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Chapter 1

Introduction

1.1 The problem of confinement

Microporous materials such as zeolites have found many different uses in
many different areas of application, like heterogeneous catalysis, separations,
molecular sieving,1 oil recovery, ion-exchange, and other industrial processes.
Zeolites consist of AlO4 and SiO4 tetrahedra linked together in such a way
as to form cages of 3-13 Å diameter, connected in a continuous network of
pores extending in one, two, or three dimensions. The commercial interest for
this kind of materials is constantly increasing and new fields of utilization
have been predicted in the near future.2 Application of fundamental sci-
entific principles to the key technological issues involved has been difficult,
however, and much more progress has been attained through exploitation of
empirical processing parameters than through a deep understanding of the
chemical and physical mechanisms that control catalytic activity, sorption
and diffusion.

Advanced experimental research in this field is often very expensive and
time-consuming; moreover the interpretation of the results is not always un-
ambiguous. All above-mentioned applications of zeolites depend on a large
number of microscopic processes, among which are adsorption and diffusion.
The geometrical restrictions imposed by the confining host at the level of
molecular length scale strongly influence the thermodynamic and transport
properties of the guest molecules.3 Not only a full understanding of the role
the confined geometry plays on the dynamic behavior of molecules in microp-
orous solids would be of remarkable relevance to the technological application,
but also represents a challenge in the range of the still unsolved many-body
problems in statistical mechanics. An important subject where researchers
in this field have focused their attention is the mobility of molecules adsorbed
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6 Introduction

on the inner surface of the micropore. The physics of this phenomenon is
influenced by the nature of the guest-host interactions3 which provide the
energy landscape for the transport process, and therefore influences the apti-
tude of a guest molecule to migrate from pore to pore. Increasing the number
and type of molecules in the accessible volume deeply modifies this energy
landscape destroying or creating effective paths for molecular motion. As a
consequence geometric effects as pore size and pore shape along with con-
nectivity and tortuosity should be recognized among the factors playing a
major role.

Despite a significant experimental and theoretical research effort, many
of the diverse physical phenomena associated with diffusion in tight confine-
ment, such as heterogeneous catalysis, biological transport, percolation, and
even a dramatic change of the phase diagram,4 are still far from being under-
stood.5 This motivates the search for a further simplification of the atomistic
models of micropores, to reach a simpler description of the effective interac-
tions such that they can be easily computed and at the same time able to
capture the essential features of the real physical systems.6–9 In essence, the
diffusivity of a guest molecule will depend on the size and the shape of the
channels and cages of the internal pores, related to the size and shape of the
molecule itself. In addition, the number of the adsorbed molecules in each
of the channels and cages will deeply modify diffusion by both chemical and
steric effects.

Molecular simulations. Many properties of fluids in porous media be-
come inaccessible to experimental measurement when the pore size approaches
molecular dimensions.10 Thus, molecular simulations commonly take the role
of experiment in testing approximate theoretical models.

Recent developments in algorithms combined to the use of increasingly
faster computers are extending the realm of applicability of first principles
atomistic calculations for predicting performance and properties of micro-
porous materials.11 The starting point for any model at molecular level is
a proper description of the microstructure of the zeolite that is generally
provided by experimental crystal structure determination.12,13 Then this
collection of atoms and ions (fixed in space or moving according to a suitable
interaction potential) is linked to a description of the intermolecular forces
through which adsorbed molecules interact with the inner surface and with
each other. This is the conventional approach based on empirical potentials.

So far Monte Carlo (MC)14 and Molecular Dynamics (MD)15 techniques
are the most widely used tools in the molecular modeling of adsorption and
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1.1 The problem of confinement 7

diffusion in zeolites. MC simulations are used mainly to study the ther-
modynamics of molecules adsorbed in zeolites. Predictions of adsorption
isotherms and heats of adsorption are generally in good agreement with ex-
perimental results. The simulations also provide interesting details about
the molecular-level arrangement of the molecules within the zeolite pores.
This information has proven very useful in explaining the complex behavior
of molecules in tight confinement.16

When studying the problem of molecular confinement with a simulation
approach, a proper representation of dynamic events has the same importance
as a proper sampling of equilibrium properties, since in this context adsorp-
tion and diffusion are so tightly bounded that it’s impossible to study the
two problems separately. Anyway, while setting up a molecular simulation
one has to face the problem of selecting which method is more appropriate
to obtain meaningful data at the timescale of interest. Actually, in a molec-
ular investigation of adsorption/diffusion in microporous material the range
covered by the involved timescales is somewhat wide, going from bond vi-
brations at the femtosecond level to long-range diffusion at the microsecond
or longer timescale depending on the specific conditions at which the phe-
nomenon occurs.17 Theoretically, phenomena with the fastest motions are
studied by different methods, including first principles molecular dynamics18

and classical molecular dynamics simulations.19 These studies provide insight
into the atomistic structure and interactions with the adsorbed molecules of
the microporous framework. Other events at slower timescales, such as ionic
exchange or long-range diffusion are rarely suitable for studies with current
classical Molecular Dynamics simulations (MD) as they span scales that are
at least of an order of magnitude larger than the largest studies to date
(hundreds of nanoseconds).20

The quest for an efficient reductionistic approach. In principle, MD
simulations could investigate any classical problem at a molecular level, but
the wide range of diffusional time scales encountered by molecules in zeolites
limits the applicability of MD to processes that occur on the order of femto- to
nano-seconds.17 Even using models based on simple effective pairwise atom-
atom potentials, investigations of these phenomena are still computationally
very costly. In some cases they can turn out to be quite impossible: if
the sorption sites of the zeolite are separated by large free energy barriers
compared to thermal energies the resulting slowdown of molecular motion
could be so marked as to make not amenable to direct MD simulation using
present computer technology. Then, Transition State Theory (TST) and
related methods must be used to simulate the temperature dependence of
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8 Introduction

site-to-site jump rate constants.
Because most of the practical applications of these materials involve shape

selective catalysis and separation processes, a field where the transport prop-
erties of adsorbed molecules play a central role, a question arises: what are
the fundamental interactions that control the dependence of diffusion in mi-
croporous materials and can they be represented in a coarse-grained fashion
able to reproduce the main features of transport phenomena on very long
timescale at very long distances? Answering this question means to find out
the essence of adsorption/diffusion phenomena.

In this context, properly formulated thermodynamic models (ThM) with
very local interactions has been proved to be very useful in the description of
equilibrium thermodynamic properties of adsorption systems (see Cheung21

and Ayappa22), while providing no informations about dynamics of transfer
processes associated to adsorption. In some models, the thermodynamics of
a lattice is represented through the properties of a single, open cell treated
as a small grand-canonical system and able to host a limited number of guest
molecules. The approaches to obtain the cellular statistical properties range
from the development of a grand-canonical partition function formalism21–23

to the formulation of conditional probability distribution functions of hard
spheres.24,25 In both cases, interactions between the adsorbed molecules are
represented by a mean field potential, which can be a fixed mean interac-
tion,24,25 or a function of the occupancy of the single cell21,23 (the number
of molecules adsorbed which is a discrete, local observable) or a function
of the loading22 (average occupancy, a continuous global observable). The
strength of such models stands in their very simple way to take account of
molecular interactions by introducing local potentials in a simple parametric
form. Some models can be used to fit adsorption isotherms,22,23 some others
to fit occupancy distribution functions.21,24,25 The main drawback is that
they contain no kinetic information.

Dynamic long-time properties can be acquired through Kinetic Monte
Carlo (KMC) models, where the crystal lattice is replaced with a three-
dimensional lattice of binding sites, and migration rates from site to site are
modeled in order to reproduce the loading dependence of activated diffusion
in zeolites.7,26–31 When improved with the introduction of the correct jump
rates and transmission factors obtained from MD simulations, such models
can be coupled with TST and then become quantitatively able to reproduce
the self-diffusivity profiles of adsorbed species in zeolites.32,33 However, KMC
models are not aimed at the accurate reproduction of equilibrium properties.

Anyway, a properly weighted coupling of static thermodynamic models
and lattice kinetic models together can be thought to provide the best simul-
taneous representation of adsorption and diffusion properties.

Federico Giovanni Pazzona - Cellular Automata for the Mesoscopic Simulation of
Adsorption and Diffusion in Zeolites

Tesi di Dottorato in Scienze Chimiche - Università degli Studi di Sassari



1.1 The problem of confinement 9

Cellular Automata for confined systems. By applying methods like
ThM or KMC the main question becomes: can a simple, space-time discrete
model properly describe at the macroscopic scale the features of diffusion
in microporous materials such as zeolites? The answer should be yes if the
parameters governing the thermodynamic and kinetic behaviors are properly
set. This is because a lattice model works with a drastically reduced number
of degrees of freedom, in order to cover large scales on space and time. The
main task is then to find how to transfer the essential physical features of
molecules adsorbed inside micropores (as they are obtained from atomistic
simulations or from experiments) to the parameters defining the local prop-
erties of each cage or channel, and to use such a coarse-grained description as
a tool to perform large-scale simulations of the zeolitic material of interest.

Cellular Automata (CA)34–36 are discrete dynamical systems where space
is represented by a uniform grid with each cell containing a few bits of data,
and local and homogeneous laws allow the system to evolve in discrete time
steps of fixed duration. Due to their discreteness and the absence of trunca-
tions or approximations in their dynamics, CA evolve without being affected
by any numerical instability. Moreover, on the analogy of MD, a CA model
is an implementation of a N -body system where all correlations are taken
into account, fluctuations arise spontaneously, and due to time homogeneity
CA observables can be monitored in the same way as in MD simulations.
However it is important to note that a proper care of correlations must be
taken into account because in discrete models they may be stronger than
in the continuous counterpart.37 CA are widely used as a modeling tool in
natural science, combinatorial mathematics, computer science. With their
simple structure, they represent a natural way of studying the evolution of
large physical systems under both equilibrium and non-equilibrium condi-
tions.38,39

Construction of a reductionistic model. The structure itself of a zeolite
inspires a coarse-grained description of its internal void space:40 the channels
and cages connected to one another define a system of communicating cells
that can contain and exchange a limited number of guest molecules. Such
a reductionistic representation can be used as the starting point to set up a
mesoscopic simulation. The next step is to identify the relevant timescales.
As a first approximation, all involved timescales can be grouped into two
main regimes: intra-cell motion at short times, and inter-cell migration at
long times.41 Intra-cell motion is a source of complexity in the guest motion,
since it causes the trajectory of the diffusant to be affected by correlations
which, in turn, propagate in time thus affecting the long-time diffusivity.

Federico Giovanni Pazzona - Cellular Automata for the Mesoscopic Simulation of
Adsorption and Diffusion in Zeolites

Tesi di Dottorato in Scienze Chimiche - Università degli Studi di Sassari



10 Introduction

In fact, although one could be solely interested in modeling the long-range
diffusion, the reductionistic model would be complete only if correlations
on the intracell scale are properly taken into account. Two routes are pro-
posed: in the first one, effective transmission coefficients taking account of
the backscattering effect (in which after migration, the guest molecule re-
turns back to its departure location) are introduced as corrections to the
diffusion coefficient to reproduce the reduced long-range mobility due to cor-
relations32 (simulations in Section 6 will be discussed where this route has
been followed to model dynamic properties). In the second one, correlations
due to the intracell motion can be mimicked through a sequence of correlated
jumps of the guests inside of each cell (simulations performed following this
strategy will be discussed in Section 7). The goal of the present thesis has
been to develop a possible framework for such a coarse-grained approach.

The heart of the model. The basic ingredient in our model dynamics, al-
lowing it to effectively capture the essential phenomenology of adsorption and
diffusion of simple molecules in zeolites, is a collective migration mechanism
in which the guest molecules in the same pore compete to gain access to the
adsorption sites. Such a competition is ruled essentially by a differentiation
between the adsorption strengths of inner sites (from which is not possible
for a guest to jump outside of the host cell) and exit sites (allowing intercell
transfers), representing the guest-host interactions which play a major role in
problems of diffusion in tight confinement. A differentiation among several
types of adsorption sites, mutually differing in adsorption energy, has been
shown to be a feature of most nanoporous materials,31,42–44 giving rise to a
strong dependence of both equilibrium and transport properties on loading
and temperature.32,45–47 For example, experimental evidences48 have shown
that in NaY zeolite benzene molecules appear to occupy two types of sites,
cationic sites on the walls of the supercage and less favorable window sites
in apertures between adjacent supercages, a behavior consistent with results
from molecular dynamics simulations.49

The actual dynamic state of each cell (including its tendency to molecule
transfer) will be determined by the energies of its occupied sites, according
to a local MC sampling scheme of the allowed configuration space. In this
way one can introduce an elementary time-scale larger than the time-scale
of the slowest processes occurring in the cell, and the equilibrium properties
will depend on the value of the few parameters that completely define the
thermodynamics of the model.
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1.2 Brief history of Cellular Automata 11

1.2 Brief history of Cellular Automata

A Cellular Automaton is an idealization of a physical system in which space
and time are discrete, and the physical quantities take only a finite set of
values.

Arising from an idea of John von Neumann (who, at the end of 1940s,
was involved in the design of the first digital computer), the concept of CA
constitutes the first applicable model of massively parallel computation. The
original idea of its inventor was actually the construction of a machine able
to imitate the behavior of the human brain, in order to solve very complex
problems. In particular, von Neumann was attempting to contruct a sys-
tem able to be self-controlling, self-repairing, and self-replicating — in other
words, a form of artificial life.

The first abstraction of such an idea was a fully discrete system made
up of cells, each one characterized by an internal state represented by a
finite number of information bits and evolving in discrete time step, like
a simple automata which needs only a simple recipe to update its state
from time to time. The updating rule was a function of the states of the
neighboring cells (that is, it was local) and was the same for all cells (i.e. it
is also homogeneous). On the analogy with biological systems, all cells were
updated simultaneously, i.e. they were subjected to the same clock.

The research von Neumann carried in that direction produced a discrete
structure of cells bearing in themselves the recipe to generate identical indi-
viduals by means of a complex rule (know as von Neumann’s rule) which has
the so-called property of universal computation, i.e. the ability of the CA to
simulate any computer circuit.

Besides the use of CA formalism to study artificial life, CA have been
brought to the wide audience by the John Conway’s Game of Life,50 an eco-
logical model where a very simple evolution rule generates an unexpectedly
complex behavior, and a large number of self-organizing structures emerge
and move across space.

As they are discrete models, CA exhibit many of the behaviors encoun-
tered in continuous systems but in a much simpler framework. For that
reason they have been widely used as a tool to study the basic principles
of statistical mechanics. A remarkable (and also the first) example of such
an use of CA is given in the Stephen Wolfram’s study of self-organization
phenomena in statistical mechanics.51 In his work and in its subsequent re-
search activity (which led in 2002 to publication of his controversal book A
New Kind of Science52), Wolfram proposed and analyzed a wide variety of
CA rules generating complex behaviors in spite of their simplicity, with the
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12 Introduction

aim of demonstrating that discrete systems can be used to find abstraction
of complex structures and behaviors in nature.

One of the most remarkable properties of many CA rules (like the von
Neumann’s rule or the Conway’s Game of Life) is the already mentioned uni-
versal computation, according to which there exists an initial configuration
of the cellular automaton which leads to the solution of any computer algo-
rithm — in other words, anything that can be elaborated with algorithms
can be implemented in the context of such rules. That stimulated many
researchers to the development of artificial universes, and with this purpose
CA machines were successfully designed (by T. Toffoli and N. Margolus35)
to easily simulate the time evolution of such models.

Lattice-Gas Cellular Automata. The use of CA to model real systems
under a coarse-grained approach finds its justification in the fact that of-
ten systems with a large number of degrees of freedom exhibit macroscopic
behavior where the details of the microscopic dynamics are relatively unim-
portant. In fact the flow of a gas, a fluid or even a granular material are
very similar at a macroscopic scale: this suggests that systems with differ-
ent microscopic characteristics can produce similar macroscopic behaviors,
and that a properly designed CA microdynamics (such term indicates the
discrete-time evolution of the observables produced in each CA cell) can re-
produce a given macroscopic behavior in spite of its fully discrete nature. Of
course a discrete microdynamics cannot be realistic in the most strict sense,
but the observables it produces become statistically meaningful once they
are averaged over a sufficiently long observation time.

From that idea many automata were constructed which are made up of
particles (representing the guests) moving across nodes of a regular lattice.
CA simulations of particle-based models are often referred to as Lattice-
Gas Cellular Automata (LGCA), to distinguish them from traditional CA
as meant by, e.g., von Neumann, Conway and Wolfram — in fact, such a
distinction regards only their underlying philosophy, since from a mathemat-
ical point of view LGCA are cellular automata. A deep analysis of such
models is presented in the J.-P. Rivet and J. P. Boon’s book, Lattice Gas
Hydrodynamics.

The first example of LGCA is the lattice-gas model developed in the
1970s by Hardy, Pomeau and de Pazzis (known as the HPP model) to study
the fundamental statistical properties of a gas of interacting particles via a
simple and fully discrete dynamics of colliding, momentum-conserving parti-
cles. The discovering (in the 1980s) that the HPP model is in fact a cellular
automaton pushed researchers towards the use of CA rules to study hydro-
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1.2 Brief history of Cellular Automata 13

dynamic problems. The model proposed in 1986 by U. Frisch, B. Hasslacher
and Y. Pomeau (the FHP model53) is an example of a local discrete system
exhibiting a macroscopic behavior which (within some appropriate limits)
obeys the Navier-Stokes equation of hydrodynamics. In the FHP model
particles diffuse in a two-dimensional triangular lattice, where each node is
surrounded by six neighboring nodes and is build up of six channels: each
channel is able to host at most one particle, and connects the node to one
of the six neighbors thus imparting the guest particle a discrete velocity. At
each time step, the evolution algorithm is made up of two operations: (1) a
collision event where particles occupying the same node change their respec-
tive velocity according to some local algorithm, and (2) a streaming event
where particles move from node to node in the lattice.

Although many improvements to the original model have been imple-
mented during the years, the discrete CA approach did not surpass the tra-
ditional numerical methods of hydrodynamics, whereas it has been much
more successful in the modeling of complex situations for which traditional
computing tecniques are not applicable, like flows in porous media, immis-
cible flows ad instabilities, spreading of liquid droplets, wetting phenomena,
transport, fluid dynamics, pattern formation, reaction-diffusion processes,
nucleation-growth phenomena. An exhaustive survey of CA models as ab-
straction of physical systems can be found in the B. Chopard and M. Droz’s
book Cellular Automata Modelling of Physical Systems.36

Cellular Automata for adsorption and diffusion in zeolites. As in
zeolites the space is partitioned in connected channels and cages, the analogy
with the discrete nature of the CA space is straightforward. The statistical
agreement obtained with a real host-guest system on a certain scale, after
a proper setting of the CA constitutive parameters, often can be achieved
on several different scales. For instance, when considering the problem of
adsorption/diffusion of simple adsorbates in zeolites, connection with the
largest space-time scales is established once agreement of adsorption isotherm
and diffusivity profile has been obtained. By using a hierarchical approach,
the statistical CA realism can be further improved by attaining agreement
between experimental and emulated stationary density distributions, while
(in addition) agreement of local rates of transfer processes allows emulation to
be efficient on even smaller scales. As in any other coarse-graining framework,
the smaller are the scales one wants to recover, the more are the hierarchical
levels to be introduced in the CA structure.

In the present thesis a microdynamics will be associated to a thermody-
namic model to build up a Thermodynamic Partitioning Cellular Automaton
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14 Introduction

(ThPCA)45,54–56 able to model in the same simulation both equilibrium and
transport properties of a system of weakly interacting particles moving inside
of a regular network of cells, by incorporating both the easy-to-tune cellu-
lar statistics as made available by thermodynamic lattice models, and the
correct long-time kinetic behavior obtainable by MD and KMC.

In the definition of ThPCA:

• the word partitioning denotes an automated partitioning scheme ac-
cording to which the system evolves by alternating independent sub-
lattices; this allows an interacting probabilistic model to reach thermo-
dynamic equilibrium while evolving with a high degree of synchronicity
without introducing any extra-correlation between adjacent cells.

• the word thermodynamic emphasizes that the configuration space of
each cell is given by a purely thermodynamic model.

With its simple and flexible parametric structure, the ThPCA approach will
be exploitable in the wide range of problems connected to molecular ad-
sorption, diffusion and related processes in microporous materials. The main
input for the present model may come from data like: (i) local density depen-
dent mean-field potentials and transition probabilities obtained from atom-
istic simulations that could be used as the starting point to derive adsorption
and diffusion properties. (ii) Thermodynamic and kinetic data obtained from
experiments and/or other simulation methods, used as the starting point of
a fit procedure aimed to trace which local behaviors cause the system to
produce them, or aimed to further enlarge the scales. Tecniques will be ex-
tensively illustrated which allow to efficiently manipulate local parameters in
order to make the ThPCA able to fit very well given adsorption and diffusion
data. Besides a parametric study of the model aimed to fully understand the
response of the automaton to different input parameters, numerical results
shall be presented for real systems. After a digression in Section 1.3 about
the particular zeolite topology investigated here, in Chapter 2 the spatial
structure and the basic thermodynamics of the model shall be presented. In
Chapter 3 the evolution rule will be illustrated. Two possible schemes will
be presented: one producing an uncorrelated self-motion of the guests, and
another one (more realistic) producing a highly correlated motion. Next, in
Chapter 4 the basic macroscopic quantities (both equilibrium and transport
properties) which can be evaluated directly from the output of one ThPCA
simulation will be discussed. Chapters 5 and 6 will be devoted to the discus-
sion of numerical ThPCA simulations of systems of both non-interacting and
interacting guests in the absence of correlations, while the effect of correla-
tions introduced by the jump randomization procedure will be extensively
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1.3 The LTA framework 15

Figure 1.1: Three-dimensional schetch of one α-cage.

illustrated in Section 7.
In Appendix A a mean-field formulation of the model will be proposed

and discussed: this will provide a better comprehension of the nature of the
model. Several times in the main body of the thesis formulas shall be used
which will be derived within the illustration of the mean-field theory.

Next, in Appendix C a strategy to transfer the essential information of a
structured cell into a less-structured one is proposed.

Finally, proofs of detailed balance, sampling schemes and other mathe-
matical details will be found in the Appendixes D and E.

1.3 The LTA framework

In the present thesis a CA formalism will be developed to emulate adsorption
and diffusion of several (simple) chemical species inside a grid of cells mim-
icking the topology of Linde Type A (LTA) zeolites,12 where nearly spherical
cavities are arranged as a cubic lattice. Sizes of all chosen species are large
enough to be able to diffuse only via the α-cages (see Figure 1.1), each having
an internal cavity radius about 5.7 Å being connected to six neighboring cav-
ities by six eight-ring (i.e. eight oxygens arranged in a plane) nearly circular
windows of ∼ 4.2 Å in diameter. Such an ordered matrix can trap clusters of
molecules in its void space. Smaller cavities (called β-cages) are also present
in the sodalite units, which can be entered only through a six-ring window
which is far too small to be entered by the selected guests.

One of the most studied LTA zeolites (both experimentally and by nu-
merical simulations) is the zeolite A, with a framework Si/Al ratio of 1.0,
and a simple enough structure for all ions to be locatable. NMR studies
are present in the literature10 which have been performed by detecting small
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16 Introduction

xenon clusters trapped in zeolite NaA, where 12 Na+ ions are present in each
pseudounit cell (which has formula Al12Si12O

12−
48 ) and partly block the win-

dows, and in zeolite CaA,57 where the number of Ca2+ counterions is 6 and
no windows are blocked. Such experiments allowed to study how the effect
of confinement causes the distribution of guests inside the cavities to devi-
ate from the purely statistical distribution (the hypergeometric distribution)
derived by considering uniquely excluded volumes.24,25,58

The ZK4 is a cation-free zeolite extensively used as host in MD simula-
tions of diffusion of methane under confinement.15,41,59–66 As a result of the
absence of extra-framework cations, all windows are free for diffusion.

A convenient choice for the construction of a discrete model. There
are several reasons why such a zeolite framework has been chosen to be
mapped onto a CA. Besides the fact that the cubic symmetry simplifies the
computational handling, the very closed LTA structure causes the confined
molecules to spend a relatively long time inside of the cage, so that even a
model which totally neglects correlations in motion can capture the qualita-
tive adsorption/diffusion behavior of the guest species (this will be the topic
of Sections 5 and 6).

Secondly, a free-energy barrier centered at the windows61 allows an ideal
partitioning of an LTA unit cell into eight α-cages sharing no void space:
in terms of a discrete representation of such a framework, each cage can be
assumed to be reduced to a finite set of K adsorption sites with no sites
in common with neighboring cages, where K corresponds to the saturation
capacity of the zeolite under consideration. In the language of CA, such a
cage becomes a CA cell. Its occupancy is exactly determined by counting
how many of its sites are occupied, and the sum of the occupancies of all
cells gives the total number of guests in the system.

Moreover, adsorption and diffusion of guest species in LTA zeolites is
of interest since the loading dependence of the diffusivity in such systems
is somewhat controversal. While a direct connection between the shape of
the inverse thermodynamic factor (which will be discussed in Section 4) and
the diffusion profile vs. concentration can be assessed for a variety of guests
adsorbed in more open zeolite structures67 (e.g. faujasite-type zeolites), the
same is not true for LTA where a knowledge of the inner-cage free-energy
profile at various loadings32,68,69 is required in order to correctly interpret
the loading dependence of diffusion.

The model proposed in the present thesis provides a flexible, fully reli-
able computational framework that can be used to performing coarse-grained
simulations of adsorption and diffusion in LTA zeolites. Due to its paramet-
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1.3 The LTA framework 17

ric structure and hierarchic evolutionary scheme, it can be used as a tool
to interpret data obtained from experiments or molecular simulations. It
rests on a minimal representation of the competition mechanism the guests
are involved in while being adsorbed and accessing the windows connecting
the host cavity to the neighboring ones. Although presented as a mapping
of an LTA zeolite on a discrete parameter space, the computational scheme
developed here easily extends to other spatial arrangements, provided an
appropriate representation of the topology is given.
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Chapter 2

Lattice structure

2.1 Defining the ThPCA statistics

In this section the most essential properties of the configuration space sam-
pled by the ThPCA model space shall be illustrated.

CA are an alternative route to deal with the emulation of a physical
system under a coarse-grained approach. Due to its discrete nature, its state
space contains a large but finite number of configurations. This means that,
at least in principle, its global partition function pcan be calculated. Of
course this is a feature of discrete models in general, not an exclusive of
CA. Nevertheless, a CA can be preferred because of the local character of
interactions, which allows to factorize the global state space of the system
into easier to handle local state spaces. To clarify this point, the partition
function of a generic lattice will be compared with the partition function of a
CA with very local interactions (that is, with interactions restricted to each
single cell as in a purely thermodynamic cell model21,22).

Partition Function of a generic lattice. First of all, the system is sup-
posed to be placed in a large heat bath at temperature T , so that the diffusing
guests (which are represented as equivalent and structureless particles, hav-
ing constant kinetic energy at constant temperature) perform a random walk
in the canonical ensemble. The canonical partition function of a system of
N guests distributed in a lattice A of ν structured sites can be written as70

QA (N, ν, T ) =
∑
ηA

(N)
e−βE(ηA ), (2.1)

where β = (kBT )−1 (with kB as the Boltzmann’s constant), ηA = {ηA
1 , . . . , ηA

ν }
is a configuration of guests in the sites (ηA

i is assumed to be 0 or 1 in case
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20 Lattice structure

the i-th site to be empty or occupied by one particle, respectively) having
total energy E(ηA ). In Eq. (2.1) the compact notation has been introduced∑

ηA

(N)
=

∑
ηA
1 ,...,ηA

ν =0,1

δkr

(
ηA

1 + · · ·+ ηA
ν , N

)
, (2.2)

where δkr is a Krönecker delta restricting the sum to the configurations pre-
serving the total occupancy N . Such a notation shall be used throughout
the entire thesis for restricted sums.

ThPCA Partition Function. Now let us suppose to partition the lattice
A of ν sites into a new lattice L of M connected, equal groups (named
cells) of K sites, so that MK = ν. Cell are assumed to be distinguished one
from each other through the coordinates r of their respective center. The
state space remains the same, but now each configuration can be expressed
as

ηL =
⋃
r∈L

η(r), (2.3)

with η(r) = {η1, . . . , ηK}(r). Following the typical approach of thermody-
namic models21,22 E is replaced with the local energy function E(η) applying
to each cell configuration, so that the energy function of the total lattice L
is given by the sum of the energy functions calculated on the single cells:

E(ηL ) =
∑
r∈L

E [η(r)] . (2.4)

Due to the independence of the energy function from cell to cell, the statis-
tics of the lattice L can be computed over the cells rather than the sites.
Therefore it becomes useful to introduce the occupancy distribution a =
{a0, a1, . . . , aK} relative to each lattice configuration ηL , where a0 is the
number of cells containing no guests, a1 is the number of cells containing 1
guest, and so on. The occupancy distributions can be used to formulate the
lattice partition function as

QL (N, ν, T ) = M !
∑

a

K∏
n=0

[Q(n, K, T )]an

an!
, (2.5)

where the sum extends over all the possible occupacy distributions, and a
central role is played by the partition function of a closed n-occupied cell:

Q(n, K, T ) =
∑

η

(n)
e−βE(η). (2.6)
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2.1 Defining the ThPCA statistics 21

which under such a form does not include the degrees of freedom of each
guest molecule in each site — in Section 2.4 it will be shown that inclusion
of them causes the energy function E(η) to be replaced by the free energy
function F (η; T ).

Two important features of Q(n, K, T ) are:

i) Its hierarchical structure: each cell of the lattice contains a local lattice
of sites with its own (local) state space. In the spirit of coarse-grained
models, the level of detail in the specification of the local lattice struc-
ture may not necessarily be high.

ii) Due to the absence of guest-guest interactions residing in different cells,
the local partition function Q(n, K, T ) becomes the heart of the model.
It contains all the statistical informations about the sites it contains,
and its evaluation is much easier than the partition function of the
global system. The importance of Q(n, K, T ) in the determination of
the properties of the whole system becomes more clear in the limit
of M → ∞, where the global partition function QL depends only on
the ratio 〈n〉 = N/M (which is the average occupancy, also called the
loading) and on the temperature, and the equilibrium occupancy dis-
tribution aeq(〈n〉, T ) becomes largely the most important contribution
among all the possible distributions in the sum of Eq. (2.5), giving

lnQL (〈n〉, T )

M
≈

K∑
n=0

p(n; 〈n〉, T ) ln
Q(n, K, T )

p(n; 〈n〉, T )
, (2.7)

where p(n; 〈n〉, T ) = aeq
n (〈n〉, T )/M is the equilibrium probability of a

cell to have occupancy n when the loading is 〈n〉 and the temperature
is T .

As can be seen, the thermodynamic approach largely reduces the complexity
of the partition function in Eq. (2.1).

The strict locality of interactions allows a certain degree of synchronicity
in the update of the cells. The ThPCA evolves in time by means of an
evolution rule consisting of a combination of two kinds of operations: (i)
those involving no guest exchanges between neighboring cells, and (ii) those
which do involve such transfers. Operations of the first kind (i) can be
performed on all cells simultaneously, while operations of the second kind
(ii) can be performed simultaneously on independent group of cells called
blocks in which the lattice can be partitioned.

The modeling of Q(n, K, T ) allows a full control of the structural equi-
librium properties of the system. Such a modeling can be used, as example,
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22 Lattice structure

Figure 2.1: Different representations of a three-dimensional cell. On top a ‘string
representation’ is sketched where the sites are identified through an index j = 1, . . . ,K =
15. The exit sites (the first 6 values of j) are arranged as the sides of a cube. The inner
sites (the remaining values of j) could have a well defined structure (and then the internal
structure of the cell would be completely defined) or not (in this case the cell would be
only partially structured).

to coarse-grain a more complex system so as to gain access to wider space
and time scales. Moreover, due to the independence of the energy function
from cell to cell it is possible to calculate on the fly during simulations in
the canonical ensemble thermodynamic properties (such as the chemical po-
tential) which in general need separate simulations in the grand-canonical
ensemble to be evaluated. This will be the topic of Section 4.3.2.

2.2 Spatial structure of the lattice

The system is constituted by a periodic (hyper)cubic lattice L of M = Ld

cells (where d is the dimensionality of the system), where N guest molecules
can diffuse at constant temperature T . The ratio 〈n〉 = N/M defines the
loading of the system. For the sake of simplicity, the model shall be illustrated
in three-dimensions, d = 3. Extension to higher (or lower) dimensions is
straightforward.

The discrete coordinates of each cell shall be denoted as r, the lattice
spacing as λ (equal to the distance between the centres of two neighboring
zeolite cages), and the basis set of orthogonal unit vectors of the lattice as
ej, . . . , ed, satisfying ej+d = −ej, j = 1, . . . , d. Each cell r ∈ L communi-
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2.2 Spatial structure of the lattice 23

cates with its 2d first-neighboring cells. A superscript j on the coordinates
of a cell will indicate its first-neighbor along the direction of ej:

rj = r + λej, j = 1, . . . , 2d (2.8)

while the subscript will indicate its j-th component:

rj = r · ej, j = 1, . . . , d (2.9)

For each j = 1, . . . , d the component rj can take a discrete value of the form
aλ, with a ∈ [0, L − 1] ∈ N. The system evolves in discrete time steps of
duration τ (details shall be given in Section 3.1).

Exit sites and inner sites. Each cell is made up of a sublattice of K
sites. An exclusion principle applies such that each site can be either empty
or occupied by only one guest at the same time, therefore the sum K defines
the maximum occupancy of the cell. The first Kex sites are exit sites (allowing
intercell transfers of guests) and the next Kin = K−Kex are inner sites (not
allowing such transfers). From now on, the notation (r, j) shall indicate the
j-th site of the cell r (with j = 1, . . . , K and r ∈ L ).

