the method above mentioned. The interaction between the
steviol glycosides and all the possible binding sites of the receptor, has been
analyzed by means of an in-silico docking study, which allowed to identify the
preferential binding site for the steviol glycosides. In particular, the transmem-
brane binding site seems to be the most suitable for this class of compounds.

In chapter 4 the relationship between the dynamical properties and the func-
tion of some psychrophilic enzyme has been studied. The psycrophilic enzymes
are adapted to work at low temperature, compared to the mesophilic enzymes,
they show an high catatlytic efficiency at low temperature. Supported by lit-
erature models and results, an accurate comparative study (psychrophile vs
mesophile) of the thermodynamic properties of two different enzymes belonging
to the elastases and the uracil-DNA-glycosylases families has been done. This
study, carried out with molecular dynamics simulations, revealed, according to
previous evidences, that the low temperature adaptation is related to the dif-
ferent flexibility of the psychrophilic compared to the mesophilic enzyme. This
difference influences how the enzymes interact with their substrates.

In the last chapter, we report three cases in which a structural study has been
used to support biochemical and genetical data for the analysis of the impact
of point mutations on the protein structure and function and its effect on the
associated disease. In particular, we have studied three different serious rare
diseases which involve grave metabolic disorder associated to point mutations
in mithocondrial proteins.

It is worth to underline the importance of the combined use both the ap-
proaches. The experimental methods require the processing and the analysis of
the data, whereas the computational methods need the experimental data to be
accurate.
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Chapter 7

Appendix

7.1 Neural Networks

7.1.1 Back-propagation algorithm

Given a sigmoid neuron k belonging to the output layer we can compute the
partial derivative of the error function for each input weight wj,k using the chain
rules as,

∂E

∂wj,k
=
∂E

∂zk
· ∂zk
∂wj,k

=
∂E

∂zk
xj,k (7.1)

Where zk =
P
j wj,kxj,k and xj,k is the input of the neuron k coming from the hidden

neuron j
∂E
∂zk

is the same regardless of which input weight of unit j we are trying to update
and we denote this quantity as δk

δk = ∂E
∂wj,k

= ∂
∂zk

1
2 (tk − ok)2

= −(tk − ok)∂ok∂zk

= −(tk − ok)∂f(zk)
∂zk

= −(tk − ok)(1− f(zk))f(zk)
= −(tk − ok)(1− ok)ok

(7.2)

Where f(zk) = 1
1+e−x and ∂f(zk)

∂zk
= (1 − f(zk))f(zk). Thus

∆wj,k = −η ∂E

∂wj,k
= ηδkxj,k (7.3)

Now consider the neuron j belonging to a hidden layer. We make the fol-
lowing two important observations:
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• For each unit k downstream from j, zk is a function of zj

• The contribution to error by all units l 6= j in the same layer as j is
independent of wi,j

We want to calculate ∂E
∂wi,j

for each input weight wi,j for each hidden unit j.
Note that wi,j influences just zj which influences oj which influences zk ∀k ∈
Downstream(j) each of which influence E. So, using the chain rules, we can
write

∂E
∂wi,j

=
∑
k∈Downstream(j)

∂E
∂zk
· ∂zk∂oj

∂oj
∂zj
· ∂zj
∂wi,j

= ∂E
zk
· ∂zkoj

∂oj
∂zj

xi,j
(7.4)

As before we name this quantity δj . Also note that ∂E
∂zk

= δk, ∂zk
∂oj

= wj,k and
∂oj
∂zj

= oj(1− oj). Substituting,

δj =
∑
k∈Downstream(j)

∂E
∂zk
· ∂zk∂oj

∂oj
∂zj

= δkwj,koj(1− oj)
= oj(1− oj)δkwj,k

(7.5)

Given a fee feed-forward network with ni inputs, nj hidden units, and nk

output units.
For each training example 〈~x,~t〉, Do

• Input the instance ~x and compute the output ou of every unit.

• For each output unit k, calculate

δk = ok(1− ok)(tk − ok) (7.6)

• For each hidden unit j, calculate

δj = oj(1− oj)
∑

j∈Downstream(j)

wj,kδk (7.7)

• Update each network weight wi,j as follows:

wi,j ← wi,j + ∆wi,j (7.8)

where ∆wi,j = ηδjxi,j (7.9)

164



7.2 Molecular Dynamics

7.2 Molecular Dynamics

7.2.1 Position Verlet algorithms

The position Verlet algorithm can be derived form the left and right Taylor
expansion of the position

ri(t+ δt) = ri(t) + ṙi(t)δt+
1
2
r̈i(t)δt2 +

δt3

3!
...
r i +O(δt4) (7.10)

ri(t− δt) = ri(t)− ṙi(t)δt+
1
2
r̈i(t)δt2 −

δt3

3!
...
r i +O(δt4) (7.11)

Summing these two equations:

ri(t+ δt) = 2ri(t)− ri(t− δt) + r̈(t)δt2 +O(δt4) (7.12)

ri(t+ δt) ≈ 2ri(t)− ri(t− δt) + r̈i(t)δt2 (7.13)

The coordinate at time t − δt can be computed using the initial velocities
and accelerations as follow,

ri(0 + δt) ≈ 2ri(0) + vi(0)δt +
1
2
ai(0)δt2 (7.14)

The velocity are not explicitly computed and can be computed using

vi(t) =
ri(t+ δt)− ri(t− δt)

2δt
+O(δt2) (7.15)

A related, and more commonly used, algorithm is the Velocity Verlet algo-
rithm, whose main advantage is to obtain more accurate velocities.

7.2.2 Velocity Verlet algorithms

The positions and the velocities are computed as,

ri(t+ δt) = ri(t) + vi(t)δt +
1
2
a(t)δt2 (7.16)

vi(t+ δt) = vi(t) +
1
2

(ai(t) + ai(t+ δt))δt2 (7.17)

This scheme, however, requires the knowledge of the accelerations, ai, at
timestep t + δt. One may therefore decompose equation 7.17 into two steps.
First calculate

vi(t+
δt
2

) = vi(t) +
1
2
a(t)δt (7.18)
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then compute the actual forces on the particles at time t+ δt from the potential
energy derivatives and fnish the velocity calculation with

v(t+ δt) = v(t+
δt
2

) +
1
2
a(t+ δt)δt (7.19)
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