In principle the internal structure of the cell could be completely speci-
fied by defining exactly a spatial arrangement of all its K sites. Using this
structured-cell approach, every site-to-site particle jump would represent one
migration event and contribute to the short-time self-diffusivity. As short-
coming, the resulting detailed model would be very specific to the particular
reference system under emulation. That is, the sites positions should corre-
spond exactly to the positions of potential energy minima in the real pore,
so that a complete re-parametrization of the entire cell structure would be
needed in order to switch the modeling to different types of pores/adsorbates.
When the arrangement of the inner sites is not specified the cell becomes
less-structured. In Figure 2.1 a comparison between a structured and a less-
structured cell is shown. The structured cell pictured in Figure 2.1 mimics
the arrangement of the potential minima found in an α-cage of a ZK4 ze-
olite63 when loaded with a number of methane molecules from 1 up to 15.
Such an idealized adsorption unit is characterized by: (i) Inner sites arranged
as a central bcc cell, and (ii) Exit sites arranged as the centers of the 6 bcc
cells neighboring to the central one.

In the present thesis the CA modeling of the reference host-guest systems
will be carried out by using the less-structured cell of Figure 2.1. In Ap-
pendix C it is shown how the essential thermodynamic properties of such a
structured cell can be transferred to a less-structured cell where the topology
of inner sites is unimportant.
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24 Lattice structure

Figure 2.2: Structure of connections in a portion of a two-dimensional system. Each
cell is sketched as a white circle (representing the set of inner sites) and four gray circles
(the exit sites). Numbers are used to identify the sites inside of each cell. Coordinates of
neighboring cells of cell r are expressed according to the notation introduced in Eq. (2.8).

Connections between neighboring cells. Let us now describe the struc-
ture of connections between adjacent cells.

(i) In each cell, say r, the j-th exit site is associated to the particular
direction of motion ej. That is, a guest in the site (r, j) is allowed to
access the window setting the connection between the cell r and the
cell rj. In case of successful jumps, the guest will travel the distance
λej to move from r to rj. In the left part of Figure 2.1 the exit sites of
a three-dimensional cell are shown. It follows that Kex = 2d.

(ii) As a consequence of (i), for each direction j = 1, . . . , d the exit site (r, j)
is the only site of r pointing towards rj, and the exit site (rj, j + d) is
the only site of rj pointing on r. Therefore, a jump from the exit site
(r, j) to the exit site (rj, j + d) is the only way a guest has to migrate
from cell r to cell rj. The structure of connections is made clear in
Figure 2.2 for a two-dimensional system.

(iii) Statements in (i) and (ii) together with the exclusion principle represent
a constraint on particle traffic: Two adjacent cells can exchange at most
one guest particle at each time step.

(iv) The exit sites topology defines the connections among cells, therefore it
must be specified apart from the level of detail in the cell structure. In
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Figure 2.3: A small portion of a three-dimensional lattice of cubically connected cells.

each cell, the inner sites arrangement may be specified or not, depend-
ing on the required level of detail. In the next Section some important
consequences of this assumption will be discussed.

2.2.1 Cells and real pores: a parallel

Besides the assumption in Eq. (2.4) of restricting inside of each cell the
guest-guest interactions, along with the coarse-grained spirit of the model
the inner sites arrangement is intentionally not fully specified. The main
task then becomes to properly set the cell energy function E(η) in order that
the model will reproduce the main thermodynamic and long-range transport
properties of some selected real host-guest systems. The low level of detail of
the ThPCA cell allows the cell partition function to be very easy to compute,
giving the model a wide flexibility.

The analogy between real pore and ThPCA cell stands on the following
points:

(i) A real pore translates directly into a ThPCA cell.

(ii) Each real pore region close to the interface with one of the neighboring
pores translates into one exit site of the ThPCA cell; if Kex is the
number of such interfaces then each cell has exactly Kex exis sites.

(iii) The real pore space not close to interfaces with neighboring pores trans-
lates into the set of inner sites of the ThPCA cell.
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26 Lattice structure

(iv) While each molecule in the real pore has always its own identity and
spatial position, in a ThPCA cell instead there is no information about
the exact locations of exit and inner sites, therefore all the guests of
each cell, say r, are assumed to have the same spatial coordinates r —
in other words, an indetermination in the position of the guests exists
which is equal to the volume of the cell, and is unimportant for the
long-time diffusion. As a consequence, only transfers from cell to cell
will contribute to the total self-diffusivity Ds while displacements of
the guests inside of each cell will not contribute. This is equivalent to
say that the inter-cell migration scale becomes the only relevant scale.

A note about the dynamics inside of each cell. While in the real pore
the configuration of the guest molecules changes in time through a sequence
of simultaneous displacements in the real space, in the ThPCA cell a new
configuration will be produced by the action of a probabilistic operator on
the current configuration. In this context, the distinction between exit and
inner sites makes the tendency of a cell to transfer particles to its neighboring
cells a strongly temperature- and occupancy-dependent property. Therefore,
just like in a real microporous system, intercell diffusion turns out to be a
temperature-activated process, with a strongly loading-dependent diffusivity.

2.3 Local and Global Occupancies

Local occupancies. Local occupancies are defined inside of each cell. The
occupancy of the j-th site of the cell r is denoted as ηj(r, t), which is 0 if empty
or 1 if occupied. Each possible set of occupancies of the K sites represents a
cell configuration,

η(r, t) = {η1, . . . , ηK}(r, t), (2.10)

which defines completely the instantaneous state of r. The occupancy of a
cell with configuration η is defined as

n(η) =
K∑

j=1

ηj. (2.11)

It shall be useful for the treatise in the next Sections to introduce the partial
configurations of exit and inner sites,

ηex = {η1, . . . , ηKex
},

ηin = {ηKex+1, . . . , ηK}, (2.12)
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and their relative partial occupancies,

nex(η) =
Kex∑
j=1

ηj, nin(η) =
K∑

j=Kex+1

ηj. (2.13)

A few words about the notation:

• Symbols with parentheses shall indicate operators. For instance, n(·)
will indicate the occupancy operator, which evaluates the occupancy
of a given configuration according to Eq. (2.11).

• If the argument of the operator (e.g. η in n(η)) is replaced by the cell
position vector r it is assumed that the operator is acting on the proper
argument evaluated at the cell r. That is, n(r) ≡ n(η(r)).

• Quantities represented through symbols without parentheses, e.g. n,
are generic observables.

• In case the quantities appearing in equations are evaluated at the same
instant of time, the time t will be kept as an implicit variable.

• A pair of neighboring cells will be indicated by enclosing the two cell
coordinates into braces, i.e. {r, rj}, where rj is given by Eq. (2.8).
Configuration and occupancy of the pair will be indicated respectively
as:

η
(
r, rj

)
=

{
η(r), η(rj)

}
, (2.14)

n
(
r, rj

)
=

{
n(r), n(rj)

}
. (2.15)

• The index α = ‘ex’, ‘in’ will designate the type of site (exit or inner,
respectively).

Global occupancies Global occupancies are defined over the whole sys-
tem L . The lattice configuration (or lattice state, denoted η(L )) is the set
of all cells’ configurations, and the lattice occupancy is the set of all cells’
occupancies:

η(L ) =
⋃
r∈L

η(r), n(L ) =
⋃
r∈L

n(r). (2.16)
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The loading and the partial (exit or inner) loadings are defined respectively
as:

〈n〉 =
1

M

∑
r∈L

n(r), 〈nα〉 =
1

M

∑
r∈L

nα(r). (2.17)

The CA simulates a random walk in the canonical ensemble, therefore the
loading 〈n〉 (as well as temperature and chemical potential) is also a global
invariant of the CA.

2.4 Site Thermodynamics

The site potential energy shall be indicated as

εα(n) = εo
α + εpp

α (n; T ), (2.18)

where the first term, εo
α ≤ 0, is the sorption energy of an α-site, and the

second term (the superscript pp stands for particle-particle (i.e., guest-guest)
interactions) is the interaction potential between a guest in a type α-site
and the remaining n − 1 guests in the cell. (It is assumed εpp

α (1; T ) = 0).
The temperature-dependence is due to the fact that εpp

α is a local, mean-
field effective interaction potential : in case it has been derived by averaging
the guest-guest interactions in a more structured cell it could depend on
the (temperature-dependent) distribution of the adsorbed particles in the
structured sites.

A mean-field effective volume vα(n; T ) is associated to each site, and as-
sumed to depend on the number of guests in the cell and on the temperature.
Ideally, the effective volume can be split into a fixed part and an occupancy-
temperature-dependent part:

vα(n; T ) = vα + δvα(n; T ), (2.19)

where vα is the effective volume of one α-site when n = 1, while vα(n; T )
(which is null for n < 2) is the modification to the space available to one
guest occupying one α-site due to the presence of other guests. The entropy
associated to the effective volume of each α-site results

sα(n; T ) = kB ln
vα

Λd
+ kB ln

[
δvα(n; T )

vα

+ 1

]
= sα(T ) + spp

α (n; T ), (2.20)

where Λ = h/
√

2πmkBT is the thermal de Broglie wavelength. In the last line
of Eq. (2.20) the entropy is splitted into non-occupancy-dependent (sα(T ))
and occupancy-dependent (spp

α (n; T )) contribution.

Federico Giovanni Pazzona - Cellular Automata for the Mesoscopic Simulation of
Adsorption and Diffusion in Zeolites

Tesi di Dottorato in Scienze Chimiche - Università degli Studi di Sassari



2.5 Cell Thermodynamics 29

The site free energy can therefore be defined as

fα(n; T ) = f o
α(T ) + φα(n; T ), (2.21)

where f o
α(T ) = εα(n)− Tsα(T ), and φα(n; T ) = εpp

α (n; T )− Tspp
α (n; T ). The

parameter f o
α plays the role of an effective guest-host free energy associated

to a site of type α, while φα(n) contains all the occupancy-dependent terms.
As long as the wall-guest interactions in microporous material determines the
most of the adsorption and diffusion properties, the site free-energies f o

ex and
f o

in play a primary role in the present model. Together with the competition
of guests for occupying the sites, the heterogeneity introduced by assigning
different values to f o

ex and f o
in represents the heart of the model since it mimics

the process in which guests in real micropores compete to gain access to the
windows. The site partition function results71

qα(n; T ) =
vα(n; T )

Λd
e−βεα(n)

= e−βfα(n). (2.22)

2.5 Cell Thermodynamics

In this Section the energy structure and partition function of a generic cell
of occupancy n shall be described. For simplicity of notation, from now
on the temperature dependence of all free energies, partition functions and
probabilities will be considered as implicit, e.g. Q(n, K, T ) will be replaced
by Q(n) and so on.

The cellular locality of interactions allows a cellular partition function to
be defined exactly, and the single cell to be statistically equivalent to a small
grand-canonical system. As it will be made clear in Section 4.3.2, this will
enable us to calculate the chemical potential on the fly during the course
of the simulation in the canonical ensemble, instead of requiring separate
simulations in the grand-canonical ensemble.

As each configuration η of guests in the cell defines a cell microstate,
together with the temperature the pair (nex, nin) defines a cell level of free
energy

F (nex, nin) =
∑

α=ex,in

nαfα(n). (2.23)

It will be useful for later purposes to formulate the free energy as a sum of a
F0 (containing no n-dependent terms) and a Φ (containing the n-dependent
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terms):

F (nex, nin) =
∑

α=ex,in

nαfα +
∑

α=ex,in

nαφα(n)

≡ F0(nex, nin) + Φ(nex, nin). (2.24)

When referred to a particular configuration, the free energy will be denoted
as F (η), where

F (η) = F (nex(η), nin(η)). (2.25)

The same notation applies also for F0 and Φ.
A generic level (nex, nin) contains a number of microstates (configurations)

equal to the degeneracy
(

Kex

nex

)(
Kin

nin

)
. Therefore the level partition function is

Qc(nex, nin) =
∏

α=ex,in

(
Kα

nα

)
[qα(n)]nα (2.26)

=

(
Kex

nex

)(
Kin

nin

)
e−βF (nex,nin). (2.27)

The cellular partition function turns out to be

Q(n) =
∑

nex,nin

(n)
Qc(nex, nin). (2.28)

The conditional probability of a level for a given occupancy results

P (nex|n) =
Qc(nex, n− nex)

Q(n)
, (2.29)

where is implicitly defined by n − nex = nin. The conditional probability of
a particular configuration η given the occupancy n is therefore

P (η|n) = δkr(n(η), n) P (nex(η)|n)

{(
Kex

nex(η)

)(
Kin

n− nex(η)

)}−1

, (2.30)

where the Krœneker delta δkr selects only the configurations compatible with
the occupancy n. (δkr(n, m) takes value 1 if n = m and 0 otherwise.)
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Chapter 3

Time evolution

Basically, the evolution rule follows the randomization-propagation approach
typical of LGCA models,34,38 i.e. at each time step:

• A randomization changes the internal configuration of each cell (treated
as a closed system) according to its present state only.

• A propagation opens every cell to its respective neighborhood allowing
guest migrations from cell to cell.

However, the details of both operations as implemented in the present model
differ from Refs.34,38 in order to (i) be consistent with the physical problem
considered here, and to (ii) take into account of local interactions.

In particular: The system evolves in time through the cyclic application
of a time-independent lattice randomization operator, denoted RL, mixing
the internal configuration of each cell while preserving its occupancy, and a
lattice propagation operator allowing guests in the exit sites to migrate to the
neighboring cells, which in the presence of local interactions (i.e. for φα(n) 6=
0 in Eq. (2.24)) is a time-dependent operator and therefore denoted as P t

L,
whereas it can be formulated as a time-independent operator (therefore being
denoted as PL) if the guests are non-interacting (i.e. for φα(n) = 0).

Cyclic application means that:

• At each time t, the configuration resulting from randomization is used
as input by the propagation;

• The output of the propagation at time t is used as input for random-
ization at time t + τ (where τ is the time step), and so on.

Both RL and P t
L are global operators, i.e. they work on the entire lattice

configuration η(L ). In Sections 3.2 and 3.3 it will be shown that they are
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constructed as compositions of the local operators R and P (both time-
independent) working respectively on one cell and one pair of neighboring
cells.

The sequential application of RL and PL on the lattice configuration at
time t produces the lattice configuration at time t + τ :

η(L , t + τ) = P t
L ◦ RL (η(L , t)) . (3.1)

In the next Section a brief digression about the time step shall be made.
After that, both operators will be extensively illustrated.

3.1 Time step

Each time step has a duration τ which can ideally be subdivided into a
randomization and a propagation time, i.e. τ = τR + τP . Ideally means that
only the entire time step τ is required to make contact with the characteristic
time of a real system simulated by the ThPCA, whereas the partial time
steps τR and τP are not associated to the time-scale of any physical process
occurring in the system.

The propagation time. In turn, the propagation time τP can be split
up into propagation substeps having the same duration τP

∗ . Since each cell
line is parallel to one particular direction of motion, as it will be described
in details in the Section 3.3, it is possible to design the lattice partitions
in such a way that the propagation on the entire lattice will be performed
by first propagating along one direction, then along another one, and so on,
until all d directions have been accounted once. Since 2 lattice partitions
are constructed for each direction of motion, there are 2d ideal propagation
substeps of duration τP

∗ = τP /2d.
Then, τ = τR + 2dτP

∗ . Such a formalism shall be very useful in the
formalization of the Block-partitioning scheme to be described in Section E.3.

Connection with a reference host-guest system. For direct coarse-
graining purposes, the time step duration is given by equating the diffusivity
of the molecular system one wants to emulate to the diffusivity of the au-
tomaton, both at infinite dilution. The resulting formula is

τ =
lim〈n〉→0 {〈δr(0) · δr(0)〉+ 2

∑∞
z=1〈δr(zτ) · δr(0)〉}

2 lim〈n〉→0

{∫ ∞
0
〈v(t) · v(0)〉dt

} , (3.2)

where 〈v(t) · v(0)〉 is the velocity-autocorrelation function of the guest in
the atomistic system, and 〈δr(t) · δr(0)〉 is the displacement autocorrelation
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3.2 Randomization operator 33

function of the automaton (both quantities will be discussed in Section 4. In
Eq. (3.2) the quantity 〈δr(zτ) · δr(0)〉 does not depend on τ but only on z).

3.2 Randomization operator

The lattice operator RL changes the internal configuration of the cells while
preserving their respective occupancies. That is, during this operation each
cell is treated as a closed canonical system. No intercell transfers are allowed.

The action of the operator RL is:

RL : η(L , t)→ η(L , t + τR) ≡ ηR(L , t). (3.3)

The operator RL uses the local operator R, which works independently
on each cell by mapping the input configuration η of the cell onto the output
configuration ηR (having the same occupancy, i.e. n(η) = n(ηR)) according
to some probabilistic algorithm. That is,

RL (η(L)) =
⋃
r∈L

R (η(r)) . (3.4)

Since only equilibrium systems are treated in the present thesis, only random-
ization schemes which satisfy detailed balance will be considered. A number
of such algorithms (i.e. ways to transform η into ηR) is possible. Two main
types of randomization shall be described: the first one, called memoryless
randomization, destroys the correlations in the motion of the guests, and the
second one instead, called jump randomization, produces time-correlations
in the dynamic properties. In Appendix E.2 the general proof of detailed
balance for the randomization operation over the whole system is given.

3.2.1 Memoryless randomization

In this case in each cell the randomization is performed by a local operator
Rpf (the superscript ‘pf’ stands for ‘partition function’, so as to emphasize
that such an operator determines the output configuration merely on the
basis of the partition function Qc), whose action is

Rpf : η → ηR with probability pR
(
η → ηR

)
(3.5)

or, in a more compact form,

Rpf : η −→
pR

ηR (3.6)
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Figure 3.1: Schematic representation of the Memoryless Randomization applied on a
two-dimensional cell. Occupied exit sites are pictured with a black dot inside, while the
number of occupied inner sites is given by the number inside of the white circle. Such a
transformation occurs with probability P (3|5), according to Eq. (3.7). The cell occupancy
(n = 5) is preserved during randomization.

where pR
(
η → ηR

)
is defined as

pR
(
η → ηR

)
= P (ηR|n(η)). (3.7)

The formulation of pR requires only the knowledge of the level and the local
partition functions given in Eqs. (2.27) and (2.28).

It should be noted that P (ηR|n(η)) does not depend from the previous
configuration except from the total number of guests, n(η), which must be
conserved during such randomization. With such a choice, Rpf causes the
complete loss of correlations between the input and the output cell config-
uration, and pushes the system towards the equilibrium state much more
strongly than through a correlated process. The resulting self-diffusivity will
only depend (linearly) on the probability of a guest to escape the host cell,
therefore it will be called memoryless diffusivity. Every time a randomization
with Rpf has to be performed on a cell, the most general procedure would
consists in the construction of a matrix [ξη,η′ ] of Boolean random variables
such that:

(i) For each configuration η there is one and only one configuration η′

such that ξη,η′ = 1.

(ii) The probability of the event ξη,η′ = 1 is given by pR(η → η′).

Then, each site occupancy of the post-randomization configuration is defined
by

ηR
i =

∑
η′

ξη,η′η
′
i. (3.8)

Of course such an approach is suitable only for small values of the maximum
occupancy K. As example, for K = 15 and n = 7 the number of available
configurations is K!/n!(K − n)! and one would have to scan a 6435 × 6435
matrix to determine the output configuration. Such a drawback does not
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exist in simulations with less-structured cells, where all the configurations of
occupancy n can be grouped into levels according to their values of nex, nin.
Then a post-randomization configuration can be generated in an efficient way
in the following way:

(i) Extract a new level (nR
ex, n−nR

ex) according to its conditional probability
P (nR

ex|n) defined in Eq. (2.29).

(ii) Re-dispose randomly nex of the n guests in the exit sites.

An example of memoryless randomization is sketched in Figure 3.1. The
above described sampling procedure would be unsuitable in structured-cell
ThPCA, where in principle it is not possible to group equally probable con-
figurations into large sets, thus the randomization becoming a very expensive
operation.

3.2.2 Jump randomization

In the present Section an alternative randomization shall be described which
is defined as a sequence of jumps, where each jumping guest preserves its
own identity. Let us call Rjump a local operator which transforms the cell
configuration η in the following way:

i) Selection of the guests in a random sequence;

ii) For each selected guest, a target site is chosen among all the K sites of
the cell.

iii) The selected guest will jump from its departure site, say j, to the target
site, say k, with probability pR

jump(η → η′) where η and η′ are the cell
configurations before and after the jump, respectively. If the transition
from η to η′ is produced due to a jump of a guest from its departure
site, j, to some destination site, say k, then the acceptance probability
is

pR
jump(η → η′) = C eβfo

j e
β


Φ(η)−max

[
Φ(η),Φ(η′)

]ff
, (3.9)

where C ∈ (0, 1] ∈ R can be set as a constant or as a function C(η, η′),
provided that C(η, η′) = C(η′, η), and Φ is the interaction free-energy
defined in Eq. (2.24).
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Figure 3.2: Schematic representation of two possible inner topologies in a two-
dimensional cell that can be specified in the Jump Randomization scheme. Connections
between sites are represented with straight lines. In (a) jumps from an exit site to different
exit sites are forbidden according to the matrix Ajk defined in Eq. (3.12), whereas in (b)
all sites can be chosen as targets independently of the departure site, according to the
matrix A′

jk defined in Eq. (3.13).

Details about the derivation of Eq. (3.9) can be found in Appendix E.1. The
jump randomization operator can then be defined as

R : η −→
p
(1)
jump

η(1) −→
p
(2)
jump

η(2) −→
p
(3)
jump

· · · −→
p
(n)
jump

η(n) (3.10)

where η(0) ≡ η and η(n) ≡ ηR, while p
(n)
jump = pR

jump(η
(j−1) → η(j)) which

follows the definition given in Eq. (3.9).
As can be seen in Eq. (3.9), the first exponential term in the probabil-

ity pR
jump is an Arrhenius-like jump probability (for the adsorption barrier),

whereas the second one is a the Metropolis acceptance rule for the cellu-
lar interactions. It is direct to obtain the non-interacting Arrhenius jump
probability from Eq. (3.9) by putting Φ = 0.

In the pure Metropolis formulation, the transition probability only takes
into account a difference in energy between initial and final configuration.
A consequence of this fact is that the ability of a guest to jump from a site
with εj � 0 to a site with the same adsorption energy, equals the acceptance
of a jump between two zero-energy sites, i.e. the barrier due to adsorption
disappears. This causes the Metropolis formulation to be unsuitable to obtain
meaningful kinetic properties. The probability defined in Eq. (3.9) instead
takes into account the presence of the adsorption barrier f o

i .
After one randomization step in a cell with Rjump, the output configu-

ration, ηR, may be equal, very similar, or totally different from the input
one depending on the particular path chosen. Therefore, since the operator
Rjump transforms η into ηR following a path while preserving the identities
of the guests, correlations are introduced in the diffusion process.

Not allowed ex-ex jumps. The correlations can be made stronger or
weaker through a proper manipulation of the prefactor C of Eq. (3.9). As
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example, the adsorption barriers can be scaled by setting C as a constant
between 0 and exp (−β max[f o

ex, f
o
in]), where the latter value would give the

full optimization of the Arrhenius adsorption barrier. That would raise the
mobility of the guest, causing correlations to be weakened. To illustrate an
example, let us introduce a site type function αi defined as

αi =

{
‘ex’ for i = 1, . . . , Kex

‘in’ for i = Kex + 1, . . . , Kin
(3.11)

Now the jumps between different exit sites can be forbidden by assuming
C = Ajk where

Ajk =

{
0 if αj = αk = ‘ex’
γ otherwise

(3.12)

with 0 < γ ≤ exp (−β max[f o
ex, f

o
in]). The structure of such inner site-to-site

connections is sketched in Figure 3.2a. With this approach, it is not possible
anymore for a guest adsorbed in an exit site to reach a different exit site
during the same randomization event. At least two randomizations are then
required for a guest to perform such a displacement. This will considerably
slow down the diffusion process.

Allowed ex-ex jumps. If instead one assumes C = A′
jk where

A′
jk = γ for any j, k (3.13)

then each guest can choose any of the K cell sites to jump in. Such a situation
is sketched in Figure 3.2b. Of course the mobility of guests undergoing
randomization with A′

jk will be higher than Ajk, giving a slightly higher
diffusivity. More important, during one randomization step, due to the less
constrained dynamics arising from the use of A′

jk the configuration of guests
in the cell will in general change more than the case of Ajk, thus producing
weaker correlations. Examples will be given in Section 7.1.

Moreover by choosing γ < 1 not only the entire diffusion process slows
down, but also correlations increase due to the backscattering of guests during
propagation: for example when during propagation a guest migrates from an
exit site of a cell, say r1, to the adjacent exit site of the neighboring cell,
say r2, due to the low value of pR

jump the probability of the guest to come
back to cell r1 at the next propagation step is very high. The correlations
introduced by Rjump mimic the memory effects caused by the backscattering
phenomenon occurring in real zeolites.32,63
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The uncorrelated limit for randomization. The correlated random-
ization converges to the uncorrelated one when at each time step each cell
undergoes a large number of jump randomizations, that is

lim
z→∞

[
Rjump

]z
(η) = Rpf(η) (3.14)

Along with this criterion, a finer tuning of correlations can be accomplished
by introducing a dependence of the number of cell randomizations at each
time step and the value of γ on the cell occupancy.

The introduction of backscattering correlations in the self-motion by
means of the jump randomization operator Rjump causes the value of Ds

obtained from numerical simulations to strongly deviate from the value ob-
tained by using the memoryless randomization. In Section 7 such correlation
effects will be studied by means of numerical simulations under different con-
ditions, while in Appendix A.2 the autocorrelation function 〈δr(zτ) · δr(0)〉
(embedding the backscattering effects) will be analyzed under a mean-field
approach to trace back to the dependence of correlations on the main macro-
scopic observables.

3.3 Local propagation operator

The propagation operator P applies on independent pairs of cells. It al-
lows the two communicating exit sites to exchange one guest according to a
propagation probability satisfying detailed balance.

Let us consider a pair of adjacent cells r and rj. They communicate
through the respective exit sites (r, j) and (rj, j + d). If only one of these
sites is occupied, then the occupying guest can try to migrate to the other
site. In case of successful jump, the local observables nex(·), n(·) would be
transformed into nP

ex(·), nP (·) given by:

nP
ex(r) = nex(r)− ηj(r) + ηj+d(r

j),

nP
ex(r

j) = nex(r
j)− ηj+d(r

j) + ηj(r),

nP (r) = nP
ex(r) + nin(r),

nP (rj) = nP
ex(r

j) + nin(r
j). (3.15)

The nin(·)s would remain unchanged, that is

nP
in(r) = nin(r),

nP
in(r

j) = nin(r
j). (3.16)
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Figure 3.3: Schematic representation of the propagation operation between two com-
municating two-dimensional cells. Such a transformation is expected to happen with
probability pP given in Eq. (3.22).

The individual output configurations in case of successful jump shall be de-
noted ηP (r) and ηP (rj) (according to Eq. (2.14). The abbreviate notation
ηP (r, rj) will indicate the simultaneous pair of configurations, i.e. ηP (r, rj) =
ηP (r) ∪ ηP (rj). They are equivalent to the input configurations except for
the fact that the occupancies of the communicating exit sites are swapped,
that is

P :

{
ηj(r)
ηj+d(r

j)
→

{
ηP

j (r) = ηj+d(r
j)

ηP
j+d(r

j) = ηj(r)
with probability

pP
(
η(r, rj)→ ηP (r, rj)

)
. (3.17)

With the above definition of P , the post-propagation configuration of a pair
of neighboring cells reads

ηP (r, rj) = P
(
η(r, rj)

)
. (3.18)

The propagation probability. To complete the construction of the local
propagation operator P , it is required to formulate the propagation proba-
bility pP . As for the randomization case, this can be done by making use of
local partition functions: When the propagation operator acts on a pair of
cells there are only two possible output configurations of the pair: that is,
(1) the input configuration itself, with weight

q(r, rj) =
∏

ρ=r,rj

∏
α=ex,in

[
qα

(
n(ρ)

)]nα(ρ)

, (3.19)

and (2) the new one obtainable by swapping the occupancies of the two
communicating exit sites having weight

qP (r, rj) =
∏

ρ=r,rj

∏
α=ex,in

[
qα

(
nP (ρ)

)]nP
α (ρ)

, (3.20)
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where the nP (ρ) values are given in Eq. (3.15). Since inside of the cells
permutations of guests are not allowed during propagation, the level degen-
eracies

(
Kα

nα(ρ)

)
and

(
Kα

nP
α (ρ)

)
are not included in the products in Eqs. (3.19)

and (3.20).

Now the propagation probability can be defined as

pP (r, rj) =
qP (r, rj)

q(r, rj) + qP (r, rj)
e−βεki(r,r

j)δ(r, rj) (3.21)

=
e−βεki(r,r

j)

1 + eβ∆F (r,rj)
δ(r, rj), (3.22)

where the quantity ∆F (r, rj) introduced in Eq. (3.22) is the difference be-
tween the free energy after and before the successful jump, given by

∆F (r, rj) =
∑

ρ=r,rj

[
Φ

(
ηP (ρ)

)
− Φ (η(ρ))

]
, (3.23)

and the exclusion term δ(r, rj) is defined as

δ(r, rj) = ηj(r)
[
1− ηj+d(r

j)
]
+ ηj+d(r

j) [1− ηj(r)] , (3.24)

or, equivalently,

δ(r, rj) =

{
1, if ηj(r) + ηj+d(r

j) = 1
0, otherwise

(3.25)

Before to proceed with the description of the kinetic barrier εki(r, r
j) (see

Section 3.3.1) the general strategy for simulating a propagation event will
be illustrated. Formally, a propagation between two communicating cells r
and rj is performed by picking a random Boolean ζ such that ζ = 1 with
probability pP given in Eq. (3.22). Then, the post-propagation occupancies
of the two communicating exit sites are determined through the following
relations:

ηP
j (r) = ηj(r) +

[
ηj+d(r

j)− ηj(r)
]
ζ(r, rj), (3.26)

ηP
j+d(r

j) = ηj+d(r
j) +

[
ηj(r)− ηj+d(r

j)
]
ζ(r, rj). (3.27)

It should be noted that all quantities defined here depend only on the local
configurations and the temperature, not on the space (the ‘space notation’ r
is used only for simplicity).

Federico Giovanni Pazzona - Cellular Automata for the Mesoscopic Simulation of
Adsorption and Diffusion in Zeolites

Tesi di Dottorato in Scienze Chimiche - Università degli Studi di Sassari



3.3 Local propagation operator 41

εth+εki

εth

0
χ0

E(x)

x

E(x, r) = 0.5 k(n – 1) x2 + εth

E(x, rj) = 0.5 k(m) (x – χ)2 + εth

Figure 3.4: The intercell kinetic barrier between the cell r (with occupancy n) and the
cell r (with occupancy m).

3.3.1 Thermodynamic and kinetic barriers

Eq. (3.22) can be rearranged as

pP (r, rj) = δ(r, rj)e−βεth(r,rj)e−βεki(r,r
j) (3.28)

in order to highlight the thermodynamic barrier εth(r, r
j) = kBT ln(1 +

eβ∆F (r,rj)).
The kinetic barrier εki(r, r

j) ≥ 0 adds up to the thermodynamic barrier
in the migration process. It may be set up to be constant, or dependent
on some local observables with the detailed balance constraint that εki must
remain unchanged while reversing the propagation process. A suitable choice
is to model εki as a function of the occupancies of departure and target cells,
i.e. εki(n, m), defined for n = 1, . . . , K and m = 0, . . . , K−1, where n = n(r)
and m = n(rj), provided

εki(n, m) = εki(m + 1, n− 1). (3.29)

Anyway, in order to model the local kinetic barrier with such an approach,
one should manage a K×K matrix. The number of parameters to model can
be reduced if one observes that the detailed balance is automatically satisfied
if εki is formulated as a function of some invariant (local) observables which
does not change during propagation. A trivial example of such an observable
would be the sum of the occupancies of the cells involved in the propagation
operation, i.e. εki = εki(n + m), which reduces the K × K matrix into a
2K-array.

Another way would be to picture the propagation event as a process in-
volving three local configurations denoted I (initial configuration), II (tran-
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sition configuration), and III (target configuration):

nJ =
{
nJ(r), n∗J(r, r

j), nJ(r
j)

}
(3.30)

where J= I, II, III, and:

• nJ(r) is the occupancy of the cell r for the configuration J;

• n∗J(r, r
j) is the occupancy of the transition state for the configuration

J, that is it has value 1 if, according to configuration J, one guest is on
the top of the barrier between the cells r and rj, and 0 otherwise;

• nJ(r
j) is the occupancy of the cell rj for the configuration J.

For the event of jump of one guest from r to rj, one has:

nI(r) = n, n∗I (r, r
j) = 0, nI(r

j) = m
nII(r) = n− 1, n∗II(r, r

j) = 1, nII(r
j) = m

nIII(r) = n− 1, n∗III(r, r
j) = 0, nIII(r

j) = m + 1

The final configuration will be III or I if the jump is successful or not, re-
spectively. The reverse propagation process would be

nI(r
j) = m + 1, n∗I (r, r

j) = 0, nI(r) = n− 1
nII(r

j) = m, n∗II(r, r
j) = 1, nII(r) = n− 1

nIII(r
j) = m, n∗III(r, r

j) = 0, nIII(r) = n

As can be seen the transition configuration is the same in both the forward
and the reverse process. If it is assumed that the two neighboring cells
will contribute to the kinetic barrier with two harmonics related to their
respective occupancies in the transition configuration, that is

E(x, r) = 1
2
k(n− 1)x2

E(x, rj) = 1
2
k(m)(x− χ)2,

(3.31)

then the energy εki(n, m) will be given by the intersection between E(x, r)
and E(x, rj) for 0 ≤ x ≤ χ. In Eq. (3.31) the parameters k(n− 1) and k(m)
are force constant, while the variable x and the parameter χ are ‘distances’
in configuration space. In particular, χ can be related to the distance be-
tween the centers of two cells or alternatively be treated simply as another
adjustable parameter which has the effect to raise or decrease all the kinetic
barriers. With such a strategy the K ×K kinetic barriers can be set up in a
very simplified form through the modeling of the K-vector {k(n)}n=0,...,K−1

(plus χ if it is used as a free parameter). The construction of the kinetic
barrier among two cells is schematized in Figure 3.4.
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Figure 3.5: Lattice partitions switching during the time evolution of the system in
the case of non-interacting guests. (a) Randomization subset (that is valid also for the
interacting case), and (b) Propagation subset.

3.4 Global propagation operator

The global propagation operator extends the local propagation operation to
the entire lattice. It can be fully synchronous (i.e. acting synchronously on
all pairs of neighboring cells) or block synchronous (i.e. acting on alternating,
independent partitions of the whole set of neighboring pairs), depending on
whether the guest-guest interactions are absent, or present, respectively.

3.4.1 Non-interacting case

If the local interaction term in Eq. (2.24) φα(n) is null for all values of n and
the kinetic intercell barrier εki introduced in Eq. (3.29) is constant, then the
guests are non-interacting, and the local propagation probability reads

pP (r, rj) =
1

2
e−βεkiδ(r, rj). (3.32)

When the kinetic barrier εki is fixed, the exponential term is indicated as κo:

κo = e−βεki . (3.33)

Since the only time-dependent variable in Eq. (3.32) is δ(r, rj), which depends
on the occupancy of the two adjacent exit sites (i.e. ηj(r) and ηj+d(r

j)), then
the non-interacting propagation operator can be applied synchronously on
all the pairs of adjacent exit sites in the whole lattice. Therefore the global
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propagation operator for the non-interacting case can be written as

Pni
L (ηL ) =

d⋃
j=1

⋃
r∈L

P
(
η(r, rj)

)
(3.34)

As a result, the whole automaton evolves in time by alternating two lattice
partitions: the first one is the set of all cells, each taken as a closed system
(see Figure 3.5a); the second one is the set of all pairs of adjacent exit sites.

3.4.2 Interacting case: partitioning scheme

If the interaction term φα(n) is nonzero, then it is no longer possible to ap-
ply the above defined propagation synchronously on all pairs of cells. This
is because of the dependence of the interaction contribution φα(n) on the
occupancy of the other exit sites of the same cell (since n = nex + nin). A
partitioning scheme is needed to make the model able to perform a prop-
agation without losing the synchronicity of the updates. Such a scheme
is possible under the Block Cellular Automata (BCA) approach introduced
by Toffoli and Margolus,35,72 originally designed to construct reversible CA
and/or conserve selected physical quantities during each local operation. The
grid is subdivided into different partitions of non-overlapping blocks. The key
idea is that, due to the locality of the evolution laws, all blocks belonging to
the same partition can undergo the propagation synchronously. Then, the
partitions are switched in a random sequence in order each cell to communi-
cate with all its 6 neighbors at each time step without introducing memory
effects.

The need of a partitioning scheme. As mentioned in the introduction
of the present Section 3.4, an operation on the lattice is fully synchronous
when it can be applied simultaneously on all the cells r ∈ L . The random-
ization operation (described in Section 3.2) represents an example of fully
synchronous operation.

Although strictly local at the cellular level, the ThPCA interactions intro-
duced in Sections 2.4 and 2.5 do not allow all the exit sites to be independent
one of each other: indeed, guests located in exit sites of the same cell will
interact, so that every change in occupancy caused by gain or loss of guests in
the exit sites due to the local propagation along some direction will cause the
energy of the whole cell to change. Now, since the instantaneous cell energy
enters the propagation probability formulation in Eq. (3.22), the propagation
probabilities centered on a generic cell r, that is pP (r, r1), . . . , pP (r, r2d), will
have different values depending on which sequence the 2d pairs are invoked
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for propagation. For this reason the propagation cannot be fully synchronous
in the presence of interactions.

Nevertheless, the entire lattice L can be partitioned into independent
sublattices (called partitions) of non-overlapping groups of communicating
cells (called blocks), so that the propagation can be performed simultane-
ously on all the blocks of each sublattice. Such an operation is said to be
block-synchronous. Therefore, with the opportune partitioning scheme also
non-synchronous operations (provided they are local) on the lattice can be
performed with a certain degree of synchronicity. Along with the previous
statements, a BCA can be defined as a CA containing one or more block-
synchronous operations.

The Margolus approach. In BCA models, detailed balance of the local
map within each partition translates directly into detailed balance of the
whole automaton. Before to illustrate in details the partitioning scheme
adopted in the present model, the procedure of construction of a generic
BCA will be summarized following Toffoli and Margolus:35,72

• The array of cells is partitioned into a collection of finite, disjoint and
uniformly arranged pieces called blocks.

• A block rule is given that looks at the contents of a block and updates
the whole block (rather than a single cell as in an ordinary cellular
automaton). The same rule is applied to every block. Since blocks do
not overlap, no information is exchanged between adjacent blocks.

• After a partition of blocks has been updated, the partition is switched
so as to have some overlap between the blocks of the new partition and
the blocks of the old one. A time step is completed when all cells have
exchanged information one time with each of their neighbors.

Following this general scheme, various partitioning strategies can be de-
signed ad hoc to optimize CA operations on different systems. The crucial
point is to choose the smallest of all possible independent block of cells, in
order to maximize the number of synchronous operations.

In the ThPCA,

(one block) ≡ (one pair of adjacent cells).

In three dimensions, the host system is a cube of L3 cells (where L is the
side of the cube, properly chosen as an even number). For each direction
x, y and z there are L2 cell lines spanning the cube from one side perpen-
dicularly to the opposite side. Including periodic boundary conditions, two

Federico Giovanni Pazzona - Cellular Automata for the Mesoscopic Simulation of
Adsorption and Diffusion in Zeolites

Tesi di Dottorato in Scienze Chimiche - Università degli Studi di Sassari
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alternating partitions are therefore possible for each line, each consisting of
L/2 non-overlapping pairs of adjacent cells. Then at each propagation step
the partitions are constructed as follows: (i) a sequence of the three direc-
tions x, y and z is randomly chosen, and (ii) for each direction, the sequence
of the two partitions is randomly chosen for each cell line.

In Appendix E.3 the partitioning scheme is described in details, while in
Appendix E.4 the proof of detailed balance for the propagation operation on
the whole system is given.
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Figure 3.6: A two-dimensional schematic picture of the block partitions adopted in
the ThPCA to perform the propagation operation in the presence of intracell interactions.
Periodic boundary conditions are included. (a) The two possible partitions of a line of cells
going from one side of the lattice to the opposite one. (b) Two possible complementary
partitions of a plane of cells into blocks, as arising from the random choice of the sequence
of partitions of each line. The partitioning scheme into blocks allows to update all blocks
in each partition independently of each other while keeping detailed balance preserved in
the presence of interactions. (c,d) The partitioning scheme under the point of view of a
single cell in two dimensions: first of all, a random choice determines whether the cell will
try to exchange guests first in the x (c) or in the y (d) direction; then for each direction a
random choice will establish the updating sequence into each direction (that is, whether
to update first the left or the right direction in the x case, and first the up or the down
direction in the y case.)
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Chapter 4

Equilibrium and transport
properties

Actually, sorption and diffusion in zeolites are closely related: adsorption
strongly affects diffusion and vice-versa.67 A simultaneous understanding of
both phenomena is needed to formulate models which can be useful to the
interpretation of experimental results, and to properly design zeolite-based
separation and/or catalytic processes. In the present Chapter the main equi-
librium and transport properties that can be evaluated directly from nu-
merical simulations of the ThPCA shall be introduced. The equilibrium
properties of major interest are the probability distribution of occupancies
(since from that it is possible to compute a number of very relevant thermo-
dynamic quantities, like the reduced variance), and the chemical potential.
Then, the following transport properties shall be discussed: diffusion coef-
ficients, and local density fluctuation, where ‘local density’ here stands for
‘cell occupancy’.

4.1 Probability distribution of occupancies

A fluid adsorbed in a zeolite shows a spatially varying density. This is the key
to characterize intracrystalline mass transport and adsorption. In order to
develop the thermodynamics of this strongly inhomogeneous fluid, a theory
to predict how the sorbed particles distribute themselves into the inner void
space that make up the zeolitic host is needed. This probability distribution
of guests over independent subvolumes73 is a quantity that can be related
to different interesting information about the system.21 In a comprehensive
theory, factors like the finite size of the guests (which gives rise to the ex-
cluded volume effects) and the interaction forces between the guests and the
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zeolitic host must be taken into account. Furthermore, at this molecular level
of resolution, averaged properties and fluctuations turn out to be intimately
related and equally important. In this field Xenon-129 NMR spectroscopy
has been used under a variety of experimental conditions as a versatile tool
to directly measure the fluctuations and the spatial correlations typical of
guest particles in confined systems.74,75 It has been possible to determine
many different features of molecular dispersion within zeolite cavities and
it has been noted that care must be taken in assuming a specific type of
distribution.

The probability distribution of guest molecules plays a central role among
all the ThPCA equilibrium properties, since from that one is possible to com-
pute a wide variety of thermodynamic quantities, such as e.g. the chemical
potential. The distribution of the adsorbate in the lattice has been studied
in terms of the probability finding exactly n guests within a cell, which can
be easily averaged from a numerical N -constant simulation in the long-time
limit. Such a distribution shall be denoted as

pN = {pN(n), n = 0, . . . , K} , (4.1)

where the subscript N emphasizes that such a distribution has been calcu-
lated from an N -constant simulation. This is done in order to distinguish
pN from the theoretical (mean-field) occupancy distribution p (which will be
introduced in Section A) derived from a grand-canonical formalism.

4.2 Reduced variance

A remarkable (static) equilibrium property is the reduced variance, that is
the ratio between the variance of the occupancy probability distribution and
the loading. That can be interpreted as a measure of the the thermodynamic
tendency of a cell to accept a new guest.41 It is related to the isothermal
compressibility, κV = −V −1(∂V/∂p)N,T , according to70

〈n2〉 − 〈n〉2

〈n〉
=
〈n〉kBTκV

V
, (4.2)

where V is the volume of one cavity. This point deserves some comments.
Indeed, it is appropriate to remember that a real zeolitic framework allows
the adsorbed molecules to move in a potential field of varying magnitude and
sign. The molecules are localized by the repulsive part of this potential field,
and the extent of this localization depends on the temperature and other ther-
modynamic variables. There is, therefore, no exactly defined volume, and a
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strict statistical mechanical connection between the reduced variance and a
local isothermal compressibility related to the occupancy fluctuations in the
cavity would be desirable but, unfortunately, difficult to assess rigorously.
Anyway, the reduced variance gives a rough estimate of a local microscopic
compressibility that acts as a suitable order parameter to describe the tran-
sition to an even more decreasing mobility regime. As it will be made clear
in Section 4.4.3, such a quantity is exactly the reciprocal of the thermody-
namic factor (usually denoted Γ) connecting the collective diffusivity with
the Fickian diffusivity.40 It can be evaluated directly from the knowledge of
pN(n), the j-th moment of which follows the standard definition

〈nj〉 =
K∑

n=0

njpN(n). (4.3)

4.3 Evaluation of chemical potential

The locality of the ThPCA interactions allows to easily evaluate the chemical
potential, µ, from a N -constant simulation. An adsorption isotherm, that is
the plot of µ vs. the loading 〈n〉 (or the inverse plot), is a valuable source
of information with regard to the peculiar features of a host-guest system,
since it describes quantitatively the amount of gas adsorbed by a porous
material at a fixed temperature as a function of fugacity f (the notation f
for the fugacity will have has no superscript nor arguments, in order to avoid
any confusion with the free energies f o

α and fα(n)), which is related to the
chemical potential through

µ = µo + β−1 ln f, (4.4)

where µo is the standard chemical potential of the guest. As in microporous
materials the filling of micropores is ruled by the stronger interactions be-
tween the adsorbate molecules and the pore walls, the shape of an isotherm
can be exploited to extract information about these forces. Connection at
the macroscopic scale between the ThPCA and a reference host-guest sys-
tem one wants to emulate lays on agreement between the reference adsorption
isotherm and theone produced by the ThPCA parameterization. Two strate-
gies can be used to evaluate the chemical potential in the present model. The
first one, which will be illustrated in Section 4.3.1, is valid only if guest-guest
interactions are null, and requires the knowledge of the equilibrium values of
the total number of filled exit and inner sites. With a more general strat-
egy (see Section 4.3.2) one can exploit the cellular locality of interactions to
evaluate the chemical potential as a function of the set of canonical partition
functions of a closed cell, and of the occupancy probability distribution, pN .
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4.3.1 Non-interacting case

In the absence of guest-guest interactions, the system can be subdivided into
two ideal subsystem: (i) the subsystem of exit sites, and (ii) the subsystem
of inner sites. According to fluctuation theory,70 the canonical partition
function of each subsystem can be written as

Qα(N eq
α ) =

(
Mα

N eq
α

)
exp (−βN eq

α f o
α) , (4.5)

where α = ex, in respectively for the subsystem of exit and inner sites. There-
fore Mα = MKα is the total number of α-type sites, in the lattice, while N eq

α

shall indicate the number of occupied sites of the α-subsystem when the
entire system is at equilibrium. The free energy can be computed of the
α-subsystem through

Fα(N eq
α ) = −kBT ln Qα(N eq

α ), (4.6)

and the chemical potential through

µα(N eq
α ) =

∂Fα(N eq
α )

∂N eq
α

. (4.7)

Using Stirling’s approximation for large systems and noting that ρα = N eq
α /Mα

is the fraction of occupied sites in the α subsystems, one obtains

Fα(N eq
α ) = kBTMα

[
ραf o

α

kBT
+ ρα ln ρα + (1− ρα) ln(1− ρα)

]
(4.8)

for the free energy and

µα(N eq
α ) = f o

α + kBT ln

(
ρα

1− ρα

)
(4.9)

for the chemical potential. Since the N eq
α are equilibrium values, the relation

µex(N
eq
ex ) = µin(N

eq
in ) (4.10)

is satisfied. From Eq. (4.9) the equilibrium condition (4.10) implies

ρex(1− ρin)

ρin(1− ρex)
= exp

(
−∆f o

kBT

)
, (4.11)

where ∆f o = f o
ex − f o

in. Therefore, evaluating the chemical potential is pos-
sible from the knowledge of ρex and ρin and using Eq. (4.9).
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4.3 Evaluation of chemical potential 53

-60

-50

-40

-30

-20

 0  1  2  3  4  5  6  7  8

µ 
/(

 k
J 

m
ol

−1
)

〈n〉

〈 µ 〉
〈 µ 〉 ins
〈 µ 〉del
µGC

Figure 4.1: Modeled chemical potential (units of kJ mol−1) for adsorption of xenon
in NaA zeolite at 300 K.56 Average chemical potentials extracted from numerical simula-
tions are plotted together with the chemical potential expected from the grand-canonical
formulation of the single cell (see Section A.1), indicated as µGC.

4.3.2 Interacting case

In this case the approach illustrated in Section 4.3.1 cannot be used since, due
to the presence of guest-guest interactions, the energy of exit and inner sites
are no longer independent. Formally, the chemical potential of a ThPCA
obeying to Eq. (A.1) can be evaluated through the insertion formula

e−βµ =
Q(n + 1)

Q(n)

p(n)

p(n + 1)
, n = 0, . . . , K − 1 (4.12)

or, equivalently through the deletion formula

e−βµ =
Q(n)

Q(n− 1)

p(n− 1)

p(n)
, n = 1, . . . , K (4.13)

where the partition function Q is calculated as described in Section 2.5,
and the distribution p is exact (e.g. as derived from the mean-field relation
in Eq. (A.1)). That makes the two equations (4.12) and (4.13) perfectly
equivalent. However, if instead the output of a (long but finite) N -constant
simulation is used to compute the occupancy distribution pN , then due to
numerical error pN ≈ p and not only the chemical potential estimations
calculated through Eqs. (4.12) and (4.13) will be different, but also both
formulas will return different values depending on the occupancy n. Although
the difference is small for a sufficiently long simulation of a large system
(e.g. 105 time steps for a 16× 16× 16 system), a proper criterion is needed
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to obtain one average value of chemical potential. By averaging Eq. (4.12)
over all allowed occupancies one obtains

〈
e−βµ

〉
ins

=
K∑

n=1

Q(n)

Q(n− 1)
pN(n− 1), (4.14)

where ‘ins’ stands for an hypothetical ‘insertion’ move, while the expression
resulting from averaging of Eq. (4.13) is

〈
e−βµ

〉
del

=
K−1∑
n=0

Q(n + 1)

Q(n)

p2
N(n)

pN(n + 1)
, (4.15)

where ‘del’ stands for ’deletion’. The average chemical potential estima-
tions related with Eqs. (4.14) and (4.14) are 〈µ〉ins = −β−1 ln〈e−βµ〉ins and
〈µ〉del = −β−1 ln〈e−βµ〉del. Both formulas will produce the correct chemical
potential for intermediate loadings. For small loadings instead Eq. (4.15) be-
comes unappropriate since empty cells (allowing no deletion moves) become
frequent, whereas for high loadings the probability of saturated cells (allow-
ing no insertion moves) increases making Eq. (4.14) inadequate. Therefore
the proper choice is

〈
e−βµ

〉
=

K∑
n=1

n

K

Q(n)

Q(n− 1)
pN(n− 1) +

K−1∑
n=0

(
1− n

K

) Q(n + 1)

Q(n)

p2
N(n)

pN(n + 1)
,

(4.16)

giving the average chemical potential 〈µ〉 = −β−1 ln〈e−βµ〉, which embeds
weighted insertion and deletion together. The prefactors n

K
and (1 − n

K
)

take account of the fact that a less occupied cell would preferably undergo a
deletion rather than an insertion, and viceversa for a more occupied cell. For
example, in an hypothetical deletion mechanism a site would be randomly
picked so that the probability of the deletion move to be performed would be
n
K

. Likewise, in an hypothetical insertion move the probability to randomly
pick an empty site to put one additional guest in would be (1− n

K
).

A result which will be extensively discussed in Chapter 6 is anticipated
here in order to show the difference among Eqs. (4.14), (4.15), and (4.16): in
Figure 4.1 the chemical potential from ThPCA simulations of a system em-
ulating the equilibrium properties of xenon adsorption in NaA zeolite taken
from measurements by Jameson et al.76,77 is shown as derived by using
Eqs. (4.14), (4.15), and (4.16), and compared with the mean-field value (ob-
tained from Eq. (A.1) which will be introduced in Appendix A).
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4.4 Diffusion coefficients

In numerical simulations of the ThPCA, diffusion coefficients which are of
most common interest in the study of the intercell migration in microporous
systems have been evaluated. They are: (i) the self diffusivity, related to
the motion of a tagged guest particle in the system; (ii) the collective (or
Maxwell-Stefan) diffusivity, related to the motion of the center-of-mass of
the diffusing species,31 and (iii) the chemical (or Fick) diffusivity, which
measures the transport of mass and the decay of density fluctuations in the
system. The latter two coefficients are related one to each other by means of
a purely thermodynamic factor.

4.4.1 Self-diffusion coefficient

The self diffusion coefficient measures the diffusive motion of a single guest.
For a continuous system, it reads

Ds =
1

2d
lim
t→∞

d

dt

〈
[rI(t)− rI(0)]2

〉
, (4.17)

where rI(t) is the position of the I-th tagged guest at time t, and d is the di-
mensionality of the system. The Green-Kubo relation links the self-diffusivity
with the velocity autocorrelation function (VACF) according to:

Ds =
1

d

∫ ∞

0

〈vI(t) · vI(0)〉dt, (4.18)

where vI(t) indicates the instantaneous velocity of the I-th guest molecule
at time t. It will result that, for a discrete system Eq. (4.17) is still valid
(i.e. the long-time slope of the mean-square displacement is still 2d times the
self-diffusivity) while the discrete counterpart of the Green-Kubo relation will
appear slightly different from Eq. (4.18). In order to define the trajectory
of a guest in the discrete space of the automaton, it will be very useful to
introduce the instantaneous cell-to-cell displacement of a single guest:

δrI(t) = λ
2d∑

j=1

ϕIj(t)ej, (4.19)

where ϕI(t) = {ϕIj(t)}j=1,...,2d is a boolean vector satisfying the following
property:

ϕIj(t) = 1, 0 whether the guest I undergoes or not propagation from
its current cell, say r, to its j-th neighboring cell, i.e. rj, at time t.
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Its total displacement at time t (i.e. after Z = t/τ time steps) is given by

∆rI(t) =
Z−1∑
z=0

δrI(zτ), (4.20)

and its mean square displacement is given by

〈 [∆rI(t)]
2〉 =

〈
Z−1∑
z=0

Z−1∑
z′=0

δrI(zτ) · δrI(z
′τ)

〉
, (4.21)

where z, z′ denote time steps. By expanding the sum in Eq. (4.21) and
using the Einstein relation for the self-diffusivity, which for a discrete-time
evolution reads

Ds =
1

2d
lim
t→∞

〈 [∆rI(t + τ)]2〉 − 〈 [∆rI(t)]
2〉

τ
, (4.22)

one obtains the self-diffusion coefficient for the ThPCA:

Ds =
1

2dτ

[
〈δrI(0) · δrI(0)〉+ 2

∞∑
z=1

〈δrI(zτ) · δrI(0)〉

]
, (4.23)

where the contribution at equal times has been separated from the corre-
lations between different times. The quantity 〈δr(t) · δr(0)〉 in Eq. (4.23),
termed displacement autocorrelation function (DACF), is used as the dis-
crete conterpart of the continuous VACF. The DACF is extremely important
in the present model since the entity of correlations in the self-motion caused
by the jump randomization changes remarkably the shape of 〈δr(t) · δr(0)〉
vs. t.

4.4.2 Collective diffusion coefficient

The collective diffusivity for a continuous system is defined as

Dc =
1

2d
lim
t→∞

d

dt

〈{
N∑

I=1

[rI(t)− rI(0)]

}2〉
, (4.24)

and the related Green-Kubo formula reads

Dc =
1

Nd

∫ ∞

0

〈[
N∑

I=1

vI(t) ·
N∑

I=1

vI(0)

]〉
dt, (4.25)
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where by expanding the sums the velocity crossed-correlation function (VCCF),
〈vI(t) ·vJ(0)〉 plays the same role the VACF played in Eq. (4.18) for the self-
diffusivity. Also in that case it is possible to formulate the same quantities
for a discrete system: the Einstein relation for collective diffusion becomes

Dc =
N

2d
lim
t→∞

〈 [∆rCM(t + τ)]2〉 − 〈 [∆rCM(t)]2〉
τ

, (4.26)

where ∆rCM(t) = rCM(t) − rCM(0), with rCM(t) as the coordinates of the
center-of-mass at the time t. Eq. (4.26) can be expanded as a function of
the displacement crossed-correlation function (DCCF) 〈δrI(t) ·δrJ(t′)〉 where
δrI(t) is the instantaneous cell-to-cell displacement function, Eq. (4.19), for
the i-th guest, obtaining

Dc =D0 +
1

dτ

∞∑
z=1

〈δr(zτ) · δr(0)〉

+
1

2dτN

∑
1≤I,J≤N

I 6=J

{
〈δrI(0) · δrJ(0)〉+ 2

∞∑
z=1

〈δrI(zτ) · δrJ(0)〉

}
,

(4.27)

where the zero-time diffusivity has been indicated as

D0 =
1

2dτ
〈δr(0) · δr(0)〉. (4.28)

In Eq. (4.27) all contributions arising from both self- and mixed-correlations
are present: the sum of the first two terms gives the self-diffusivity, and the
last sum incorporates all contributions arising from correlations between the
displacements of all possible pairs of guests in the system. Details about the
derivation of Eq. (4.27) can be found in Appendix D.1.

4.4.3 Chemical diffusion coefficient

Finally the chemical diffusion coefficient Dchem (sometimes reported as trans-
port diffusivity) measures the transport of mass and the decay of density
fluctuations in the system, and it is related to the collective diffusivity by78

Dchem =
∂ ln f

∂ ln〈n〉
Dc (4.29)

where the derivative is called thermodynamic factor, and f is the fugacity as
given in Eq. (4.4). In Section A.1 the loading will be related to the chemical
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potential via the following relation in the grand-canonical ensemble:

〈n〉 =

∑K
n=0 nQ(n)eβµn∑K
n′=0 Q(n′)eβµn′

(4.30)

where Q(n) is the canonical partition function of a closed, n-occupied cell.
Eq. (4.30) can be used to show that the thermodynamic factor is indeed equal
to

∂ ln f

∂ ln〈n〉
=

〈n〉
〈n2〉 − 〈n〉2

, (4.31)

(where f is the fugacity) i.e. the reciprocal of the reduced variance.

4.5 Other time-dependent properties

From the point of view of the guest species, the dynamical evolution of a host-
guest system is described by the migration process, where each guest molecule
travels inside the confining system, leaving a pore to enter a neighboring one
and so on. Diffusivities and DACF provide an exhaustive description of such
a process.

From the point of view of the host, the state of each adsorption unit
evolves by exchanging guest molecules with the surrounding units. As a con-
sequence, the cell occupancy will change with time. Although such a process
is stochastic (which is obvious since the evolution rules are probabilistic) the
system heterogeneity and the hierarchic character of the involved processes
will cause it to be affected by correlations. Moreover, the statistical proper-
ties related to the time evolution of the occupancy of the cells will turn out to
be non-trivial. Therefore, a statistical analysis of the time-dependency of cell
occupancies will be very useful to supplement the picture of the migration
process given in the previous section. With this aim, the mean life times and
the decay of fluctuations in the local density will be used as statistical tests
to investigate such stochastic process.

Mean life time. In units of time steps, the mean life time (MLT) of the
occupancy n is defined as the average number of consecutive time steps during
which a cell persists in the occupancy n. It should be noted from the above
definition that MLT is not the average extent of time a cell retains the same
n guests inside of it, since it does not embed any information about guests’
identity.

Just as the diffusivity, the mean life time of occupancies at different con-
ditions of loading is very closely related to the adsorption properties of the
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host-guest system and is very much affected by the system heterogeneity,
which leads some occupancies to persist for a considerably higher time than
some other ones.

Decay of local density fluctuations. In the present model, the local
density fluctuation time-autocorrelation function (LDFACF)79 can be defined
as

C(t) = 〈δn(0) δn(t)〉 , (4.32)

where δn(t) = n(t)− 〈n〉. Such a correlation function gives a measure of the
way a portion of the system loses memory of its previous states. Although
local, it is a collective property since it depends on the moves of all guests
while they are entering and leaving every cell of the system. Therefore, cor-
relations in the self-migration processes of each guest will enter 〈δn(0) δn(t)〉
in some extent, together with the correlations between different guests oc-
cupying the same cell. As a result, the LDFACF may show an unexpected
complex decay. In this sense, the ThPCA represents a very easy-to-hand and
reliable tool to investigate the nature of collective correlation phenomena on
a purely statistical mechanical approach.
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Chapter 5

Non-interacting case:
numerical simulations

In the present Chapter the possible behaviors of the model in the absence of
guest-guest interactions shall be illustrated. In fact, even in this special case
the flexibility of the ThPCA parameter space allows to effectively capture
the qualitative phenomenology of adsorption and diffusion in zeolites. Here
the heterogeneity of the system is represented only through the differentia-
tion in statistical weight between exit and inner sites (lattice-gases with two
non-equivalent sites were extensively studied by Chvoj et al.,46,80 Tarasenko
et al.,47,81,82 and by Bhide et al.28,29 through KMC simulations). As a result
of choosing f o

ex 6= f o
in, different configurations will be differently weighted

depending on the temperature T . Non-trivially loading dependent diffusion
profiles will emerge as a consequence of the fact that the temperature con-
trols the accessibility of the exit sites, therefore influencing the frequency of
transfers.

In this Chapter a test cell shall be considered which is characterized by
Kex = 6 exit and Kin = 10 inner sites. Such a cell is modeled as coarse-
grained representation of a α-cage of the zeolite ZK4 (which has a saturation
limit of about 15 − 16 molecules per cage32,41,59,63,64). The simulations de-
scribed in this Chapter have been performed by using the memoryless ran-
domization operator, extensively described in Section 3.2.1. In the absence
of guest-guest interactions, the global propagation operation is performed
according to the procedure illustrated in Section 3.4.1. Unless specified oth-
erwise, the factor κ0 introduced in Eq. (3.33) is given a value of 1. Due to the
memoryless randomization, the random walks of the guests can be treated,
with a good approximation, as independent Markov processes. Time corre-
lations in the self-motion and between different guests are so weak that all
types of diffusivity, i.e. Ds, Dc, and Dchem scale linearly with κ0.
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62 Non-interacting case: numerical simulations

5.1 Static equilibrium properties

The competitive adsorption of guest molecules at different sites fully char-
acterizes the system’s properties. Following the lines of Bhide et al.28,29 the
energy parameters has been set up as f o

ex = −10 kJ mol−1 and f o
in = −20

kJ mol−1. As mentioned in the Introduction, the choice of differentiating
two types of site into each cell arises makes contact with the experimental
evidence of two different types of adsorption locations in various zeolites,43

or more generally, of n types of sites differing in their ability to bind a
guest species.42 To describe equilibrium adsorption in zeolites the Langmuir
model83 is often used, in which the guests do not interact except by excluding
each other from the adsorption sites, each being capable of holding at most
one molecule. Moreover, while in the simple Langmuir model all sites are
equal, the introduction of different types of sites leads to different equilibria
corresponding to adsorption processes in pores of different binding energy.
Since each equilibrium can be represented by a single Langmuir isotherm,
the adsorption isotherm for n simultaneous equilibria is well reproduced by a
n-site Langmuir isotherm.42 Such an adsorption model has been widely used
to successfully interpretate adsorption data.84 Its efficiency has been also
validated by MD and Grand-Canonical Monte Carlo (GCMC) simulations,44

and used in KMC models31 to take into account the loading dependence of
the self-diffusion coefficient in the study of diffusion in zeolites. Along with
the different abilities assigned to the two kinds of sites in moving guests in
and out of the confining cell, the different adsorption energies mimic the real
situation in which different adsorption locations in the cavity influence the
ways a molecule has access to a window (to reach an exit site, in the Th-
PCA language) and then migrates into the adjacent cavity. Simulations have
been performed at several temperatures. The data for the case of T → ∞
refer to the homegeneous situation where exit and inner sites are statistically
equivalent f o

ex = f o
in.

5.1.1 Equilibrium distributions

The equilibrium probability distributions {P (nex|n)} and {pN}, defined re-
spectively in Eqs. (2.29) and (4.1), have been studied. In Figure 5.1 the
distribution pN is plotted for several temperatures at integer loadings, to-
gether with a strictly statistical distribution (hypergeometric distribution,
phyp)58 which assumes that the sorbed species occupy equivalent, mutually
exclusive lattice sites in the cells:

phyp(n) =

(
K

n

)(
K(M − 1)

N − n

)/(
MK

N

)
. (5.1)
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Figure 5.1: The occupancy distributions f eq (straight lines) computed from Eq. (4.1)
for loadings 〈n〉 = 1, . . . , 15 at various temperatures are shown in comparison with the
hypergeometric distributions fhyp (dashed lines).

Due to the presence of two energetically different sorption sites, the com-
puted distributions differ from the hypergeometric distribution. Although
the maximum of each curve is centered around the loading value, the fluctu-
ations of the occupancy n of each cell around this value become temperature-
sensitive; accordingly, by increasing the temperature the distinction between
the hypergeometric distributions and the calculated ones becomes less evi-
dent, because the energy difference between inner and exit sites becomes less
important and the excluded volume effect tends to prevail (details about the
convergence of the occupancy distribution pN to the hypergeometric phyp at
high temperature can be found in Appendix B.1). The same energy difference
is responsible of the behavior of the system at very low temperature.

As T increases, accessibility of exit sites also increases and higher values
of nex become possible. From observation of Figure 5.1 it is interesting to
observe on what grounds the measured distributions cannot be reproduced
by the hypergeometric ones. A symmetry relation between the hypergeo-
metric curves exists. In the present case, this means that the distributions
phyp calculated at the loadings 〈n〉 and K − 〈n〉 are mirror images. The
calculated distribution deviates from the hypergeometric in the following
ways: decreasing the temperature causes the curves no longer to be related
by symmetry, and an increasing peak for 〈n〉 = 10 appears. In the limit of
zero Kelvin two well-defined regions emerge. The first one is a set of hyper-
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Figure 5.2: Conditional probability P eq(nex|n) for n = 5 at various temperatures. For
low temperatures the guests tend to occupy preferably the inner sites, so P eq(nex|n) is
significant only for the lowest possible values of nex. Therefore the accessibility of the
exit sites is low. The temperature-sensitiveness of the single cell is well represented by the
behavior of the conditional probability P (nex|n) w.r.t. temperature.

geometric distributions going from loading zero up to ten, while the second
is again a set of hypergeometric distributions going from loading ten up to
sixteen (details about the convergence of the occupancy distribution pN to
two hypergeometrics phyp

in and phyp
ex in the limit of zero Kelvin can be found in

Appendix B.1). The boundary between the two sets is located at loading 10
because f o

in < f o
ex: In the limit of zero Kelvin the first region includes the set

of the equilibrium distributions on the ten equivalent inner sites while the
second includes the distributions on the six energetically higher exit sites.
Though the interaction forces between the guest particles have been com-
pletely neglected, this example proven how an asymmetry in the energy of
the sorption sites is enough to deeply modify the molecular distribution over
the zeolitic cavities markedly expanding the temperature effects.

In Figure 5.2 the distribution P (nex|n) (defined in Eq. (2.29)) is plotted
at various temperatures for the specific occupancy n = 5. At T = 300 K,
P (nex|n) is significant only for the lowest possible values of nex because the
guests tend to occupy preferably the inner sites so that the states with high
values of nex are rarely populated. Under such conditions the exit sites are
poorly accessible. The situation will change by increasing the temperature,
until T → ∞ where the distribution P (nex|n) reaches the hypergeometric
form

(
Kex

nex

)(
Kin

nin

)/(
K
n

)
.

As can be seen from Figure 5.3, by lowering the temperature one reduces
the thermodynamical tendency of a cell to accept a new guest. The non-
linear trend of the reduced variance for T < ∞ reflects the difference in
thermodynamic properties between the two types of site in the system.

Negligible correlations in space. A remarkable property of the model
is that, on sufficiently large grids and far from critical conditions, the spa-
tial correlations are negligible. To evaluate the degree of static correlations
among neighboring cells, away from the phase transition (see next Sec-
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Figure 5.3: Reduced variance as a function of loading at various temperatures.

tion), the static structure factor S (not reported) defined as85 S(r, r′) =
〈δn(r)δn(r′)〉 , where the occupancies n(r) and n(r′) are evaluated at the
same time step, has been calculated from simulations. Following Jameson86

another simple way to keep track of spatial correlations is to compute the
probability g(m, n) of finding a cell of occupancy n in the neighborhood of a
cell of occupancy m. Evaluating S and the distribution g for a large number
of configurations near equilibrium, it has been found that S(r, r′) ≈ 0 for
r 6= r′, and g(m, n) ≈ pN(n) for all values of m, n. Therefore, spatial corre-
lations are negligible and the occupancies are distributed approximately in
the same way both locally and globally.

5.1.2 Diffuse phase transition

When f o
in 6= f o

ex the system can be formally divided in two subsystems.46

The first one is the subsystem of exit sites, characterized by the energy f o
ex.

The second one is the subsystem of inner sites, characterized by the energy
f o

in. When the term |f o
ex − f o

in|/kBT increases, then the exchanges between
the two subsystems become increasingly difficult. Let us consider the case in
which the inner sites are the most binding, i.e. f o

in < f o
ex. At sufficiently low

temperature and below some particular loading 〈n〉∗, the guests will mostly
occupy the inner sites, causing the system to behave predominantly as an
isolated subsystem of inner sites. Around some particular loading (indicated
as 〈n〉∗) almost all the inner sites are occupied. Above 〈n〉∗ the guests begin to
fill the exit sites and, because the subsystem of inner sites is almost saturated,
a transition between the two phases occurs such that the system starts to
behave predominantly as the isolated subsystem of exit sites.
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Figure 5.4: Partial loading ρex of the subsystem of exit sites (solid line), and partial
loading ρin (dashed line) of the subsystem of inner sites, plotted together w.r.t. the total
loading 〈n〉 at various temperatures. For very high temperatures (T → ∞) they increase
in the same way because the two subsystems are equivalent. For low temperatures the
two subsystems become very different, therefore the partial loadings increase with 〈n〉 in
different ways.

The sharp change in the properties of the system denotes a phase transi-
tion. At very low temperature (T → 0) the phase transition occurs exactly
at the loading 〈n〉∗ = Kin, where the thermodynamic properties of the sys-
tem undergo a net change: in such a case the transition can be defined as a
point transition.46 But, if the temperature is not very low then the change
in properties around 〈n〉∗ is smooth and one cannot locate the value of 〈n〉∗
except that it falls within a loading interval

Kin − δ < 〈n〉∗ < Kin + δ,

with δ > 0. Such a phenomenon is reported as diffuse phase transition.46

Decreasing the temperature, δ diminishes and the transition becomes more
neat. It has been observed how the phase transition takes place first calcu-
lating the chemical potential at two temperatures T = 300 K and T = 100
K.

Such observables are reported in Figure 5.4 as functions of the loading
at various temperatures, in order to visualize how the system splits in two
subsystems: (i) for T → ∞ the fractions ρex and ρin increase in the same
way (i.e., as ρ = 〈n〉/K); (ii) for T < ∞, the two fractions are equal only
at 〈n〉 = 0 and K, while for all the other loadings ρex < ρin since the guests
occupy preferably inner sites; (iii) for T → 0, we have ρex = 0 until ρin

reaches the value of 1 at loading Kin, then ρin stops varying and ρex increases
from 0 to 1.
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Figure 5.5: The chemical potential and (in the insets) the reduced variance for T = 300
K (top) and T = 100 K (bottom). The simulations were performed on a grid of 323 cells
for running times of 105 time steps (black squares) and of 108 time steps (white circles).
Solid lines are fits through Eq. (A.12). µ is in units of kJ mol−1.

As can be seen in Figure 5.5, the phase transition at low temperature
produces a singularity in the plot of µ vs 〈n〉 (i.e., the inverse plot of the
adsorption isotherm). Since the variance and the chemical potential are con-
nected by Eq. (B.9) (see Appendix B.1), in the same conditions the reduced
variance of f eq exhibits a cusp.

This behavior is a feature of all systems having two (or more) distinct
adsorption locations. Of course, the inverse plot of Figure 5.5 is the dual-site
Langmuir isotherm87 of Eq. (A.12). In general, a system having n different
adsorption sites will separate, at low temperatures, into n subsystems, and
increasing the loading from zero to the saturation limit it will undergo n− 1
diffuse phase transitions.

In Figure 5.6 the energy distribution P (Esys) (that is, the probability of
finding the entire system in the energy Esys) is reported for differently long
simulations at low temperature. As can be seen, in the proximity of a phase
transition the ThPCA manifests its inherently noisy nature, and averaging
over this statistical noise requires massive calculations.37

Since the global system is canonical, one obtains the molar specific heat
per cell at constant volume, CV,m, from the energy distribution P (Esys).
Indicating the variance of P (Esys) per cell as

σ2
E =

1

M

∑
Esys

(Esys − 〈Esys〉)2 P (Esys), (5.2)

if Esys is in units of J mol−1 then CV,m = σ2
E/RT 2 where R is the constant

of gas in units of J mol−1K−1. The shape of the specific heat as a function
of loading is shown in Figure 5.7. At T = 100 K a sharp CV,m peak appears
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Figure 5.6: The energy distributions around the phase transition (T = 100 K, 〈n〉 = 10)
for a system with M = 163 cells. The distribution was computed averaging over 105 time
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Figure 5.7: The molar specific heat per cell for T = 300 K (top) and T = 100 K
(bottom). Black squares and white circles indicate simulations 105 and 108 time steps
long respectively.

at 〈n〉 = Kin. Its width is expected to further decrease and its height to
increase if T → 0. This behavior of the specific heat confirms the existence
of a first-order diffuse phase transition in the system.

5.2 Transport properties

In each computer simulation, starting from a random distribution of guests,
after 20 000 time steps of equilibration the evolution of the system has been
observed during a time interval ranging from 105 to 108 time steps, depending
on the statistical accuracy required to compute the averages of interest. The
data at temperature T →∞ are obtained from simulations with f o

ex = f o
in.
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5.2.1 Diffusion coefficients

A useful quantity in the discussion of the diffusion properties of the model is
the exit sites accessibility defined for a cell of occupancy n ≥ 1 as the ratio
between 〈nex(n)〉 (the average number of filled exit sites in an n-occupied
cell) and the occupancy n. Such a quantity is independent of the loading
〈n〉, and measures the thermodynamic tendency of a guest to reach an exit
site according to the number of guests which occupy the same host cell. In
formula,

〈nex(n)〉 =
Kex∑

nex=0

nexP (nex|n), (5.3)

where P (nex|n) has been defined in Eq. (2.29) as the conditional probability
of a cell to have nex filled exit sites given that its occupancy is n. The average
accessibility is defined as Kexρex/〈n〉. The accessibility has been plotted for
several temperatures in Figure 5.8. Because the inner sites are the most
binding, at finite T it will increase with n.

At T = 300 K, for low values of n the probability of a guest to reach an
exit site is very low and increases not much with increasing the occupancy.
Instead, it increases rapidly in the range Kin < n < K because in such cases
at least n−Kin exit sites must be occupied. In the limit of maximum occu-
pancy n = K the cell is saturated, and obviously this gives an accessibility
value of Kex/K, which is independent of temperature.

Increasing the temperature, the accessibility becomes less occupancy-
sensitive and in the limit of T → ∞ (which is equivalent to the case of
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Figure 5.8: Exit sites accessibility for several temperatures.
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Figure 5.9: Self diffusivity (white circles) obtained from simulations at various temper-
atures, plotted together with D0 obtained from measurement of the mean residence time
of a guest in a cell (crosses, see Eqs. (A.9), (A.8) and (A.10) in Appendix A, devoted to
the mean-field formulation of the model) and through Eq. (A.15) (solid line).

f o
ex = f o

in) the accessibility is constant at Kex/K, because the sites are all
equivalent.

The use of the memoryless randomization operator has two important
consequences on the diffusivity:

• The self diffusivity Ds approximates well the self-diffusivity of an un-
correlated random walk D0 defined in Eq. (4.28). This can be seen in
the good overlapping of the profiles of Ds and D0 vs 〈n〉 for various
temperatures as shown in Figure 5.9.

• As a consequence of this fact, if correlations among different guests exist
they are instantaneous, that is, relative to the same time step. Due to
the memoryless randomization Dc and Ds are very similar, meaning
that the correlations between the random walks of different guests are
negligible.

In Figure 5.10 several profiles of (a) Ds, (inset of (b)) Dc, and (b) Dchem are
shown. They will be discussed in the next Section.

Self-diffusivity. In Figure 5.10a the behavior of Ds vs loading is reported
for various temperatures. Changes in temperature lead to different profiles
of the self-diffusivity, corresponding to the I, II, IV and V types observed
by Kärger and Pfeifer40 (see Figure 5.11) in the PFG-NMR measurements of
intracristalline self-diffusion coefficient depending on sorbate concentration.
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Figure 5.10: (a) Collective diffusion coefficients for various loadings and temperatures.
(b) Chemical diffusion coefficients obtained from the collective diffusivity Dc and the
thermodynamic factor using Eq. (4.29). T = 300 K (squares), T = 460 K (black circles),
T = 600 K (up triangles), T = 1300 K (down triangles), T = 2500 K (diamonds), T →∞
K (white circles).

Here two basic events which contribute to the intercell migration process
will be listed:

• Event 1: the event in which a guest reaches an exit site during ran-
domization.

• Event 2: the event in which two adjacent exit sites are simultaneously
occupied during propagation.

The probabilities of Events 1 and 2 increase as the average accessibility of the
exit sites increases. If by increasing the loading 〈n〉 their increasing trend are
different, then in general the resulting loading dependence of the diffusivity
will not be linear. The curves in Figure 5.10a will be discussed in terms of
the balance between Events 1 and 2.

i) The self-diffusivity trend at T = 300 K (black squares) will be con-
sidered first. From low to intermediate loading the curve shows the
increasing-like behavior of type V, as reproduced by the model of Tunca
and Ford,33 because in this range of loadings the probability of Event
1 increases more rapidly than the probability of Event 2. Further in-
creases of 〈n〉 will cause the diffusivity Ds to increase, until it reaches
a maximum. At this point, the probabilities of Events 1 and 2 are
balanced: if few guests are removed from the system the diffusivity
will decrease due to a decrease of the probability of Event 1; if instead
a few guests are added then the diffusivity will decrease because the
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Figure 5.11: The five different profiles of self-diffusivity vs loading observed by Kärger
& Pfeifer.40
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Figure 5.12: Self diffusivity Ds and collective diffusivity Dc (insets) vs the absolute
temperature T from T = 100 K to T = 10 000 K. In (a) the loading is 〈n〉 = 5 and in (b)
is 〈n〉 = 13 (see text for details).

average accessibility will become large enough to enhance the probabil-
ity of Event 2. Therefore, at intermediate-high loadings the diffusivity
trend will be of type IV (Ds reaching a maximum and then decreasing
to zero). It should be noted that at T = 300 K the behavior of Ds

vs 〈n〉 is qualitatively analogous to the trend obtained by Demontis
et al.15 and by Dubbeldam et al.32 in MD simulations of diffusion
of methane in ZK4, and by Coppens et al.9 through Dynamic Monte
Carlo simulations of diffusion on a lattice with multiple types of sites.

ii) The same considerations are valid for the self-diffusivity trends at T =
460 and 600 K. Since the self-diffusion is ruled by Event 1 at low load-
ings, and by Event 2 at high loadings, for a fixed value of 〈n〉 any
increase in temperature will cause Ds to increase considerably if 〈n〉 is
low, while if 〈n〉 is high then Ds will slightly decrease. In order to see
a more detailed picture of the effect of temperature on the diffusivity
at constant loading, in Figure 5.12 curves of diffusivity vs temperature
are shown for 〈n〉 = 5 and 13 (the loading which corresponds to the
maximum diffusivity falls between these two loadings). Not only the
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response of Ds to the increasing temperature is reversed when pass-
ing from a condition of low loading to high loading, but one can also
see from the trends of Figure 5.10a and from the diffusivity scales of
Figure 5.12 that Ds becomes less temperature-sensitive when the sys-
tem goes toward saturation, where the properties of the model become
independent of temperature.

iii) Further increases in temperature will change the diffusion profile. From
T = 600 K to T = 2500 K the trends change from the type discussed
before to the type I of Figure 5.11, passing through the type II at
T = 1300 K, where the probabilities of Events 1 and 2 are balanced
for low loadings. At high temperature, say T = 2500 K, the system
behaves in a way very similar to the case of T → ∞, at which Ds

decreases linearly with 〈n〉 because the sites are all equivalent, so that
the accessibility is constant with n (see Figure 5.8) and the only effect
controlling the migration process is mutual exclusion.

One can see by direct comparison that the Ds trends presented in Figure 5.10
of this work are similar to the trends found by Bhide et al. (see Figure 5 of
Ref.29) in the study of diffusion of interacting guests in a lattice with two
non-equivalent sites, although these two models are quite different: indeed,
there traditional Monte Carlo lattice-gases are used to study the random
walk of guests between neighboring positions in a fully structured lattice
of adsorption sites, while in the present model the diffusion phenomenon is
produced by random walk of guests from cell to cell, where each cell contains
a number of adsorption sites without a fully defined spatial arrangement.
Even working with non-interacting guests and neglecting both correlation
and intracell motion timescale, the distinction between exit and inner sites is
a sufficient assumption for reproducing an effect of confinement, giving rise
to the typical diffusivity profiles of confined systems.

Collective and chemical diffusion coefficient. Collective and chemical
diffusion coefficient, which have been defined in Eqs. (4.26) and (4.29) are
reported in Figure 5.10a and 5.10b. It should be noted that, due to the
absence of correlations the collective coordinate N∆rCM(t) (introduced in
Eq. (4.26)) diffuses in the same way as the single guests, i.e. Dc ≈ Ds. As
discussed in Section 4.4.3, dividing Dc by the reduced variance produces the
chemical diffusivity; therefore the curves in Figure 5.10b shall be discussed
while keeping in mind also Figure 5.10b and Figure 5.3.

At infinite temperature the reduced variance and Dc respond to an in-
crease of density exactly in the same way (i.e. they are both linearly decreas-
ing with 〈n〉). This results in a Dchem constant with loading.
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Figure 5.13: Curves of the mean life time of a cell as a function of the occupancy at
(a) T = 300 K, and (b) T →∞. Each curve corresponds to a particular loading. 〈n〉 = 1
(squares), 〈n〉 = 3 (circles), 〈n〉 = 5 (up triangles), 〈n〉 = 7 (down triangles), 〈n〉 = 9
(diamond), 〈n〉 = 11 (left triangles), 〈n〉 = 13 (right triangles), 〈n〉 = 15 (crosses). For
each loading, data are plotted only for the most probable occupancies (i.e., the occupancies
appearing with a probability > 10−3). In (c) the mean life times from MD simulations of
methane in ZK4 at 360 K performed by Demontis et al.41 are also reported for loadings
1, 3, 5, 7, and 11.

This balance between fluctuations and diffusive properties is broken when
the difference in binding ability of the two types of site becomes non-negligible.
Lowerings of temperature will reduce the density fluctuations, and the Dchem

profile will show two distinct diffusive regimes:46 low diffusivity for low load-
ings, and high diffusivity for high loadings. Similarly to the case of Ds,
increasing the temperature the difference between βf o

ex and βf o
in will become

less relevant and Dchem will change less with temperature. For high temper-
atures Dchem will increase almost linearly with 〈n〉, with a slope decreasing
with T until it reaches the above discussed profile at T →∞.

Diffusivity versus temperature. At constant loading the trend of Dchem

w.r.t. T is similar to Ds (see Figure 5.12). The difference is that, while Ds is
very temperature-sensitive at low loadings but less sensitive at high loadings,
Dchem is very temperature-sensitive for both low and high loadings.

5.2.2 Local density

Mean life time. In Figure 5.13 curves of the Mean Life Time (MLT)
are shown for a relatively low temperature, T = 300 K, and for infinite
temperature. For each loading, data are plotted only for the most probable
occupancies (i.e. the occupancies n appearing with a proability pN(n) >
10−3).

Observing the behavior of this function for T = 300 K (Figure 5.13), it
should be noted how a non-negligible difference between βf o

ex and βf o
in can

introduce a marked separation in the mean life times of different occupancies,
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Figure 5.14: Normalized time-autocorrelation function C(t)/C(0) for various loadings.
Dots are numerical data, lines are fitting curves. (a) T = 300 K. Loadings are 〈n〉 =
1, 3, 5, 7, 9, 11, 15 for curves from right to left. (b) T →∞. Loadings are 〈n〉 = 1, 7, 10, 15,
curves are overlapped. (c) C(t)/C(0) for 〈n〉 = 9 at T = 300 K: the dashed line is a single
exponential fit, the solid line is a double exponential fit.
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Figure 5.15: Inverse of the instantaneous relaxation time, τrel, obtained through the dou-
ble exponential fit of C(t)/C(0), compared with the chemical diffusion coefficient Dchem.

causing the curves to cover several orders of magnitude on the time axis. (i)
For low and intermediate loadings, the less filled cells live longer because they
host all or almost all of the guests in the inner sites, therefore the particle
transfers are little frequent and so the variations of the lowest occupancies.
(ii) If the loading increases, then 〈αn〉 will increase, therefore the transfers will
become more frequent and this will reduce the MLT of all the occupancies.
Moreover, the mean life times will be less sensitive to n. It is worth noting
that this is the same kind of behavior shown by the MLT of the occupancies
in the α-cages in MD simulations of diffusion of methane in ZK4,41 as can
be seen in Figure 5.13. This confirms that the ThPCA approach effectively
captures the essential features of the process of diffusion in zeolites. (iii) For
the highest loadings (e.g., 〈n〉 = 15 in Figure 5.13), the more filled cells will
release particles slightly more slowly because almost all of the exit sites will
be occupied, therefore the mean life times of the most occupied cells will be
slightly longer.

The separation in MLT of cells with different occupancies becomes less
evident by increasing the temperature. In the limit of T → ∞ (see Fig-
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ure 5.13) the sites are all equivalent, therefore the mean life times are all
of the same order of magnitude, and the MLT curves are more symmetri-
cal when compared to the case of diffusion in presence of the energy effects
discussed in the previous point.

Time-autocorrelation of density fluctuations. The study of the LD-
FACF function C(t) defined in Eq. (4.32) provides informations about how
the local density fluctuations relax in time towards equilibrium.

In Figs. 5.14a, 5.14b and 5.14c the normalized time-autocorrelation func-
tion C(t)/C(0) is reported. The best fit of C(t)/C(0) is provided by a double
exponential function

C(t)/C(0) ≈ A1 e−t′/τ1 + A2 e−t′/τ2 , (5.4)

where t′ = t/τ is the time expressed in units of time steps, while A1,2 and τ1,2

are fitting parameters. As can be seen in Figure 5.14c, a simple exponential
decay is inappropriate to fit the simulation data.

The relaxation of the density autocorrelation is reported at low temper-
ature (T = 300 K) in Figure 5.14a and at very high temperature (T → ∞)
in Figure 5.14b. If the temperature is low, the relaxation is different for
different loadings; in particular, at high 〈n〉 the function C(t)/C(0) goes to
zero more rapidly than at low 〈n〉. This feature is also exhibited by the auto-
correlation of density fluctuations computed in MD simulations (see Ref.,41

Figure 8). When the temperature is increased, the relaxations at different
loadings become similar. This can be seen from Figure 5.15, where the quan-
tity 1/τrel is shown for various loadings and temperatures. The parameter
τrel is the instantaneous relaxation time, defined as the time employed by the
fit of C(t)/C(0) to reach 1/e of its initial value. As the temperature becomes
very large, the relaxation becomes independent of temperature, as well as the
chemical diffusion coefficient. This behavior supports the observations about
the separation of the mean life times: the local density relaxes in time in a
way dependent on the degree of inhomogeneity of the lattice, which becomes
important at low temperature.

Finally, as can be seen from the proportionality between 1/τrel and Dchem

shown in Figure 5.15, the decay of the density fluctuations controls the trans-
port of density in the lattice.
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Chapter 6

Interacting case: Numerical
Simulations

6.1 Cellular Automata from static models

In this Section, ThPCA simulations will be discussed where the energy pa-
rameters vary as functions of the cell occupancy. The modeling of that
dependence further enlarges the configuration space the model can access.
On the other hand, a dependence of the local energy on local observables
is a reasonable choice since in real systems it is not uncommon for the en-
ergy of adsorption sites to be dependent on whether the neighboring sites
are occupied or not,32 and in principle such a situation can be reproduced
by adjusting the site free-energy parameters, or by estimating them through
coarse-graining of the interactions in a zeolite cage described at the atomistic
level.

In this Section, a local thermodynamic model developed by Ayappa et
al.22 to study adsorption of xenon in NaA zeolite at 360 K will be im-
plemented on the ThPCA, and the resulting dynamical behaviors shall be
analyzed. In their approach, Ayappa et al. made use of an energy function
of the form

E(n) = nε +
zn2εpp(n)

2K
(6.1)

where n is the cell occupancy, ε is the adsorbate-lattice interaction energy, z
is the assumed number of nearest-neighbors per lattice site, and εpp(n) is the
adsorbate-adsorbate interaction parameter given by the following Lennard-
Jones-like functional form:

εpp(n) = 4εlj

[(
σ

r(n)

)12

−
(

σ

r(n)

)6
]

(6.2)
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with

r(n) = (r2 − r1)
n

K
+ r2. (6.3)

In Eqs. (6.2) and (6.3), K is the number of adsorption sites per cell, εlj

and σ are respectively the Lennard-Jones energy parameter and molecular
diameter, r2 = 21/6σ, and r1 is a free parameter.

The effective site volume v(n) changes with the occupancy according to

v(n) = v0

[
1

2

(
l − σ

2R
+ 1

)2
]zn/2K

, (6.4)

where v0 is the volume of the adsorption site associated with a single adsor-
bate in the absence of neighboring adsorbates, R is the site radius obtained
by assuming a cubic site of volume v0, and l is the lattice parameter. The
resulting partition function of an n-occupied cell can be written as

QAy(n) = e−βnφAy(n)

(
K

n

)
e−βnε, (6.5)

where φAy(n) is the interaction free-energy term given by

φAy(n) = − 1

β
ln

v(n)

Λ3
+

znεpp(n)

2K
. (6.6)

To simulate the adsorption of xenon in NaA zeolite at T = 360 K, Ayappa
et al.22 assumed K = 12, z = 4, σ = 4.10 Å, ε = −25.6 kJ mol−1, εlj = 1.837
kJ mol−1, r2 = 3.906 Å, v0 = 7.465 Å3, l = 3.58 Å.

Eqs. (6.1) to (6.5) assume equivalence of inner and exit sites. However,
due to the heterogeneity of the zeolite cage structure, multiple types of ad-
sorption site mutually differing in adsorption energy are present,31,42–44 caus-
ing the probability of a guest molecule to occupy locations close to the win-
dows to differ from the probability to occupy any other location in the cell.
In the ThPCA paradigm such a differentiation is mimicked through the mod-
eling of the difference in statistical weights between exit and inner sites. Such
a modeling induces a dynamics characterized by a hierarchy criterion where
guests must be promoted to the exit sites in order to leave their host cell,
so that the attitude of the cells to transmit their contents outside becomes
strictly dependent on local conditions.

The ThPCA paradigm can be used to extend a static thermodynamic
model as the one of Ayappa et al. to the simulation of transport properties by

Federico Giovanni Pazzona - Cellular Automata for the Mesoscopic Simulation of
Adsorption and Diffusion in Zeolites

Tesi di Dottorato in Scienze Chimiche - Università degli Studi di Sassari
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assuming two fixed site free-energies, f o
ex and f o

in, entering a cellular partition
function of the form

Q(n) = e−βnφ(n)Qo(n), (6.7)

where

Qo(n) =
∑

nex,nin

(n) ∏
α=ex,in

(
Kα

nα

)
e−βnαfo

α (6.8)

and φ(n), with n = 1, . . . , K, defined as

φ(n) = φAy(n) + ε +
1

nβ

[
ln Qo(n)− ln

(
K

n

)]
, (6.9)

in order Eqs. (6.7) and (6.5) to be equivalent.
Obviously the use of Eqs. (6.7) to (6.9) implies that the equivalence

φex(n) = φin(n) ≡ φ(n) is assumed for each n in Eq. (2.21). Although
as a result the trend of 〈nex(n)〉 vs. n will depend only on the difference

∆f o = f o
ex − f o

in (6.10)

and not on the interaction parameter φ, that assumption will be enough to
show the most general diffusion profiles that are available in the ThPCA
parameter space. Anyway, a finer tuning of the transport properties can
be acquired through differentiation of the φex(n) and φin(n) trends while
preserving (numerically) the total value of Q(n), thus further enlarging the
range of possible dynamical behaviors of the model.

From pore properties, to cell properties, to macroscopic properties.
In the left side of Figure 6.1 it is shown how local interactions and effective
volume are embedded together in the effective interaction free-energy φAy.
Then, in the right side it is shown how different values of ∆f o generate
different diffusivity trends. In details, in the right side of Figure 6.1:

(i) In the first line it is shown how the local free-energy parameters, f o
ex(n)

and f o
in(n), are modified by adapting the cell termodynamics to different

values of ∆f o by means of Eq. (6.9).

(ii) In the second line a mesoscopic quantity, the average exit sites acces-
sibility, given by the ratio 〈nex(n)〉/n (where 〈nex(n)〉 is the average
number of occupied exit sites in a n-occupied cell), is shown for each
value of ∆f o. Such a quantity is of remarkable importance, since it
definitely determines the qualitative trend of the memoryless diffusiv-
ity.
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Figure 6.1: Possible diffusive behaviors modeled on the thermodynamic model of
Ayappa et al.22 for adsorption of xenon in NaA zeolite at 360 K. On the left, an effec-
tive interaction free-energy function φ(n) is constructed starting from the given effective
Lennard-Jones interaction potential εlj(n) and volume v(n). On the right, four different
balances between average occupancies of exit and inner sites are assumed by varying the
difference ∆fo = fo

ex−fo
in = −5, 0, 10, and 10 kJ mol−1. For each column relative to each

value of ∆fo, the following properties are plotted: (top) The effective site energy profiles
fex(n) and fin(n) in units of kJ mol−1 vs. the occupancy n; (middle) The average exit
sites occupancy 〈nex(n)〉; (bottom) The mean-field self-diffusivity Dmf

s vs. the loading 〈n〉.
Solid and dashed lines represent Dmf

s respectively with and without the kinetic barrier
modeling introduced in Section 3.3.1. See text for further details.

(iii) In the third line the resulting memoryless diffusivity (computed through
the mean-field equation, Eq. (A.10), which will be introduced in Ap-
pendix A) is shown. Solid lines are obtained through a test modeling of
the harmonic force constant k(n) introduced in Eq. (3.31), where the
jump barrier for jumps between highly occupied cells has been lowered
by assuming

k(n) = C1 + θ(n′ − 1)
(
C2n

′ + C3n
′2) , (6.11)

where n′ = n− ξ + 1 and the Heaviside function θ(x) (which has value
1 for x ≥ 0 and 0 otherwise) allows k(n) to remain constant (and
equal to C1) for occupancies 0 ≤ n ≤ ξ − 1, and rises quadratically
for ξ ≤ n ≤ K − 1. In the example of Figure 6.1 the parameters have
been assigned the values C1 = 0, C2 = 2, C3 = 20, and ξ = 9. Dotted
lines are instead diffusivities obtained with no modeling of the kinetic
barrier, i.e. k = 0.

It should be noted that the choice of ∆f o determines the qualitative shape
of the exit sites accessibiliy (a local equilibrium property), which in turn
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induces a specific qualitative trend of the self-diffusivity (a global equilibrium
property). In general, the diffusivity trend embed the accessibility trend
together with the effect of repulsion at high loadings. Since according to
Eqs. (A.8), (A.9), and (A.10) the quantity Dmf

s is λ2/2dτ times the escape
probability pesc, such trends can be easily explained. The discussion of the
diffusivity trend follows the same lines of Section 5.

If ∆f o < 0 (so that the exit sites are deeper than the inner sites, see
Figs. 6.1d-f) then the exit sites accessibility exhibits a decreasing trend from
high values at n = 0 to Kex/K at n = K. Due to the high accessibility,
the exit sites are very frequently visited so that during propagation there is
a high probability of two adjacent exit sites to be simultaneously occupied.
This gives no transfer between the two respective cells. As a consequence,
the Dmf

0 trend will be decreasing.

If exit and inner sites are equivalent (i.e. ∆f o = 0, see see Figs. 6.1g-i)
then the value 〈nex(n)〉/n is held constant at Kex/K. Therefore, since due
to the constant accessibility the probability of an exit site to be occupied
increases linearly with the occupancy, then the probability of two adjacent
exit sites to be both occupied during propagation is also linearly increas-
ing, therefore the Dmf

0 is expected to (approximately) linearly decrease with
increasing loading 〈n〉.

If the inner sites are set as slightly deeper than the exit sites (e.g. the
case of ∆f o = 5 kJ mol−1 in Figure 6.1j-l), then the exit sites accessibility
exhibits a slightly increasing trend from values between 0.1 and 0.2 at n = 0
to Kex/K at n = K. This produces a slight inflection of Dmf

0 at the lowest
loadings, since a promotion mechanism is induced which causes the guests
to occupy preferentially the inner sites: this lowers the probability of two
adjacent exit sites to be both occupied.

At last, when the inner sites are much deeper than the exit sites (e.g. the
case of ∆f o = 10 kJ mol−1 in Figure 6.1j-l), then (i) low values of Dmf

s

are expected for low loadings due to the fact that at the lowest occupancies
most of the guests are located in the inner sites so that the exit sites are
poorly occupied and the intercell transfers are rare, (ii) an increase in Dmf

s

is expected at intermediate-high loadings where almost all the inner sites
are occupied and the guests start filling the exit sites, and (iii) a maximum
and then a rapid decrease are expected at higher loadings, where exit sites
start being saturated so that events at the propagation steps in which both
communicating exit sites of a pair of neighboring cells are occupied become
frequent.

Federico Giovanni Pazzona - Cellular Automata for the Mesoscopic Simulation of
Adsorption and Diffusion in Zeolites

Tesi di Dottorato in Scienze Chimiche - Università degli Studi di Sassari
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Figure 6.2: Occupancy probability distributions for the same system of Figure 6.1. Each
curve refers to a particular value of the loading 〈n〉 specified on its top. Distributions for
integer and half-integer loadings are shown respectively on the left and on the right part
of the figure.

Modeling the self-diffusivity. As mentioned above, in each Dmf
s plot of

Figure 6.1, two self-diffusivity trends are shown for each reported value of
∆f o. Solid and dashed lines represent Dmf

s trends obtained respectively with
and without a modeling of the kinetic barrier εki introduced in Section 3.3.1.
The non-modeled case exhibits local Dmf

s maxima at the highest loadings.
This is an effect of the repulsive part of the interaction function εpp(n) at
high occupancies. The reason of such a behavior can be found in the propa-
gation probability defined in Eq. (3.21), according to which migration events
followed by a decrease in free-energy are favoured. First of all, the positions
of the Dmf

s peaks at high loadings are remarkable, since they are located at
half-integer values of 〈n〉. More generally, they can exist only if in the occu-
pancy proability distribution p(n) there are two (or more) occupancies much
more probable than all the others. In the case of the current parametrization
the shape of p(n) is shown in Figure 6.2 for integer (left) and half-integer
loadings (right).

At integer loadings the peak in p(n) corresponds to the occupancy nmax =
〈n〉 and is much more pronounced than all other occupancies. At half-integer
loadings instead two occupancies (i.e. the ones located around n1 = 〈n〉 − 1

2

and n2 = 〈n〉+ 1
2
) are much more probable than all the others. Taking account

of the shape of the free-energy interaction term φAy(n) shown in Figure 6.1,
jumps from a more to a less occupied cell are favoured. Therefore at high
integer loadings, migrations from a nmax-occupied to less occupied cells will be
favoured, while the reverse jumps (and all jump to more occupied cells) will
happen with a very low probability. This will cause the number of migrations
per time step to be much lower than the case of high half-integer loadings,
where instead not only migrations from n1- and n2- to less-occupied cells
are favoured, but also exchanges between n1- and n2-occupied cells become
very frequent thus producing diffusivity peaks near the saturation limit. Of
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Figure 6.3: (a) Chemical potential and (b) variance of the occupancy probability distri-
bution p for the same system of Figure 6.1.

course such a behavior is enhanced by irregularities in the chemical potential
and occupancy variance trends, which in the parametrization by Ayappa et
al. are present as shown in Figure 6.3.

p

6.2 Numerical simulations to fit reference data

In the present Section, the ThPCA rule (with memoryless randomization)
shall be used to produce thermodynamic and transport properties in agree-
ment with literature data about real reference systems. In particular, the
following systems will be investigated:

• Xenon atoms in NaA zeolite, where the interactions have been modeled
in order to fit equilibrium properties available from both experimental
measurements and grand-canonical Monte Carlo (GCMC) simulations
of Jameson et al.,76,77 without an explicit modeling of the kinetics.

• Methane in ZK4 zeolite, where guest-host interactions and the kinetics
have been modeled in order to fit MD results relevant to equilibrium
properties from Fritzsche et al.60 and self-diffusivities from Dubbeldam
et al.32 while neglecting the guest-guest interactions.

• Ethylene in NaA zeolite, where both interactions and kinetics have been
modeled to fit adsorption and self-diffusion data from experimental
results of Ruthven and Derrah88 and from a lattice MC model developed
by Gladden et al.89

• Xenon in zeolite CaA at 300 K, where equilibrium properties are mod-
eled so as to fit experimental adsorption data from Jameson et al.57
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Xe in NaA CH4 in ZK4 C2H4 in NaA Xe in CaA
n φ(n) k(n) φ(n) k(n) φ(n)
0 18 3.5
1 0 18 0 11 −0.3467
2 −0.3309 18 −0.2672 11.5 −0.3768
3 −0.9057 18 −0.5494 9 −0.3975
4 −1.3248 21 −0.7848 1.3 −0.3998
5 −1.5085 21 −0.9763 0.5 −0.3690
6 −1.2631 21 −0.1333 0 −0.2814
7 −0.7891 0 +∞ −0.0999
8 −0.1603 2 +∞ 0
9 2.5
10 12.8
11 28
12 30
13 26
14 19

fo
in = −44.920 fo

ex − fo
in = 10 fo

in = −79.126 fo
in = −50.0

fo
ex = −41.920 φ = 0 fo

ex = −73.126 fo
ex = −44.0

K = 8 K = 15 K = 8 K = 8
T = 300 K T = 358 K T = 300 K

Table 6.1: All ThPCA parameters used in this work to fit data from literature (see
text for details). The free energies fo

in, fo
ex, and φ are expressed in units of kJ mol−1. All

reported values of the force constant k(n) refer to α = 1.

All the numerical simulations in this Section have been performed on a
lattice of 32 × 32 × 32 cells, for a total observation time of 106 time steps
after an equilibration time between 103 and 2 · 104 time steps, depending on
the average intercell transfer rate of the guests. All input parameters of the
simulations are listed in Table 6.1.

6.2.1 Application: xenon in zeolite NaA

The ThPCA has been modeled in order to reproduce the adsorption isotherm
of xenon in zeolite NaA at 300 K reported by Jameson et al.76 (experimental
and GCMC simulation data). The obtained parameters produced equilib-
rium probability distributions of occupancies in quantitative agreement with
experimental NMR results.77

In this application the presence of cations has been taken into account in
an implicit way by fixing the maximum occupancy at K = 876,77 (instead of
15 as it would be in a cation-free zeolite like ZK415). According to the cell
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Figure 6.4: (a) Adsorption isotherm of Xe in NaA zeolite at 300 K obtained by intro-
ducing the effective parameters shown in Table 6.1 in the ThPCA, in direct comparison
with GCMC and experimental results from Jameson et al.,76 taken as the reference data
to fit. The adsorption isotherm of a non-interacting lattice-gas54 characterized by the
same values of K, fo

ex, and fo
in is also shown. In (b) the resulting ThPCA diffusivity trend

(normalized w.r.t. the diffusivity in the limit of infinite dilution) is shown together with a
picture of the trend of the fitting parameter φ (inset).

structure defined in Section 2.2, only the topology of the Kex = 6 exit sites
is defined in an octahedral arrangement as confirmed by measurements of
Lim et al.,90 which justifies the cubic topology of the entire grid of cells. The
remaining K −Kex = 2 sites are taken as structureless inner sites, referring
to locations of a real zeolite cell which are not necessarily close to the center
of an α-cage (where no Xe atom was found in any of the measurements of
Jameson et al.10,76,77,91), but simply they represent locations which do not
give access to any of the 6 windows. In order to mimic the effect of window
blocking92 all exit sites are assumed to be available but (i) their accessibility
is less than the inner sites (this is achieved by setting f o

in < f o
ex), and (ii)

they are affected by a mean field diffusion barrier εki (see Section (3.3.1))
that scales by a factor e−βεki = 0.1 the escape probability of a guest close
to a window, therefore inducing a homogeneous slowdown of the diffusion
process.55 Since the present interest is to obtain a qualitative diffusivity
trend, εki is treated as a fixed parameter. Therefore, a strategy to find the
best values of f o

α and φ would be to use mean field equations which will be
presented in Appendix A to (i) extract the values of f o

α providing a good fit
of the isotherm for low loadings under the approximation of non-interacting
LGCA, and to (ii) introduce the interaction φ as a correction function, in
order to mimic repulsive/attractive effects which improve the fit for higher
loadings.

Both the reference isotherm and an excellent fitting curve can be found in
Figure 6.4a. In the same figure the adsorption isotherm for a non-interacting
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Figure 6.5: The occupancy probability distributions of guests in the cells from ThPCA
simulations (black dots) for Xe in NaA zeolite are shown for various loadings in direct
comparison with experimental results of Jameson et al.77 (white dots).

lattice gas is reported, which is characterized by the same structure and by
the values of the free energy parameters f o

ex and f o
in providing the best fit

to the reference data. In Figure 6.4b the obtained trends of self-diffusivity
vs. loading and of the interaction function φ vs. occupancy n (inset) are
reported. All the obtained values of parameters are listed in Table 6.1.

It should be noted (inset of Figure 6.4b) that φ reaches a minimum at
intermediate values of n and then increases due to repulsion. This finding is
in qualitative agreement with (i) the trend of the average energy of clusters
of n Xe atoms inside NaA zeolite cavities as obtained by Li and Berry93

through atomistic simulations, and with (ii) the interaction potentials of
previous thermodynamic models by Ayappa22 and Cheung.21

As can be seen in Figure 6.4b, the obtained self-diffusivity profile exhibits
small variations up to loading 〈n〉 = 3, then decreases until it goes to zero
at the saturation limit 〈n〉 = 8. Such a trend corresponds to the type-II dif-
fusivity observed by Kärger and Ruthven in the pulsed field gradient-NMR
(PFG-NMR) measurements of intracrystalline self-diffusion coefficient de-
pending on sorbate concentration.40 Therefore, although the model is simple
in its structure and in this application the kinetic parameter ε is homoge-
neous, the (qualitative) diffusive behavior it produces is meaningful. This
represents an improvement over the lattice model of Jameson et al.77 where
the trend is monotonically increasing near saturation (which is unphysical
for the problem of diffusion in zeolites), and over the models of Ayappa22

and Cheung21 which provide no diffusivity trend.

In Figure 6.5 it is shown that the obtained free energy parameters give
the same probability distributions of guests in the α-cages at different load-
ings as obtained experimentally.10 This is a remarkable result. The ThPCA
after a proper setting of its internal parameters is able to describe the nature
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Figure 6.6: Average probability of a n-occupied cell to release a guest to a neighboring
m-occupied cell. The line serves only as a guide for the eye. Each curve corresponds to a
particular value of the occupancy of the departure cell.

of the equilibrium distributions of xenon atoms trapped inside the α-cages.
Therefore, it represents an alternative to lattice MC calculations77 to get
a quantitative explanation of 129Xe chemical shifts obtained by NMR mea-
surements.10 Consequently it is reasonable to expect that the very good
agreement obtained in the description of the spatial distribution could be
extended to the cage-to-cage migration process of the adsorbed fluid in the
zeolite by using the same parameters.

In order to confirm such expectation the average migration probability,
Wn,m, of a guest to migrate from a n- to a m-occupied neighboring cell
during propagation, has been computed. In the ThPCA paradigm such a
quantity is independent of loading, since it is determined only by the current
occupancies, n and m, of the two adjacent cells. It can be obtained by
simply coupling two cells with the given occupancies and then averaging
over all events that cause one cell to change occupancy from n to n− 1, and
the other one to change from m to m+1. The trend of the probability Wn,m

with varying n and m (according to 1 ≤ n ≤ K, and 0 ≤ m ≤ K − 1)
arises directly from the mathematical structure of both randomization and
propagation probabilities, and from the values of the energy parameters.
In Figure 6.6 curves for the probability of Wn,m relative to different values
of the occupancy n of the departure cell are plotted vs. the occupancy m
of the target cell. After small variations at low occupancies, the migration
probability decreases rapidly due to a decrease in the availability of the target
exit site and to the fact that high occupancies are unfavourable due to an
increased interaction potential (see inset of Figure 6.4b).
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Figure 6.7: ThPCA diffusivity trends connected with the same set of partition functions
fitting the isotherm of Xe in NaA, but arising from different values of ∆fo, i.e., changing
the relative accessibility of inner and exit sites: (◦) ∆fo = 10, (N) ∆fo = 4, (•) ∆fo = 0,
(�) ∆fo = −4. (All values are in units of kJ mol−1) In the inset the trends of φ preserving
the partition function Q(n) are shown.

Modeling the diffusion profile. The local ThPCA parametric structure
makes it a widely flexible environment where it is easy to modify some prop-
erties while leaving untouched the other ones, in order to refine the modeling
of a given reference system. For example it is possible to work on the free
energy parameters to vary the dependence of diffusivity upon the loading
without producing any change in the adsorption isotherm. Such a proce-
dure constitutes a first modeling of the ThPCA kinetic behavior, and can
be easily realized through (i) modification of the difference ∆f o = f o

ex − f o
in

(see Section 6.1) and (ii) determination of the new function φ(n) allowing
the partition functions Q(0), Q(1), . . . , Q(K) to keep the same values they
covered before the modification. As for the above discussed determination of
fitting parameters for Xe in NaA, once a new value of ∆f o is assumed, only
one choice of the new interaction parameter φ(n) will result to be consistent
with the fixed values of Q(n). This procedure will produce different diffusion
profiles as ∆f o changes (this can be seen in Figure 6.7), without affecting
the global thermodynamic properties of the system. The physical meaning
of ∆f o is based upon the knowledge of the probability of a guest to accede
to a window; when such an input information is not available, ∆f o can be
deduced by adapting the model to the kinetic behavior of a particular sys-
tem. After such a procedure, agreement with reference data can be further
improved by adjusting the kinetic barrier εki.
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Figure 6.8: ThPCA occupancy probability distributions for methane in ZK4 zeolite
shown in direct comparison with Molecular Dynamics simulation data of Fritzsche et al.60

(white dots).
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Figure 6.9: (a) A fit of the MD simulation data of self-diffusion coefficient of methane
in ZK4 at 300 K from Dubbeldam et al.32 with the ThPCA using the parameters of
Table 6.1. Data are normalized w.r.t. the zero-loading diffusivity. (b) Mean life times of
the cells having the most frequent occupancies at various loadings: (�) n = 1, (•) n = 3,
(N) n = 5, (5) n = 7, (◦) n = 11

6.2.2 Application: methane in zeolite ZK4

The occupancy distributions of Fritzsche et al.60 and the self-diffusion coef-
ficient values reported by Dubbeldam et al.32 have been taken as reference
data.

As can be seen in Figure 6.8, in order to obtain occupancy distribution
trends in agreement with MD data60 it is enough to set K = 15, ∆f o = 10
kJ mol−1 and φ = 0 independent of n. In this application it is shown how
the kinetic barrier ε can be modeled as a function of the cell occupancy in
order to obtain results in good agreement with reference data of diffusivity.
In Table 6.1 the values of k giving the best agreement with MD data32 shown
in Figure 6.9a are reported.

In Figure 6.9b the mean life time (MLT) of a cell is plotted. This quantity
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Figure 6.10: (a) Adsorption isotherm and (b) self-diffusivity profile of Ethylene in
NaA zeolite obtained by introducing the effective parameters shown in Table 6.1 into the
ThPCA to fit experimental data of Ruthven and Derrah88 and Monte Carlo data from
Gladden et al.89

is sensitive to the loading (see Demontis et al.41,55 for a full discussion about
this topic) and as one can see by direct comparison between Figure 6.9a
and Figure 5.13c, the ThPCA model captures the qualitative trend found in
MD simulations of methane in ZK4 at 360 K.41 Again, the ThPCA is able
to effectively reproduce the essential features of the physical problem under
study, from both the thermodynamic and the kinetic point of view.

6.2.3 Application: ethylene in zeolite NaA

In this application the chosen reference data are the adsorption isotherm
at 358 K and the self-diffusivity trend at 350 K of Ethylene in zeolite NaA
from the experimental data of Ruthven and Derrah88 and from a Monte
Carlo Lattice Dynamics (MCLD) model developed by Gladden et al.89 The
best set of parameters giving the fits reported in Figure 6.10 is reported
in Table 6.1. Besides the fact that the ThPCA simulates equilibrium and
transport properties all at once in the canonical ensemble, another important
difference between this approach and the aforementioned MCLD should be
remarked concerning the structure of the single cell: while in a MCLD cell
the saturation limit (6 molecules per cell) coincides with the number of exit
sites,89 in a CA cell a nominal maximum occupancy has been set as K = 8 in
order to make accessible also the inner part of the cell (since Kex = 6 due to
the LTA topology, the inner space is made up of Kin = 2 inner sites). Then,
an effective maximum occupancy Keff = 6 is imposed via the introduction of
a strongly repulsive n-particle potential for occupancies n > 6 (i.e. setting
φ(n > Keff) =∞).

This procedure together with f o
in < f o

ex enables the CA cell to mimic
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Figure 6.11: (a) Adsorption isotherm of Xe in CaA zeolite, and (b) resulting diffusion
profile and interaction potential (inset)

the reduced accessibility of exit sites due to the presence of cations blocking
the windows. With this example it can be seen clearly that the cellular,
occupancy-dependent structure of the ThPCA energetics and the block syn-
chronous propagation scheme,35,72 allow a straighforward implementation of
a constraint like the effective maximum occupancy.

6.2.4 Application: xenon in zeolite CaA

In Figure 6.11a the results of the fitting of a set of experimental data from
Jameson et al.57 about the adsorption of Xe in CaA zeolite are reported.
In Figure 6.11b the expected diffusion trend together with the interaction
potential φ(n) is shown. The maximum occupancy has been set as K = 8,
while the framework parameters have been set as fex = −44 kJ mol−1 and
fex = −50 kJ mol−1. The numerical values of the parameters adopted are
reported in Table 6.1.
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Chapter 7

Exploring correlation effects

7.1 Correlated motion

The motion of real guests confined in a zeolite framework is always affected by
correlations. The backscattering effect, according to which a molecule which
has just moved from one location to another one has a large probability
to return back to its former position, is the major source of correlations and
becomes increasingly important when adding guests to the system, since that
causes the number of vacancies (locations available to the diffusing molecule)
to be reduced. In the previous Section, such a correlation effect has been
not explicited, but has been incorporated in the effective intercell barrier
εki(n, m), which then confer on the factor e−βεki(n,m) the role of a transmission
coefficient32 of a guest from an n- to an m-occupied cell.

In the present Section the correlations will be set up in the model through
the jump randomization strategy introduced in Section 3.2.2, which mimics
the memory effects in the self-motion of the guests by means of correlated
jumps inside the cell. Such memory effects will be here studied through
numerical simulations.

To get accurate statistical averages, all simulations were performed on a
grid of 16× 16× 16 cells for an observation time of 105 time steps. Anyway,
equilibrium properties of systems of various sizes above L3 = 43 have been
found to converge to the same values, therefore size effects can be considered
unimportant in the cases presented here. Several (all three-dimensional)
systems will be investigated characterized by different parameter sets:

• System # 1— This is a system of non-interacting guests (Φ = 0 in
Eq. (2.24)). Each cell has Kex = 6 exit sites with fixed energy f o

ex = −10
kJ mol−1, and Kin = 9 inner sites with energy f o

in = −20 kJ mol−1.
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Figure 7.1: (a) Displacement autocorrelation function vs. time step for some loadings,
and (b) backscattering effect after one time step τ represented by the ratio C(τ)/C(0)
plotted vs. the loading for the System # 1.

The jump probability (3.9) reads

pR
jump(η → η′) = Ajke

βfo
j

where exit-exit jumps are forbidden by means of the same Ajk defined
in Eq. (3.12), and the assumed value of γ is exp(−βf o

ex).

• System # 2— Same of System # 1 apart from the parameter γ = 1.

• System # 3— Same of System # 1 apart from

pR
jump(η → η′) = A′

jke
βfo

j .

where the A′
jk (defined in Eq. (3.12)) allows each jumping guest to

choose any of the K cell site during randomization, with γ = exp(−βf o
ex).

• System # 4— Same of System # 3 apart from γ = 1.

• System # 5— Same of System # 1 apart from f o
ex = −20 and f o

in = −10
kJ mol−1, i.e. the depth of the adsorption sites is reversed.

• System # 6— System with the same parametrizations as for Figure 6.1.

The entity of correlations is well represented by the displacement auto-
correlation function (DACF) of a single guest,

A(t) = 〈δr(t) · δr(0)〉 , (7.1)

which has been introduced in Eq. (4.21). From Figure 7.1a, where the DACF
is pictured for some loadings (〈n〉 = 1, 5, 10, 14), it is clear the predominant
role played in the entire guest’s motion history by the correlation after one
time step. The latter quantity A(τ)/A(0) plotted in Figure 7.1b expresses
the ratio of self-diffusivity lost due to the backscattering effect after one time
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Figure 7.3: Backscattering contribution D1 −D0 vs. loading for two different values of
γ. Here, γ2 < γ1 (where γ1 refers to System # 1 and γ2 to System # 2.) Dotted lines are
to guide the eye.

step. As can be seen, after a value of Ds remarkably lower than D0 at the
limit of zero loading, increasing the number of guests in the system causes
the backscattering to have not much effect on the intercell migration process
until some loading (3 < 〈n〉 < 4 in the case of Figure 7.1b) above which such
a tendency is reversed due to a decrease in the probability of the guests to
find empty sites to jump in during randomization. For loadings higher than
〈n〉 = Kin most of the inner sites are occupied so that many successful events
of migration at time t are canceled by the poor availability of empty sites to
jump in during randomization at time t + τ which causes the guest to have
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Figure 7.4: (a) Zero-time diffusivity, D0, compared with the backscattering contribu-
tion, D1 −D0, and (b) Normalized DACF A(t)/A(0) for System # 5.
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a high probability to return back to the departure cell, so that A(τ)/A(0) in
Figure 7.1b becomes more negative.

It shall be useful to define the diffusivity after j time steps as:

Dj =

j∑
z=0

〈δr(zτ) · δr(0)〉
dτ

− 〈δr(0) · δr(0)〉
2dτ

. (7.2)

In Figure 7.2 the zero-time diffusivity D0, the one-time diffusivity D1, the
self diffusivity Ds given in Eq. (4.23), and the backscattering contribution to
the diffusivity after one time step D1 −D0 = 〈δr(τ) · δr(0)〉/dτ are plotted
vs. the loading to get a precise idea of the variation in diffusivity caused
by the backscattering effect. The mean-field diffusivity computed through
Eq. (A.10) has exactly the same definition of D0. The one-time correlation
due to the backscattering effect is most of the total entity of correlations in
the motion, (i.e. in this case) so that D1 ≈ Ds.

The reducing of γ to the value of 1 gives an increase in correlation effect.
This is shown in Figure 7.3 where the backscattering contribution after one
time step, D1 −D0, is more pronounced (i.e. more negative) for the case of
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γ2 = 1 rather than γ1 = exp(−βf o
ex). Moreover, the use of low values of γ

(i.e. high jump barrier during randomization) causes correlations to level off,
as can be seen in the inset of Figure 7.3 where it is shown that the ratio
A(τ)/A(0) becomes less loading-dependent as the value of γ is lowered.

The change in shape of the Ds vs. 〈n〉 plot becomes dramatic when
f o

ex < f o
in. This can be seen in Figure 7.4a where the tendency of a guest

to escape a cell, as given by D0, is counter-balanced by a backscattering
effect, D1 − D0, almost equal in modulus and with opposite sign. This is
confirmed in the A(τ)/A(0) plot in Figure 7.4b where the importance of the
backscattering with respect to the escape ability is very high at low loadings
(large negative values of A(τ)/A(0)) and decreases with increasing loading
until for a highly dense system it becomes null (A(τ)/A(0) ≈ 0). Moreover,
the present case remarkably differs from the case of f o

ex > f o
in because the

diffusing guest finds itself very often unable to escape an exit site during
randomization at time t. Then it migrates during propagation and at time
t+τ is again trapped into the destination exit site during randomization, and
so on cyclically until it reaches sufficient energy to perform a displacement
during randomization. Such a ‘rebound process’ causes the approximation
D1 ≈ Ds to be no longer valid. Higher moments of Dj become important, so
that more than one time step are necessary to define precisely the trend of
Ds, as can be seen in Figure 7.5. Therefore, the resulting trend of Ds appears
very different from D0 since it exhibits a maximum at low-intermediate load-
ing. This is due to the fact that the rebound process becomes weaker while
increasing the loading, since more frequently the guests in the exit sites stop
rebounding because of one of the involved exit sites being filled by another
guest. This causes the correlations to weaken producing an initial diffusivity
increase, which for higher loadings is canceled by the repulsion effect during
propagation.

Self vs. collective diffusivity. One of the most realistic phenomena in-
duced by the jump randomization is the differentiation between the self and
the collective diffusivity. If the randomization is memoryless, then the migra-
tion process is governed only by the ability of guests to escape from their host
cell. Therefore in that case, neither correlation in the self-motion nor in the
collective motion are expected,55 since the mixed displacement correlations
for different guests cancel out.

In the case of jump randomization instead, some correlations between
different guests will cancel out with some correlations in the self-motion, and
this will result in a Dc higher than Ds. This is shown in Figs. 7.6 and 7.7
where Ds and Dc trends are compared directly respectively for the non-
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Figure 7.6: Self and collective diffusivity for (a) System # 3, (b) System # 4, (c)
System # 1, and (d) System #2.
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Figure 7.7: Self and collective diffusivities for the same system of Figure 6.1 while using
the jump randomization. In figures (a), (c), and (e) jumps among different exit sites are
allowed during randomization. In figures (b), (d), and (f) instead, such jumps are not
allowed. Dotted lines are to guide the eye.

interacting and the interacting case. It should be noticed that in all these
cases the difference between Dc and Ds increases in those regions where the
migration sites are more involved in the migration process than the inner
sites (i.e., from low to intermediate loadings for f o

ex < f o
in, and from interme-

diate to high loadings for f o
ex > f o

in). By comparison of the trends in Figs. 7.6
and 7.7 with the plots of collective- and self-diffusivity obtained from molecu-
lar dynamics simulation (see e.g. Dubbeldam et al.32 for the case of methane
in ZK4), it can be argued that the local, discrete ThPCA rule effectively
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Figure 7.8: Biexponential fits of the normalized time-autocorrelation function C(t)/C(0)
for two different values of the scaling factor κo = e−βεki defined in Eq. (A.53): (a) κo = 0.1
and (b) κo = 1.0. For both figures Kex = 6, Kin = 9, fex − fin = 10, and T = 300 K. In
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〈n〉 = 9, (4): 〈n〉 = 11, (×): 〈n〉 = 13.)

captures the most relevant aspects of correlated diffusion of simple chemical
species in zeolites.

7.2 Correlations in local density fluctuations

In Section 5.2.2 the behavior of the LDFACF function has been discussed for
the case of simulations of non-interacting guests. Here the same function will
be analyzed both in the mean-field approach and in numerical simulation in
the presence of correlations induced by the jump randomization.

The mean-field theory of the LDFACF will be derived in Appendix A.
Here only the main results will be discussed.

Mean-field LDFACF decay. For f o
ex − f o

in 6= 0 and T < ∞, as it has
been found in the simulations illustrated in Section 5.2.2 also the mean-field
LDFACF relaxes to equilibrium following a bi-exponential decay:

C(t)/C(0) ∼ b1e
−t/τ1 + b2e

−t/τ2 . (7.3)

This can be seen in Figure 7.8 where biexponential fits are shown together
with mean-field values of the normalized function C(t)/C(0) for a reference
three-dimensional system (i.e. Kex = 6) with Kin = 9 inner sites and effective
site energies differing of an amount f o

ex − f o
in = 10. Increases in temperature

(or decreases in |f o
ex−f o

in|) cause the separation between the two timescales τ1

and τ2 to decrease, and in the limit of f o
ex−f o

in = 0 and/or T →∞ the decay
is single-exponential, i.e. C(t)/C(0) ∼ e−t/τ . The biexponential prefactors
b1 and b2 in Eq. (7.3) give the balance between the timescales τ1 and τ2. As
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Figure 7.9: (left) The biexponential prefactors b1 and b2 (see Eq. (7.3)) of the function
A(t)/A(0) for a non-interacting system characterized by Kex = 6, Kin = 9 is shown for
different temperatures (600, 300, and 200 K). Figures (a), (b), and (c) refer to fex− fin =
10, while (d), (e), and (f) refer to fex− fin = −10. In all figures, filled and empty symbols
refer respectively to κo = 1.0 and κo = 0.1 (right) The time parameters τ1 and τ2 (insets)
of the biexponential fits (see Eq. (7.3)) for the same system of Figure 7.9 are shown in
units of time steps. Different symbols are used for different temperatures: squares (200
K), circles (300 K), and triangles (600 K). Filled and empty symbols refer respectively to
κo = 1.0 and κo = 0.1. .

can be seen in Figure 7.9, they are strongly sensitive to different conditions
of loading and temperature.

One of the most remarkable features of the mean field LDFACF is that
deviations become much higher while decreasing the temperature. The most
interesting aspect is that minima of b1 (or maxima of b2) are located around
the loading corresponding to the diffuse phase transition occurring in such a
kind of systems (see Section 5), i.e. 〈n〉 = Kin for f o

ex−f o
in > 0 and 〈n〉 = Kex

for f o
ex − f o

in < 0.

The connection between minima (or maxima) in the prefactor b1 (or b2)
and the diffuse phase transition becomes even clearer when we analyze the
case of multiple kinds of inner sites. In Figure 7.10 the trend of b1 is plotted
for the case of a (mean-field) cell having one, two and three non-equivalent
inner sites, together with the variance of the distribution function 〈n2〉−〈n〉2.
In the first case (i.e. Figs. 7.10a-b) the cell is constituted by two kinds of non-
equivalent sites (exit and inner) so that at low temperature one diffuse phase
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Figure 7.10: The biexponential prefactor b1 (top) together with the occupancy variance
(middle) and the ratio τ1/τ2 between the two biexponential timescales (down) for three
kinds of cell: (a-c) 9 equivalent inner sites of energy -20 kJ mol−1. (d-f) 6 inner sites at
-20 kJ mol−1 and 5 at -30 kJ mol−1. (g-i) 4 inner sites at -18 kJ mol−1, 4 at -25 kJ mol−1,
and 3 at -32 kJ mol−1. In all three cases there are 6 exit sites of energy -10 kJ mol−1, and
the temperature is 300 K.

transition is expected corresponding to the condition

〈n〉 ≈ Kin if f o
in < f o

ex, or

〈n〉 ≈ Kex if f o
in > f o

ex.

In the second and the third case (i.e. Figs. 7.10c-d and 7.10e-f) different
energies have been associated respectively to two and three kinds of inner
sites. Therefore, in general, if there are z different site energies ordered as
f o

1 < f o
2 < · · · < f o

z , at low temperatures z − 1 diffuse phase transitions are
expected to take place at the loadings

〈n〉 ≈ K1, K1 + K2, . . . ,
z−1∑
i=1

Ki.
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Diffuse phase transitions are caused by heterogeneities in the lattice sites
causing the curvature of the variance to deviate from the hypergeometric
trend given by the formula 〈n〉(1−〈n〉/K), which is the expected one in case
of all-equivalent sites. If the temperature is not very low (as it is the case
of Figure 7.10 where T = 300 K) the diffuse phase transition may be not
very much pronounced so that deviations from the hypergeometric model
are small or even hardly pronounced, while minima (or maxima) in the bi-
exponential prefactors will be much more marked. This suggests that the
analysis of the LDFACF decay could be used to locate more efficiently the
critical loading associated to the diffuse phase transition. Of course, the
mean-field representation provides only an ideal decay where all the collec-
tive phenomena are neglected. Nevertheless the connection with the diffuse
phase transition is a remarkable result, since even in such an essential rep-
resentation a time-correlation function turns out to be a good indicator of a
phase transition.

The scaling of the propagation probability by a homogeneous factor κo =
e−βεki in Eq. (A.53) such that 0 < κo ≤ 1 causes not simply the occupancy
transition matrix Ω(z) (defined in Section A.3) to be scaled by the same fac-
tor, but instead the entire relaxation of differently occupied cells to undergo
slight modifications. This can be seen clearly in the first two columns of
Figure 7.9, while in the last two is shown that the time parameters τ1 and τ2

are unaffected by changes in κo.

Decay of local density fluctuations in numerical simulations. The
same function has been analyzed from the output of numerical simulation. In
some aspects, the resulting behavior is somewhat similar to what found in the
mean-field case: for instance, decreases in temperature enhance the difference
between the two timescales and the intensity of the peaks correspondingly
to the diffuse phase transition. Nevertheless, some remarkable differences
deserve some comments.

First of all, numerical simulations with all equivalent sites do not show
a single-exponential relaxation as in the mean-field case. The presence of
two timescales in the decay of the occupancy fluctuation seems to be an
intrinsic feature of the collective correlations which are of course totally lost
in the mean-field representation: this can be seen clearly in the trends of
the parameters b1 and b2 in Figure 7.11 (for the case of the memoryless
randomization), which do not approach 0 nor 1 for very low or very high
loadings, as instead was observed for the mean-field case. Enlarging the
system will not change that feature.

The most interesting aspect is the change in the relaxation dynamics when
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Figure 7.11: Decay of the LDFACF and related parameters for numerical simulations
with fo

ex−fo
in = 10 kJ mol−1 at T = 300 K, when Kex = 6 and Kin = 9. In each figure, fits

for increasing integer loadings are plotted with solid lines, while symbols represent data
from simulations: (•): 〈n〉 = 1, (◦): 〈n〉 = 3, (�): 〈n〉 = 5, (�): 〈n〉 = 7, (N): 〈n〉 = 9,
(4): 〈n〉 = 11, (×): 〈n〉 = 13.)

passing from a simulation without correlations to a simulation where instead
the correlations play a significant role. If such correlations are present but
weak, as in the case of the ‘allowed ex-ex jumps’ illustrated in Section 3.2.2,
then the relaxation process appears to be similar to the uncorrelated case
and the best fit is provided by a double exponential trend. If instead an
inner topology is imposed, as in the case of ‘not allowed ex-ex jumps’, then
the relaxation turns out to be much more complicated, and two main facts
will emerge: (i) First of all, a double exponential is no longer appropriate
to fit the relaxation curve, while a triple exponential becomes much more
suitable:

C(t)/C(0) ∼
3∑

j=1

bje
−t/τj , (7.4)

where
∑

j bj = 1. (ii) Secondly, the behavior of the relaxation time changes.
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The integrated relaxation time, defined as

τint =
z∑

j=1

bjτj, (7.5)

where z = 2 for the bi-exponential and z = 3 for the tri-exponential fit,
provides an essential information regarding the extent in time of the mem-
ory each cell has of its previous occupancies. In the less correlated cases
the observed τint was monotonically decreasing with increasing the loading
(first two columns of Figure 7.11): this was exactly the expected trend, since
the chemical diffusion coefficient, Dchem, is inversely proportional to the re-
laxation time85 (as seen in Section 5), and given that for f o

ex − f o
in > 0 the

chemical diffusivity has an ‘s-shaped’ increasing trend, the parameter τint is
expected to decrease. In the more correlated case instead (where the ex-ex
jumps are forbidden), adding adsorbate to the system above some (high)
loading does not cause τint to decrease anymore and the parameter reaches a
plateau. This is a dramatic sign of how an increase in self-correlations can in-
duce high memory effects in the collective properties also. The phenomenon
can be explained as follows: at high loadings the fact that the guests occu-
pying the exit sites cannot access to other exit sites in the same cell becomes
a critical condition in which the mobility is highly reduced. In this situation
almost all the inner sites are filled, and direct jumps to other exit sites of
the cell, that were energetically favoured in the less correlated cases, here are
impossible. As a consequence, each exit sites can remain blocked for a very
long time, not allowing the cell to vary its occupancy at all.

The situation becomes even more complicated if the site free-energies are
reversed. In such a case the chemical diffusivity is decreasing; consequently,
the relaxation parameter τint is expected to increase. In fact, as shown in
Figure 7.12 this is exactly what happens for the memoryless randomization,
but the trend changes dramatically for the more complicated randomization
scheme where the ex-ex jumps are not allowed. When compared with the case
of the memoryless randomization, at the lowest loadings the local fluctuations
appear to be much more correlated due to the backscattering effect, that
under these circumstances becomes very important. Increasing the loading
causes correlations to decrease since more guests are present and the number
of migrations increases, then above some threshold the correlations increase
again, since the exit sites are almost all occupied and the migrations are very
few.

Many of the aspects of the relaxation processes illustrated here were im-
possible to expect while designing the model. They emerged spontaneously
in spite of the highly reductionistic character of the model. This makes the
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Figure 7.12: Decay of the LDFACF and related parameters for numerical simulations
with fo

ex−fo
in = −10 kJ mol−1 at T = 300 K, when Kex = 6 and Kin = 9. Fits are plotted

with solid lines, while symbols represent data from simulations: (•): 〈n〉 = 1, (◦): 〈n〉 = 3,
(�): 〈n〉 = 5, (�): 〈n〉 = 7, (N): 〈n〉 = 9, (4): 〈n〉 = 11, (×): 〈n〉 = 13.)

model not only a cheap route to design coarse-graining reductions of real
systems, but also a useful tool to investigate the deep reasons of confinement
along with a purely statistical mechanical approach. Anyway, although the
ThPCA with its simplified structure allows to sketch the essential experi-
mental facts (competition mechanism for adsorption, loading dependence of
diffusivity, backscattering and correlation), explaining all the complexities
arising from confinement seems not to be straightforward even in this lattice
model.
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Chapter 8

Conclusions

The construction of an efficient model able to reproduce the main experi-
mental facts required to identify the basic physics from a detailed analysis of
the sorption properties of molecules confined in a zeolite crystal. Two main
questions have been taken into account namely: (i) how to describe in a
meaningful way the microstructure and the pore network connectivity of the
zeolite crystal, and (ii) how to model the external fields due to the confining
geometries. Answer to the first question has been found in the mapping of the
zeolitic framework on a regular geometry of connected and structured pores
(cells). The answer to the second question required the model to include
the proper local interactions in order to reproduce adsorption isotherms and
diffusivity. In these systems accurate determination of intermolecular forces
to be used in simulations remains a largely unsolved problem and adsorp-
tion isotherms have been used to extract the data needed to obtain a mean
molecular interaction potential within the cells. The model developed in the
present thesis makes use of an automatic partitioning of the space in order
to efficiently couple the locality of cellular automata together with the flex-
ibility of static models of self-interacting cell, which in literature have been
proven to be very efficient in reproducing the macroscopic properties of sim-
ple interacting systems by means of simple statistical-mechanical equations.
Therefore it has been called Thermodynamic Partitioning Cellular Automa-
ton (ThPCA). In such a reductionistic model, the molecules can hop from
one cell to another, according to well defined rules satisfying detailed balance,
the diffusion coefficient being deduced from their mean square displacement
vs. time. It has been demonstrated that such a coarse-grained description
representing the microscopic system at the mesoscopic length scale (10-1000
nm) can capture the proper density distribution while retaining microscopic
information on particle fluctuations and dynamics. In the pore network mod-
eled in this thesis, essentially an LTA type, a molecule can jump from the
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parent cell to one of the six neighboring cell, and the diffusion behavior will
be Einsteinian over time scales that are sufficiently large to allow molecules
to move between several coarse-grained cells. On shorter time-scales in a real
zeolite, the motion may be more complex, since molecules feel the interactions
with the confining walls and possibly with other sorbed molecules within the
same cage. The molecules wait in the cage until they gain sufficient energy
to move to a neighboring cage. In the ThPCA this experimental fact has
been reproduced through the action of the inner sites where molecules could
be trapped until they are stochastically allowed to gain an exit site. In this
way the necessary computer time can be reduced by orders of magnitude
for zeolitic systems where rare event dynamics driven by strong guest-guest
and guest-host interactions make full-scale molecular dynamics simulations
still prohibitively expensive. We conclude that the developed ThPCA can
be classified as a mesoscopic dynamical system able to give the correct be-
havior of various experimental systems that have been investigated in recent
years, bringing out very clearly the essential elements involved in the ad-
sorption and diffusion processes. Of course it cannot replace in any way
MD simulations or any other atomistic method in the detailed description of
the properties of a complex system like a zeolite since microscopic informa-
tion about e.g. the framework composition and the structure of the sorbed
molecules is lost. On the contrary, the ThPCA model can be interpreted
as a complementary tool able to retain the essential physical and chemical
properties of molecules sorbed in zeolites by averaging over less important
detailed information at the atomistic level, which can be acquired through
more sophisticated microscopic theoretical approaches and/or experimental
measurements. The implementation of a systematic procedure to derive the
ThPCA interaction parameters and kinetic barriers directly from atomistic
calculations over a small zeolite’s portion would add self-consistency to the
model. In this thesis it has been shown that when constructed from a fitting
procedure of experimental data the model is flexible enough to allow a coher-
ent representation of the essential (thermodynamic and dynamic) properties
of a host-guest system. Therefore the ThPCA can be proposed as a proper
environment for a coarse-grained representation of such systems. Moreover,
it results that a well-designed coarse-grained description of a microporous
material is not simply a way to save computer time, but a route to focus
on the main characteristics of sorption and diffusion processes, where details
may be unimportant and nonessential. The advantage of the present model
compared with other methods is that it provides a simplified description of
the microscopic dynamics of guests adsorbed in micropore, yet most of the
interesting details are intrinsically present and sometimes it is easier to see
important correlations that are obscured in other methods. In this context
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8.1 Acknowledgements 109

the ThPCA can be considered as the computationally cheapest model that
has the essential properties of guests adsorbed in a micropore.

Many are the possible developments of the model. First of all, the mod-
eling strategy developed in the present thesis could be exploited for design-
ing coarse-grained representations of diffusion of guests in various zeolite
topologies (also including defects), in and out od equilibrium. Secondly,
the application of the model to the study of mixtures of guests adsorbed
in zeolites will be of remarkable interest since it could find applications as
test model in problems of separation and catalysis. Finally, extending the
applicability to guest species of more complex molecular structure (like n-
alkanes) would represent another important step towards the formulation of
a complete coarse-grained theory able to embed in a single model a very wide
variety of guest-host systems under a reductionistic approach.
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Appendix A

Mean field theory

A.1 Single cell at equilibrium: grand-canonical

formulation

The properties of the model can be studied through the analysis of some
probability distribution related to the lattice partition function QL defined
in Eq. (2.5). The probability distribution of some global observable, like the
energy of the whole lattice, could in principle be formulated as a function of
the terms contributig to the summatory in QL , and the systems behavior
could be investigated through the analysis of such a distribution. Anyway,
the direct use of QL would make such a computation an impossible task for
large systems. Partition functions restricted to a single cell are to be preferred
to define the statistical distributions the model obeys. If correlations among
different cells are negligible (and this is the case for the model considered
here), and if the lattice contains a large number of cells, then such partition
functions will provide information about the equilibrium properties of the
entire system.

The thermodynamic approach allows a mean-field theory to be developed
for the ThPCA under the assumption that occupancies are distributed in
the neighborhood of an n-occupied cell according with the same occupancy
probability distribution of the entire system. Such a distribution, denoted
p = {p(n)}n=0,...,K , where p(n) denotes the probability of a cell to be occupied
by n guests, depends strongly on the loading (average occupancy) 〈n〉 =
N/M . Each loading is related to a particular value of the chemical potential
µ according to the adsorption isotherm of the system. While in numerical
simulations of ThPCA 〈n〉 is constant, in the mean-field approach it is more
suitable to work with constant µ (where the subscript GC stands for ‘grand-
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canonical ensemble’), in order to compute the occupancy distribution as

p(n) =
Q(n)eβµn

Ξ(µ)
(A.1)

where Q(n) is the canonical partition function for a closed cell of occupancy
n and the denominator,

Ξ(µ) =
K∑

n=0

Q(n)eβµn, (A.2)

is the grand-canonical partition function of the open cell. The loading, 〈n〉,
and the occupancy variance, 〈n2〉 − 〈n〉2, can then be recovered through the
first and second moment of p(n):

〈n〉 =
K∑

n=0

n p(n) =
1

β

∂ ln Ξ(µ)

∂µ
, (A.3)

〈n2〉 − 〈n〉2 =
K∑

n=0

(n− 〈n〉)2 p(n) =
1

β

∂〈n〉
∂µ

. (A.4)

The intercell transfer factor, W (n, m), (introduced in Section 6.2.1) can
be defined as the conditional probability to observe migration of one guest
from an n-occupied cell to an m-occupied neighboring cell:

W (n, m) =
1

Kex
2

Kex∑
nex=0

Kex∑
mex=0

nex(Kex −mex)

× P (nex|n)P (mex|m)pP (nex, n, mex, m) (A.5)

defined for n = 1, . . . , K and m = 0, . . . , K − 1 with P (nex|n) given in
Eq. (2.29), and

pP (nex, n, mex, m) =
e−βεki(n,m)

1 + eβ∆F (nex,n,mex,m)
(A.6)

as the propagation probability defined in Eq. (3.22). In Eq. (A.6) the term

∆F (nex, n, mex, m) = Φ(nex − 1, n− nex) + Φ(mex + 1, m−mex)

− Φ(nex, n− nex)− Φ(mex, m−mex) (A.7)
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is the free-energy difference between the pre- and the post-propagation state.
From the occupancy distribution and the intercell transfer factor one can
derive the equilibrium probability of a guest to escape from its current cell
as

pesc =
Kex

〈n〉

K∑
n=1

K−1∑
m=0

p(n)p(m)W (n, m) (A.8)

=
τ

τmrt

(A.9)

where the equivalence (A.9) gives the relation between the escape probability
and the is the mean residence time, τmrt, of a guest inside of a cell (expressed
in time units).

Let us consider now the discrete self-diffusivity as a function of the DACF
reported in Eq. (4.23). Its value at t = 0 i.e. 〈δr(0) · δr(0)〉 is λ2 times the
escape probability given in Eq. (A.8). Under the assumption of uncorrelated
motion then the summation in Eq. (4.23) is null and the mean-field self-
diffusivity results:

Dmf
0 =

λ2

τ

Kex

2d〈n〉

K∑
n=1

K−1∑
m=0

p(n)p(m)W (n, m), (A.10)

which turns out to be related with the mean residence time introduced in
Eq. (A.9) according to Dmf

0 = λ2/2dτmrt. The quantity Dmf
0 is exactly the

memoryless diffusivity (see Section 3.2.1) produced in numerical simulations
where the memoryless randomization is used.

A.1.1 Non-interacting case

Several simplifications are possible in the absence of guest-guest interactions.
In Appendix B.1 it is shown that in such a case Ξ reads

Ξ(µ) =
(
1 + eβ(µ−fo

ex)
)Kex (

1 + eβ(µ−fo
in)

)Kin
, (A.11)

and that the thermodynamic equilibrium of the model is represented by a
dual-site Langmuir isotherm:43

〈n〉 = Kex
e−βfo

exλa

1 + e−βfo
exλa

+ Kin
e−βfo

inλa

1 + e−βfo
inλa

, (A.12)

where Kex is the capacity for adsorption in the exit sites, Kin is the capacity
for adsorption in the inner sites, λa = eβµ is an absolute activity, and the
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weights e−βfo
ex and e−βfo

in play the role of the equilibrium constants for ad-
sorption in the exit sites and in the inner sites, respectively. In Eq. (A.12)
the probability of an exit site to be occupied, ρex, and the probability of an
inner site to be occupied, ρin, are defined as:

ρex =
e−βfo

exλa

1 + e−βfo
exλa

, ρin =
e−βfo

inλa

1 + e−βfo
inλa

. (A.13)

Inserting Eq. (A.11) in Eq. (A.1) and using the relations in Eq. (A.13) one
obtains the following probability distribution of occupancies:

p(n) =
Kex∑

nex=0

(
Kex

nex

)
(ρex)

nex (1− ρex)
Kex−nex

+

(
Kin

n− nex

)
(ρin)

n−nex (1− ρin)
Kin−n+nex , (A.14)

which arises from the composition of the probability distributions in two sub-
systems (of exit and inner sites, respectively) exchanging guests.

When the temperature is infinite (an ideal situation equivalent to as-
signing the same statistical weight to both kinds of adsorption site), then
Ξ(µ) = (1+λa)

K and Eq. (A.12) reduces to the single-site Langmuir isotherm
〈n〉 = Kλa/(1 + λa). For the equilibrium distribution p, this is the same as
to consider f o

in = f o
ex, so that the system is trivially microcanonical and the

mutual exclusion is the only restraint to the guest distribution in the lattice.
Therefore the distribution p converges to an hypergeometric distribution,41

denoted phyp (see Appendix B.1 for details).

On the other hand, the entire system is canonical when f o
in 6= f o

ex. In
this case energy effects add to the mutual exclusion, therefore in general
peq 6= phyp for T <∞.

In the absence of guest-guest interactions also the uncorrelated self-diffusivity
achieves a simpler formulation, and Eq. (A.10) becomes:

Dmf
0 =

λ

τ

2 1

2d

Kexρex

〈n〉
(1− ρex)

eβεki

2
, (A.15)

where εki is the fixed kinetic barrier.
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A.2 Mean-field displacement autocorrelation

function

The present Appendix is devoted to the developement of a mean-field repre-
sentation of the correlations arising as a consequence of the jump random-
ization scheme introduced in Section 3.2.2. In order to facilitate the reading,
some of the concepts already described in the main body of the present thesis
will be repeated.

Cell configurations of distinguished guests. Numerical simulations
showed that the correlation effects arising from the application of the jump
randomization are well represented by the displacement autocorrelation func-
tion (DACF), which in a discrete model can be interpreted as the discrete-
counterpart of the velocity autocorrelation function (VACF) of a diffusing
atom or molecule in a continuous system. In the present Appendix a mean-
field analysis of the DACF is presented which is aimed to trace back the
origin of correlations in the self-motion and to obtain a qualitative mean-
field expression for the self-diffusivity emphasizing the main contributions of
memory effects to the effective mobility of each diffusing guest.

While in the memoryless randomization all the cell configurations preserv-
ing the cell occupancy are available as output configurations, during the jump
randomization the set of accessible outputs is much smaller. As a result, while
the memoryless randomization pushes each cell towards a condition of local
equilibrium, by construction the configuration changes occurring by means
of the jump randomization are much less pronounced. This allows memory
effects to arise spontaneously during the time evolution of the system.

In Chapter 2 the configuration of a generic cell r (implicitly referred to a
generic time t) has been defined as

η(r) = {ηi(r)}, i = 1, . . . , K (A.16)

where ηi is a boolean variable which has value 1 if according to configu-
ration η the i-th site of the cell is occupied, and 0 if unoccupied. With
such a definition, Eq. (A.16) is a configuration of occupied sites and contains
no information regarding the guests’ identities. In words, the identity-less
configuration η will be referred to as ‘η-configuration’.

Identities are taken into account by the following σ-configuration:

σ(r) = {σiI}, i = 1, . . . , K ∨ I = 1, . . . , N (A.17)
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where N is the number of guests, and σiI has value 1 if the I-th guest of the
system is located at the i-th site of cell r, and 0 otherwise.

Let us consider a single, closed cell with configuration σ before a ran-
domization operation. Let us assume σ to be a particular realization of the
identity-less configuration η. Indicating with K the number of sites in the
cell, and with n the numer of occupied sites, there are exactly Ωσ = K!/(K−
n)! possible output (i.e., post-randomization) σ-configurations, which can be
grouped into Ωη = K!/n!(K − n)! η-configurations. Now, the memoryless
randomization selects an output η-configuration, ηR, among all the Ωη with
a probability proportional to exp[−βF (ηR)], where F is the cell free-energy
function. After that, the guest names are assigned randomily, so all the pos-
sible n! identity configurations have the same probability to be selected. As a
result, once a value for the numer of sites per cell K has been set, the number
of accessible output configurations Ωη depends only on the cell-occupancy n
and not on the particular configuration of occupied sites.

Everything changes under the jump randomization approach, where the
number of possible outputs for a given input configuration is limited by the
fact that each guest must overcome a barrier to reach a different site in the
cell (so that the probability to change from η to ηR is no longer propor-
tional to exp[−βF (ηR)] but varies with the configuration path performed
during the randomization operation), and that two guests’ identities cannot
be exchanged while keeping their position unvaried. Since at each time step
the jump randomization moves sequentially the guests from site to site while
preserving their identities the entire migration process contains memory ef-
fects. In Chapter 7 it has been shown via numerical simulations that such an
approach affects the mobility of the guest so that the self-diffusivity results
to be less than what expected in the absence of correlations (as it would be
in the case of the memoryless randomization), and in some cases it causes
relevant changes in the trend of self-diffusivity vs loading as observed when
exit sites are more binding than inner sites.

A deeper understanding of the correlations introduced by the jump ran-
domization required an analysis of the migration mechanism, in terms of the
probability connected with every possible move a tagged guest can perform
during its entire diffusion process. From a probabilistic point of view, the
process of migration of a tagged guest is a sequence of events causing the
guest to move from cell to cell and from site to site inside of each cell. Each
event has a certain probability to occur which is in principle dependent on
the previous moves of the guest itself. Moreover, a dependency exists also
on the moves of all the surrounding guests, so that it would be very difficult
(and somewhat useless) to calculate exactly the probability of every event.
A mean-field approach must therefore be used to derive readable equations
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linking correlations in motion to macroscopic observables (e.g. densities, rate
of transfers, etc.).

A.2.1 Basic probability distributions and averages

Let us briefly revise the main quantities involved in the diffusion process.
The instantaneous cell-to-cell displacement of a single guest is given by

δrI(t) = rI(t + τ)− rI(t) (A.18)

where I denote the guest’s identity and rI(t) is its position (or, equivalently,
the position of its host cell taking account of periodic boundary conditions) at
time t. A hypercubic lattice shall be assumed so that Eq. (A.18) is equivalent
to Eq. (4.19). From now on in the present Appendix, the guest identity, I,
will be kept as implicit to maintain the notation as simple as possible.

The self-diffusivity is related to the displacement autocorrelation function
(DACF), given by 〈δr(zτ) · δr(0)〉 (where z ≥ 0 is an integer and τ is the
duration of a time step) via the Eq. (4.23). Such a quantity can be used in
a very similar way as the velocity autocorrelation function of a guest in a
continuous system. Its zero-time value is given by

〈δr(0) · δr(0)〉 =λ2 1

〈n〉

Kex∑
nex=1

Kin∑
nin=0

Kex−1∑
mex=0

Kin∑
min=0

nex

(
1− mex

Kex

)
× p(nex, nin) p(mex, min) κ(nex, nin, mex, min) (A.19)

where 〈n〉 is the loading (average number of occupied sites in a cell), p(nex, nin)
is the total probability of a cell to be occupied by nex guests in the exit sites
and nin guests in the inner sites:

p(nex, nin) = [Ξ(µ)]−1

(
Kex

nex

)(
Kin

nin

)
eβ(nex+nin)µe−βF (nex,nin) (A.20)

with Ξ(µ) as the grand-canonical partition function of a single cell when the
chemical potential of the system is µ. In Eq. (A.20) the quantity

κ(nex, nin, mex, min)

is the conditional migration rate, that is the conditional probability of a
tagged guest to migrate (during propagation) to the (j + d)-th exit site of
the neighboring cell rj, given that (i) the tagged guest is located at the j-th
site of its current guest cell r, (ii) the cell r has respectively nex and nin filled
exit and inner sites including the one occupied by the tagged guest, and (iii)

Federico Giovanni Pazzona - Cellular Automata for the Mesoscopic Simulation of
Adsorption and Diffusion in Zeolites

Tesi di Dottorato in Scienze Chimiche - Università degli Studi di Sassari
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the cell rj has respectively mex and min filled exit and inner sites but (iv) its
(j + d)-th exit site (the target site) is empty, i.e. ηj+d(r

j) = 0:

κ(nex, nin, mex, min) = exp [−βεki(n, m)]

×
(
1 + exp

{
β
[
Φ(nex − 1, nin) + Φ(mex + 1, min)

− Φ(nex, nin)− Φ(mex, min)
]})−1

, (A.21)

with εki(n, m) as the kinetic barrier to intercell migration, n = nex + nin and
m = mex + min.

Another probability distribution function which will play a central role
in our mean-field analysis is g(nα − 1, nν |{α}) (where both α and ν can take
values ‘ex’ and ‘in’), that is the conditional probability of a cell with an α-
type site already occupied to have nν filled sites of type ν and nα − 1 of the
remaining Kα − 1 filled sites of type α:

g(nα − 1, nν |{α}) =
nαp(nex, nin)∑Kex

n′ex=1

∑Kin

n′in=0 n′αp(n′ex, n
′
in)

, (A.22)

where {α} denotes the condition that there is a guest (i.e. the tagged particle)
located in an α-type site, and the quantity

nα

Kα

p(nex, nin) = [Ξ(µ)]−1

(
Kα − 1

nα − 1

)(
Kν

nν

)
eβ(nex+nin)µe−βF (nex,nin) (A.23)

is the total probability of a cell to have occupied one particular α-type site,
nα − 1 of the remaining α-type sites, and nν sites of type ν.

The probability distribution in Eqs. (A.20) and (A.22) are very useful
to compute averages of the observables involved in the intercell migration
process. Such averages will represent the macroscopic observables the DACF
will be related to. In fact, each of them represent a probability for a single
guest, but since it is obtained by averaging observables over the probability
distributions p and g then the notation will be used 〈 · 〉 for them.

The probability of an α-site to be occupied is defined as

〈ρα〉 =
Kex∑

nex=0

Kin∑
nin=0

nα

Kα

p(nex, nin). (A.24)

Federico Giovanni Pazzona - Cellular Automata for the Mesoscopic Simulation of
Adsorption and Diffusion in Zeolites

Tesi di Dottorato in Scienze Chimiche - Università degli Studi di Sassari
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The conditional probability of an α-site in a cell to be empty given that
there is one exit site occupied in the same cell is given instead by

〈hex〉 =
Kex∑

nex=1

Kin∑
nin=0

(
1− nex − 1

Kex − 1

)
g(nex − 1, nin|{ex}) (A.25)

if α = ‘ex’, and

〈hin〉 =
Kex∑

nex=1

Kin∑
nin=0

(
1− nin

Kex

)
g(nex − 1, nin|{ex}) (A.26)

if α = ‘in’.
The probability of a guest to jump from an exit site during the jump

randomization to any other site (independently of its type) of the cell shall
be indicated as 〈qex〉. The calculation of 〈qex〉 will be carried out by supposing
the tagged guest (located in a generic α = site, with α =’ex’, ’in’) to point
towards another exit or inner site during the jump randomization. In order to
jump into it, it must: (i) Find it empty, (ii) Overcome the adsorption barrier
of its host site, f o

α, and (iii) Overcome an interaction free-energy barrier,
Φ(η′) − Φ(η) (where Φ(η) is the interaction free-energy of configuration η,
and η′ is the configuration that the cell would reach after the jump move) to
preserve the detailed balance. So in case of empty target site the total free-
energy barrier to overcome will be f o

α+Φ(η)−max [Φ(η′), Φ(η)]. Since Kα/K
is the probability to select an α site as target and since as it follows from
the definition of the free-energy function Φ(nex, nin) if the guest is jumping
between two sites of the same type then the cell free-energy will not change
causing the interaction free-energy barrier to be zero, the result is

〈qα〉 =
∑

ν=ex,in

Kν

K
〈qαhν〉 (A.27)

(A.28)

where 〈qαhν〉 are defined by the following relations, for α, ν taking values in
the set {ex, in}:

〈qαhα〉 = γeβfo
α

Kα∑
nα=1

Kν∑
nν=0

(
1− nα − 1

Kα − 1

)
g(nα − 1, nν |{α}), (A.29)

and

〈qαhν〉 =γeβfo
α

Kα∑
nα=1

Kν∑
nν=0

(
1− nν

Kν

)
eβΦ(nα,nν)e−β max[Φ(nα−1,nν+1),Φ(nα,nν)]

× g(nα − 1, nν |{α}), α 6= ν (A.30)
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where γ is a scaling factor for randomization introduced in Eq. (3.12). The
macroscopic quantity 〈qαhν〉 can be interpreted as the average acceptance
probability of a jump from a site of type α to a site of type ν).

Let us compute now the transmission coefficient, that is the probability
that during propagation a guest located in an exit site effectively migrates
into the neighboring cell. Before to do that, let us introduce a formalism
which will simplify the final equations. If p indicates a probability, or a
composition of probabilities (i.e. sum, product, etc.) then p = 1 − p, while
the notation 〈p1p2 · · · pu〉 will be used in case the events connected with the
u probabilities are treated as non-independent. Under this assumption the
transmission coefficient, denoted 〈κρex〉 is

〈κρex〉 =
Kex∑

nex=1

Kin∑
nin=0

Kex−1∑
mex=0

Kin∑
min=0

(
1− mex

Kex

)
p(mex, min)κ(nex, nin, mex, min)

× g(nex − 1, nin|{ex}). (A.31)

If guests are non-interacting and the kinetic barrier εki is homogeneous, then
〈κρex〉 = 〈κ〉ρex, where 〈κ〉 = 1

2
exp[−βεki].

A.2.2 Mean-field evaluation of the displacement auto-
correlation function

Let us suppose that at time zero (i.e. z = 0) the tagged guest has moved from
its host cell, say r, to the neighboring cell along the direction ej, i.e. rj, so
that δr(0) ·δr(0) = 1 and the guest find itself in the exit site (rj, j +d). That
represents the starting point for the evaluation of probabilities of all subse-
quent events. In this approach the choice of the cubic topology turns out to
be the most suitable since a non-zero value of δr(zτ) ·δr(0) is obtained only if
at the z-th time step the guest migrates to a cell along the direction of ej (so
that δr(zτ) · δr(0) = 1) or ej+d = −ej (so that δr(zτ) · δr(0) = −1). There-
fore, 〈δr(zτ) · δr(0)〉/〈δr(0) · δr(0)〉 represents the conditional probability of
a guest to migrate at time zτ in the same direction of displacement at time
0, given that at time 0 the displacement was not null, minus the conditional
probability of a migration in the opposite direction. The calculation will be
carried out for the first two time steps after the initial migration event and
then generalized to an arbitrary time step.

Let us introduce a notation to denote the various events involved in the
self-motion. At the initial time, z = 0:

Federico Giovanni Pazzona - Cellular Automata for the Mesoscopic Simulation of
Adsorption and Diffusion in Zeolites

Tesi di Dottorato in Scienze Chimiche - Università degli Studi di Sassari
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♦ The guest reaches any of the Kex exit sites of the current cell during
randomization, and subsequently migrates to the corresponding neigh-
boring cell during propagation.

By assuming ej to be the migration direction at time 0, the following events
at any other time step z ≥ 1 will be specified:

→ The guest reaches the j-th exit site of the current cell during random-
ization (i.e. it jumps in if it occupies a different site, or it stays in if it
already occupies it) and subsequently cannot migrate to the neighbor-
ing cell in the ej direction during propagation.

⇒ The guest reaches the j-th exit site of the current cell during random-
ization, and subsequently migrates to the neighboring cell in the ej

direction during propagation.

← The guest reaches the (j + d)-th exit site of the current cell during
randomization and subsequently cannot migrate to the neighboring cell
in the ej direction during propagation.

⇐ The guest reaches the (j + d)-th exit site of the current cell during
randomization, and subsequently migrates to the neighboring cell in
the direction −ej during propagation.

l The guest reaches an exit site different from the j-th and the (j +d)-th
during randomization and subsequently cannot migrate to a neighbor-
ing cell during propagation.

m The guest reaches an exit site different from the j-th and the (j +d)-th
during randomization and subsequently migrates to a neighboring cell
during propagation.

© The guest reaches an inner site of the current cell during randomization.

Case one: allowed ex-ex jumps

The calculation of the DACF will be extensively illustrated for the case in
which during the jump randomization the jumping guest can select any of
the K sites of the cell as a target site.
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Ex-ex jumps allowed
p(⇒ |♦) = (1/K)〈qexhex〉〈κρex〉
p(→ |♦) = (1/K)〈qexhex〉 (1− 〈κρex〉)
p(⇐ |♦) = (1− γex − γin) 〈κρex〉
p(← |♦) = (1− γex − γin) (1− 〈κρex〉)
p(m |♦) = [(Kex − 2)/K]〈qexhex〉〈κρex〉
p(l |♦) = [(Kex − 2)/K]〈qexhex〉 (1− 〈κρex〉)
p(©|♦) = (Kin/K)〈qexhin〉

Table A.1: Probability values for events of jump starting from initial condition ♦ at
time 0 for the case of jump randomization with allowed ex-ex jumps, where γex = [(Kex−
1)/K]〈qexhex〉 is the probability of the guest to jump into an exit site different from the
departure one, and γin = (Kin/K)〈qexhin〉 is the probability to jump to an inner site.

Time t = 0. Since at the initial time δr(0) · δr(0) = 1 only if the guest
migrates to a neighboring cell, then p(♦) = 2dλ−2τDmf

0 where

Dmf
0 =

1

2dτ
〈δr(0) · δr(0)〉 (A.32)

is the mean-field diffusivity in the absence of memory effects in the guest
motion, with 〈δr(0) · δr(0)〉 as given in Eq. (A.19).

Time t = τ . After one time step (i.e. z = 1), the guest has just propagated
from cell r to r+ej, and find itself in the (j +d)-th exit site of the latter cell,
indicated (r + ej, j + d). The events which are possible to happen from this
position will be now listed. Mathematical formulas for the related (non-null)
probabilities can be found in Table A.1 in terms of the averages defined in
Section A.2.1.

(♦,⇒): The guest jumps from (r+ej, j+d) to (r+ej, j) with subsequent
propagation to (r + 2ej, j + d), with probability p(⇒ |♦) (indicating
the conditional probability of an event ⇒ given an initial event ♦).

(♦,→): The guest jumps from (r + ej, j + d) to (r + ej, j) with no
subsequent propagation, with probability p(→ |♦).

(♦,⇐): The guest stays in the site (r + ej, j + d) and subsequently
propagates to the site (r− ej, j), with probability p(⇐ |♦).

(♦,←): The guest stays in the site (r + ej, j + d) with no subsequent
propagation, with probability p(← |♦).
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(♦,m): The guest jumps from (r + ej, j + d) to an exit site (r + ej, i)
with i 6= j, j + d, and subsequently propagate to the connected exit site
(r + ej + ei, i + d), with probability p(m |♦).

(♦, l): The guest jumps from (r+ej, j+d) to an exit site (r+ej, i) with
i 6= j, j + d, and undergoes no subsequent propagation, with probabil-
ity p(l |♦).

(♦,©): The guest jumps from (r + ej, j + d) to an inner site of the
same cell, with probability p(©|♦).

Let us introduce the quantity χ(ς|♦), returning a value 1 if the cell-to-cell
displacement at time t (represented by the symbol ς) has equal sign of the
displacement at time 0, a value −1 if the sign is opposite, and 0 in all other
cases:

χ(ς|♦) =


1, if ς =⇒
−1, if ς =⇐
0, otherwise

(A.33)

Therefore, since the process is Markovian one can define

〈δr(τ)δr(0)〉 = λ2p(♦)
∑
ς∈S

χ(ς|♦)p(ς|♦) (A.34)

where

S = {⇒,→,⇐,←,m, l,©} (A.35)

is the set of all possible displacements, which returns

〈δr(τ) · δr(0)〉 =λ2p(♦) [p(⇒ |♦)− p(⇐ |♦)] . (A.36)

Time t = zτ . After two time steps (z = 2), there are 7 kinds of starting
position according to the list in Table A.1. A guest starting from an inner
site or an exit site (of any cell) different from j or j + d will have equal
probability to move towards the direction ej or the direction −ej, therefore
for the starting positions ©, l, and m the net average displacement is null.
This fact extends over all times after z > 1. In other words, only the moves
⇒,→,⇐,← can generate net non-null contributions to the DACF so that
the general expression

〈δr(zτ)δr(0)〉 = λ2p(♦)
∑
ς1∈S

· · ·
∑
ςz∈S

χ(ςz|♦)p(ς1|♦)
z∏

j=1

p(ςj+1|ς1), z ≥ 1

(A.37)
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p(ς| ⇒)
p(⇒ | ⇒) = p(⇒ |♦) p(→ | ⇒) = p(→ |♦)
p(⇐ | ⇒) = p(⇐ |♦) p(← | ⇒) = p(← |♦)
p(m | ⇒) = p(m |♦) p(l | ⇒) = p(l |♦)
p(©| ⇒) = p(©|♦)

p(ς| →)
p(⇒ | →) = p(⇐ |♦) p(→ | →) = p(← |♦)
p(⇐ | →) = p(⇒ |♦) p(← | →) = p(→ |♦)
p(m | →) = p(m |♦) p(l | →) = p(l |♦)
p(©| →) = p(©|♦)

p(ς| ⇐)
p(⇒ | ⇐) = p(⇐ |♦) p(→ | ⇐) = p(← |♦)
p(⇐ | ⇐) = p(⇒ |♦) p(← | ⇐) = p(→ |♦)
p(m | ⇐) = p(m |♦) p(l | ⇐) = p(l |♦)
p(©| ⇐) = p(©|♦)

p(ς| ←)
p(⇒ | ←) = p(⇒ |♦) p(→ | ←) = p(→ |♦)
p(⇐ | ←) = p(⇐ |♦) p(← | ←) = p(← |♦)
p(m | ←) = p(m |♦) p(l | ←) = p(l |♦)
p(©| ←) = p(©|♦)

p(ς| m)
p(⇒ | m) = p(⇒ | l) p(→ | m) = p(→ | l)
p(⇐ | m) = p(⇐ | l) p(← | m) = p(← | l)
p(m | m) = p(m | l) p(l | m) = p(l | l)
p(©| m) = p(©| l)

p(ς| l)
p(⇒ | l) = p(⇐ | l) p(→ | l) = p(← | l)

p(ς|©)
p(⇒ |©) = p(⇐ |©) p(→ |©) = p(← |©)

Table A.2: Possible guest jumps after two time steps for the case where during the jump
randomization each guest can select any of the K sites in the cell as target sites.

reduces simply to

〈δr(zτ) · δr(0)〉 = λ2p(♦) [p(⇒ |♦)− p(⇐ |♦)]

× [p(⇒ |♦)− p(⇐ |♦) + p(← |♦)− p(→ |♦)]z−1 (A.38)

which gives

〈δr(zτ) · δr(0)〉 = −2dτDmf
0 〈κρex〉 (1− 2〈κρex〉)z−1

×
[
1− Kex

K
〈qexhex〉 −

Kin

K
〈qexhin〉

]z

. (A.39)
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Figure A.1: Mean-field self diffusivity and macroscopic quantities involved for the same
interacting system investigated in Section 6.1. Here, ex-ex jumps are allowed. Figs. (a)-(c)
refer to ∆fo = 10 kJ mol−1. Figs. (d)-(f) refer to ∆fo = 5 kJ mol−1. In the first column,
i.e. Figs. (a) and (c), the macroscopic quantities 〈qexhex〉, 〈qexhin〉, and 〈κρex〉 are plotted.
In the second column, i.e. Figs. (b) and (d), the memoryless mean-field self-diffusivity
Dmf

0 is plotted together with the first-time correlation term, Dmf
1 − Dmf

0 . In the third
column, i.e. Figs. (c) and (e), the resulting mean-field self-diffusivity Dmf (continuous
line) is plotted together with diffusivities found in numerical ThPCA simulations.

By indicating as Dmf
s the mean-field value of the self-diffusivity of Eq. (4.23),

and by using the following series

∞∑
z=1

AzBz−1 =
A

1− AB
(A.40)

to perform the summation of the correlated part, one obtains

Dmf
s = Dmf

0

{
1− 2〈κρex〉

1−
∑

α
Kα

K
〈qexρα〉

1− (1− 2〈κρex〉)
[
1−

∑
α

Kα

K
〈qexρα〉

]}
, (A.41)

where the sums extend to α =‘ex’, ‘in’.

Case two: not allowed ex-ex jumps

The same procedure can be applied for the case where guests are not allowed
to jump from an exit site to another exit site during the jump randomization.
In such an evolution scheme, after a guest has propagated from one cell to
the exit site of another cell it is forced to pass through the inner sites in order
to migrate into a neighboring cell which is different from the one they have
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Ex-ex jumps not allowed
p(⇐ |♦) = [1− (Kin/K)〈qexhin〉] 〈κρex〉
p(← |♦) = [1− (Kin/K)〈qexhin〉] (1− 〈κρex〉)

Table A.3: Probability values for events of jump starting from initial condition ♦ at
time 0 for the jump randomization with not allowed ex-ex jumps.
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Figure A.2: Mean-field diffusivity compared with numerical values found in numerical
ThPCA simulations for the same system of Figure A.1 but with (a) ∆fo = −5 kJ mol−1,
and (b) ∆fo = 10 kJ mol−1 but forbidden ex-ex jumps.

just left. The resulting DACF is

〈δr(zτ) · δr(0)〉 = λ2p(♦)(−1)zp(⇐ |♦) [p(⇐ |♦)− p(← |♦)]z−1 , (A.42)

that by inserting the probabilities listed in Table A.3 becomes

〈δr(zτ) · δr(0)〉 =− 2dτDmf
0 〈κρex〉 (1− 2〈κρex〉)z−1

×
[
1− Kin

K
〈qexhin〉

]z

, z ≥ 1 (A.43)

Therefore the mean-field equation for the diffusivity results

Dmf
s = Dmf

0

{
1− 2〈κρex〉

1− Kin

K
〈qexρin〉

1− (1− 2〈κρex〉)
[
1− Kin

K
〈qexρin〉

]}
, (A.44)

where the sums extend to α =‘ex’, ‘in’.

A.2.3 Discussion of the mean-field results.

Two of the possible mean-field diffusion profiles obtainable by introducing
the simulation of dynamic events in a static thermodynamic model of adsorp-
tion of xenon in zeolite NaA (i.e. the same interacting system illustrated in
Section 6.1 through numerical simulations) are plotted in Figure A.1 together
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Figure A.3: Mean-field correlation function (black dots) compared with the values
found by numerical simulation (white circles) for the same system of Figure A.2, in the
limit of zero loading.

with the macroscopic observables involved, 〈qexhin〉, 〈qexhex〉 and 〈κρex〉. By
defining the mean-field diffusivity after z time steps as

Dmf
j =

j∑
z=0

〈δr(zτ) · δr(0)〉
dτ

− 〈δr(0) · δr(0)〉
2dτ

, (A.45)

the quantity Dmf
1 − Dmf

0 represents the memory effect after one step. The
more negative it is, the stronger the correlation is.

In particular, Figure A.1 refers to ∆f o = f o
ex − f o

in > 0, i.e. a condition
where the inner sites are preferred w.r.t. the exit sites. Now the obtained
trends will be analyzed by considering the system while increasing the load-
ing, 〈n〉.

(i) From low to intermediate loading, the trend of 〈qexhin〉 is rapidly de-
creasing, while 〈qexhex〉 decreases much more slowly. Together with an ap-
proximately constant value of the transmission coefficient (〈κρex〉 ≈ 1

2
) the

consequence of that is that Dmf
0 increases since almost all guests promoted to

an exit sites during randomization have a probability of about one half to mi-
grate to a neighboring cell, but the correlation effect also increases (because
the last term in Eq. (A.39)).

(ii) At intermediate loadings many inner sites are already filled so the
exit sites are being visited much more frequently. Therefore 〈qexhex〉 starts
decreasing more rapidly whereas the decreasing trend of 〈qexhin〉 becomes
less pronounced. Anyway, the term 1−

∑
α

Kα

K
〈qexhα〉 of Eq. (A.39) keeps on

increasing (even if less rapidly).
(iii) At intermediate-high loadings the exit sites are so frequently visited

that the number of successful intercell migration per time step starts decreas-
ing. Moreover, the kinetic barrier starts increasing. That situation causes
〈κρex〉 to rapidly decrease, so that the correlation effect decreases together
with the frequency of migrations.
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Independence of events and memory effects. While if ex-ex jumps
are allowed and ∆f o > 0 then a good agreement is obtained between Dmf

and the real self-diffusivity Ds calculated through numerical ThPCA, the
mean-field approach becomes instead unsuitable when ∆f o < 0 (i.e. when
the exit sites have a higher binding ability) or in case of forbidden ex-ex
jumps. The non-agreement shown in Figure A.2 is due to an overestimation
of correlations. The reason of such an overestimation stands in the larger
memory ability of the exit sites w.r.t. the inner sites: Since propagations oc-
curr via the exit sites, and the exit sites’ structure of connections determines
the topology of the whole grid of cells, all events involving them are more
correlated than the events occurring in the inner sites, which instead are
structureless so that they can be considered as the less memory-preserving
part of the cell. The mean-field approach required a strong approximation:
independence of events. Although the closest events have been not assumed
to be independent, (i.e. the probabilities 〈qαhν〉, 〈κρex〉 have not been sep-
arated respectively into 〈qα〉〈hν〉 and 〈κ〉〈ρex〉), there are other sources of
correlations which are not included in the mean-field approach:

(1) When a tagged guest migrates from cell r1 to cell r2 during propagation,
the probabilities related to every next move do depend on the config-
uration of both cells before propagation occurred. In other words, in
principle the path probabilities p(♦, ς), with ς ∈ S defined in Eq. (A.35)
cannot be factorized as p(♦)p(ς|♦).

(2) After randomization in cell r2 has occurred, its Kex exit sites undergo
propagation in a random order, so that not only the outcome of the
propagation of the tagged guests depends on the outcome of the prop-
agations that previously occurred in other exit sites of the cell, but
even the input configuration for the propagation of the tagged guest
cannot be any of the possible cell configurations having one filled exit
site since the number of inner sites cannot change after randomization
has been completed. For example, if the σ-configuration of the cell
after randomization is denoted as σR = σR

ex ∪ σR
in where σR

ex and σR
in

indicate respectively the exit and inner sites σ-configurations, then at
the moment at which the tagged guest undergoes propagation the in-
put configuration can differ only in the exit-site part while the inner
configuration must remain equal to σR

in.

(3) The implicit assumption in both Eqs. (A.29) and (A.30) is that when
the tagged guest is called to jump during the randomization process,
the other guests in the cell are distributed according to the equilibrium
distribution. This is equivalent to approximate the jump randomization
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scheme to a slightly different local operation where, just before the
tagged guest is invoked to perform its own jump, all the remaining
guests in the cell perform a memoryless randomization. In fact, the
more binding are the sites, the slower will be the cell in reaching local
equilibrium. This will affect the acceptance probabilities, which will
deviate from 〈qαhν〉.

The macroscopic quantities 〈qαhν〉 and 〈κρex〉 have been derived by assuming
local equilibria and by forcing some connected events to be treated as they
are independent. These assumptions are valid if the system evolve in such a
way that the ability of each cell to preserve memory of previous configura-
tions is weak, and the guests are easy to leave the exit sites. In turn, these
requirements cannot be satisfied if f o

ex < f o
in since guests are not easy to reach

the (memoryless) inner sites, nor if the ex-ex jumps are not allowed because
of the reduced guests ability to leave an exit site. To confirm these obser-
vation, in Figure A.1 agreement between mean-field approach and numerical
simulation becomes poor at intermediate-high loadings, that is when inner
sites are less available so that the tagged guest is forced to occupy exit sites.

All observations made above are embedded into the following one: in the
ThPCA, if correlations in the single-guest motion are present, then the col-
lective motion affects the motion of the single guests. This is emphasized by
the difference discussed in Chapter 7 between collective- and self-diffusivity
as found in numerical simulations. For all the investgated parametrizations,
such differences reached their maximum exactly when guests were forced to
visit frequently (or they were frequently trapped in) the exit sites, that is:
(i) low-intermediate loadings if ∆f o < 0, and (ii) intermediate-high loadings
if ∆f o > 0.

Exact theoretical predictions in the limit of infinite dilution. De-
spite their limitations, formally Eqs. (A.39) and (A.43) furnish the essential
source of correlations in the self-motion of the guest. In particular, as shown
in both Figs. A.2 and A.3, in the zero-loading limit (i.e. when the system
contains only one guest) they are quantitatively exact :

lim
〈n〉→0

〈δr(zτ) · δr(0)〉 = −λ2Kexp
(0)
ex 〈κ〉2 (1− 2〈κ〉)z−1 (1− qex)

z , (A.46)

for the case where during the jump randomization all jumps are allowed,
with 〈κ〉 = 1

2
e−βεki(1,0) as the propagation probability, qex = γeβfo

ex as the
jump randomization probability, and

p(0)
ex =

e−βfo
ex

Kexe−βfo
ex + Kine−βfo

in
(A.47)
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130 Mean field theory

as the equilibrium probability of the guest to occupy one exit site pointing
towards a specific direction of motion. Eq. (A.46) is independent of the
number of exit/inner sites in the cell, while if jumps between different exit
sites are forbidden then

lim
〈n〉→0

〈δr(zτ) · δr(0)〉 = −λ2Kexp
(0)
ex κ2 (1− 2κ)z−1

(
1− Kin

K
qex

)z

, (A.48)

showing an explicit dependence on the number of sites constituting the cell.
Therefore the accessibility of the sites plays a fundamental role in determining
the entity of correlations.

A.3 Local density fluctuations

The crucial point in evaluating the LDFACF defined in Eq. (4.32) under
the mean-field approximation is the calculation of the patch correlation func-
tion85 〈n(t)n(0)〉, given by

〈n(zτ)n(0)〉 =
K∑

m=0

K∑
n=0

nmΩ(z)
n,mp(m), (A.49)

where p is the equilibrium probability distribution of occupancies given in
Eq. (A.1), and the matrix

Ω(z) = {Ω(z)
n,m}, n, m = 0, . . . , K, (A.50)

is the occupancy transition matrix. Each matrix element Ω
(z)
n,m gives the equi-

librium probability of a cell of occupancy n to change to occupancy m after
z = t/τ time steps. For z = 0 Eq. (A.49) corresponds to the second mo-
ment of the occupancy distribution p, therefore Ω(0) = I (identity matrix).
Since the evolution rule is markovian, under the mean-field approximation it
results

Ω(z) = Ωz, (A.51)

where Ω is the occupancy transition matrix after one time step. Its elements
are given by

Ωn,n+∆n =
Kex∑

nex=0

ω(∆n|nex, n)P (nex|n), (A.52)

where P (nex|n) has been given in Eq. (2.29), and ω(∆n|nex, n) is the proba-
bility of a n-occupied cell with nex occupied exit sites to change its occupancy
from n to m = n + ∆n. The matrix Ω can be computed in two different
ways depending on whether the guests are interacting or not. This will be
the subject of the next two subsections.
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Non-interacting case

In the non-interacting case the interaction free-energy term φα(n) in Eq. (2.21)
is zero, so that the evolution can be performed in a fully synchronous way45,54,55

and a mean-field value of the the transition probability ω(∆n|nex, n) can be
computed exactly.

Let us focus on a single n-occupied cell (labeled r) and suppose it to have
nex guests located in its exit sites. Each exit site (r, j) is connected to one
exit site of the adjacent cell, denoted as (rj, j + d). These two adjacent exit
sites constitute one link between r and rj. The link occupancy, given by the
quantity δ(r, rj) defined in Eq. (3.25), can have one of the following three
possible states:

δ(r, rj) = 0: empty link (no transfer can occur);

δ(r, rj) = 1: open link (a transfer occurs from the occupied to the
unoccupied site with probability

κ̃ =
κo

2
=

1

2
e−βεki , (A.53)

where εki is a homogeneous kinetic barrier);

χ(r, rj) = 2: blocked link (no transfer can occur).

Let us call zex the sum of occupancies of the adjacent exit sites, i.e.

zex =
Kex∑
j=1

χ(r, rj)− nex.

If the values of the observables nex, zex are known but no information is
available about the value of each single link occupancy, then calculating the
probability of having x blocked links will be very useful. Thus, if there are x
blocked links, then nex − x guests can try to exit from the cell r and zex − x
guests can try to enter in r. It will be useful to define with q(x|nex, zex) the
conditional probability that x links are blocked, given that nex guests occupy
the exit sites of the cell and zex guests occupy the adjacent exit sites of the
neighboring cells. This is given by:

q(x|nex, zex) =

(
Kex

x

)(
Kex−x

nex+zex−2x

)(
nex+zex−2x

min(nex,zex)−x

)(
Kex

nex

)(
Kex

zex

) . (A.54)

The probability of the adjacent exit site (rj, j +d) of each (j-th) neighboring
cell to be occupied is equal to the probability of one exit site to be occupied,
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which is given by

ρex =
〈nex〉
Kex

=
1

Kex

K∑
n=1

p(n)
Kex∑
i=1

nexP (nex|n) (A.55)

and the probability of having zex guests in the first-neighbors’ adjacent exit
sites is

A(zex) =

(
Kex

zex

)
ρzex

ex (1− ρex)
Kex−zex . (A.56)

Now the exiting guests shall be considered. The conditional probability
of jex guests to leave the cell given that nex − x is the number of guests in
open links attempting to leave the cell r, is

B(jex|nex − x) =

(
nex − x

jex

)
κ̃j(1− κ̃)nex−jex−x, (A.57)

By analogy with Eq. (A.57), hex guests will effectively penetrate into r with
probability

C(hex|zex − x) =

(
zex − x

hex

)
κ̃j(1− κ̃)zex−hex−x, (A.58)

therefore the conditional probability of the cell r to change its occupancy
of an amount ∆n given that its exit sites are occupied by nex guests, the
adjacent exit sites of the neighboring cells are occupied by nex guests and x
links are blocked, is given by

G(∆n|nex, zex, x) =
Kex∑

jex=0

B(jex|nex − x)C(jex + ∆n|zex − x) (A.59)

Now the quantity ω(∆n|nex, n) can be computed by combining all ob-
tained probabilities:

ω(∆n|nex, n) =
Kex∑

zex=0

Kex∑
x=0

A(zex)q(x|nex, zex)G(∆n|nex, zex, x), (A.60)

which can be inserted into Eq. (A.52) to get the occupancy transition matrix.
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Interacting case

If the guests are interacting then the partitioning scheme described in Sec-
tions 3.4.2 and E.3 must be used for propagation. As a consequence it would
be rather tedious to compute ω(∆n|nex, n) since every possible variation ∆n
(ranging from −Kex to Kex) can be caused by any of the (2d)! paths associ-
ated with the different orders in which the exit sites of the cell can be up-
dated. To simplify the problem, one shall instead compute the probability of
the events associated to the propagation along one direction, of losing/gaining
one guest or keeping the cell occupancy unchanged given respectively by the
formulas:

Ω̃n,n−1 =
K−1∑
m=0

W (n, m)p(m) (A.61)

Ω̃n,n+1 =
K∑

m=1

W (m, n)p(m) (A.62)

Ω̃n,n = 1− Ω̃n,n−1 − Ω̃n,n+1 (A.63)

where W (n, m) is the intercell transfer factor given by Eq. (A.5). The one-
step occupancy transition matrix can then be recovered under the following
assumption:

Ω ≈ Ω̃
2d

, (A.64)

and the obtained approximate value of Ω can be inserted into Eq. (A.51) to
get the occupancy transition matrix. This is equivalent to approximate the
propagation process described in Appendix E.3 to a sequence of operations
in which one randomization is performed after propagation along each direc-
tion. Such an approximation becomes strictly valid only for low values of
the kinetic prefactor e−βεki (see Eq. (3.21)), when the probability of a cell to
release/accept a high number of guests during the same propagation step is
low. Indeed by testing the approximation with the non-interacting system
investigated in Section A.3, it emerged that for e−βεki = 0.1 the C(t) curves
obtained with and without the approximation (A.64) coincide. The fitting
parameters b1, b2, τ1, and τ2 are therefore found to coincide exactly with the
empty symbols in Figure 7.9. Since their deviation from the corresponding
values obtained for e−βεki = 1.0 is not much, the approximation (A.64) will be
kept as valid to get qualitative information about the mean-field relaxation
process in interacting systems.
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Appendix B

Theory of the non-interacting
case

B.1 Computation of the partition functions

First of all the possible configurations of the N guests in the KM sites of
the lattice L will be considered. For a given configuration, let Nex and Nin

be the total number of occupied exit and inner sites, respectively. Obviously
their sum is always the total number of guests N = Nex + Nin, which is
constant in time.

Since there is no interaction between the guests, the energy of the entire
system depends only on the values of Nex and Nin. As the observables nex

and n specify a particular energy level of the single cell, in the same way the
global quantities Nex and N define a particular energy level of the system
with degeneracy Ω(Nex, Nin) =

(
MKex

Nex

)(
MKin

Nin

)
, where M is the total number

of cells. The energy of the level (Nex, Nin) is

Esys(Nex, Nin) = Nexf
o
ex + Ninf

o
in (B.1)

Therefore the partition function of the system can be rewritten as

Qsys =
MKex∑
Nex=0

Ω(Nex, Nin) e−βEsys(Nex,Nin). (B.2)

The probability of the level (Nex, Nin) is

Ω(Nex, Nin) e−βEsys(Nex,Nin)

Qsys
, (B.3)

and the occupancy probability distribution of the single cell, indicated as

p = {p(0), . . . , p(K)},
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reads

p(n) =
1

Qsys

MKex∑
Nex=0

Kex∑
nex=0

(
Kex

nex

)(
(M − 1)Kex

Nex − nex

)(
Kin

n− nex

)
×

(
(M − 1)(Kin)

N −Nex − n + nex

)
e−βEsys(Nex,Nin). (B.4)

Computing probability distributions of states through Eqs. (B.2) and
(B.4) is feasible only for a system containing a very small number of cells.
Instead, it is much easier to compute the probability distribution p in terms
of the cellular partition function in the grand canonical ensemble, Ξ(µ). Let
us denote70 a = {a0, . . . , aK} a particular distribution of occupancies of the
system of M cells, where an is the number of cells having occupancy n.

• Given the particular distribution of occupancies a, the sum over states
of an ordered sequence of the M cells preserving the occupancy of each
cell is

∏K
n=0

[
Qcell(n)

]an
.

• Differently ordered sequences of the M cells according to the distribu-
tion a are equally probable. The number of ways that any particular
distribution of the aj’s can be realized is M !/

∏K
n=0 an!.

Therefore the sum over states for a system described by the particular dis-
tribution of occupancies a is:

W (a) = M !
K∏

n=0

[
Qcell(n)

]an

an!
. (B.5)

Indicating as WTOT the sum over states over all the possible configura-
tions, for a very large system (M →∞) one obtains

lim
M→∞

WTOT = lim
M→∞

∑
a

W (a) ≈ W (aeq), (B.6)

where aeq = Mp is the equilibrium occupancy distribution. Using the Stir-
ling’s approximation the Eq. (B.5) becomes

ln W (aeq) = M ln M −
K∑

n=0

aeq
n ln aeq

n +
K∑

n=0

aeq
n ln Qcell(n). (B.7)

This function can be maximized using the method of Lagrange multipliers
with the constraints

∑K
n=0 aeq

n = M and
∑K

n=0 naeq
n = N thus obtaining

Eq. (2.29).
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B.1 Computation of the partition functions 137

The cellular partition function is written as Ξ(µ) =
∑K

n=0 Qcell(n) eβµn.
This partition function is analogous to the grand-canonical one, so the fol-
lowing relations are satisfied:

〈n〉 =
1

β

∂ ln Ξ

∂µ
, (B.8)

σ2(〈n〉) =
1

β

∂〈n〉
∂µ

, (B.9)

where σ2(〈n〉) is the variance of the occupancy distribution p at the loading
〈n〉.

Since the energy parameters f o
ex and f o

in are fixed in space and time, the
expression for Ξ can be manipulated70 to obtain the partition function of the
Fermi-Dirac statistics:

Ξ(µ) =
K∏

j=1

(
1 + eβ(µ−fo

j )
)

, (B.10)

which reduces to Eq. (A.11). Now, using the relation (B.8) and introducing
the absolute activity λa = eβµ, one obtains the dual-site Langmuir isotherm
reported in Eq. (A.12).

B.1.1 Limiting Distributions for T →∞
In this case, limT→∞ f eq = fhyp, i.e. the guests are distributed in the cells
according to the hypergeometric distribution:

phyp(n) =

(
K

n

)(
K(M − 1)

N − n

)/(
MK

N

)
. (B.11)

For systems with a very large number of cells (M → ∞), this expression
reduces to:

phyp(n) =

(
K

n

)
(ρ)n(1− ρ)K−n, (B.12)

with ρ = 〈n〉/K. This is because in the limit of T → ∞, Eq. (4.11) has
the solution ρex = ρin = ρ. The partition function of a closed cell reduces to
Qcell(n) =

(
K
n

)
, and Eq. (A.14) reduces to

p(n) =

(
K

n

)
λa

n

(1 + λa)K
. (B.13)
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138 Theory of the non-interacting case

Using the fact that ρ = λa/(1 + λa), it is easy to recognize in Eq. (B.13) the
hypergeometric distribution in the limit of M →∞ reported in Eq. (B.12).

Using Eq. (B.9) the variance results

σ2
hyp =

1

β

∂〈n〉
∂λa

∂λa

∂µ
= −〈n〉

2

K
+ 〈n〉. (B.14)

B.1.2 Limiting Distributions for T → 0

In such a case the occupancy distribution splits up in two distinct hyper-
geometrics (referred to two distinct regions of loading) separated by a delta
function at the critical loading:

lim
T→0

p(n) =


phyp

in (n), for 0 ≤ 〈n〉 < Kin

δ (n− 〈n〉) , for 〈n〉 = Kin

phyp
ex (n), for Kin < 〈n〉 ≤ K

(B.15)

where

phyp
in (n) =

(
Kin

n

)
(ρin)

n(1− ρin)
Kin−n with ρin =

〈n〉
Kin

, (B.16)

and

phyp
ex (n) =

(
Kex

n−Kin

)
(ρex)

n−Kin(1− ρex)
K−n with ρex = 1− K − 〈n〉

Kex

.

(B.17)

This is because in the limit of T → 0, Eq. (4.11) has the solutions (i) ρex = 0
and (ii) ρin = 1. Using the relation

〈n〉 = Kexρex + Kinρin, (B.18)

Since 0 ≤ ρex, ρin ≤ 1:

i) If ρex = 0, then 〈n〉 = Kinρin, which is valid for 0 ≤ 〈n〉 < Kin.

Since nex cannot be negative, then in order to satisfy the relation ρex =
0 it must be nex = 0 for each occupancy n = nex + nin. Therefore
n ∈ [0, Kin] ∈ N and Qcell(n) reduces to

Qcell
in (nin) =

(
Kin

nin

)
e−βfo

innin ,
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Figure B.1: The variance of the occupancy distributions at the two limiting temperatures
T →∞ and T → 0, and at the intermediate temperatures T = 300, 600 K.

with nin = n. The sum over states in a cell can be represented through
the inner partition function

Ξin(µ) = (1 + e−βfo
inλin)

Kin

(with λin = eβµin , with µin given by Eq. (4.9)). Using Eq. (A.14) and
the relation n = nin one obtains

pin(n) =

(
Kin

n

) (
e−βfo

inλin

)n

(1 + e−βfo
inλin)

Kin
. (B.19)

Using the relation ρin = e−βfo
inλin/(1 + eβfo

inλin) one obtains Eq. (B.16).
This is a hypergeometric distribution of guests in Kin sites inside of a
cell in the limit of M →∞, when the remaining Kin sites are all empty.
Its variance is

σ2
in =

1

β

∂〈n〉
∂λin

∂λin

∂µin

= −〈n〉
2

Kin

+ 〈n〉. (B.20)

ii) If ρin = 1, since then 〈n〉 = Kexρex + (Kin), which is valid for Kin ≤
〈n〉 < K. Since nin cannot be greater than Kin, then in order to
satisfy the relation ρin = 1 it must be nin = Kin for each occupancy n.
Therefore n ∈ [Kin, K] ∈ N. Since nin is fixed, for each value of n also
the observable nex turns out to be fixed. Therefore Qcell(n) reduces to

Qcell
ex (nex) = e−βfo

in(Kin)

(
Kex

nex

)
e−βfo

exnex ,
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140 Theory of the non-interacting case

with nex = n−Kin. Introducing λex = eβµex exit partition function can
be calculated as:

Ξex = e−βfo
in(Kin)(1 + e−βfo

exλex)
Kex

Using Eq. (A.14) and the relation n = Kin + nex one obtains

pex(n) =

(
Kex

n−Kin

) (
e−βfo

exλex

)n−Kin

(1 + e−βfo
exλex)

Kex
, (B.21)

which, using ρex = e−βfo
exλex/(1+e−βfo

exλex), can be reduced to Eq. (B.17).
This is a hypergeometric distribution of guests in Kex sites inside of a
cell in the limit of M →∞, when the other Kex sites are all filled. Its
variance is

σ2
ex =

1

β

∂〈n〉
∂λex

∂λex

∂µex

= − 1

Kex

[
〈n〉2 − (2K −Kex)〈n〉+ KKin

]
. (B.22)

iii) At the transition point the relations ρex = 0 and ρin = 1 hold simulta-
neously, therefore p = phyp

in ∩ phyp
ex = δ(n− 〈n〉) with 〈n〉 = Kin.

In Figure B.1 the variance of p at the two limiting temperatures (from
Eqs. (B.14), (B.20), and (B.22)) and at intermediate temperature (obtained
differentiating Eq. (A.12) w.r.t. µ at T = 300 and 600 K) are shown. As can
be seen, the properties of the distributions at 0 < T < ∞ are intermediate
between the properties of the two limiting distributions, and the temperature
will determine which one of the two limiting distributions the p will be more
similar to.

p
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√
3` 2` 2

√
2`

√
11` 2

√
3` 4`

`1,7, `7,15 `7,8, `1,15 `1,2, `7,10 `1,11 `7,13 `1,4

Table C.1: The site-to-site distances in the structured cell of Figure 2.1. ` is an arbitrary
factor. Not reported distances can be deduced from observation of the figure.

Appendix C

From a structured to a
less-structured cell

In the present Appendix a systematic procedure will be shown which is aimed
to transfer the most relevant thermodynamic properties of a detailed cell of
structured interacting adsorption sites into a less detailed cell characterized
by a very essential structure and two occupancy-dependent effective site en-
ergies. Such a less-detailed cell is constructed ad-hoc to find direct applica-
tion in the ThPCA paradigm. In the following procedure, the cell partition
function (which determines the shape of both the occupancy probability dis-
tribution and the adsorption isotherm54), and the average number of filled
exit sites (which plays a major role in determining the loading dependence
of the diffusivity55) will be reproduced exactly in the less detailed cell, at
expense of the accuracy in the average cell energy.

In what follows such structured local interactions will be reduced to two
effective occupancy-dependent site potentials by means of a coarse-graining
procedure aimed to preserve the essential thermodynamic properties of the
structured cell, which for the purposes of the present model are the free en-
ergy, the average energy, and the average fraction of guests near the windows
of an n-occupied cell.
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142 From a structured to a less-structured cell

Thermodynamics of the structured cell. Numerical examples will refer
to the structured cell of Figure 2.1.

The partial configurations of exit and inner sites shall be denoted as

ηex = {η1, . . . , ηKex
},

ηin = {ηKex+1, . . . , ηK}, (C.1)

and their relative partial occupancies as

n(η) = η · η, α = ex, in, (C.2)

where ηj is the occupancy of the j-th site of the cell and has value 0 if empty
or 1 if occupied by one guest. The cell configuration and cell occupancy will
be given respectively by η = ηex ∪ ηin and n = nex + nin.

In the structured cell, the quantity `ij shall denote the distance between
two sites of the same cell. The pair distances of the cell in Figure 2.1 are
listed in Table C.1. If {`hk} indicates the set of all pair distances then `sd =
min{`hk} is the ‘shortest distance’ (‘sd’) between two sites in the cell. The
interaction potential between two sites at the distance `sd shall be indicated
as εsd. The lattice interaction potential of the structured cell will be expressed
in the following form:

εij = [1− δkr(i, j)]

(
`sd

`ij

)a

θ

(
`tr − `ij

`ex/2

)
εsd, (C.3)

where

• δkr(i, j) is a Krœneker delta,

• the second factor (with a > 0) lowers the interaction energy depending
on the distance between the two interacting sites,

• θ(x) is a Heaviside function (returning 1 for x ≥ 0 and 0 otherwise)
which ‘turns off’ all the interactions above a truncation distance `tr,

• `ex is the (scalar) distance between the center of the cell and an exit
site.

Attractive and repulsive components can be taken into account at the same
time by introducing a dependence of εsd on n.

From now on in this Appendix, the superscript [j] (where j = 0, 1, 2) will
denote the level of reduction.
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• The cell of level [0] (i.e. the structured cell) is characterized by a well-
defined structure of the inner sites and an energy function

E[0](η) =
K∑

i=1

ηiεi +
K−1∑
i=1

K∑
j=i+1

ηiηjεij. (C.4)

which depends on the particular configuration η of the guest particles
in the sites. The term εi in Eq. (C.4) indicates the energy of the i-th
site.

• At constant temperature the energy function E[0](η) can be reduced to
the simpler function

E[1](nex, nin; T ) =
∑

α=ex,in

nαε[1]
α (nex, nin; T ), (C.5)

where the energy parameters εα depend on both partial occupancies
nex and nin.

• The energy function E[1](η) can be further simplified to the energy
function of level [2]:

E[2](nex, nin; T ) =
∑

α=ex,in

nαε[2]
α (n; T ), (C.6)

where both energy parameters depend on the total occupancy of the
cell, given by n = nex + nin.

Since the reduced energy parameters are derived from averages over the ac-
cessible configurations of the structured cell (and each configuration has its
own temperature-dependent weight in the cell partition function), all coarse-
grained energies functions are necessarily temperature-dependent.

The derivation of the reduced energy parameters can be derived as follows.
First of all Eq. (C.4) should be rewritten as

E[0](η) = E
[0]
ex−ex + E

[0]
in−in + E

[0]
ex−in (C.7)

Guest-host and guest-guest interactions are contained respectively in the first
and second term. It will be useful to express the interaction term as a sum
of three contributions: ex-ex interactions (among exit sites only)

E
[0]
ex−ex(ηex) =

Kex∑
i=1

ηiεi +
Kex−1∑

i=1

Kex∑
j=i+1

ηiηjεij, (C.8)
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144 From a structured to a less-structured cell

in-in interactions (among inner sites only)

E
[0]
in−in(ηin) =

K∑
i=Kex+1

ηiεi +
K−1∑

i=Kex+1

K∑
j=i+1

ηiηjεij, (C.9)

and ex-in interactions

E
[0]
ex−in(η) =

Kex∑
i=1

K∑
j=Kex+1

ηiηjεij. (C.10)

In order the less-structured cell to be set up as the coarse-grained ver-
sion of the structured cell, the two kinds of cells must be similar in several
basic properties. In particular they should satisfy the following similarity
conditions :

(i) Similar (or equal) values of the cell partition function. That will pro-
duce similar (or equal) thermodynamic properties such as the adsorp-
tion isotherm.

(ii) Similar values of the average number of filled exit sites in the cell. That
will ensure that at each time step the number of guests in the lattice
attempting to migrate from one site to the other will be approximately
the same in both the structured and the less-structured cell.

(iii) Similar values of the average energy of the cell, producing similarity of
the entropy of the lattice.

Since the temperature will be kept constant, from now on in this Appendix
the T -dependence will be implicit.

The cellular partition function can be expressed as

Q[j](n) =
∑

nex,nin

(n)
Q[j]

c (nex, nin), (C.11)

where the structured cell’s partition function for given values of partial oc-
cupancies is

Q[0]
c (nex, nin) =

∑
ηex

(nex)∑
ηin

(nin)
e−βE[0](η), (C.12)

In Eq. (C.11) the compact notation introduced in Eq. (2.2) has been used.
For a less-structured cell:

Q[j]
c (nex, nin) =

(
Kex

nex

)(
Kin

nin

)
e−βE[j](nex,nin), j = 1, 2. (C.13)
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C.1 Less-structured cell of level j = 1 145

For all levels of reduction, the probability of the cell to have the partial
occupancies nex, nex for a given occupancy n is

P [j](nex|n) =
Q

[j]
c (nex, n− nex)

Q[j](n)
. (C.14)

The average number of filled exit sites of a n-occupied cell is

〈
n[j]

ex(n)
〉

=
Kex∑

nex=0

nexP
[j](nex|n). (C.15)

The average energy of a structured cell of occupancy n is

〈
E[0](n)

〉
=

∑
η

(n)
E(η)

e−βE(η)

Q(n)
, (C.16)

while for a less-structured cell〈
E[j](n)

〉
=

∑
nex,nin

(n)
E[j](nex, nin)P

[j](nex|n), j = 1, 2. (C.17)

The above defined similarity conditions can therefore be expressed as:

Q[j](n) ≈ Q[0](n), (C.18)〈
n[j]

ex(n)
〉
≈

〈
n[0]

ex(n)
〉
, (C.19)〈

E[j](n)
〉
∼

〈
E[0](n)

〉
, (C.20)

with j = 1, 2. It should be noted that the similarity (C.20) is the weakest one.
Indeed, partition function and average occupied exit sites have the highest
priority due to their central role in the determination of global equilibrium
and transport properties.

The similarity (C.18) produces similarity of occupancy distribution and
adsorption isotherms due to the grand-canonical expression

p[j](n) =
Q[j](n) exp (βµn)∑
m Q(m) exp (βµm)

, (C.21)

where µ is the chemical potential. The loading (average occupancy) is related
to the chemical potential through 〈n[j]〉 =

∑
n n p[j](n).
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Figure C.1: Properties of the Test Cell # 1 before reduction (black dots, solid lines)
and after reduction of level 1 (white circles, dashed lines). Each row refer to a different
values of the energy parameter εsd.

C.1 Less-structured cell of level j = 1

The parameters ε
[1]
α in Eq. (C.5) can be defined starting from the following

conditional averages:

〈
E[0]

α (nex, nin)
〉

=
∑
ηex

(nex)∑
ηin

(nin)E
[0]
α−α(η)e−βE[0](η)

Q
[0]
c (nex, nin)

, (C.22)

with α = ex, in, representing the average energy of the α-type sites for a cell
with partial occupancies nex, nin, and

〈
E

[0]
ex−in(nex, nin)

〉
=

∑
ηex

(nex)∑
ηin

(nin)E
[0]
ex−in(η)e−βE[0](η)

Q
[0]
c (nex, nin)

, (C.23)

representing the average interactions between occupied exit and inner sites
for a cell with partial occupancies nex, nin. Of course, the total average energy
for given values of partial occupancies reads

〈
E[0](nex, nin)

〉
=

〈(
E[0]

ex + E
[0]
in + E

[0]
ex−in

)
(nex, nin)

〉
.
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Figure C.2: Properties of the Test Cell # 1 before reduction (black dots, solid lines)
and after reduction of level 2 (white circles and dashed lines refer to MODE 1; white
squares and dash-dotted lines refer to mode 2). Each row refer to a different values of the
energy parameter εsd.

Then the first-level effective potentials can be defined as

ε[1]
α (nex, nin) = [1− δkr(nα, 0)]

× 1

nα

[〈
E[0]

α (nex, nin)
〉

+ ζα

〈
E

[0]
ex−in(nex, nin)

〉]
, (C.24)

where ζα (satisfying ζex + ζin = 1) is an arbitrary distribution function of the
exit-inner average interaction energy between exit and inner sites. In this
Appendix two examples of such distribution will be illustrated. At the end
of the reduction procedure, the choice of the ζα distribution has no relevant
effects on the cell thermodynamics.

i) MODE 1 shall indicate the case of ζα = nα/n, i.e. the exit-inner inter-
action distributed over both exit and inner site proportionally to their
respective occupancy.

ii) MODE 2 shall indicate the case of ζex = 0 and ζin = 1, i.e. the exit-inner
interaction energy distributed over the inner sites only.

As a consequence of Eq. (C.24), it results E[1] = 〈E[0]〉 independently of the

distribution ζα, therefore due to Eq. (C.13) the partition functions Q
[1]
c and
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148 From a structured to a less-structured cell

Q[1] are also independent of ζα. This means that the cell thermodynamics of
the cell does not depend on the way the exit-inner contribution is distributed
among exit and inner sites.

Using the procedure that is going to be described in Appendix C.2 one can
determine the corrections ∆ε†α to the effective potentials in order to impose
the strict equivalence of partition function and average occupied exit sites

Q[1](n) = Q[0](n), (C.25)〈
n[1]

ex(n)
〉

=
〈
n[0]

ex(n)
〉
, (C.26)

obtaining

ε†α(nex, nin) = ε[1]
α (nex, nin) + ∆ε†α(nex + nin),

with α = ex, in. The corrected first-level energy function results

E†(nex, nin) =
∑

α=ex,in

nαε†α(nex, nin).

It should be noted that for different distributions ζα the correction leads to
different effective site potentials, but, again, the resulting Hamiltonian E†

will be independent of ζα.
The first-level corrected energy function in Eq. (C.27) could replace the

energy function E[1] in Eq. (C.13) to obtain a less-structured cell with the
same cellular partition function and average number of occupied exit sites of
the structured cell.

C.2 Corrected energy function

Starting from the coarse-grained energy function of level j = 1, 2, one can
improve the similarity conditions (C.18) and (C.19) by making use of the
following corrected energy function (temperature-dependence is implicit):

E∗(nex, nin, ∆εex(n), ∆εin(n)) = E[j=1,2](nex, nin) + ∆E[j=1,2](nex, nin)

(C.27)

where n = nex + nin, and the coarse-grained energy functions are given re-
spectively by Eq. (C.5) for [j = 1] and by Eq. (C.6) [j = 2]. The correction
term is defined as

∆E[j=1,2](nex, nin) = nex∆εex(n) + nin∆εin(n)

= nexδ∆ε(n) + n∆εin(n), (C.28)
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where ∆εex(n) and ∆εin(n) are occupancy-dependent correction energies
properly chosen in order to obtain the best approximations for the condi-
tions (C.18) and (C.19). In this Appendix a way to determine their optimal
value is proposed. In Eq. (C.28) the variable

δ∆ε(n) = ∆εex(n)−∆εin(n)

has been introduced as the difference between the energy corrections to exit
and inner sites, in order to evidence that, for a given occupancy n, w.r.t. the
partition functions Q[j], Q

[j]
c , in the reduced partition functions

q∗c (nex, nin, δ∆ε(n)) =

(
Kex

nex

)(
Kin

nin

)
× exp

{
−β

[
E[j=1,2](nex, nin) + nexδ∆ε(n)

]}
, (C.29)

q∗(n, δ∆ε(n)) =
∑

nex,nin

(n)
q∗c (nex, nin, δ∆ε(n)) (C.30)

only one new independent variable δ∆ε(n) is appeared. The reduced parti-
tion functions in Eq. (C.30) are independent of ∆εin(n) and proportional to
the partition functions Q∗, Q∗

c :

Q∗
c(nex, nin, δ∆ε(n)) = e−βn∆εin(n)q∗c (nex, nin, δ∆ε(n)) (C.31)

Q∗(n, δ∆ε(n)) = e−βn∆εin(n)q∗(n, δ∆ε(n))

It turns out that the probability

P ∗(nex|n, δ∆ε(n)) =
Q∗

c(nex, n− nex, δ∆ε(n))

Q∗(n, δ∆ε(n))

=
q∗c (nex, n− nex, δ∆ε(n))

q∗(n, δ∆ε(n))
(C.32)

is a function of the new variable δ∆ε(n) and it is independent of ∆εin(n). Of
course, this is valid also for the variable

〈
n∗ex(n, δ∆ε(n))

〉
=

Kex∑
nex=0

nexP
∗(nex|n, δ∆ε(n)). (C.33)

Then, in order to find the corrections ∆εex(n) and ∆εin(n) satisfying the
requirements (C.20), (C.18), and (C.19), one can apply the following proce-
dure: For each occupancy n > 0, we:
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150 From a structured to a less-structured cell

• find the value of δ∆ε(n) solving the equation〈
n∗ex(n, δ∆ε(n))

〉
=

〈
n[0]

ex(n)
〉

(C.34)

Let δ∆ε†(n) be the zero of Eq. (C.34), and q†c(nex, nin), q†(n) the cor-
responding reduced partition functions;

• determine the correction to the effective inner-site potential

∆ε†in(n) = (βn)−1[ln q†(n)− ln Q[0](n)]

ensuring the partition function Q†(n) of the new coarse-grained cell to
be equivalent to Q[0](n);

• determine the correction to the effective exit-site potential ∆ε†ex(n) =
δ∆ε(n) + ∆ε†in(n).

C.3 Less-structured cell of level j = 2

A further reduction can be obtained by using the first level of reduction as
the starting point to construct the energy function E[2] of Eq. (C.6), in which

the energy parameters ε
[2]
α depend on the total occupancy of the cell instead

of partial occupancies. They are defined as

ε[2]
α (n) =

∑
nex,nin

(n)
ε[1]

α (nex, nin)P
[1](nex|n), (C.35)

where α = ex, in. The agreement of thermodynamic properties can be im-
proved by determining the corrections to the potentials with the procedure
described in Appendix C.2. The resulting corrections shall be indicated as
∆ε‡α where the superscript ‡ will be used instead of † to distinguish such a
quantity from ∆ε‡α, since the same correction procedure returns different cor-
rections when applied to E[1] and E[2]. The corrected second-level potentials
will be obtained as

ε‡α(n) = ε(2)
α (n) + ∆ε‡α(n),

(with α = ex, in) to form the corrected second-level energy function

E‡(nex, nin) =
∑

α=ex,in

nαε‡α(nex + nin),
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satisfying the equivalences

Q[2](n) = Q[1](n), (C.36)〈
n[2]

ex(n)
〉

=
〈
n[1]

ex(n)
〉
. (C.37)

It should be noted that, in general the particular choice of the exit-inner
distribution ζα does influence the functions E[1] and E[2]. Nevertheless, the
cell free energy is preserved by means of the equivalences (C.25), (C.26), (C.36),
and (C.37), while the average cell energy is mimicked according to the simi-
larity (C.20) with a very good approximation as can be seen from the example
in Figure C.4 where a cell with a relatively complex (although local) ener-
getics has been taken as example to prove the effectiveness of the reduction
procedure.

C.4 Test of the reduction procedure

Several parametrizations of the structured cell of Figure 2.1 will be investi-
gated which have been intentionally chosen as extreme (i.e. characterized by
large repulsive or attractive interaction) in order the test the procedure of
reduction to a less-structured cell to be more significant.

C.5 Test cell # 1

The fixed energy parameters εi are set as ε1 = · · · = ε6 = −10 kJ mol−1 for
the exit sites, and ε7 = · · · = ε15 = −20 kJ mol−1 for the inner sites. The
values of the parameters in Eq. (C.3) are `tr =

√
3` and a = 6. Three values

of the interaction parameter εsd will be investigated, namely −3, 3, and 5 kJ
mol−1. Temperature is fixed at 300 K.

Test Cell #1 before reduction. The local properties of the cell before
and after reduction of level 1 are shown in Figure C.1. As can be seen, in
the case of purely attractive interactions the average cell energy decreases
with occupancy. In the presence of purely repulsive interactions at some in-
termediate occupancy, say n0, the interaction energy becomes too positive to
stabilize a higher number of occupied inner sites so that the exit sites start be-
ing filled, causing a sudden increase in the average cell energy. This produces
a singular point (a first-order phase transition81) in the chemical potential
around the loading where the occupancy n0 is highly the most probable one,
say 〈n〉0. It should be noted that in the case of non-interacting guests such
a singular point would be observed around loading Kin (which in the present
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Figure C.3: Properties of the closed cell after reduction of level 2 of the Test Cell #
2. In the two columns at the left, filled and empty circles refer respectively to exit and
inner site potentials. At the right, the average energies 〈E[0](n)〉 and 〈E‡(n)〉 are indicated
respectively with filled and open squares.

case is 9) and only at low temperatures, due to the high energy difference
between exit and inner sites which causes a Kin-occupied cell to preferably
host all guests in the inner sites.54 In the present parametrization instead
n0 = 8, which is less than Kin. This is because in a cell with occupancy
> n0 the repulsive interactions balance the attractive contribution due to
the largely negative potential energy of the inner sites, thus starting to assist
the occupation of exit sites; since in the present case each guest in an exit
site interacts with four inner guests, and the exit sites potential is much less
negative than the inner ones, the filling of the exit sites causes the repulsive
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C.5 Test cell # 1 153

contribution to sharply increase.

First and second levels of reduction. The first-level reduction preserve
exactly the value of the average cell energy, therefore at this stage the choice
of MODE 1 or 2 is unimportant. Partition function and average filled exit
sites are reproduced with good approximation; nevertheless, small deviations
in the properties of the reduced cell w.r.t. the structured cell cause larger
disagreement in the macroscopic properties µ and 〈n2〉− 〈n〉2. This becomes
also more evident in the second-level reduction (Figure C.2), where in case of
repulsive interactions the phase transition is produced at loading 8 for MODE
1, and at loading 9 for MODE 2. This is because in MODE 2 guest-guest
interactions are entirely charged to the inner sites, while in MODE 1 they are
equally distributed on all guest particles. The situation is reversed in case of
purely attractive interactions, where instead the effect of high stabilization of
configurations with higly-occupied inner sites is better reproduced (at least
qualitatively) by MODE 2.

Correction. Anyway, the use of second-level energy parameters ε
[2]
α as ob-

tained by simple averaging of interactions produces large disagreements be-
tween thermodynamic properties of structured and less-structured cell, due
to the effect of topology which can be embedded into the less-structured cell
representation only by means of the correction procedure. In Figure C.3 the
effect of such correction on the effective potentials is shown (corrected chem-
ical potential and variance are not shown since they have exactly the same
values as those obtained for the structured cell). First of all, the choice of
the MODE has little or no effects on the obtained trend of ε‡α(n). In the
case of attractive interactions, for MODE 1 the topology effect is reproduced
by more negative site potentials at low occupancies (where guests are more
likely to be found in the inner sites), while for MODE 2 in addition less
negative potentials are required at higher occupancies (where exit sites start
to be filled). For repulsive interactions, at low occupancies the corrected
potentials largely differ in the exit sites, since a large contribution to the
repulsion effect in the cell energy comes from the interaction between each
guest in the exit sites and the respective 4 nearest inner sites (if occupied).
Repulsive effects add to the effective inner sites potential also at the higher
occupancies. The effect on the average energy is relatively small, therefore
the corrected less-structured cell can be considered as a good approximation
of the structured cell.
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Figure C.4: Results of the reduction-correction procedure for the Test Cell # 2.

C.6 Test cell # 2

The structured cell’s energy parameters are set as: ε1 = · · · = ε6 = −10
kJ mol−1 for the exit sites, ε7 = · · · = ε14 = −20 kJ mol−1 and ε15 = −5
kJ mol−1 for the inner sites . The values of parameters in Eq. (C.3) are
`tr = 2

√
2` and a = 3. Three value of the interaction parameters εsd have

been investigated, namely −5, 0, and 5 kJ mol−1.
Temperature is fixed at a relatively low value, i.e. T = 200 K in order to
enhance the presence of multiple phase transitions at various loadings causing
adsorption isotherms to show several singularities.

In Figure C.4 results of the reduction procedure are shown. As can be
seen, although the equilibrium properties are complicated by singularities and
irregularities (shown in the last two columns) due to the higher heterogeneity
in the energy structure the reduction procedure produces satisfactory results.

Federico Giovanni Pazzona - Cellular Automata for the Mesoscopic Simulation of
Adsorption and Diffusion in Zeolites

Tesi di Dottorato in Scienze Chimiche - Università degli Studi di Sassari



Appendix D

Collective diffusion coefficient

D.1 Collective diffusion coefficient

Since the coordinates of the center-of-mass at time t are given by

rCM(t) =
1

N

N∑
I=1

rI(t), (D.1)

the center-of-mass displacement at time t is

∆rCM(t) = rCM(t + τ)− rCM(t) =
1

N

N∑
I=1

Z−1∑
z=0

δrI(zτ), (D.2)

where Z = t/τ is the number of time steps needed for the system to evolve
from time 0 to time t, and δrI(zτ) is the instantaneous cell-to-cell displace-
ment function, Eq. (4.19), for the I-th guest. The mean-squared center-of-
mass displacement results therefore

〈
[∆rCM(t)]2

〉
=

1

N2

〈
N∑

I=1

N∑
J=1

Z−1∑
z=1

Z−1∑
w=1

δrI(zτ) · δrJ(wτ)

〉

=
1

N2

N∑
I=1

N∑
J=1

{
Z 〈δrI(0) · δrJ(0)〉+ 2

Z−1∑
z=1

(Z − z) 〈δrI(zτ) · δrJ(0)〉

}
(D.3)
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156 Collective diffusion coefficient

The instantaneous variation of the average center-of-mass displacement re-
sults 〈

[∆rCM(t + τ)]2
〉
−

〈
[∆rCM(t)]2

〉
=

1

N2

N∑
I=1

N∑
J=1

{
〈δrI(0) · δrJ(0)〉+ 2

Z∑
z=1

〈δrI(zτ) · δrJ(0)〉

}
(D.4)

=
1

N

[〈
[∆r(t + τ)]2

〉
−

〈
[∆r(t)]2

〉]
+

1

N2

∑
1≤I,I≤N

I 6=J

{
〈δrI(0) · δrJ(0)〉+ 2

Z∑
z=1

〈δrI(zτ) · δrJ(0)〉

}
, (D.5)

where in the last equality, Eq. (D.5), the self-term 〈[∆r(t + τ)]2〉 (given
in Eq. (4.21)) has been separated from the mixed terms. Application of
Eq. (4.26) gives the expression for the collective diffusivity in terms of the
DMCF, Eq. (4.27).
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Appendix E

Sampling schemes and detailed
balance

E.1 Mixed Arrhenius-Metropolis acceptance

probability for jump randomization

In the present Appendix a jump acceptance probability pR
jump(η → η′) shall

be derived.

During each event of jump, the selected guest changes its position in the
cell. As a result, the relation between the configurations η and η′ is that
there are exactly two sites, i.e. the departure site j and the target site k,
satisfying

ηi = η′i for each i ∈ [1, K] with i 6= j, k

ηj = 1, ηk = 0 (before the jump)
η′j = 0, η′k = 1 (after the jump)

(E.1)

The detailed balance condition reads v

P (η|n) pR
jump(η → η′) = P (η′|n) pR

jump(η
′ → η). (E.2)

where P (η|n) is given by Eq. (2.30) and it is implicit that the two configura-
tions, η and η′, have the same occupancy. Inserting Eq. (2.30) into Eq. (E.2)
one obtains

e−βΦ(η)

K∏
i=1

e−βηif
o
i pR

jump(η → η′) = e−βΦ(η′)
K∏

i=1

e−βη′if
o
i pR

jump(η
′ → η). (E.3)
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Using the conditions (E.1) the detailed balance equation can be rewritten as

e−βΦ(η)e−βfo
j

∏
i=1,...,K

i6=j,k

e−βηif
o
i pR

jump(η → η′)

= e−βΦ(η′)e−βfo
k

∏
i=1,...,K

i6=j,k

e−βηif
o
i pR

jump(η
′ → η). (E.4)

The product factor may be eliminated from both sides of the equation, thus
obtaining

e−βΦ(η)e−βfo
j pR

jump(η → η′) = e−βΦ(η′)e−βfo
k pR

jump(η
′ → η). (E.5)

The jump probabilities can be defined as

pR
jump(η → η′) = eβΦ(η)eβfo

j u(η, η′),

pR
jump(η

′ → η) = eβΦ(η′)eβfo
k u(η′, η) (E.6)

where to preserve the detailed balance it is necessary that the function u
satisfies u(η, η′) = u(η′, η). The jump probability can be optimized by
defining the function u as

u(η, η′) = C exp
{
−β max

[
Φ(η), Φ(η′)

]}
, (E.7)

where C ∈ (0, 1] ∈ R can be set as a constant or as a function C(η, η′),
provided that C(η, η′) = C(η′, η). Therefore the jump will be accepted with
probability pR

jump(η → η′) as given in Eq. (3.9).

Since for each jump pR
jump satisfies the detailed balance, the entire ran-

domization scheme satisfies the detailed balance.
Let us consider an n-occupied cell undergoing one randomization with

Rjump. In such a cell, n jump attempts (one for each guest) will generate
the following sequence of transformations: η → η1 → η2 → · · · → ηn ≡ ηR

where the configurations path

{ηJ}J=1,...,n−1 = η1, η2, . . . ,ηn−1

connects the starting configuration η with the post-randomization one ηR.
The probability of a cell of configuration η′ to pass to a configuration η′′ is
given by:

p̃R(η′ → η′′) = ω(η′ → η′′) pR
jump(η

′ → η′′) (E.8)
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where ω(η′ → η′′) is the probability of a trial configuration η′′ to be chosen
given that the input one is η′, and pR

jump(η
′ → η′′) has been defined in

Eq. (E.2). According to the procedure illustrated in Section 3.2.2 for the
jump randomization, ω(η′ → η′′) = ω(η′′ → η′) thus Eq. (E.8) is satisfied.
Now, for each passage of the path a detailed balance equation like Eq. (E.2)
can be written, that is

P (η|n) p̃R(η → η1) = P (η1|n) p̃R(η1 → η) (E.9)

P (η1|n) p̃R(η1 → η2) = P (η2|n) p̃R(η2 → η1) (E.10)

· · ·
P (ηn−1|n) p̃R(ηn−1 → ηn) = P (ηn|n) p̃R(ηn → ηn−1). (E.11)

By multiplying side by side Eqs. (E.9) to (E.11) (thus obtaining the detailed
balance equation for the path {ηJ}) and sum over all the possible paths one
obtains the detailed balance equation for the jump randomization:

P (η|n)
∑
{ηJ}

p̃R
(
η → ηR

∣∣{ηJ}
)

= P (ηR|n)
∑
{ηJ}

p̃R
(
ηR → η

∣∣{ηJ}
)

(E.12)

where the probabilities

p̃R
(
η → ηR

∣∣{ηJ}
)

= p̃R(η → η1)
n−1∏
J=1

p̃R(ηJ → ηJ+1)

p̃R
(
ηR → η

∣∣{ηJ}
)

= p̃R(η1 → η)
n−1∏
J=1

p̃R(ηJ+1 → ηJ), (E.13)

represent the transition probability for the path {ηJ} respectively in the
forward and reverse direction.

E.2 Global detailed balance for randomiza-

tion

At each instant of time, the randomization partition function can be written
as:

ZR(t) =
∏
r∈L

Q (n(r, t)) , (E.14)

that is, the post-randomization lattice configuration ηR(L , t) will be chosen
among the configurations contained (and weighted) in Eq. (E.14).

As shown in Section 3.2, the local operator R acts independently from
cell to cell. Then if one indicates as
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• p (η(r)) the probability of the cell r configuration to be η(r), and

• p (n(r)) the probability of the cell r configuration to have occupancy
n, and

• p (η(r)|n(r)) the conditional probability of the cell r to have configu-
ration η(r) given that its occupancy is n(r),

the detailed balance for the single cell reads:

p (η(r)) pR
(
η(r)→ ηR(r)

)
= p

(
ηR(r)

)
pR

(
ηR(r)→ η(r)

)
(E.15)

which, using the relation p(η) = p(n(η))p(η|n(η)) and the fact that nR(η) =
n(η), can be reduced to

p (η(r)|n(r)) pR
(
η(r)→ ηR(r)

)
= p

(
ηR(r)|n(r)

)
pR

(
ηR(r)→ η(r)

)
.

(E.16)

The advantage of Eq. (E.16) w.r.t. Eq. (E.15) is that it involves only prob-
abilities which are locally defined. Eq. (E.16) is satisfied both for the mem-
oryless randomization and the jump randomization. First of all, the term
p (η(r)|n(r)) is given by P (η, n) defined in Eq. (2.30). Secondly, for random-
ization with Rpf Eq. (E.16) is trivially satisfied by use of Eq. (3.7), while
for Rjump the transition probability satisfies detailed balance as discussed in
Appendix E.1.

Extending to the entire lattice, the probability of the lattice configuration
η(L ) is

p (η(L )) = p (n(L )) p (η(L )|n(L ))

= p (n(L ))
∏
r∈L

p (η(r)|n(r)) . (E.17)

Using the independence of cells during randomization, the detailed balance
for the lattice randomization, expressed by

p (η(L )) pR
(
η(L )→ ηR(L )

)
= p

(
ηR(L )

)
pR

(
ηR(L )→ η(L )

)
(E.18)

can be written as∏
r∈L

p (η(r)|n(r)) pR
(
η(r)→ ηR(r)

)
=

∏
r∈L

p
(
ηR(r)|n(r)

)
pR

(
ηR(r)→ η(r)

)
. (E.19)

which, since Eq. (E.16) is satisfied, is also satisfied.
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E.3 Block propagation: partitioning scheme

in details

In the present Appendix a detailed description of the partitioning scheme of
the ThPCA shall be given.

Cell lines. First of all, a cell line shall be defined. Let us consider a par-
ticular cell R = {Rj} ∈ L (with j = 1, . . . , d), where the set of coordinates
{Rj} (with Rj = R · ej according to Eq. (2.9)) specifies its position in L . If
the specification of the k-th coordinate of R is omitted, then we are indicat-
ing the cell line at the position {Rj}j 6=k spanning the lattice perpendicularly
from one side to the opposite one along the k-th direction. As example, the
cell line {Rj}j 6=1 is the set of the following L cells:

0
R2
...

Rd

 ,


λ
R2
...

Rd

 , . . . ,


(L− 1)λ

R2
...

Rd

 . (E.20)

An alternative notation for the cell coordinates will be useful for a compact
definition of cell line’s partition. Let us consider the particular cell R. Of
course it belongs to the cell line {Rj}j 6=k, where k is a particular direction.
Together with the cell line position {Rj}j 6=k, the additional specification of
Rk returns the exact coordinates of R:

R ≡
(
rk = Rk

∣∣∣ {Rj}j 6=k

)
. (E.21)

As example, 
λ
R2
...

Rd

 ≡ (
r1 = λ

∣∣∣ {Rj}j 6=1

)
. (E.22)

A pair of neighboring cells along the k-th direction shall be indicated as

{
R,R k

}
=

1⋃
z=0

(
rk = Rk + zλ

∣∣∣ {Rj}j 6=k

)
. (E.23)
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As example, if we take the cell of Eq. (E.22) and the next cell along the 1-st
direction,


λ
R2
...

Rd

 ,


2λ
R2
...

Rd


 ≡

1⋃
z=0


(1 + z)λ

R2
...

Rd


≡

1⋃
z=0

(
r1 = (1 + z)λ

∣∣∣ {Rj}j 6=1

)
. (E.24)

Alternating pairs of neighboring cells on the same line form a partition.
Two partitions of this kind (denoted as g[0] and g[1]) are possible: Let us take
as example the first partition of the cell line {Rj}j 6=1:

g
[0]
1

(
{Rj}j 6=1

)
=

L/2−1⋃
i=0

1⋃
z=0

(
r1 = (2i + z)λ

∣∣∣ {Rj}j 6=1

)
. (E.25)

Taking into account the periodicity of the lattice, the second partition will
be

g
[1]
1

(
{Rj}j 6=1

)
=

L/2−1⋃
i=0

1⋃
z=0

(
r1 = (2i + 1 + z)λ

∣∣∣ {Rj}j 6=1

)
, (E.26)

where the sum is a sum modulo L. So the general formulation of the two cell
line partitions is obtained:

g
[J ]
k

(
{Rj}j 6=k

)
=

L/2−1⋃
i=0

1⋃
z=0

(
rk = (2i + J + z)λ

∣∣∣ {Rj}j 6=k

)
, (E.27)

with J = 0, 1. (E.28)

With this formulation, the cell pairs belonging to each partition are indepen-
dent and can undergo propagation simultaneously.

It should be noted that, since a sequence of the two line partitions g
[0]
k

and g
[1]
k allows each of the L belonging cells to communicate with its two own

neighbors on the same line, the two partitions are complementary. From now
on, an overline over a partition will denote its complementary: (This notation
applies only on partitions. It must not be confused with the notation of
average, which applies instead on observables)

g
[0]
k

(
{Rj}j 6=k

)
= g

[1]
k

(
{Rj}j 6=k

)
,

g
[1]
k

(
{Rj}j 6=k

)
= g

[0]
k

(
{Rj}j 6=k

)
. (E.29)
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From cell lines to lattice partitions. Partitions of several cell lines can
be combined together to construct the lattice partitions. From now on, the
symbol ( · k) will contract the extended notation ({rj}j 6=k) of the position of
a cell line along the k-th direction.

The cell line partitions defined above can be used to construct many
different lattice partitions. First of all it will be shown how the ThPCA
creates a lattice partition along the k-th direction at each time step t. For
each cell line spanning the system along the k-th direction a random boolean
ζk( · k, t) is picked. Then for the k-th direction the first lattice partition will
be

Gk(t) =
⋃
{ · k}

g
[ζk( · k,t)]
k ( · k), (E.30)

where { · k} denotes all the cell lines along the k-th direction. The comple-
mentary cell lines will constitute the second lattice partition:

Gk(t) =
⋃
{ · k}

g
[ζk( · k,t)]
k ( · k). (E.31)

The same thing is done for all the d lattice directions.
Next the sequence of directions is determined: at time t a permutation is

randomly chosen, which is denoted I(t), among the d! possible permutations
of the elements of the array (1, . . . , d). The j-th element of I(t) is denoted
as Ij(t).

The following notation shall be used:

• P t
k (and P t

k) will indicate the propagation operator applied to the par-
tition Gk(t) (and Gk(t)) of the lattice configuration which is the output
of the previous lattice operation.

• the time associated to each propagation substep will be denoted as tj
(and tj), given by:

tj = t + τR + (2j − 2)τP
∗ ,

tj = t + τR + (2j − 1)τP
∗ . (E.32)

Then, the propagation at time t among the cells (assumed in the post-
randomization state) of the entire lattice L is given by the following se-
quence:

1) Independent propagation on the pairs of cells of the partition GI1(t)
along the direction I1, where the input state of the cells is their respec-
tive post-randomization state. That is,

P t
I1

: η(L , t1)→ η(L , t1) (E.33)
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2) Independent propagation on the pairs of cells of the complementary
partition GI1(t) along the direction I1, which will use the output state
of the previous step as input state. That is,

P t
I1

: η(L , t1)→ η(L , t2) (E.34)

. . .

2d− 1) Independent propagation on the pairs of cells of the partition GId
(t)

along the direction Id, which will use the output state of the previous
step as input state. That is,

P t
Id

: η(L , td)→ η(L , td) (E.35)

2d) Independent propagation on the pairs of cells of the complementary
partition GId

(t) along the direction Id, which will use the output state
of the previous step as input state. That is,

P t
Id

: η(L , td)→ η(L , t + τ) (E.36)

Each substep of the propagation can be expressed through the following
general form:

P t
Ij

: η(L , tj)→ η(L , tj),

P t
Ij

: η(L , tj)→ η(L , tj+1), (E.37)

where j = 1, . . . , d and it is assumed that td+1 ≡ t + τ .
The sequence of operations can be summarized by the expression

P t
L

(
ηR(L , t)

)
= P t

Id
◦ P t

Id
◦ P t

Id−1
◦ P t

Id−1
◦ · · · ◦ P t

I1
◦ P t

I1

(
ηR(L , t)

)
=

d−1◦
j=0

(
P t

Id−j
◦ P t

Id−j

) (
ηR(L , t)

)
, (E.38)

where

P t
Ij

(η(L , tj)) =
⋃

{r,r Ij(t)}∈GIj
(t)

P
({

η(r, tj), η(r Ij(t), tj)
})

, (E.39)

for the cells belonging to the partition GIj
(t), and

P t
Ij

(
η(L , tj)

)
=

⋃
{r,r Ij(t)}∈GIj

(t)

P
({

η(r, tj), η(r Ij(t), tj)
})

, (E.40)
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for the cells belonging to the partition GIj
(t). Eq. (E.38) can be inserted into

Eq. (3.1) to obtain the complete evolution equation of the model.

In this Appendix the time-dependent nature of the lattice propagation
operator P t

L has been shown. It is due to the fact that it is composed of
partial propagation operators working on different partitions of the lattice
which are time-dependent. Therefore, the definition of partitioning cellular
automaton is the most appropriate for this model since the lattice propaga-
tion is performed through an automatic partitioning of the lattice space from
time to time.

E.4 Global detailed balance for propagation

At each instant of time, the propagation partition function of the lattice
partitions GIj

(t) and GIj
(t) can be written respectively as:

ZP
Ij

(t) =
∏

{r,r Ij(t)}∈GIj
(t)

∏
ρ=r,r Ij(t)

∏
α=ex,in

{[
qα

(
n(ρ, tj)

)]nα(ρ,tj)

+
[
qα

(
nP (ρ, tj)

)]nP
α (ρ,tj)

}
, (E.41)

ZP
Ij

(t) =
∏

{r,r Ij(t)}∈GIj
(t)

∏
ρ=r,r Ij(t)

∏
α=ex,in

{[
qα

(
n(ρ, tj)

)]nα(ρ,tj)

+
[
qα

(
nP (ρ, tj)

)]nP
α(ρ,tj)

}
.

(E.42)

Similarly to the case of lattice randomization, (see Eq. (E.14)) the propaga-
tion partition function along each lattice partition is the product of indepen-
dent factors.

First of all, proof of the detailed balance during propagation on a pair
of neighboring cells (denoted {r, rj}) shall be given. The proability of the
input configuration of the pair to be η(r, rj) can be expressed as the product
between the probability to have input occupancy n(r, rj) times the condi-
tional probability to be in the input configuration given the value of the
input occupancy:

p
(
η(r, rj)

)
= p

(
n(r, rj)

)
p
(
η(r, rj)|n(r, rj)

)
. (E.43)
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Since the sum of the two occupancies, n(r, rj) is conserved during propaga-
tion, the detailed balance equation

p
(
η(r, rj)

)
pP

(
η(r, rj)→ ηP (r, rj)

)
= p

(
ηP (r, rj)

)
pP

(
ηP (r, rj)→ η(r, rj)

)
(E.44)

with pP given in Eq. (3.22), reduces to

p
(
η(r, rj)|n(r, rj)

)
pP

(
η(r, rj)→ ηP (r, rj)

)
= p

(
ηP (r, rj)|n(r, rj)

)
pP

(
ηP (r, rj)→ η(r, rj)

)
(E.45)

As for the randomization, such reduction allows to work with an equation
whose terms are easily computable. The probability of a cell pair configura-
tion is given by:

p
(
η(r, rj)|n(r, rj)

)
=

q(r, rj)

Q(r, rj)
, (E.46)

where Q(r, rj) is the partition function of the pair, given by

Q
(
r, rj

)
=

n(r,rj)∑
n=0

Q(n) Q
(
n(r, rj)− n

)
, (E.47)

while the propagation probability is given by Eq. (3.22). Inserting Eqs. (3.22)
and (E.46) into Eq. (E.45) one obtains that the detailed balance is satisfied
during the propagation operation on each pair of cells. Following the same
procedure as in Appendix E.2 for the randomization, it is straightforward
to obtain that the detailed balance is satisfied during propagation on each
lattice partition. Therefore, at each time step the entire propagation process
satisfies detailed balance.
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BIBLIOGRAPHY 173

[92] D. Keffer, A. V. McCormick, and H. T. Davis, J. Phys. Chem.
100, 967 (1995).

[93] F.-Y. Li and S. Berry, J. Phys. Chem. 99, 2459 (1995).

Federico Giovanni Pazzona - Cellular Automata for the Mesoscopic Simulation of
Adsorption and Diffusion in Zeolites

Tesi di Dottorato in Scienze Chimiche - Università degli Studi di Sassari


